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Introductory Chapter: Vegetation 
Dynamics, Basic Phenomena,  
and Processes
Levente Hufnagel and Ferenc Mics

1. Introduction

Vegetation dynamics is the science about the concepts, theories, observations, and 
models that deals with changes in vegetation over time [1–4]. Changes in vegetation 
are a constant phenomenon on Earth. The simplest example of this is the appearance 
of weeds on a well-maintained lawn or the appearance of shrubs in an abandoned 
hayfield. Often the change is not so obvious, because the changes or the rearrange-
ment of vegetation that is difficult to observe with the naked eye are slow compared to 
human life. Each vegetation patch changes dynamically, with every single plant eventu-
ally dying and being replaced by another. When environmental conditions change, 
including the opportunity of vegetation to influence its own environment, the balance 
between birth and death is disrupted. As a result, the relative proportion of plant spe-
cies in the community will also change. The dominant species in the community largely 
determines succession, productivity, and stability, whereas the less abundant species 
determine the species richness of the community [5]. If the mortality rate exceeds the 
birth rate for a long period of time, the species becomes extinct and disappears from the 
community. New species are constantly being introduced from the area surrounding 
the vegetation patch, some of which may successfully establish if space is available. New 
species can also invade from the edges of patches, mainly vegetatively, by shoots and 
clones, which can also be a source of change in species composition. Largely spontane-
ously growing populations, evolving in accordance with the conditions of their habitat, 
form part of the ecosystem, along with external factors and other life forms [6]. Plant 
communities are assemblages of plant species that have evolved randomly throughout 
the history of the vegetation cover and then reorganized following the climate [7]. A 
plant community changes when there is a change in species composition, assuming that 
the community can be characterized based on the species composition.

Vegetation dynamics involve a range of processes, which can vary greatly in spatial 
scale, from the closure of stomas to the shift of entire biomes between geographical 
areas over centuries. Several researches are devoted to understanding and predicting 
how the physiological functioning and processes of individual plants, combined with 
each other, determine the structure, functioning, and dynamics of vegetation on large 
spatial scales. In order to study changes over time, of course, space and the spatial 
and physical properties of the vegetation have to be taken into account, the fact how 
vegetation exists in a given area at a given time. No two vegetation patches are exactly 
alike, the combinations and proportions of species are always changing [8].
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2. Succession

Ecological succession has been a focus of research for almost a century. The 
process of succession can be studied from two perspectives: systems ecology and 
population ecology. In the latter case, there is a trend in the evolution of the system 
[9], and succession is a series of communities with a characteristic composition 
and characteristic ecological factors. In this approach, population dynamics is the 
dynamics of phytocoenoses. As a result, it is necessary to explain the fate of each 
phytocoenosis from the beginning to the equilibrium, or the fate of the phytocoeno-
ses succeeding each other. Clements’ [10] theory of the alternation of communities 
during succession is still the basis of several scientific works and theories. In contrast 
to the holistic approach, the individualistic approach emphasizes the importance of 
population processes in the biocoenosis dynamics when interpreting successional 
processes. Also, great emphasis is placed on disturbances, whether human or natu-
ral, and any influence that causes instability in vegetation [5]. Thus, succession can 
be interpreted at the ecosystem level according to one of the concepts. According 
to the other idea, succession is the consequence of the interaction between spe-
cies as well as between species and the environment [11]. The latter results in the 
reproducibility of ecosystem structure and functioning. Taking into account data 
from population genetics and demography, succession is increasingly understood 
as a process of species replacement, with the role of individual species in vegeta-
tion change being related to life history strategy, growth, and reproduction [12]. In 
the past, these two theories were thought to be alternatives to each other; however, 
today they are rather complementary [13]. Long-term studies of the characteristics 
of certain plants, populations, and communities have led to the conclusion that 
it is correct to combine theories and seemingly contradictory methods in order to 
interpret successional processes [14]. In previous decades, there was a debate about 
whether succession could have only one endpoint, that is, whether it ends in a final 
climax community, or multiple climax communities could also be the result of a 
successional process [15, 16]. The concept of a more or less stable climax community 
was replaced by the idea that the relative frequency of changes decreases toward a 
supposed climax [17]; however, the climax itself also changes, and only the rate of 
change slows down but does not become zero [18]. In some cases, the changes may 
even be in the opposite direction [19]. The theoretically possible climax also changes 
in terms of species composition as a result of the changing climate, and new invasive 
species may appear [19]. The factors that influence succession vary in time and space 
[20]. With these constraints, vegetation approaches an endpoint, where only little 
change occurs, especially in terms of dominant species [21]. However, due to often 
irreversible changes caused by humans (e.g., [22, 23]), there may be changes in the 
species pool and vegetation structure, and the vegetation does not always reach the 
same hypothetical state [24]. Thus, there are several alternative endpoints.

3. Vegetation and climate change

The distribution, phenology, and productivity of vegetation are highly sensitive to 
changes in climate, which affects all ecosystems on Earth [25]. Vegetation shifts in terms 
of altitude and geographical latitude due to rising temperatures, and the vulnerability 
of many ecosystems increases [26–28]. Higher temperatures cause the growing season 
to start earlier in spring and last longer in temperate regions [29]. Production increases 
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at higher latitudes, while in arid areas and desert regions, it tends to decrease further 
from the current low values [30]. Increasingly severe drought and fires also increase the 
destruction of vegetation [31]. Shifts in phenological phases (e.g., [32]) also result in 
changes in albedo, vegetation conductance, surface roughness, and the fluxes of water, 
energy, carbon dioxide, and volatile organic compounds [33].

Global warming causes glaciers to recede more and more and the free surface left 
behind is eventually covered by plants. Such primary succession means the coloniza-
tion of previously unvegetated land and is one of the most important concepts [34]. 
During the process, pioneer plants colonize and stabilize the surface. A specific 
pattern of colonization and extinction can be observed in the community controlled 
by biotic and abiotic factors [35]. The structural complexity of the plant community is 
gradually increasing, and along with this, the biomass, production, species numbers, 
and the interactions between them are doing so [36]. When Krakatoa erupted in 1883, 
the entire island was sterilized, leaving no trace of the former soil and vegetation on 
the completely transformed island (Docters [37]). After the eruption, the area was 
covered by a nutrient-rich layer of vitric tuff (hypersthene-augite), which provided 
a suitable medium for plant roots, although no organic matter was present in it yet. 
The first colonizing species to appear were blue-green algae, forming a coating on the 
surface. Then the pteridophytes came, as they could reach the island in the easiest 
way with their spores dispersed by the wind. These were followed by seeds floating 
on the water. Finally, species spread by animals arrived. Today, there is even forest on 
the island; however, the vegetation is not as species-rich as in the area not affected by 
the disaster. The species present are not those typical of the climax community, the 
succession is ongoing and far from reaching the status of the characteristic tropical 
forests there, not disturbed by humans [38]. Succession also resumes after the aban-
donment of agricultural land, however, this is secondary, as these are not sterile areas, 
plants and other organisms had been present previously as well, but the cessation of 
human activity causes the process to resume, changing the resilience of the system 
and its response to external influences [39].

During succession, the microclimate and the physiognomy of the vegetation 
change [40]. The complexity of vegetation determines the diversity, species 
composition, and abundance of animal communities [41]. Some animal species 
are associated with vegetation of a certain complexity, where certain resources 
occur, such as prey animals, seeds, fruits, and shelter [42]. Forest loss also has the 
effect of increasing the visibility of animals, both prey and predators. This leads to 
a change in their behavior, for example, the cohesion of flocks of birds is reduced 
[43]. The changes also apply, of course, to microorganisms. During vegetation 
degradation, carbon dioxide efflux increases due to soil respiration, because 
respiration continues without photosynthesis, that is, carbon dioxide fixation as 
well, so there is nothing to counteract this [44]. In a healthy ecosystem, carbon 
accumulation is rather typical, with carbon dioxide getting into vegetation and 
soil. As a consequence of the activity of microorganisms, carbon is released back 
into the atmosphere as carbon dioxide. During the degradation of vegetation, 
the transformation of soil organic matter into carbon dioxide predominates [45]. 
During succession, the amount of carbon dioxide sequestered increases due to the 
increasing amount of photosynthesizing plants, while net carbon dioxide efflux 
decreases [46]. The changing vegetation depends on the soil microbiome network 
and regulates the community composition and, through this, the productivity 
of the whole system during succession. A resistant microbiome community also 
promotes the process of succession [47].
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Vegetation degradation refers to a temporary or permanent loss of biomass, pro-
duction, species richness, cover, and structure [48]. The definition includes not only 
quantitative but also qualitative change. This also includes the appearance of species 
that are less favored by grazing animals and less nutritious due to changing species 
composition in grazed areas [49]. Changes in vegetation are the result of a wide range 
of variables, from adaptation to changing conditions, through disasters, to human 
activities [50]. Therefore, it is very important to distinguish natural variation from 
human-induced changes [51]. Vegetation degradation is a worldwide phenomenon, 
very often caused by false human management practices or climate change [52]. NPP 
is the highest in the tropics, accounting for up to one-third of the total global NPP, 
and its dynamics are therefore very important in the geochemical cycle of carbon 
[53]. Human activity and climate change are causing the loss and variability of 
natural vegetation cover and NPP, so any action to combat climate change is crucial 
to prevent further deterioration of vegetation and desertification [54]. Due to land 
use and rapid urbanization, significant areas are losing natural vegetation [55]. As 
urbanization increases, the vegetation index also decreases, however, vegetation is 
present in the metropolitan area as well [56]. Changes in vegetation dynamics are 
closely related to climate change and human activities, so continuous monitoring 
of the dynamics and the prediction of changes are crucial tasks [57]. The extent 
of desertification in inner Mongolia reached 620.000 km2 by 2009, which is more 
than 50% of the area [58]. Fire is also a force that can strongly shape the vegetation 
pattern. It is an extremely important component of terrestrial ecosystems and has 
the potential to greatly alter vegetation structure and distribution, carbon, and other 
element cycling, as well as water and energy budgets [59]. Fires release large amounts 
of gases and aerosols into the air, which then affect radiation reaching the surface 
and the climate [60]. The planned lighting of fires in forests and rangelands has been 
common practice for thousands of years, from hunting and gathering societies to 
modern-day farmers. Burned forests are converted into pastures, and in the pastures, 
the emergence of shrubs and trees is prevented. The biomass and species diversity 
of herbaceous plants increases in regularly burned pastures. After the fire, grazing 
ungulates influence succession and species composition [61]. Regular fire burning 
and grazing result in a diverse, mosaic vegetation pattern with different stages of 
succession, increasing the spatial heterogeneity of the landscape, which in turn leads 
to greater species richness [62]. In developed countries, however, fire is rarely used 
as a means of shaping vegetation, and roads and other infrastructure also contribute 
to a lower incidence of fires than in less developed countries and in the pre-industrial 
era [63].

Climate plays a central role in the distribution of vegetation and plant species. 
Climate change could lead to significant changes in the distribution of vegetation 
across the globe in the coming decades and centuries [64]. Plenty of research focuses 
on estimating the impact of climate change on vegetation, also in light of research 
data on past climate changes [65]. In the near future, the impact of climate change 
will be comparable to changes at the glacial-interglacial boundary, causing significant 
changes in vegetation properties as well [66]. By the end of the century, average 
annual temperatures will have increased by 1.8–4°C, and by up to 6.4°C in the case of 
high emissions, compared to the 1980–1999 average [64]. The temperature increase 
will be the greatest around the poles, with a range of 5–8°C according to the A1B 
scenario [64]. The spatial shift of the climate could reach an average of 0.42 km per 
year, it could be slightly slower in mountainous areas (0.08 km per year) and faster 
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in lowland areas (1.26 km per year) [67]. Associated with this, there will be a number 
of changes in the environment. Snow cover will decrease, permafrost will thaw, the 
frequency of weather anomalies will increase in terms of temperature and precipita-
tion, the frequency and intensity of tropical cyclones will increase, and the direction 
of extratropical storms will shift toward the poles, where precipitation will increase 
but it will decrease further at the tropics [64]. The rise in carbon dioxide concentra-
tions and sea level are directly linked to this. These changes will have drastic impacts 
on plant populations as well, both indirectly and directly [68, 69]. According to all 
scenarios, these changes and their consequences will continue in the coming cen-
turies [64]. Changes in vegetation structure are difficult to predict because changes 
in climate are followed by changes in vegetation with a lag [70], probably with very 
complex dynamics.

4. Human effects and conservation efforts

Nowadays, one-third of the human population is already feeling the nega-
tive effects of degradation, which include soil erosion, salinization, draining of 
marshes and bogs, and deforestation [71]. There are already more than 500 million 
hectares of degraded forests in the tropics and this area is steadily increasing [72]. 
Deforestation is caused by economic, demographic, technological, and political 
factors [73]. In total, 52% of the felled timber becomes lumber, 31% firewood and 
charcoal, 9% is the victim of an uncontrolled fire, and 7% is lost due to grazing 
[74]. Every biome is losing NPP due to human activities, with a degraded area 
reaching 2.7 billion hectares worldwide [75]. In abandoned areas, vegetation is able 
to regenerate. This is often done deliberately as part of a rotation system in order to 
regenerate soil nutrients [76] or in response to socioeconomic impacts, which alter 
profitability, access to labor, capital, and markets [77]. Secondary forests appear in 
the place of previously deforested forests, and their area increased in Brazil from 
10 to 17 million hectares between 2004 and 2014, which is very important from the 
viewpoint of the situation of rainforests in the twenty-first century [78, 79]. Today, 
there are several programs to restore the original natural vegetation. Theoretical 
knowledge of the succession process in a given location and consideration of 
climatic conditions allow decision-making in order to achieve the goal of restoring 
a given area to a near-natural state or a condition desired by the human community 
[80]. During the restoration program, vegetation should be monitored continu-
ously. The data obtained as a result of monitoring provide feedback, which can be 
used to adjust predictions and modify plans if necessary. In addition, monitoring 
can be the basis for other scientific work, increasing our knowledge of succession 
and vegetation dynamics. In order to control succession, it is important to know, 
for example, when it is time for the emergence of desirable species or for their arti-
ficial dispersal. What will their mortality be due to the competition? How to reduce 
harmful abiotic effects? The spread of emerging undesirable adventitious species 
also needs to be controlled or they have to be eradicated [81]. An adequate response 
to ongoing degradation is often lacking due to missing adequate knowledge of the 
causes that trigger it. Even measures that have been initiated are not always suc-
cessful if the process of degradation itself and the underlying causes are not linked. 
In the absence of appropriate countermeasures, vegetation cover and soil nutrients 
may disappear [82].
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