
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

176,000 190M

TOP 1%154

6,500



1

Chapter

The Use of Artificial Intelligence 
in the Management of Intracranial 
Aneurysms
Luis Antonio Marín-Castañeda, Fernanda de Leon-Mendoza 

and Hector Eduardo Valdez-Ruvalcaba

Abstract

The use of artificial intelligence (AI) has potential benefits in the management of 
intracranial aneurysms. Early detection of intracranial aneurysms is critical due to 
their high risk of complications such as rupture, vasospasm, and ischemia with highly 
impact on morbidity and mortality. The main findings suggest that AI can improve 
the accuracy of aneurysm detection, rupture risk prediction, and assist neurointer-
vention in planning and performing procedures. This chapter discusses the potential 
for AI to improve patient care by enabling earlier diagnosis and timely treatment, 
reducing medical errors, costs, morbidity, and mortality. However, further validation 
of AI-based applications is necessary in a real-world clinical setting.

Keywords: intracranial aneurysm, artificial intelligence, machine learning, rupture 
risk assessment, computer-assisted diagnosis

1. Introduction

The detection and management of unruptured intracranial aneurysms (IAs) is 
a significant public health concern, affecting an estimated 3–7% of the population 
[1, 2]. Advances in neuroimaging, such as magnetic resonance angiography (MRA), 
computed tomographic angiography (CTA), and digital subtraction angiography 
(DSA), have increased the detection of incidental aneurysms [3, 4]. However, physi-
cians’ manual measurements of aneurysm morphology on 2D/3D projections have 
limitations of subjectivity and inconsistency, leading to interobserver variations [1].

To enhance aneurysm management, it is crucial to strive for greater accuracy and 
efficacy throughout all stages. Researchers have dedicated significant effort toward 
identifying risk factors and developing prediction models related to aneurysm initia-
tion, growth, rupture, and intervention assessment [1, 5]. Several scoring systems 
have been developed and validated, such as PHASES [6] for predicting rupture risk 
and ELAPSS [7] for predicting growth risk. Additionally, the UIATS [6] score has 
been developed to balance risks and benefits directly. However, these scoring systems 
focus mainly on predicting rupture events rather than providing a comprehensive 
range of objective predictive analytics that may be useful for shared decision-making.
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The concept of artificial intelligence (AI) was first introduced by J. McCarthy in 
the 1950s and involves the development of algorithms that can replicate human cogni-
tive functions, including problem-solving, reasoning, and learning [7]. In essence, 
it is the ability of a machine to imitate intelligent human behavior and solve complex 
tasks using a single algorithm or brain [8]. AI includes various subsets, such as 
computer vision, image processing, artificial neural networks (ANN), convolutional 
neural networks (CNN), machine learning (ML), and deep learning (DL) [9].

In recent years, AI has become increasingly popular in the medical field, with 
applications in screening, diagnosis, and risk analysis across various specialties. In 
the field of neuroscience, AI is used for diverse purposes, such as clinical prediction 
modeling in intramedullary spinal tumor surgery [10], as well as in the study of 
neuro-oncology [11], epilepsy [12], Alzheimer’s disease [13, 14], schizophrenia [14], 
and other neurological disorders [15].

AI can identify potential diagnoses, select appropriate treatments based on 
medical records and imaging data, and make independent decisions based on train-
ing data. This technology, which relies on past experiences, has shown promising 
results in improving patient care by enabling earlier diagnosis and timely treatment, 
reducing medical errors, costs, morbidity, and mortality [16, 17]. In the 2000s, AI was 
introduced into the management of intracranial aneurysms, providing an automated 
morphological 3-D characterization as an alternative to assess the risk of rupture and 
to determine the most appropriate management without delay [18]. Subsequently, 
the implementation of artificial intelligence methods allowed for automated morpho-
logical calculation, rupture risk stratification, and outcome prediction in aneurysm 
assessment, demonstrating excellent performance (Figure 1) [7].

The goal of using AI in intracranial aneurysm management is to enhance and 
improve patient health care. However, not all AI studies have been validated in a real 
clinical setting. In a recent study by Alwalid et al. [5], the clinical feasibility of the 
most popular AI applications in intracranial aneurysms was evaluated. The study 

Figure 1. 
Schematic representation of the use of DL-based algorithms in intracranial aneurysm management. The main 
applications include a. detection of intracranial aneurysms, b. assessing the risk of rupture, and c. predicting 
prognosis and risk of recurrence.



3

The Use of Artificial Intelligence in the Management of Intracranial Aneurysms
DOI: http://dx.doi.org/10.5772/intechopen.110772

demonstrated that AI-based applications, particularly aneurysm detection, can 
potentially improve radiologists’ clinical performance and shorten interpretation 
time. However, further validation is necessary in a real-world clinical setting [1, 5].

This chapter will discuss AI’s main applications in managing intracranial aneu-
rysms and its limitations and potential for future development.

2. Intracranial aneurysm detection

Artificial intelligence has become a significant focus in neurology for the detection 
of intracranial aneurysms. Early detection of aneurysms is critical due to their high 
risk of rupture, morbidity, and mortality. Computer-assisted diagnosis (CAD) is an 
AI-based technology that has emerged as a valuable tool for aneurysm detection based 
on imaging features. There are two types of CAD algorithms: conventional-style and 
deep learning-based models [19].

CAD systems have proven to be useful tools for faster, more accurate, objective, 
and consistent diagnoses of intracranial aneurysms by reducing intra and interob-
server variability. Conventional-style CAD systems utilize quantitative analysis of 
predetermined imaging characteristics to detect aneurysms automatically [10]. The 
first CAD system developed for aneurysms using this method was created by Arimura 
et al. [20], which showed high sensitivity but could not detect small or fusiform aneu-
rysms. Additionally, digital subtraction angiography (DSA) as an outside reference 
standard did not verify the aneurysms in the study.

Yang et al. [21] developed a fully automated algorithm for aneurysm detection 
that overcomes some of the limitations of conventional-style CAD systems. Their 
algorithm utilizes two complementary techniques: automatic intracranial artery 
segmentation and detecting points of interest from the segmented vessels, verified 
by DSA. This system demonstrated high sensitivity, especially for small aneurysms, 
and outperformed human detection in some cases. However, conventional-style CAD 
systems have a high false positive rate and low sensitivity, which limits their reliability 
and widespread adoption in clinical practice [19].

DL-based models for intracranial aneurysm detection have shown significant 
improvements in sensitivity and specificity compared to conventional-style CAD 
systems. These models can detect aneurysms of various shapes and sizes and can 
differentiate them from normal vessels and other intracranial structures with 
high accuracy. Furthermore, DL-based CAD systems can segment and quantify 
aneurysms, providing valuable information for treatment planning. DL models 
for aneurysm detection can be trained on a large dataset of radiological images, 
allowing for the identification of subtle imaging features that may be missed by 
human observers. For example, DL models can identify aneurysms in regions of the 
brain that are difficult to visualize or differentiate small aneurysms from normal 
vasculature [22, 23].

DL-based CAD systems have shown promising results in intracranial aneurysm 
detection. In 2018, Hua et al. developed a DL-based system that achieved a sensitiv-
ity of 96.4% and a specificity of 91.1% for aneurysm detection on MRA images. In 
another study, Zhang et al. developed a DL-based system that achieved a sensitivity of 
92.3% and a specificity of 95.2% for aneurysm detection on CTA images [24]. These 
DL-based CAD systems have the potential to improve the accuracy and efficiency of 
aneurysm detection greatly. These models can be classified according to whether they 
have been developed for MRA, CTA, or DSA. REF.
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2.1 MRA-based models

In recent years, several DL-based computer-assisted diagnosis (CAD) algorithms 
that use deep learning and magnetic resonance angiography (MRA) have emerged. 
One such algorithm, called DeepMedic, was developed by Sichtermann et al. [25] for 
automated detection of intracranial aneurysms using 3D time-of-flight MRA. The 
algorithm achieved a sensitivity rate of 90%, with higher sensitivity rates of 96% 
and 100% for aneurysms measuring between 3 and 7 mm and >7 mm, respectively. 
However, the algorithm showed poor specificity due to the limited sample size. The 
study also compared the performance of two clinicians in detecting aneurysms with 
and without augmentation from the DeepMedic algorithm, revealing improved 
sensitivity when the human reader was combined with the algorithm [19, 25].

Stember et al. [26] machined a convolutional neural network (CNN) algorithm 
for detecting intracranial aneurysms (IA) on both time-of-flight MRA and contrast-
enhanced MRA. Their algorithm achieved a high sensitivity rate of 98.8%, but during 
the learning process, it only incorporated two-dimensional maximum intensity 
projection (MIP) images, resulting in false positives due to vascular curvatures that 
mimic aneurysms. In another study, Ueda et al. [27] developed an 18-layer CNN algo-
rithm that utilized imaging data from multiple MRI units from various institutions. 
The algorithm achieved a sensitivity rate of 91–93% for aneurysms that are smaller 
than 5 mm. However, due to the heterogeneous internal signals of large aneurysms 
that are greater than 5 mm, the sensitivity rate was not satisfactory for this type of 
aneurysm [28]. Algorithms that use deep learning and magnetic resonance angiogra-
phy (MRA) have shown promising results for the automated detection of intracranial 
aneurysms.

2.2 CTA-based models

Compared to MRA-based models, fewer studies have proposed AI algorithms for 
detecting intracranial aneurysms on CT angiography. In 2019, Park and colleagues 
introduced a DL-based CAD system called HeadXNet, which was applied to CTA 
images and outperformed clinicians in aneurysm detection [29]. Another study by 
Yang et al. [30] proposed an 18-layer CNN DL algorithm on CTA, which had a high 
sensitivity of 97.5% but a high false positive rate. Nevertheless, this algorithm helped 
improve the detection rate of IAs smaller than 3 mm, which are often missed by 
humans.

The DeepMedic algorithm developed by Sichtermann and colleagues in 2019 has 
also been applied to CTA images for aneurysmal subarachnoid hemorrhage, with a 
sensitivity of 87% and false positives of 0.42 for aneurysms larger than 30 mm and a 
sensitivity of 96% and a false positive of 0.14 for aneurysms larger than 100 mm [19].

2.3 DSA-based models

Several AI models have been developed to automatically detect intracranial 
aneurysms on 2D and 3D-DSA. In 2020, Jin and colleagues [31] developed a U-shaped 
deep neural network for aneurysmal detection and segmentation on 2D-DSA, which 
showed a high lesion-level sensitivity and low false-positive rate, making it a useful 
clinical tool for prompt diagnosis with less risk of errors. Duan and colleagues in 2019 
[32] developed the regional average grayscale suppression (RAGS) algorithm for dual-
input 2D DSA images, achieving a sensitivity of 100%, but with 11 false positives per 
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case. However, combining dual-input images with the RAGS algorithm reduced false 
positives to 1.8 per case [19].

In summary, computer-aided detection of intracranial aneurysms using deep 
learning and medical imaging techniques has shown promising results for improv-
ing diagnostic accuracy and reducing false negatives. MRA-based models have been 
extensively studied and have demonstrated high sensitivity rates but poor specificity. 
CTA-based models have shown comparable sensitivity rates to MRA-based models, 
with fewer studies reported in the literature. DSA-based models have also shown 
high sensitivity rates, with low false positives, but require more invasive imaging 
 procedures [19].

However, the performance of these algorithms can be affected by various factors, 
such as the quality and quantity of training data, machine learning approach, and 
image processing techniques. Further research is necessary to optimize these algo-
rithms and develop reliable and efficient tools for detecting and diagnosing intracra-
nial aneurysms [5].

3. Treatment outcomes

Aneurysms can be treated using surgical or endovascular techniques. However, 
there is still a risk of stroke or death, ranging from 3 to 10%, even with proper  
treatment [33].

Size, location, and morphology must be considered to determine the best treat-
ment for an aneurysm [5]. For aneurysms located in distal segments or at the middle 
cerebral artery trifurcation, surgical therapy may be preferred. On the other hand, 
endovascular treatment has shown better results for proximal intracranial carotid and 
posterior circulation aneurysms. In some cases, very large or complex aneurysms may 
require a combination of endovascular and surgical techniques [34].

The use of artificial intelligence (AI) has enabled the determination of the most 
suitable intervention therapy based on patient characteristics and aneurysm features. 
Through the analysis of large datasets, AI models can assist in the decision-making 
process. Moreover, incorporating objective data on aneurysm flow and morphologi-
cal characteristics can further enhance the process, improving occlusion rates and 
potentially reducing the risk of recanalization [35].

3.1 Surgery

The application of artificial intelligence (AI) in neurosurgery has generated con-
siderable interest in recent years, mainly due to the large amounts of data produced 
by modern diagnostic methods that require quantitative analysis. In conjunction with 
advancements in microsurgical techniques, the use of surgical management involv-
ing the placement of a clip across the neck of a cerebral aneurysm has proven to be 
an effective and safe procedure for patients with unruptured cerebral aneurysms or 
subarachnoid hemorrhage (SAH) [36].

Certain factors could influence prognosis, and studies have indicated that patients 
treated at specialized neurosurgical centers with high volumes of cerebral aneurysm 
procedures tend to experience better outcomes than those treated at lower-volume 
centers. Numerous studies have shown that machine learning (ML) can be utilized 
in surgical procedures, including presurgical planning, intraoperative guidance, and 
outcome prediction [34, 36, 37].
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Staartjes and colleagues used various ML models, including support vector 
machines, decision trees, random forests, generalized linear models, generalized 
additive models, and stochastic gradient boosting machines, to achieve a peak accu-
racy of 91% during internal validation of the gradient boosting machine [8].

Neurosurgeons can incorporate AI and ML into their daily clinical practices and 
use these models for intraoperative and postoperative care, thereby creating superior 
medical care and research tools and techniques [38].

3.2 Endovascular therapy

The techniques used for endovascular therapy for cerebral aneurysms have 
evolved, with coil systems being introduced in the early 1990s [39], and newer tech-
niques, including stent-assisted coiling, balloon-assisted coiling, flow diverters (FD), 
disruptors, and new embolic materials, such as liquids, showing promising results 
[33]. However, complications can occur, such as intraprocedural aneurysm rupture 
and thromboembolism, which are more frequent in the setting of SAH compared to 
unruptured aneurysms [40].

Flow diverters have emerged as an alternative to coil embolization for treating 
wide-neck and challenging aneurysm morphologies, but 25% of FD-treated intracra-
nial aneurysms still fail to reach complete occlusion even after six months, increasing 
the risk of rupture and thromboembolic complications. Factors such as aneurysm 
ostium size, pre- and post-treatment inflow rates, shear rate, and averaged velocity 
are analyzed to assess the effectiveness of FD treatment [40].

For coil embolization, recanalization has been shown to correlate with aneurysm 
morphometrics such as size, neck-to-dome ratio, and neck size, which have been used 
to gauge coil treatment outcomes [41]. On the other hand, the FD treatment of IAs 
does not correlate to these morphological features; instead, hemodynamic metrics are 
analyzed [42].

Mut et al. [43] found that specific hemodynamic metrics, such as pre-and post-
treatment inflow rates, shear rate, and aneurysm velocity, significantly differed 
between occluded and non-occluded intracranial aneurysms following six months of 
FD treatment.

Paliwal et al. used computational image analysis to extract information on mor-
phology, hemodynamics, and FD-device characteristics from FD-treated aneurysms 
[44]. They used this data to train machine learning algorithms to predict 6-month 
clinical outcomes after FD treatment, finding that a neural network performed best 
(AUC = 0.967) and that the G-SVM with NN was able to predict occlusion outcomes 
with 90% accuracy.

Guedon et al. [45] utilized ElasticNet penalized logistic regression for developing a 
predictive score consisting of aneurysm diameter, treatment indication, parent artery 
diameter ratio, neck ratio, side-branch artery, and sex to forecast aneurysm occlusion 
following FD treatment at a follow-up of six months or longer, achieving an accuracy 
of 86%.

Endovascular therapy for cerebral aneurysms has undergone significant 
advancements over the years, with newer techniques, such as flow diverters show-
ing promising results for treating challenging aneurysm morphologies. However, 
complications can still arise, and effective treatment outcome assessment requires 
considering various factors such as hemodynamic metrics and morphological 
features.



7

The Use of Artificial Intelligence in the Management of Intracranial Aneurysms
DOI: http://dx.doi.org/10.5772/intechopen.110772

4. Prediction of aneurysm complications

The cornerstone of prediction modeling in aneurysm is to predict rupture, and 
statistical models such as logistic regression have been widely used for this purpose 
[35]. However, recent studies have demonstrated that machine learning (ML) models 
perform better than traditional statistical methods because they can process massive 
amounts of data and model nonlinear relationships [46].

Hemodynamics is considered the most valuable parameter in exploring intracra-
nial aneurysm behavior. Promising AI tools, such as computational fluid dynamics, 
have been developed to assess hemodynamics [47]. Morphological features, including 
size and shape, have shown great potential in identifying aneurysms at risk of rup-
ture, while geometric features that describe the 3D characteristics of the aneurysm 
can be automated to evaluate aneurysm formation, growth, and risk of rupture. 
Integrating clinical, morphological, and hemodynamic parameters can improve 
rupture prediction, but limited clinical use is still observed due to complexity, cost, 
and expertise requirements [5].

Several studies have used ML methods to predict complications arising from 
aneurysm rupture, such as vasospasm, delayed cerebral ischemia, and infarction [48]. 
Dumon et al. [49] developed an ANN prediction model that had a higher predictive 
value (AUC of 0.960) for symptomatic cerebral vasospasm than two multiple logistic 
regression models (AUC = 0.933 and 0.897). In another study, ML methods such as 
SVM, random forest, and multilayer perceptron outperformed logistic regression 
models in predicting delayed cerebral ischemia.

Tanioka et al. [47] used random forests to develop early prediction models for 
delayed cerebral ischemia, angiographic vasospasm, and cerebral infarction using 
clinical variables and matricellular proteins. The proteins osteopontin, periostin, and 
galectin-3 had prediction accuracies of 95.1%, 78.1%, and 3.8%, respectively. These 
studies demonstrate that ML methods have shown excellent performance in predict-
ing complications that arise from aneurysm rupture.

Another application is the use of clinical data and CT perfusion from hospital 
admissions to predict outcomes of aneurysmal SAH. A random forest model was 
trained to predict dichotomized mRS (<2 and >2), and the accuracy was 84.4% in the 
training folds and 70.9% in the validation folds. However, it cannot be introduced into 
clinical practice because of small population size [50].

5. Limitations and challenges of AI on intracranial aneurysm

The use of artificial intelligence in the analysis of intracranial aneurysms has been 
expanding rapidly. While numerous algorithms and techniques have been developed 
for managing these aneurysms, certain challenges and limitations must be addressed.

Kim and colleagues [51] suggested certain standards to assess the clinical 
effectiveness of AI algorithms. These include obtaining external validation, con-
ducting a diagnostic cohort study, involving multiple institutions, and performing 
prospective studies. However, most of the studies on AI in managing intracranial 
aneurysms lack external validation and are retrospectively designed, which can lead 
to selection bias and variability. To achieve reliable results, it is necessary to conduct 
prospective studies and externally validate the available algorithms for their clinical 
feasibility [5].



Advances in Cerebral Aneurysm Treatment

8

DL-based algorithms have exhibited positive outcomes, along with other AI 
techniques. However, the time taken to train them and their cost-effectiveness are still 
questionable. The intricate structure of neural network algorithms poses a challenge 
known as the “black box” problem, where the process of data processing within the 
layers is not completely understood. This leads to skepticism regarding the results 
generated from a “black box.” [19].

In addition, these systems may introduce new kinds of errors, particularly auto-
mation bias, which is defined as the inclination to use automated cues as a substitute 
for vigilant information-seeking and processing [52]. Automation bias has been high-
lighted as one of the potential drawbacks and ethical issues of AI-based applications. 
It reflects the dependence of the user on the machine, ignoring the contradictory 
information that may exist without automation, leading to decreased self-confidence 
and loss of human input [5].

Nowadays, a legal consensus is lacking regarding AI regulations, and no clear 
guidelines are available regarding the independent mathematical interrogation and 
validation of outputs generated by AI systems [52].

6. Future perspectives

AI has promising potential in the management of intracranial aneurysms in the 
future, including prescreening triage systems for emergency medicine physicians to 
prioritize high-risk patients, automated detection and intelligent outcome prediction, 
prediction of treatment strategies during follow-up, automated detection of recur-
rence after treatment, and prediction of rupture risk [1].

For an AI tool to effectively manage aneurysms, it must accurately identify 
true-positive cases with high confidence. This level of reliability can only be achieved 
through a significant number of annotated imaging studies, which are necessary 
before the tool can be widely implemented in real-world scenarios [53].

7. Conclusions

In conclusion, the use of artificial intelligence in managing intracranial aneu-
rysms offers higher accuracy and efficacy than manual measurements and can 
potentially augment the clinical performance of radiologists and shorten interpreta-
tion time. While some studies need to be validated in a clinical setting, AI-based 
applications should be viewed as a tool to assist and not replace human decision-
making in health care. Although implementing new technology may initially be 
costly, the long-term cost-effectiveness of AI can potentially reduce the cost of 
unnecessary diagnostic testing. Further studies are required to explore other AI 
applications in intracranial aneurysms and to validate the findings in a real-world 
clinical setting.
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