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ABSTRACT

Chowdhury, Mohammad Abu Thaher, GLITCH ESTIMATION AND REMOVAL USING ADAPTIVE 

SPLINE FITTING AND WAVELET SHRINKAGE ON THE GRAVITATIONAL WAVE DATA. 

Master of Science (MS), December, 2022, 121 pp., 3 tables, 36 figures, references, 57 titles.

The false alarm rate and reduced sensitivity of searches for astrophysical signals are caused 

by transient signals of earthly origin, or "glitches," in gravitational wave strain data from ground-

based detectors. The greater number of observable astrophysical signals will increase the likelihood 

of glitch overlaps and exacerbate their negative impact for future detectors with higher sensitivities. 

The wide morphological diversity and unpredictable waveforms of glitches, and with the vast 

majority of cases lacking supplemental data present the main obstacles to their mitigation. Thus, 

nonparametric glitch mitigation techniques are required, which should operate for a wide range of 

glitches and, in the case of overlaps, have little impact on astrophysical signals. The arrangement 

of free knots is improved to estimate both smooth and non-smooth curves, and wavelet-based 

shrinkage is added for specific types of glitches in our method for glitch estimation and removal 

utilizing adaptive spline curve fitting. The effectiveness of the technique is evaluated for seven 

different kinds of LIGO detector glitch types. In the specific instance of a loud glitch in data from 

LIGO, Livingston that coincides with the event GW170817, the glitch is evaluated and eliminated 

without adversely altering the gravitational wave signal. For injected signals overlapped with other 

kinds of glitches, similar results are observed.
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CHAPTER I

INTRODUCTION

1.1 Gravitational Wave

According to General relativity, mass bends space-time. The heavier the mass is, the more

bending it will create in space-time. And if this mass is starting to move, then it will create a

wave in the space-time. This wave is known as a gravitational wave (GW). The amplitude of this

wave, even with a high mass, is so small that detecting it is a hard task. Moreover, GW does not

interact with other things (at least no interaction is known till now), except mass, which made it

even more difficult to detect. But because of less interaction, it is the most undisturbed wave which

can give us much more information about the universe, other than any other form of electromagnetic

radiation, and the phenomena happening/occurred in the universe Hartle (2003). That is why it is

very important to detect and extract information from a gravitational wave.

The theory of general relativity illustrate gravitational force by metric tensor, gµν . Metric

tensor gµν can be written as,

gµν = ηµν +hµν (1.1)

where, ηµν is a constant metric of Minkowski space and hµν is the metric for small perturbation

in the space time caused by the mass. When hµν is zero i.e. there is no mass, gµν is equal to hµν .

Thus, the line element for the space-time of this case will be,

ds2
1 =−c2dt2 +dx2 +dy2 +dz2 (1.2)

1



If there is a mass object, then it will have some perturbation. Let us consider the value of

the perturbation is,

hµν =



0 0 0 0

0 hxx hxy 0

0 hxy −hxx 0

0 0 0 0


(1.3)

Here, the value of hxx and hxy is small. Also, hxx is known as plus polarization (h+) of GW and

(hxy) is known as cross polarization (h×) of GW. In this case, the line element will be

ds2 =−c2dt2 +dx2 +dy2 +dz2 +02 +hxxdx2 −hxxdy2 +02 +hxydxdy+hxydydx

=−c2dt2 +(1+hxx)dx2 +(1−hxx)dy2 +dz2 +2hxydxdy (1.4)

1.2 GW Detection parameter

When gravitational wave passes through a space-time, it changes the metric between two test

masses due to the perturbation
(
hµν

)
. For example, let us consider a gravitational wave is traveling

toward the z-direction. In this system, there are two test masses, one is in the origin and another one

is in x-axis with L distance away from the first test mass. In the space-time of gravitational wave,

the distance between these two masses will be,

L(t) =
∫ L

0
(1+hxx)

1
2 dx

≈
∫ L

0

(
1+

1
2

hxx

)
dx

≈
(

1+
1
2

hxx

)∫ L

0
dx

≈ L
(

1+
1
2

hxx

)
(1.5)
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Therefore, the change in distance will be,

δL(t) = L(t)−L(0)

≈ L
(

1+
1
2

hxx

)
−L

≈ 1
2

hxxL

δL(t)
L

≈ 1
2

hxx (1.6)

Now, in this example the calculated value of perturbation is in x axis. The perturbation

can happen in any direction along any vectors. Therefore, the general case, for a vector ’a’ can be

written as,

δL(t)
L

≈ 1
2

hµνaµaν (1.7)

Moreover, the left hand side of equation 1.6/ 1.7 has a term with the ratio of the change of

length (δL) and the length (L) itself, which is known as strain. Gravitational wave detection device

measure this strain quantity to detect the gravitational wave.

1.3 Laser Interferometer Gravitational-wave Observatory (LIGO)

There are two types of GW detectors: beam detectors and resonant mass detectors Sathyaprakash

& Schutz (2009). Laser Interferometer Gravitational-wave Observatory (LIGO) is one of the beam

detectors around the globe. The current LIGO is mentioned as advanced LIGO (aLIGO) J Aasi

(2015), because of the change in instruments to increase sensitivity and reduce noise. aLIGO is an

enhanced version of the Michelson interferometer with a power recycling mirror and two arms of

4km length with Febry-Perot cavities in it. In every arm, there are two mirrors: the input mirror

and the end mirror, which work as a test mass. These two mirrors are suspended from above with

the help of glass fibers. If there is an event that changes the distance between these two mirrors

symmetrically in both arms then it will not produce any signal as there will be no change in the

phase of the incident lights.

3



Figure 1.1: Schematic diagram of LIGO (Image credit:https://www.ligo.caltech.edu)

But if the gravitational wave passes through the arms asymmetrically, it will stretch one

arm while it will compress the other arm. Thus, it will cause a change in the length of both arms,

which will cause the phase difference of light in the different arms. This phenomenon is known

as ’Differential Arm’. Thus, when these lights become incident with each other, it will produce

interference in the photodetector as long as GW pass through these two arms. As explained in the

previous section, this ’Differential Arm’ will produce a value for strain.

1.4 GW sources

Any moving object will create gravitational waves (GW). For example, if someone moves

his/her hand or takes a step during a walk, it would create a gravitational wave. But it is so weak

that it is not detectable. For detecting a gravitational wave signal, the sources should produce a big

enough signal so that the detector can detect it. Depending on the condition, we can understand that

the only detectable gravitational wave signal comes from big objects like stars, planets, black holes.

There are four types of gravitational wave signal sources Riles (2013): Binary inspirals, Continuous

4



gravitational waves, Bursts, and Stochastic.

1.4.1 Binary Inspirals signal

Binary inspiral gravitational waves are produced by pairs of dense and enormous objects

such as neutron stars, and black holes. There are two stages for this gravitational wave source. At

first, when two compact objects are relatively far from each other, these objects revolve around each

other. During this stage, it continues to give a monochromatic gravitational wave signal i.e. it has

no noticeable change in frequency and amplitude. Those dense objects start to lose energy due to

the rotation and their orbit gets smaller and smaller, which eventually leads to the second stage.

During this stage, these compact objects start to rotate faster as these objects are near to each other

and coalesce. As the inspirals are moving faster and finally merged, it changes the amplitude and

frequency rapidly during this time. The signal, binary inspirals, emanates during the second stage

and is known as a chirp signal. Binary inspirals have different waveforms depending on compact

objects and their orbits. Binary neutron star - binary neutron star (BNS) pair, binary black hole -

binary black hole (BBH) pair, and binary neutron star - binary black hole (BNSBH) pair are an

example of binary inspirals. BBH and BNSBH pair emit stronger gravitational wave signals than

the BNS pair. Currently, the signal detected by aLIGO is mostly this type of signal.

1.4.2 Continuous gravitational waves signal

According to general relativity, any accelerating object will produce gravitational waves.

Due to the detection limitation, we understand that the accelerating object has to be big enough so

that we can detect the gravitational wave signal. Both of these conditions are met by the rotating

neutron stars (Pulsars). As the pulsar’s spin continuously, they should emit a gravitational wave if

there is a deformity on the crust of the pulsar. If the spin is constant, the gravitational wave will have

equal amplitude and frequency. As this type of gravitational wave come from a continuous spinning

source, it is known as a continuous gravitational wave. The continuous gravitational wave signal

will change amplitude and frequency over a longer duration for two reasons 1. The first reason is

1https://www.ligo.org/science/GW-Continuous.php
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that it will lose energy over time and will rotate slowly. Hence, the frequency and amplitude will

change. The second reason is that the earth is rotating and if the continuous gravitational wave

is detected by a ground detector then the distance between the continuous wave source and the

earth will change. Thus, the frequency and amplitude of the gravitational wave signal will change.

There are at least three types of pulsars, which will produce continuous gravitational waves. These

are relatively young and isolated pulsars; with spin frequencies, below 50 Hz, actively accreting

stars in the binary system, and recycled ’millisecond" stars: with spin frequencies above 100 Hz.

From the spin frequency value, we can see that the gravitational wave signal is weak. For detecting

continuous gravitational waves, aLIGO sensitivity should increase more and the ground noise

should be removed more accurately as the ground noise governs in this frequency range. Detection

of continuous gravitational waves along with their electromagnetic counterparts can lead us to

understand the information of neutron stars’ structure and the equation of state of the nuclear matter

at extreme pressures more accurately.

1.4.3 Burst signal

An asymmetric explosion or implosion of the stars can also produce gravitational waves.

This type of GW signal is known as burst gravitational waves. The source for this type of GW

signal is a short-duration unknown or unanticipated source. The possible example of this type

can be Type I supernovae, Type II supernovae, sudden release of energy from a magnetar (highly

magnetized neutron star), black hole accretion disk fragmentation, pulsar glitches, and cosmic

strings. Various models have been built for supernovae burst signals Szczepańczyk et al. (2021).

But the burst signal is yet to be detected by aLIGO. The detection of a burst gravitational wave

signal can explain the explosion mechanism of stars. It also can give the range of the energy emitted

by supernovae. Moreover, it can give us information about the spot formation of black holes at their

birth, asymmetric explosion, magnetar’s angular momentum, and rotational state.
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1.4.4 Stochastic signal

A stochastic gravitational wave signal is more like a relic gravitational wave signal. A

stochastic background of gravitational waves can be produced by random, independent events during

the earlier time of the universe. Mass density fluctuation during Big Bang caused gravitational waves.

Just like cosmic microwave background (CMB), which was produced approximately after 300,000

years of the Big Bang, stochastic gravitational wave background was produced approximately in

between 10−36 s and 10−32 s 2. Stochastic gravitational wave background signal will have much

more information about the early universe than CMB as it was produced way earlier than CMB.

Stochastic gravitational wave backgrounds have stretched during the expansion of the universe and

if ever detected, they can give us information about the early universe. Also, the stochastic signal

can be produced by the binary inspirals during the history of the universe. Detection of these signals

can give us information about that time. The model, that has been created for stochastic signals, has

a very low strain value, which is well below the current sensitivity of aLIGO.

1.5 GW data and Noise

aLIGO store the recorded strain data, h(t), as a time series through a calibration procedure

Abbott & et al. (2020). The data is recorded by the main GW channel and sampled at 4096 Hz and

16384 Hz. There are auxiliary channels, which record the time series in addition to the strain signal.

The standard time series of aLIGO data is using the Global Positioning System (GPS). Nowadays,

aLIGO data is publicly available in Gravitational Wave Open Science Center (GWOSC) 3. For

saving space in the data storage system, the data has been compacted in ’hdf5’ and ’frame’ format.

The auxiliary channels, that have been attached to the main GW channel, not only record

the strain data but also monitor environmental disturbances. Also, there are instruments in aLIGO

that produce noise of various types. Therefore, the stored strain data has been impacted by many

types of noises, including environmental and instrumental noises. In general, the strain data can be

written as,
2https://www.ligo.org/science/GW-Stochastic.php
3https://www.gw-openscience.org/data/
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h(t) = s(t)+n(t) (1.8)

where s(t) is the GW signal and n(t) is the noise.

There are stationary and non-stationary noises in the data. These stationary noises can be

removed by using data conditioning. But there are non-stationary transient noises, which will be

discussed in the next chapter, that can not be removed using data conditioning. Moreover, these

transient noises produce a problem to detect GW signals as these transient noises mimic GW signals.
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CHAPTER II

GLITCH AND NOISE REMOVAL METHODS

2.1 Glitch

Glitch is a type of non-stationary transient noise, which mimics the GW signal. In other

words, a glitch is a non-GW signal, produced by non-astrophysical sources. As it mimics GW

signals, it causes problems with the detection of GW signals. Also, due to the presence of glitch,

the sensitivity of detectors can not be enhanced Buikema & et al (2020), Powell (2018). The glitch

also causes errors in parameter estimation Powell (2018). The sensitivity of the GW detectors is

increasing day by day. Thus, the probability of the number of glitches overlapping with GW signals

in the GW data is rising with the progress of detectors. Despite the overlap of the glitches with GW

signals, detectors are able to detect GW signals in the case of long-duration signals (for example

GW170817), But for the short-duration GW signals, it will be difficult, in some cases not possible,

to distinct glitches and GW signals. Therefore, removing glitches from GW data became very

important.

A relatively recent approach is that of estimating the waveform of a glitch and subtracting

it out from the data. Every glitch has unique waveforms. In addition, the waveform of glitches

changes slightly with the detector’s design. As the glitches do not have known waveforms, it is

difficult to detect, estimate and remove.

2.2 Classification of glitches

Despite having different waveforms, glitches frequently belong to a number of different

broad morphological classifications. The morphology of glitches in the time-frequency domain

has been used to categorize glitches, which has helped researchers understand the origins of some
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classes and develop successful mitigation techniques for others. For the classification of glitches,

a variety of methods—from fully automated to manual—have been suggested. The Gravity Spy

project Zevin et al. (2017) employs a citizen science strategy to include members of the general

public in categorizing glitches through visual inspection of their Q-transform Chatterji et al. (2004)

photographs. As a result, several major glitch classes with descriptive names like Blip, Tomte, and

Koi fish have been identified in the observation runs of the LIGO detectors thus far. Automated

classification methods based on machine learning techniques have been proposed, including support

vector machines Biswas et al. (2013), t-Sne Bahaadini et al. (2018), random forests Biswas et al.

(2013), S-means Mukherjee et al. (2010), and deep convolutional neural networks Biswas et al.

(2013). Two automated methods have been developed to detect errors using the Q-transform in

addition to machine learning techniques: Omicron Robinet et al. (2020) and a method employing

the p-value of the Q-transform Vazsonyi & Davis (2022). Changes in a detector’s state, its couplings

to the environment, and modifications to its hardware can affect the rates of glitches within a class

as well as the emergence and disappearance of the classes themselves.

2.3 Methods for removing noises

As removing glitches from GW data has paramount importance for detecting GW signals

and increasing the sensitivity of detectors, various methods have been developed and applied to

remove glitches. These methods have been discussed briefly in the next sub-sections.

2.3.1 Wiener Filter and Regression with Wilson-Daubechies-Meyer (WDM) transformation

aLIGO has hundreds of auxiliary channels along with the GW channel to collect data.

Some of the auxiliary channels record the data from the environment and some others collect data

from instruments. Seismic noise is recorded using seismometers and accelerometers. Using a

seismometer and accelerometer for seismic noise, the Wiener filter (the expectation value of the

square of the error signal) can be built Driggers et al. (2012). The error signal (es) can be defined as,

es = n−wy (2.1)
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where n is the noise and wy = b f ω
T x is the approximation of the noise, which can be found using

auxiliary channels. Also, ω is the tap weights of the filter, and x is the measurement of the external

disturbance of the witness mirror. Therefore, the figure of merit for calculating the Wiener filter can

be expressed as Driggers et al. (2012),

E[e2
s ] = E[n2]−2ω

T p+ω
T Rω (2.2)

where p is the cross-correlation vector between the witness channel and target noise, and R represents

the auto-correlation matrix for the witness channels. They also applied an online adaptive filtering

method (which is based on Least mean square methods), that gives the same result as wiener

filter Driggers et al. (2012). This feed-forward method can be applied to higher frequency using

an upgraded version of the filter Tiwari et al. (2015), using data from auxiliary channels/ physical

environment monitors (PEM). This method is built by modifying the Wiener-Kolmogorov (WK)

filters Wiener (1964) with regression in the time-frequency domain. The noise (nw) in the GW

strain data (h) can be predicted, using auxiliary channels (w), as Tiwari et al. (2015)

n [i] =
L

∑
j=−L

a jwi+ j (2.3)

where the filter length is 2L+1, and a j is the filter coefficients. The filter coefficient can be

determined by solving Tiwari et al. (2015)

Rxxa = ptx (2.4)

which is Wiener-Hopf (WH) equation. Here, Rxx is the auto-correlation matrix with (2L+1)× (2L+1)

components, and ptx is the cross-correlation matrix in between the witness channels and the target

noise with (2L+1) components. Also, the filter can be obtained by

χ
2 =

N+L

∑
i=L

(
h[i]−

L

∑
j=−L

a jwi+ j

)2

(2.5)
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minimizing the mean square error. Regression with the WK filter has two major problems: WK

filter requires long filters and computational complexity associated with the inversion of the matrix.

Moreover, the filter may fail to capture all details of ptx due to spectral leakage. These problems

can be solved by using Wilson-Daubechies-Meyer (WDM) Necula et al. (2012) transformation. But

the regression with a single channel is not effective. Thus, multiple channels have been used to do

the regression, and equation 2.5 becomes

χ
2 =

N+L

∑
i=L

(
h[i]−

L

∑
j=−L

a jwi+ j −
L

∑
k=−L

bkwi+k −
L

∑
m=−L

cmwi+m − . . .

)2

(2.6)

The introduction of multiple channel analysis illustrated two shortcomings: the matrix can

be ranked deficient if auxiliary channels are highly correlated, and it can add noise if a significant

fraction of the auxiliary channels are not correlated with target channels. For solving this problem,

regulators have been used Tiwari et al. (2015).

2.3.2 Method for mitigating bilinear noise and scattering glitch using test mass

Estimating bilinear noise by constructing a coherent bilinear noise filter using narrow-

band noise in the signal recycling test mass Mukund et al. (2020), can be mitigated as well. For

improving the accuracy of the estimation, the adaptive Bayesian approach has been applied. Using

the photodiodes in the end benches of VIRGO detectors, the scattered light glitch has been modeled

and subtracted from the data Wąs et al. (2021).In the case of modeling, it used the sine and cosine

function but in practice, it used the tanh function which gives better results and flexibility.

2.3.3 Bayeswave

According to the assumption of the BayesWave, the GW strain data [h(t)] can be divided

into three parts: these are Gaussian noise [n(t)], signal [s(t)], and glitch-transient noise [g(t)].

Mathematically, h(t) can be written as,

h(t) = n(t)+ s(t)+g(t) (2.7)
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Using this notion, the BayesWave algorithm estimates non-Gaussian features using Morlet-

Gabor wavelets Cornish & Littenberg (2015), Pankow et al. (2018), which is a sum of sine-Gaussian.

The wavelets, for time series, can be written as

ψ (t;α) = Ae−
(t−t0)

2

τ2 cos [2π f0 (t − t0)+φ0] (2.8)

Here, α = (A, t0,q, f0,φ0) (amplitude, central time, quality factor [q = 2π f0τ], central frequency,

phase respectively) are the wavelet parameters. BayesWave uses Bayesian inference to model non-

stationary data, also the number and parameters of wavelets are not pre-determined. The number

and parameter of wavelets were marginalized using Markov chain Monte Carlo (MCMC) Cornish &

Littenberg (2015). Using the coherence in between detectors, the glitch and signal, non-stationary

sources, can be determined. If the non-stationary source is coherent in between the detectors, than

the model for this part considered as signal [s(t)] while the incoherent part is considered as glitch

[g(t)] Pankow et al. (2018). In the case of a single detector signal, the glitch modeling from auxiliary

channels can be used to remove the glitches around the signal Davis et al. (2022).

2.3.4 gwsubtract

gwsubtract is a linear subtraction method Davis et al. (2019). It uses auxiliary channels to

determine transfer function
[
Tf
]
. Using this transfer function into the strain data, it estimates a

glitch and other noises. After that, the glitch is removed by subtracting the estimate from the data.

In case of gwsubtract method, the assumption is that the linear combination of timeseries from

various sources
[
n j(t)

]
produce the GW strain data [h(t)]. Or the assumption can be considered as

h(t) consists a signal [s(t)], which is not correlated with the noise Allen et al. (1999), in the GW

strain data. Also, another important assumption is that the multiplication of the convolution of a

witness time series [w(t)] and an unknown transfer function
[
Tf wh (t)

]
can model the noise, at least
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one of the noises Allen et al. (1999), Davis et al. (2022). Therefore, h(t) can be written as,

h(t) = n1 (t)+n2 (t)+n3 (t)+ · · ·+n j−1 (t)+w(t)×Tf wh (t)

= h
′
(t)+w(t)×Tf wh (t) (2.9)

In equation 2.9, h
′
(t) has all of the property of strain data, except one noise sources modeled

by the w(t) and the Tf wh (t). In frequency domain, the time domain equation 2.9 can be expressed

as

h̃( f ) = h̃
′
( f )+ w̃( f )× T̃f wh ( f ) (2.10)

From the derivation from Allen et al. (1999), Davis et al. (2019) , the transfer function

T̃f wh ( f ) for frequency band
[

f j−1, f j
]

can be written as,

T̃f wh
(

f ′
)
=

d f
f j − f j−1

f j

∑
f j−1

Ỹh ( f )Ỹ ∗
w ( f ) (2.11)

where Ỹh ( f ) is the discrete Fourier transform of h(t), Ỹ ∗
w ( f ) is the discrete Fourier transform of

w(t), and d f is the frequency resolution of the data. The chance correlations measurement has been

reduced by averaging nearby frequencies during the transfer function calculation Davis et al. (2022),

Allen et al. (1999). Note that the inner product in the transfer function equation can be determined

if h( f ) and w( f ) are sampled quickly.

2.3.5 glitschen

glitschen is a data-driven, parametric glitch mitigation model Merritt et al. (2021), which

uses probabilistic principal component analysis (PPCA) methodTipping & Bishop (1999). In

glitschen, an isotropic Gaussian noise model with a d− dimensional observation vector
(
d̃
)

can be
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expressed as,

d̃|Xt ∼ N
(
WXt +µ,σ2I

)
(2.12)

where the mean of isotropic Gaussian noise (µ = 0)is replaced by WXt +µ , σ
2 is variance, and I

is the identity matrix. Also, Xt ∼ N (0,I) is marginalized by r latent variables of the training set,

and W has dimensions d × r with r training eigenvectors.

Following the derivation of Merritt et al. (2021), Tipping & Bishop (1999), a new observation

vector
(
d̃o
)

can be written as

Xt |d̃0 ∼ N
(
M−1WT (d̃o −µ

)
,σ2M−1) (2.13)

where M = WT W+σ
2I, with size r× r.

Using this observation vector, the glitch can be modeled by

g̃m = WXm +µ (2.14)

where Xm ≡ M−1WT (d̃o −µ
)
. The quality of the glitch model is determined by the standard

Gaussian noise likelihood.

2.3.6 DeepClean

DeepClean is a noise removal method Ormiston et al. (2020), which uses deep learning and

one dimensional convolutional neural network (CNN). For this method, the GW strain data [h(t)]

is considered to be the combination of fundamental noise
[
n f (t)

]
, signal [s(t)], and other noise

[nw (t)]. Therefore, h(t) can be expressed as

h(t) = s(t)+n f (t)+nw (t) (2.15)
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Here, n f (t) is not desired to be subtracted, while nw (t), which couples into the witness/auxiliary

channels
[
w j (t)

]
, is needed to be subtracted. In this method, the data from auxiliary channels, after

preprocessing, is sent to CNN. For estimating nw (t), CNN work as a function F
(

w j (t) ;
−→
β

)
on

w j (t). Here,
−→
β is a set of parameters,that can be determined by

−→
β = argmin−→

β ′J
[
h(t) ,F

(
w j (t) ;

−→
β

′
)]

(2.16)

where J is a loss function, which is determined by the sum of the loss function Jasd (the

weighted average of the amplitude spectral density (ASD) of the residual strain [r (t)] [where[
r (t) = h(t)−F

(
w j (t) ;

−→
β

)]
] and the time domain loss function Jmse (the mean square error

(MSE) across the time series). Therefore, J can be written as,

J = mJasd +(1−m)Jmse (2.17)

where m is a weighting factor ranging from 0 to 1.

Using this similar method, a CNN method has been built to remove glitches Mogushi (2021).

The difference between DeepClean and this CNN method is that it has two-dimensional CNN. The

non-linear activation, ReLU, has been used for this CNN method.

2.3.7 Method for mitigating angular noise

A CNN method Yu & Adhikari (2021) has been built for mitigating angular noise using

the code Keras Chollet et al. (2018)(a deep learning code written in python), which is running on

TensorFlow Abadi et al. (2015). Angular noise is caused by a geometrical effect of the rotational

pivot of aLIGO test mass. Also this nonlinear noise couples with the GW readout. The angular

motion in the test mass can be expressed as Yu & Adhikari (2021),

δx(mir) (t) = x(mir)
spot (t)θ

(mir) (t) (2.18)
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where δx(mir) (t) is a linear length fluctuation, x(mir)
spot (t) is a slow (≲ 1 Hz) motion of the beam spot

on the test mass, and θ
(mir) (t) is a fast (≳ 10 Hz) motion of the beam spot on the test mass. The

slow motion induced by the seismic motion and the fast motion, angular perturbation of the mirror,

induced by the sensing noise in the angular control system Yu & Adhikari (2021).

In this method, there are two types of CNN structure: General CNN and Specific CNN.

General CNN consists of sufficiently many convolutional layers. These layers are densely connected

and at least some of these layers have a nonlinear activation function. For the layers with nonlinear

activations, the coupling mechanism can be expressed with series expansion and the convolutional

layer will act as a finite-impulse-response (FIR) filter. However, using the knowledge of angular

noise, a more specific CNN structure can be built, which consists of the auxiliary channels of a

slow CNN and the auxiliary channels of a fast CNN. These sets, slow and fast, require only linear

activation. This method also works as an FIR filter to convert the linear outputs of auxiliary channels

into digital counts. The nonlinearity of the noise can be determined by using equation (2.12), i.e. by

multiplying layers. In both CNN structures, a loss function has been applied which is similar to the

loss function of DeepClean. For getting better noise mitigation, CL training and techniques George

& Huerta (2018a,b) can be used with this method.

2.4 Discussion on the methods

Feed-forward methods can increase the sensitivity of aLIGO detectors, along with it can

enhance several percent of detectable inspiral range Meadors et al. (2014). Wiener filter, a feed-

forward method, is applied to only seismic noise below 10 Hz, more specifically, it was successful

to reduce noise in between 0−7 Hz Driggers et al. (2012). Feed-forward methods can be applied

up to 150 Hz, and using auxiliary channels also increases the sensitivity of the detectors Tiwari et al.

(2015). The system, built with the Wiener filter, is applied so that the seismic noise below 10 Hz

can be reduced. It will not be applied above 10 Hz as it can remove gravitational waves along with

the noise. From the results, certainly it reduced the seismic noise and smooth the data, but it can not

smooth all the parts. Moreover, it is applied at a very low frequency. Also, it is not successful to

remove narrow-band and broad-band noises. The method, build with regression, is also successful
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in removing bilinear noise, which is produced by linear coupling of seismic noise and resides near

the power lines and calibration lines Tiwari et al. (2015). The nonlinear cases are a challenge for this

system. They had to input the data from multiple channels to confirm the estimation. In this case, it

overfits the data, along with the system having a problem with rank deficiency of linear equations.

Also, it is applied for only low-frequency noise, below 150 Hz to be exact. The regulator solves the

problem related to multiple channel analysis. But the value of regulators can not be generalized.

The value of the regulator and the regression parameters should be changed with the noise structure.

The bilinear noise removal method depends on how well the system makes the model of

narrow-band noise for the success of this method. It works on bilinear noise Mukund et al. (2020),

but it is not sure that it will work on glitch as glitch has various waveforms. The scattered glitch

that has been mitigated is in between 30−55 Hz Wąs et al. (2021). If a scattered light comes in a

higher frequency, it can not remove completely. Also, what is the effect of this mitigation on the

GW signal, is not explained.

The success of the glitch removal, using BayesWave, depends on how well the signal is

modeled Cornish & Littenberg (2015). The coherence method Pankow et al. (2018) can not model a

glitch when the signal is only detected in one detector (for example, GW190424). For the success of

the glitch removal method from a single detector, an auxiliary channel should model the glitch very

well or it will affect the signal. BayesWave can not model a glitch accurately if the glitch duration is

> 1s Davis et al. (2022). Hence, it can not accurately model scattering glitches Davis et al. (2022)

or any other glitch that is longer than 1s. Although BayesWave can model a glitch more accurately

when the glitch duration is ≲ 1s, it has an error percentage depending on the glitch model from

auxiliary channels and may bias the result slightly.

The GW strain data are non-stationary and non-Gaussian due to noise artifacts of various

duration Abbott et al. (2018). Therefore, gwsubtract is not a suitable choice for removing glitches

in maximum cases. If the glitch system is linear, gwsubtract can remove the glitches Davis et al.

(2022). But in this case, it will depend on the noise model made by the auxiliary channels. Though

the statistical error and systematic uncertainties from BayesWave and gwsubtract are low Hourihane
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et al. (2022), it has a larger impact on the measured source properties Payne et al. (2022).

The method explained in glitschen is fast and the training for this method is computationally

cheap. The method can model glitches (Blip, Tomte) and subtract them from the data successfully.

Also, the method can differ between astrophysical signals and glitches in some cases. The problem

is that the method requires a lot of training data and training model Merritt et al. (2021). The glitch

modeling depends on how high the SNR of the glitch in the data is Merritt et al. (2021). Also, as

the sensitivity of aLIGO is increasing, the waveforms of the glitches are changing. So, the method

will require identifying some glitches in the selected observing run at first and then training the

system to estimate and remove the glitches. Moreover, the method can not differentiate between an

unknown astrophysical signal and a new form of glitch, which may cause confusion in the system

and it can remove the astrophysical signals. glitschen performs better in the case of tomte than a

blip. The tomte glitch, that has been described in the work Merritt et al. (2021), has a very low

frequency. Thus, it can be said that the method may work better below 100 Hz but above that, this

system does not give its best performance. BayesWave is also applied for modeling the glitches and

the astrophysical signals Chatziioannou et al. (2021). BayesWave can successfully distinguish the

glitches and astrophysical signals in the case of binary black hole (BBH) signals, but the system

needs to be trained with various signals before applying it Chatziioannou et al. (2021). This is a

problem as many astrophysical signals are still not modeled and known. Therefore, the performance

of BayesWave depends on how well the method is trained. That means BayesWave needs a plethora

of data to train itself first. Also, the limitations, previously discussed, persist in this case as well.

DeepClean is mainly applied to remove seismic noise, jitter noise, and sidebands. It works

as a Weiner filter but it has some advantages as well. It is not strictly used for linear couplings,

instead, it uses the tanh function, and thus, it can discern some nonlinear features. One of the main

advantages of DeepClean is that it can determine linear, nonlinear, and nonstationary couplings

without any prior knowledge of these noises i.e. without prior training of the particular noise

type Ormiston et al. (2020). Though a fraction of the scattering glitch can be removed using

two dimensional CNN method, it could not remove it completely or the maximum part of the
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glitch Mogushi (2021). The method does not perform well on Extremely loud glitches as scattering

glitches Mogushi (2021). That means the estimation using the CNN method is a small fraction of

the extremely loud glitch. One of the positive things about this method is that this method does not

take out too much power from the data. For the training of the system, it uses auxiliary/witness

channels. But adding auxiliary channels, which are irrelevant in case of a particular glitch, can

cause uncertainty to the subtraction Ormiston et al. (2020), Mogushi (2021). Hence, the selection of

auxiliary channels for training is very crucial for these methods. Moreover, the length of training

data depends on the complexity of the particular noises. In general, CNN needs a lot of data to train

itself. Also, the computational cost for CNN techniques is relatively high.

For the simple structure of general CNN in the method for angular noise mitigation, it needs

small knowledge of noises to mitigate noise even with unknown couplings Yu & Adhikari (2021).

Conversely, detailed knowledge of noise is needed to build specific CNN. Also, the challenging

part for specific CNN is that the reconstruction of the spot motion x(mir)
spot (t) on test mass. The

performance of general CNN and specific CNN in noise subtraction is decent and comparable in

between 10−20 Hz Yu & Adhikari (2021). But the performance is better for specific CNN in

between 6−10 Hz. Also, after 30 Hz, which is the end of the training band, general CNN starts

to add noise while specific CNN continues to remove noises from data. On the real aLIGO data,

the broadband reduction of nonlinearity is not that significant Yu & Adhikari (2021). Another

significant condition for these methods is the value of the signal-to-noise ratio (SNR). A slight

change in the SNR has negatively affected the noise subtraction significantly.

From the discussion above, the methods explained above are effective on linear noises in

various frequencies. In aLIGO, the linear component of noises has been mitigated successfully Davis

et al. (2019), Driggers et al. (2019). However, in case of glitches, BayesWave, gwsubtract and a

two dimensional CNN structure similar to DeepClean can be applied. But none of these methods

can work without the model of glitches from auxiliary channels. Also, in some cases, auxiliary

channels can not catch glitch waveform accurately and in these cases, these methods will fail. It

requires a lot of training to train the model for CNN base methods. gwsubtract can not remove
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glitches which is not linearly dependent. Though glitschen is successful for removing glitches at a

certain level, it requires prior knowledge of glitches to remove the glitch effectively. Moreover, it

has uncertainties for estimating and mitigating the wing of the glitches. That is why we are inspired

to apply a non-parametric regression method and a wavelet-based method (not the BayesWave),

which will be explained in the next chapter, to mitigate glitches.
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CHAPTER III

GLITCH SUBTRACTION USING ADAPTIVE SPLINE FITTING AND WAVESHRINK

3.1 Adaptive spline fitting

The fundamental algorithm behind our glitch subtraction technique, SHAPES Mohanty &

Fahnestock (2020), is derived using the following models for the signal and noisy data, s(θ) and y,

respectively.

y = s(θ)+ ε , (3.1)

where yi = y(ti) and si(θ) = s(ti;θ), i= 0,1, . . . ,N−1, are sampled values at ti with t0 = 0, tN−1 = 1,

ti+1 > ti, and θ signifies the set of signal parameters that need to be estimated from the data, y, s, and

ε are row vectors with N elements. The noise samples, εi, are randomly selected from the normal

(Gaussian) probability density function with zero mean and unit variance, N(0,1). Since GW data

is always whitened using the estimated noise power spectral density (PSD), this assumption—that

of a white Gaussian noise process—does not result in a loss of generalization.

Since it is assumed that the signal s(t;θ) is a spline of order k, it can be represented by a

linear combination of B-spline functions de Boor (2001).

s(t;θ = {α,τ}) =
P−k−1

∑
j=0

α jB j,k(t;τ) , (3.2)

where α = (α0,α1, . . . ,αP−k−1), and τ = (τ0,τ1, . . . ,τp−1), taui+1 ≥ τi is a series of P knots that

identifies the end points of the continuous intervals holding the cubic polynomial components

composing the spline.
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The set of B-spline functions, {Bi,k(x;τ)}, for any given order can be efficiently computed

using the Cox-de Boor recursion relations in de Boor (1972). The recursions begin with piecewise

constant functions of order 1 B-splines as

B j,1(t;τ) =

 1, τ j ≤ x < τ j+1

0 else
. (3.3)

For 2 ≤ k′ ≤ k,

B j,k′(t) = ω j,k′(t)B j,k′−1(t)+ γ j+1,k′(t)B j+1,k′−1(t) , (3.4)

ω j,k′(x) =


t−τ j

τ j+k′−1−τ j
, τ j+k′−1 ̸= τ j

0 , τ j+k′−1 = τ j

, (3.5)

γ j,k′(x) =

 1−ω j,k′(t) , τ j+k′−1 ̸= τ j

0 , τ j+k′−1 = τ j

. (3.6)

In the aforementioned recursion, 0 ≤ j ≤ P− k′−1. Cubic (k = 4) B-spline functions are shown

in Fig. 3.1. Noting that knots may repeat up to k times, it should be noted that the spline is

continuous across the knot up to derivatives of order k−2 in the absence of repetition and becomes

discontinuous with each repetition, ending in a jump discontinuity in the spline itself.

α̂ and τ̂ are the spline parameters that minimize a penalized least-squares function, and they

provide the best fit,

Lλ (α,τ) = L(α,τ)+λR(α) , (3.7)

L(α,τ) =
N−1

∑
i=0

(yi − si(α,τ))2 , (3.8)

where the penalty term,

R(α) =
P−k−1

∑
j=0

α
2
j , (3.9)
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Figure 3.1: Cubic B-spline functions {Bi,4(t;τ)}, i = 0,1, . . . ,11, for an arbitrary choice of 16 knots
(τ) marked by squares. Knots with multiplicity > 1 result in B-splines that are discontinuous in
value or derivatives.

is discovered to be effective in the inhibition of erroneous knot clustering. When the best-fit spline

attempts to reduce Lλ (α,τ) by fitting out anomalous data points caused by noise alone, clusters

like these are seen. In the present version of SHAPES , the penalty gain factor, λ , is user-specified:

a greater value of λ forces the best suited spline to be smoother.

Given that they exist linearly in the signal model, optimizing over Lλ (α,τ) over α is simple.

However, optimizing over τ has long been a hurdle Wold (1974), Burchard (1974), Jupp (1978),

Luo & Wahba (1997) when implementing adaptive spline fitting. The advantages of optimizing knot

location have also been amply established at the same time. This has inspired a variety of approaches

for the knot optimization step in the literature. It is evident from Gálvez & Iglesias (2011), Mohanty

(2012) that Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995), Mohanty (2018), a

well-liked nature-inspired metaheuristic for global optimization of high-dimensional non-linear and

non-convex functions, provides for significant advancement on this topic. Additionally, because

PSO is a continuous optimization approach, it is able to investigate all knot arrangements, including

those in which many knots are sufficiently close to one another to be combined into a single knot

with a larger multiplicity. As a result, functions with a mixture of smooth and non-smooth elements

can be fitted. Adaptive spline fitting, which is a multi-resolution analytic technique akin to the
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wavelet transform, uses basis functions that are data-driven rather than fixed.

We give a brief summary of how SHAPES implements the salient concepts mentioned above

and direct the reader to Mohanty & Fahnestock (2020) for more information. In the nested form,

Lλ (α,τ) minimization is carried out as,

min
τ,α

Lλ (α,τ) = min
τ

Fλ (τ) , (3.10)

Fλ (τ) = Lλ (α̂(τ),τ) , (3.11)

where the solution, α̂(τ), of the inner minimization is expressed in terms of the (P−k)-by-N matrix

B(τ), with elements

[B(τ)]m,n = Bm,k(tn;τ) , (3.12)

as

α̂(τ) = yBT G−1 , (3.13)

G = BBT +λ I , (3.14)

where I is the identity matrix of size (P−k)-by-(P−k). The best-of-M runs method, which involves

running many independent PSO runs in parallel and selecting the one that yields the lowest final

value to produce τ̂ , is used to minimize Fλ (τ). The two hyperparameters P and λ determine the

estimations of α̂ and τ̂ that are produced at the conclusion. The optimal value of P is chosen through

model selection using the Akaike Information Criterion (AIC) Akaike (1998). Although λ is still a

user-specified parameter in the current version of "SHAPES," it is discovered to be fairly robust

across a number of benchmark functions.
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3.2 Wavelet shrinkage

The wavelet transform Donoho & Johnstone (1995) is a wavelet shrinkage system, which

is based on multivariate normal decision theory, and it provides a multiresolution analysis of data.

For analyzing nonstationary features such as glitches, multiresolution analysis of data performs

better than the Fourier transform. The wavelet transform is a decomposition of the data on an

orthogonal basis set, just like the Fourier transform. Even so, Fourier basis functions are only

localized in frequency whereas the basis functions in a wavelet transform are localized in both

time and frequency. That means the wavelet transform is scaled more precisely than the Fourier

transform.

In Donoho & Johnstone (1995), the wavelet transform was studied thoroughly as the basis

for a family of nonparametric curve fitting methods. In wavelet transform methods, the starting

point is the set of wavelet coefficients w obtained as,

wT = WyT , (3.15)

where W is a matrix which contains the wavelet basis functions sampled at ti, i = 0,1, . . . ,N −1 as

rows, and y represents the data as assumed to the model in Eq. 3.1. A dyadic scheme, N = 2J , is

used for labeling the wavelet basis functions. Mathematically, it can be expressed as

Wjk(ti) ∝ ψ
(
2 j (ti − k2− j)) , (3.16)

j = 0,1, . . . ,J−1, k = 0,1, . . . ,2 j −1, where ψ(t) is the mother wavelet that defines a given family

of wavelet basis functions.

Next, a non-linear function Tη(x) is used to transform each wavelet coefficient,

Tη(x) = sgn(x)(|x|−η)+ , (3.17)

which applies a threshold η to its argument x. Tη(x) returns x−η if |x| > η and 0 otherwise.
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Lastly, the estimate ŝ of the signal s is acquired by inverting the transformed coefficients w̃,

ŝ = w̃W . (3.18)

The function Tη(x) is known as a soft threshold. Tη(x) shrinks threshold-crossing coefficients

towards the threshold. Introducing a small bias, the shrinkage of coefficients in large linear models

is one of the standard forms of regularization that reduces variance in the estimate ŝ. In this case,

strong features of the signal are preserved well due to the shrinkage is relatively smaller for larger

wavelet coefficients.

Different members in the family of wavelet shrinkage methods can be achieved by setting the

value of η . In this work, the WaveShrink function provided in the Matlab package WaveLab Huo

et al. (2000) is used to implement wavelet shrinkage with the “Hybrid" method for setting the

threshold. Another parameter the coarsest resolution level, L, also needs to be specified in this code

for the wavelet transform method such that j ≥ L in Eq. 3.16. There is no significant difference in

the results for L ∈ {1,2,4}, hence set L = 1.

3.3 Glitch estimation and subtraction method

The conditioning of the GW strain data using the subsequent stages in a sequential fashion is

the initial step in our glitch estimation and subtraction method. Suppression of seismic noise below

10Hz, robust estimation of the noise floor power spectral density (PSD), whitening of the noise floor

using the estimated PSD Mukherjee (2003), automated identification of high-power narrowband

noise ("lines") features and their suppression using notch filters, and downsampling of the data to a

sampling frequency of 2048Hz are all examples of noise reduction techniques. The CBC and CWb

burst searches, the current flagship GW searches, may be negatively impacted by the glitches that

may be preserved by reducing the sample frequency while still processing the data quickly. We

won’t spend space on their description here because all of these procedures are common to GW

search pipelines.

We have two approaches that we have devised to locate the problem. This section’s explana-
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Figure 3.2: Performance of SHAPES using different segment length on Gaussian noise

tion of the terms amplitude threshold and spectrum threshold will follow. The data is separated into 

overlapping sub-segments of lengths ranging from 8192 to 16384 samples after the location of a 

glitch has been determined (except the glitch part of the data). According to Fig. 3.2, fitting takes

longer the longer the sub-segment length. With the exception of the glitch, 8192 sub-segments are 

suitable in this situation for a shorter period of time, and the fitting is flat (there are only little ups

and downs where one segment joins the next). Despite taking longer to fit the data using 16384 

sub-segments, they are more flat on the data overall (apart from the glitch) than the 8192 segment 

length (see Fig. 3.2). Currently, the specific selection of segment lengths in the glitch part of the data

is modified manually according to the glitch class being studied. After that, the code receives the 

GPS timing for the problem. After being received the data and identification of the data, complete 

data is upsampled from 4096 samples to 16384 samples. Then, the data will be separated into

sub-segments of 16384 samples, excluding the GPS time for the glitch. The sub-segment length will
2i + 2i+1

get shorter as the GPS time for the glitch gets closer—more specifically, 2 i o r samples
2

where i = 8,9,10,11,12. More knots are tied in the data by smaller sub-segments. As a result, it

provides an estimate of the glitch waveform by fitting the glitch portion of the data with more knots.

Additionally, depending on the selection of samples, it will return to the segment length of 16384
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samples when it approaches the end of the added GPS time for the glitch.

Applying SHAPES (c.f., Sec. 3.1) on each of the segments mentioned above is the next step.

A weighted average is used to combine the estimates obtained in two neighboring windows in the

overlap region. Let the overlap interval’s borders be [tL, tR] and the SHAPES estimates from the

segments that finish and start at tR and tL, respectively, be ŝL(t) and ŝR(t). Define the weights wL(t)

and wR(t) such that wL,R(t) = 0 for t /∈ [tL, tR] and for t ∈ [tL, tR], respectively,

wL(t) = exp
(
−d

t − tL
tR − tL

)
, (3.19)

wL(t) = exp
(

d
t − tR
tR − tL

)
, (3.20)

where d is a user-specified parameter that determines the weights’ lowest value. After that, the

estimated function over the combined neighboring segments is given by,

ŝ(t) =


ŝL(t) t < tL

ŝL(t)wL(t)+ŝR(t)wR(t)
wL(t)+wR(t)

tL ≤ t ≤ tR

ŝR(t) t > tR

. (3.21)

It should be noted that the ŝ(t) at t = tR,L are not guaranteed to be continuous or differentiable by

weighted averaging. But in actual use, we see that the discontinuities are barely perceptible. Given

that both sL(t) and sR(t) are splines and naturally admit constraints of continuity and differentiability

at defined connection sites, more complex methods for connecting sL(t) and sR(t) are possible.

Future research will look into these, but they are not very significant in the context of this paper.

3.3.1 Amplitude Threshold

In Fig. 3.3, GW170817 exhibits this loud blip glitch between 2047s and 2048s. The

GW170817 data also has a small glitch between the 4080s and 4081s, which is almost the end of the

data. In the case of fast scattering, it blends in with the background noise. So, in order for the data

to be released, we must filter it. After filtering, we can once more notice that the repeated pattern

29



Figure 3.3: Amplitude of glitches

is quite similar to the glitch between the 3490s and 3540s. This data has numerous fast-scattering 

glitches in various locations. Moreover, we have tomte glitch in 2591 s and 2593s, and koi fish 

glitch in between 262s and 263s. Similarly, all other glitches, that we have dealt with, have higher 

amplitudes compared to the general noise amplitude. Thus, we have concluded that glitches have 

high amplitude than the general noise of the data. The absolute values of the data samples are 

subjected to a threshold η in order to pinpoint the locations of glitches in a given segment of 

data. After exceeding the threshold, samples are separated into clusters. Such that each cluster 

has a distinct start time and end time and that the samples within each cluster are chronologically 

sequential. The distinction between these clusters is a crucial factor in bringing the clusters together 

and forming the complete glitch. For one glitch , there is not much of a difference between these 

clusters. The difference between one cluster and another cluster has a big value, however, if it 

is a separate glitch. As a result, we can separate various glitches using the difference between 

clusters [figure 3.4]. A section of the data is taken for each glitch that contains the specific cluster 

of the glitch and two 100 consecutive samples on either side of it. If the threshold is applied to the 

conditioned data alone for particular classes, such as slow and fast scattering glitches, the glitches 

may be overlooked because they are not very loud. In these situations, the conditioned data is low
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pass filtered one more before the threshold is applied. Even though it is straightforward, this method

effectively locates glitches in all the classes we have taken into consideration.

Figure 3.4: Glitch identification using amplitude threshold

3.3.2 Bestfitness-spectrogram Threshold

This glitch identifying method use SHAPES to identify the glitch. During the estimation 

made by SHAPES, SHAPES chooses the estimation based on the best fitness value of arbitrary runs. 

During the estimation, SHAPES always has a high value of fitness at a segment [Figure 3.5], where 

the glitch is present. It has the nearly same value for the Gaussian/general noise all over the data 

with a little deviation, as we can see from the top panels between approximately 10 and 2000, in the 

bottom left panel before 4 and after 6, in the bottom right panel up to 2 and after 4 in fig. 3.5. Even 

with the added chirp signal, the value for Gaussian/general noise remains nearly the same. Thus, 

taking a mode of all the best fitness values give us the best fitness value for Gaussian/general noise, 

let us call it the general best fitness value. Adding 5/10 with this value will exceed the standard 

deviation from the best fitness value determined by the mode. The value that we added with the 

general best fitness value depends on the sampling frequency of the d ata. In practice, adding 5 

works fine in this algorithm.

The minimum value we get at the last segment is due to the fewer samples left at the end of
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Figure 3.5: Best fitness values of data

the data. As the samples are small, SHAPES fits this part of the data well. Thus, the best fitness 

value gets small in the last part. Also, the value of sampling frequency plays a very important role 

in saving time. SHAPES takes time to fit the data and hence, it will take a lot of time if we use the 

sampling frequency of data as 4096 [fig. 3.5. This problem is solved by downsampling the data. The 

top right panel of fig. 3.5 has a sampling frequency of 1024 and we still can see it has a higher value 

in the same places as the best fitness value has a higher value in the top left panel of fig. 3.5. Every 

high value is associated with a glitch segment. By collecting the segment counts using these high 

best fitness values in various places, we can detect multiple or all of the glitches that are present in 

the data. The bottom panels in fig. 3.5 have considerably less segment than the top panels as those 

figures have been built for only 8 s data. Also, the bottom panels in figure 3.5 have been built using 

the sampling frequency 512. It takes only 1 minute to estimate and find the glitch segment using the 

best fitness value. The higher the sampling frequency, the more accurate the position of the segment. 

But downsampling the data also works fine for identifying glitch positions.

Once the segment count is selected, the segment boundary goes back to the original sampling 

frequency. Though we selected the segment with glitches with the best fitness value, this method 

does not decide the segment boundary of the glitches. For determining the segment boundary of
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Figure 3.6: Spectrogrom of glitches

the glitch, we use a spectrogram. In figure 3.6, we have added a chirp signal into the second and 

third panels of the figure. From figure 3.6, we can see that the power of glitch is higher than any 

other part of the data including the signal. Making all other parts of the data zero except 60% of 

the maximum power of the spectrogram, we can determine the boundary of the glitch and the time 

associated with the glitch boundary. This method determines glitch boundaries more accurately 

than the amplitude threshold method. Therefore, it removes less power around the glitch and keeps 

more signal parts in the data.

3.4 Measurement of performance

While removing glitches from the data, one of the major questions is how SHAPES, 

waveshrink, and the combination approach of SHAPES and waveshrink affect the gravitational 

wave signal or injected signal. For measuring the effect of the glitch removal methods, we consider 

measuring the signal-to-noise ratio (SNR) of the signal after removing the glitches. For measuring 

the SNR of the signal in the respective residuals of the respective method, at first, we removed the 

glitch using the SHAPES, waveshrink, and the combination of SHAPES and waveshrink. From all 

of the residuals, we choose the best residual (chosen by looking at the spectrogram). Then, we inject 

the signal into the data around the glitch time. For measuring SNR, either from the glitch-removed
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data or from the residual of the methods, we use the below equation

SNR =
d(t) · s(t)
||s(t)||

(3.22)

where d(t) is representing data, s(t) is representing signal, and ||s(t)|| is representing norm of the

signal. For removing the glitch, aLIGO make the data zeros around the glitch part. The glitch

removal method, SHAPES, waveshrink, and the combination approach of SHAPES and waveshrink

affect the signal. But the loss of the SNR in the injected signal is far less than the current zeroing

procedure that aLIGO use, which we will see in the chapter IV for the respective glitches. The loss

percentage has been calculated using the below equation

Loss =
SNR(grd)−SNR(method)

SNR(grd)
×100% (3.23)

Here, SNR(grd) is representing the SNR from glitch-removed data, and SNR(method) is represent-

ing the SNR from the residuals, which is acquired after removing the glitch using the particular

methods. Hence, the SNR(method) can be calculated from Loss by,

SNR(method) = SNR(grd)× (1−Loss(%)) ,

= SNR(grd)×
(

1− Loss
100

)
(3.24)

The SNR and Loss calculation shows us the quantitative measurement of the performance of

the methods. For measuring the performance qualitatively, the spectrogram and adaptive spectro-

gram have been used. A spectrogram is a time-frequency domain diagram, which also shows the

power difference of various events in the data. For example, glitches have more power than signal

and general/Gaussian noise, which can be seen from the spectrogram. An adaptive spectrogram

is different than a normal spectrogram. Adaptive spectrogram generates multiple time-frequency

diagrams, selects the best part from all of these diagrams, and combines them in one time-frequency

diagram Lukin & Todd (2006).
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 GW170817

4.1.1 Results using amplitude threshold method

Fig. 4.1 (a) is the comparison of timeseries, from where we can see that at the top left panel,

the bottom left panel, and the bottom right panel, the estimation made by SHAPES is smoother than

the waveshrink. In the case of SHAPES, the segment length 16384 has been applied for getting the

estimation of the data, other than the glitch part. In the glitch part of the data, the segment length

applied is 1024. When the glitch is removed using waveshrink, as the estimation of waveshrink is

following the general noise more closely than the estimation of SHAPES, it takes out more power.

The power difference is visible from the third panel of the general spectrogram figure [figure 4.1

(b)]. In the third panel of figure 4.1 (b), there is less power below 300 Hz, which is caused by

the overfitting of the waveshrink. From figure 4.1 (a), the top right panel is the estimation of the

glitch by SHAPES and waveshrink. In this case, both systems estimated the glitch pretty well, but

SHAPES is following the glitch more closely to the sharp changes in the glitch. That is why we

can see from the figure 4.1 (b), that SHAPES is taking out the glitch and more power around the

glitch below 50 Hz. Also, we see that there is a trace of the glitch left behind in the third panel

of figure 4.1 (b), which is a result of glitch removal by waveshrink estimation. The combination

of the estimation of SHAPES and waveshrink failed in this case as we can see from figure 4.1 (b)

right panel. Therefore, we can assume that the combination approach of SHAPES and waveshrink

will not work well on high frequency glitches. Also, there is a part of a linear noise, which is not

removed during data conditioning, is around 300 Hz, which is left behind in all methods.
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(a)

(b)

(c)

Figure 4.1: Estimation and removal of the glitch in GW170817 Data using 1024 as a segment 
length for fitting data. Figure (a) is the comparison of the estimation of methods in time series
(Gray = data, green = estimation of SHAPES, red = estimation of waveshrink). Figure (b) is the 
comparison of glitch removal (first panel = data, second panel = Glitch Removal by SHAPES, third 
panel = Glitch removal by WaveShrink, fourth panel = Glitch removal by the combination of 
SHAPES and Waveshrink). Figure (c) is the data and residual of the data using SHAPES, black 
boxes around the glitch is the glitch boundary identified by the amplitude threshold method. Also, 
the spectrogram in the figure (c) is adaptive spectrogram.
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For removing glitches using 1024 segment length, SHAPES have to be applied twice. Using

1024 segment length once, it kept a trace of glitch around 400 Hz as shown in figure 4.2. Now,

SHAPES started to keep the trace of glitch from 512 segment length.

Figure 4.2: Glitch removal with applying 1024 segment length ones on the glitch part of the data

Also, the glitch can be removed using the segment length 2048 at the first run and for the

second estimation, 1024 segment length has been used. It kept some more power around the glitch

part in fig. 4.3 but it is not that significant change comparing to the figure of 1024 segment length

(run = 2).

Figure 4.3: Glitch removal of GW170817 using 2048 as a segment length at first run of SHAPES 
and 1024 as a segment length for the second run
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(a)

(b)

(c)

Figure 4.4: Estimation and removal of the glitch in GW170817 Data using 384 as a segment length, 
on the glitch part of the data, for fitting the data. Figure (a) is the comparison of the estimation of 
methods in time series (Gray = data, green = estimation of SHAPES, red = estimation of 
waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using SHAPES, black boxes around the glitch is the glitch boundary identified by the 
amplitude threshold method. Also, the spectrogram in the figure (c) is adaptive spectrogram.
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If the segment length, 384 = (256+512)/2, is applied to the main glitch part in the case of the

application of SHAPES on the full data, the glitch can be removed in the first run [fig. 4.4. Using

the threshold technique, we can apply a method that applies SHAPES only on the part of the glitch.

For the rest of the data, it does not estimate anything i.e. the estimation is zero for the data, except

for the glitch part. In this system, the threshold technique will detect the main glitch part (as before)

and select the data around the glitch. SHAPES will only estimate the glitch using the segment

length 384, and the rest of the data will get zero estimation. The figure for 384 segment length, for

the latter method, is given below. Hence, as long as we apply 384 segment length in the main glitch

part, whether the method is SHAPES on full data or the method is SHAPES on the glitch-only part

of the data, the glitch will be completely removed in the first run.

The code can remove the glitch using one run up to segment length 410. With a larger

segment length value i.e. greater than 410, it keeps a trace of the glitch in the spectrogram. Any

segment length below 410 can remove the glitch but it takes out more power around the glitch. Thus,

we can use 256 to remove the glitch but it will take out more general power around the glitch. The

glitch removal using 410 as segment length is given below [fig. 4.5].

Figure 4.5: Glitch removal of GW170817 using 410 as a segement length, on the glitch part of the 
data, for fitting the data
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(a) (b)

(c) (d)

(e)

Figure 4.6: Identifying the glitch in GW170817 data. (a) Best fitness value of the data, (b) Data 
segment containing glitch; selected by using best fitness value, (c) Spectrogram of the selected data 
segment, (d) Glitch boundary selected by spectrogram threshold, (e) Timeseries of the glitch 
boundary
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4.1.2 Results using bestfitness-spectrogram threshold method

Figure 4.6 (a) illustrating the values of best fitness and segment count. By selecting the

higher value than a threshold of best fitness value, we select the segment number. Using this segment

number, the time domain data of the glitch is selected as shown in figure 4.6 (b). Then a spectrogram

is formed in figure 4.6 (c). From figure 4.6 (c), we can see that glitch has higher power than any

other part of the data. Using the spectrogram threshold as mentioned in 3.3.2, we get figure 4.6 (d).

In figure 4.6 (d), only glitch has been kept. Using the glitch boundary from figure 4.6 (d), we get

the start and end of the glitch i.e. the glitch boundary in time domain figure 4.6 (e). In this way, the

determination of glitch boundary is more accurate than the amplitude threshold method.

Fig. 4.8 (a) is the comparison of timeseries, there is not much of a change from the timeseries

of fig. 4.4 (a). In the case of SHAPES, the segment length 16384 has been applied to the data, other

than the glitch part. In the glitch part of the data, the segment length is 384. The difference it made

is clearly visible in spectrogram [figure 4.6 (b) and figure 4.6 (c)]. In the figure 4.6 (b) second panel

or figure 4.6 (c) third panel, there is a part of the signal is present in 2.2 s, which is not present in

fig. 4.4 (b) second panel or fig. 4.4 (c) third panel. Other than that, we can say that waveshrink is

still removing more power below 300 Hz than SHAPES as in fig. 4.4 (b). Also, we see that there is

a trace of the glitch left behind in the third panel of figure 4.8 (b) as before, which is a result of glitch

removal by waveshrink estimation. The combination of the estimation of SHAPES and waveshrink

failed, as before, in this case as we can see from figure 4.8 (b) right panel. In this method as well,

the glitch can be removed if we use 410 as a segment length for fitting the data [figure 4.7]. But if

we go higher than 410, it starts to keep a trace of glitches left behind in the spectrogram.

Figure 4.7: Glitch removal of GW170817 using 410 as a segement length in the glitch part of the 
data for fitting the data
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(a)

(b)

(c)

Figure 4.8: Estimation and removal of the glitch in GW170817 Data using 384 as a segment length, 
on the glitch part of the data, for fitting the data. Figure (a) is the comparison of the estimation of 
methods in time series (Gray = data, green = estimation of SHAPES, red = estimation of 
waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using SHAPES. Also, the spectrogram in the figure (c) is adaptive spectrogram.
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4.2 Low Frequency Blip

4.2.1 Results using amplitude threshold method

Figure 4.9 (a) is the comparison of timeseries, from where we can see that at the top left

panel, the bottom left panel, and the bottom right panel, the estimation made by SHAPES is

smoother than the waveshrink. In the case of SHAPES, the segment length 16384 has been applied

to the rest of the data, other than the glitch part. In the glitch part of the data, the segment length is

2048. When the glitch is removed using waveshrink, as the estimation of waveshrink is following

the general noise more closely than the estimation of SHAPES, it takes out more power. The power

difference is visible from the general spectrogram figure [figure 4.9 (b)]. In the third panel of the

figure 4.9 (b), there is less power below 300 Hz (as before), which is caused by the overfitting of the

waveshrink. From figure 4.9 (a), the top right panel is the estimation of the glitch by SHAPES and

waveshrink. In this case, both systems estimated the glitch pretty well, but in some cases, SHAPES

is following data closely, which is evident from the maximum and minimum peak of the glitch

[figure 4.9 (a)]. That is why we can see from figure 4.9 (b), that SHAPES is taking out the glitch

and more power around the glitch below 50 Hz as before. Also, we see that there is a trace of the

glitch left behind in the third panel of figure 4.9 (b), which can be clearly seen using an adaptive

spectrogram. But the trace is very negligible for this case. Amongst SHAPES and waveshrink,

SHAPES performs better for preserving the signal. The combination of the estimation of SHAPES

and waveshrink, figure 4.9 (b) right panel, did better than the Blip glitch in GW170817. From

this result, we can say that it is an indication that the combination of SHAPES and waveshrink

will work better in low-frequency glitches, which will be shown in Scattering glitches. A linear

chirp signal with SNR 25 is injected into the data around the glitch. Using equation 3.22 and

equation 3.23, we get SNR values and loss percentage for low frequency blip as written in Table 4.1.

From the loss percentage, we can say that SHAPES and waveshrink performs way better than the

current aLIGO method i.e. gating method. Amongst the SHAPES and waveshrink, we can see

that SHAPES performing better than waveshrink.
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(a)

(b)

(c)

Figure 4.9: Estimation and removal of the low frequency blip glitch using 2048 as a segment length 
on the glitch part for fitting the data. Figure (a) is the comparison of the estimation of methods in 
time series (Gray = data, green = estimation of SHAPES, red = estimation of waveshrink). Figure
(b) is the comparison of glitch removal (first panel = data, second panel = Glitch Removal by 
SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch removal by the 
combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the data using 
SHAPES, black boxes around the glitch is the glitch boundary identified by the amplitude threshold 
method. Also, the spectrogram in the figure (c) is adaptive spectrogram.
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(a)

(b)

(c)

Figure 4.10: Estimation and removal of the low frequency blip glitch using 2048 as a segment 
length on the glitch and 4096 as a segment length on the linear noise part for fitting the data. Figure 
(a) is the comparison of the estimation of methods in time series (Gray = data, green = estimation of 
SHAPES, red = estimation of waveshrink). Figure (b) is the comparison of glitch removal (first
panel = data, second panel = Glitch Removal by SHAPES, third panel = Glitch removal by
WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and Waveshrink). 
Figure (c) is the data and residual of the data using SHAPES. Also, the spectrogram in the figure (c) 
is adaptive spectrogram.
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We assumed that as long as the segment length is bigger than the segment boundary of the

glitch for the low-frequency glitches, it can remove the glitch successfully. Using this assumption,

we applied SHAPES onto the glitch with a code, where the code will decide the length of the

segment boundary and select a bigger segment length for the estimation in the glitch part. In the

case of the rest of the data, it will apply 16384 Hz. And the results are exactly same as shown in the

figures above. This assumption is also successful in the case of the Koi Fish glitch, which will be

discussed later.

We saw from the low-frequency blip spectrogram, which is explained in the above figure

[fig. 4.9], has a linear noise at the bottom part of the glitch. This is a part of a linear noise, which

is not removed during whitening process. In these figures, we consider this part of the noise as a

secondary glitch and estimated it using SHAPES. For this secondary glitch, we have used 4096 as

the segment length. The estimation is changed from the previous fig. 4.10 (a) of low-frequency blip

after 2s in the top left panel and in between 2.7s and 2.9s in the bottom left panel. Also, the effect

of the estimation can be seen in fig. 4.10 (c), where the linear noise is removed from the right panel

of the fig. 4.10 (c).

4.2.2 Results using bestfitness-spectrogram threshold method

Figure 4.11 (a) illustrating the values of best fitness and segment count. Comparing fig-

ure 4.11 (a) with figure 4.6 (a), we can see that the best fitness value differs significantly. From that,

we can assume that the change in best fitness values depends on the frequency. As GW170817 has a

high-frequency glitch, the best fitness value for the glitch is also much higher than the low-frequency

blip glitch. The segment number is selected by using the higher best fitness value in fig. 4.11 (a)

than the threshold of best fitness value. Using this segment number, the time domain data of the

glitch is selected as shown in figure 4.11 (b). By making a spectrogram for the glitch segment

[figure 4.11 (c)] and applying spectrogram threshold as mentioned in 3.3.2, we get figure 4.11 (d)

which has only the glitch part. Using the glitch boundary from figure 4.11 (d), we get the start and

end of the glitch i.e. the glitch boundary in time domain figure 4.11 (e). As in sub-section 4.1.2, the

determination of glitch boundary is more accurate than the amplitude threshold method.
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(a) (b)

(c) (d)

(e)

Figure 4.11: Identifying the low frequency blip glitch in the data. (a) Best fitness value of the data,
(b) Data segment containing glitch; selected by using best fitness value, (c) Spectrogram of the 
selected data segment, (d) Glitch boundary selected by spectrogram threshold, (e) Timeseries of the 
glitch boundary
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(a)

(b)

(c)

Figure 4.12: Estimation and removal of the low frequency blip glitch using 2048 as a segment 
length on the glitch part of the data for fitting the data. Figure (a) is the comparison of the 
estimation of methods in time series (Gray = data, green = estimation of SHAPES, red = estimation 
of waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using SHAPES. Also, the spectrogram in the figure (c) is adaptive spectrogram.
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In the case of SHAPES, the segment length 16384 has been applied to the data, other than

the glitch part. In the glitch part of the data, the segment length is 2048. Fig. 4.12 (a) is the

comparison of timeseries, there is a noticeable change in the top right panel and bottom left panel

of the time series from the top right panel and bottom left panel timeseries of fig. 4.12 (a) around

2.58 s and in between 2.7 s and 3.0 s, respectively. The difference it made is clearly visible in

spectrogram [figure 4.12 (b) and figure 4.11 (c)], where we can see more power in between 2 s and

3 s in the second panel of figure 4.12 (b) than the second panel of figure 4.9 (b). Other than that,

we can say that waveshrink is still removing more power below 300 Hz than SHAPES as in the

third panel of fig. 4.9 (b). Also, we see that there is a trace of the glitch left behind in the third

panel of figure 4.12 (b) as before, which is a result of glitch removal by waveshrink estimation. The

combination of the estimation of SHAPES and waveshrink failed, as before, but did better than

figure 4.8 (b) right panel as before. A linear chirp signal with SNR 25 is injected exactly in the

same position as for the amplitude threshold method of the low-frequency blip. As it removed less

power between 2 s and 3 s than the amplitude threshold method, it kept more signal in that time

than the amplitude threshold method. Therefore, the loss percentage is also decreased as we can see

from table 4.2. Thus, we can say that the best fitness-spectrum threshold is performing better than

the amplitude threshold method.

4.3 Koi Fish

4.3.1 Results using amplitude threshold method

The assumption that we made in the Low-Frequency Blip section works very well in the

case of the Koi Fish glitch. Fig. 4.13 (a) is the comparison of timeseries, from where we can see

that at the top left panel, and the bottom right panel, the estimation made by SHAPES is smoother

than the waveshrink. In the case of SHAPES, the segment length 16384 has been applied to the rest

of the data, other than the main glitch (koi Fish) and the secondary glitch ( a small glitch near to koi

fish glitch) part of the data. In the secondary glitch part (top right panel), a 4096 segment length is

applied. In the glitch part of the data, the segment length is 2048. As one can see from the
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(a)

(b)

(c)

Figure 4.13: Estimation and removal of the Koi Fish glitch using 2048 as a segment length on the 
main glitch and 4096 as a segment length for secondary noise for fitting the data. Figure (a) is the 
comparison of the estimation of methods in time series (Gray = data, green = estimation of 
SHAPES, red = estimation of waveshrink). Figure (b) is the comparison of glitch removal (first 
panel = data, second panel = Glitch Removal by SHAPES, third panel = Glitch removal by 
WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and Waveshrink). 
Figure (c) is the data and residual of the data using SHAPES, black boxes around the glitch is the 
glitch boundary identified by the amplitude threshold method. Also, the spectrogram in the figure
(c) is adaptive spectrogram.
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fig. 4.13 (b), the glitch is completely removed from the second panel of the spectrogram,

which is a spectrogram for glitch removal by SHAPES. When the glitch is removed using waveshrink,

as the estimation of waveshrink is following the general noise more closely than the estimation of

SHAPES, it takes out more power. The power difference is visible from the general spectrogram

figure [Fig. 4.13 (b)]. In the third panel of the fig. 4.13 (b), there is less power below 300 Hz

(as before), which is caused by the overfitting of the waveshrink. From fig. 4.13 (a), the bottom

left panel is the estimation of the glitch by SHAPES and waveshrink. In this case, both systems

estimated the glitch pretty well, but in some cases, SHAPES is following data closely, which is

evident from the maximum peak of the glitch around 2.67s [Fig. 4.13 (a)]. That is why we can see

from the fig. 4.13 (a), that SHAPES is taking out the glitch and more power around the glitch. Also,

we see that there is a clear trace of the glitch left behind in the third panel of fig. 4.13 (b), which

can be seen between 300-400 Hz. The trace is visible in this case. It is more visible in the adaptive

spectrogram. Amongst SHAPES and waveshrink, SHAPES performs better for preserving the

signal. The combination of the estimation of SHAPES and waveshrink, fig. 4.13 (b) right panel, did

not perform well in this case. From this result, we can confirm that the combination of SHAPES and

waveshrink will work better in low-frequency glitches. A linear chirp signal with SNR 25 is injected

into the data around the glitch i.e. around 2 s. Using equation 3.22 and equation 3.23, we get SNR

values and loss percentage for koi fish glitch as written in Table 4.1. From the loss percentage, we

can say that SHAPES and gating method performs way better than the wavelet base method i.e.

waveshrink. Amongst the SHAPES and gating methods, we can see that SHAPES performing better

than gating.

4.3.2 Results using bestfitness-spectrogram threshold method

Figure 4.14 (a) illustrating the values of best fitness and segment count. Comparing fig-

ure 4.11 (a) with figure 4.14 (a), we can see that the best fitness value differs very slightly. As koi

fish has a slightly high-frequency glitch, the best fitness value for the glitch is also slightly higher

than the low-frequency blip glitch. Therefore, we can confirm that the best fitness value depends on

the frequency of the glitch. Following the same procedure as mentioned in 4.1.2 and 4.2.2, we get
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(a) (b)

(c) (d)

(e)

Figure 4.14: Identifying the koi fish glitch in the data. (a) Best fitness value of the data, (b) Data 
segment containing glitch; selected by using best fitness value, (c) Spectrogram of the selected data 
segment, (d) Glitch boundary selected by spectrogram threshold, (e) Timeseries of the glitch 
boundary
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(a)

(b)

(c)

Figure 4.15: Estimation and removal of the Koi Fish glitch using 2048 as a segment length on the 
main glitch and 4096 as a segment length on the secondary noise for fitting the data. Figure (a) is 
the comparison of the estimation of methods in time series (Gray = data, green = estimation of 
SHAPES, red = estimation of waveshrink). Figure (b) is the comparison of glitch removal (first 
panel = data, second panel = Glitch Removal by SHAPES, third panel = Glitch removal by 
WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and Waveshrink). 
Figure (c) is the data and residual of the data using SHAPES. Also, the spectrogram in the figure (c) 
is adaptive spectrogram.
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figure 4.14 (b), figure 4.14 (c) and figure 4.14 (d), which has only the glitch part. Using the

glitch boundary from figure 4.14 (d), we get the start and end of the glitch i.e. the glitch boundary

in time domain figure 4.14 (e). The determination of glitch boundary is more accurate than the

amplitude threshold method as before.

In the case of SHAPES, the segment length 16384 has been applied to the data, other than the

glitch part. In the glitch part of the data, the segment length is 2048. Fig. 4.15 (a) is the comparison

of timeseries, there is a noticeable change in the top right panel and bottom left panel of the time

series from the bottom left panel and bottom right panel timeseries of fig. 4.15 (a) in between 2.66 s

and 2.68 s, and in between 3.60 s and 5.0 s, respectively. In the bottom right panel, we can see that

the estimation is smoother than the bottom right panel of figure 4.13 (a). The difference it made is

clearly visible in spectrogram [figure 4.15 (b) and figure 4.15 (c)], where we can see more power

in between 2 s and 5 s in the second panel of figure 4.15 (b) or the right panel of figure 4.15 (c)

than the second panel of figure 4.13 (b) or the right panel of figure 4.13 (c). The estimation of

waveshrink did not change i.e. it is still removing more power below 300 Hz than SHAPES as in

the third panel of fig. 4.13 (b). Also, we see that there is a trace of the glitch left behind in the third

panel of figure 4.15 (b) as before, which is a result of glitch removal by waveshrink estimation. The

combination of the estimation of SHAPES and waveshrink failed, as before, but did better than

figure 4.8 (b) right panel as before. A linear chirp signal with SNR 25 is injected exactly in the same

position as for the amplitude threshold method of the koi fish. As it removed less power between 2 s

and 5 s than the amplitude threshold method, it kept more signal during that time than the amplitude

threshold method. Therefore, the loss percentage is also decreased as we can see from table 4.2.

4.4 Tomte

4.4.1 Results using amplitude threshold method

The assumption that we made in the low-frequency blip, which works on koi fish, also works

on the tomte glitch part for the small frequency glitches between 2.6s and 3.1s in the bottom left

panel of fig. 4.16 (a). But this assumption does not work with a high-frequency glitch which is
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(a)

(b)

(c)

Figure 4.16: Estimation and removal of the Tomte glitch using 1024 as a segment length on the 
glitch part and 16384 on the rest of the data for fitting the data. Figure (a) is the comparison of the 
estimation of methods in time series (Gray = data, green = estimation of SHAPES, red = estimation 
of waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using SHAPES, black boxes around the data is the glitch boundary identified by the amplitude 
threshold method. Also, the spectrogram in the figure (c) is adaptive spectrogram.
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between 2.35 s and 2.55s in the top right panel of the fig. 4.16 (a). Therefore, we can say

that for the high-frequency glitch part we need to use shorter segment lengths, which is also evident

from the case of the loud blip glitch in GW170817 [section 4.1].

We used 1024 segment lengths in the glitch part and 16384 segment lengths for the rest of the

data to remove the tomte glitch. Fig. 4.16 (a) is the comparison of timeseries, from where we can see

that at the top left panel, and the bottom right panel, the estimation made by SHAPES is smoother

than the waveshrink. In the case of SHAPES, the segment length 16384 has been applied to the rest

of the data, other than the glitch part. In the glitch part of the data, the segment length is 1024. As

one can see from fig. 4.16 (b), the glitch is completely removed from the second left panel of the

spectrogram, which is a spectrogram for glitch removal by SHAPES. When the glitch is removed

using waveshrink, as the estimation of waveshrink is following the general noise more closely than

the estimation of SHAPES, it takes out more power. The power difference is visible from the general

spectrogram figure [Fig. 4.16 (b)]. In the third panel of fig. 4.16 (b), there is less power below 400

Hz (as before), which is caused by the overfitting of the waveshrink. From fig. 4.16 (a), the top

right panel and the bottom left panel are the estimations of the glitch by SHAPES and waveshrink.

In the case of the high-frequency glitch part at the top right panel of fig. 4.16 (a), w can see the

estimation and waveshrink overlapped on each other. Moreover, both systems estimated the glitch

pretty well, but in some cases, SHAPES is following data closely, which is evident from the peaks

of the glitch in the bottom left panel [Fig. 4.16 (a)]. That is why we can see from fig. 4.16 (b),

that SHAPES is taking out the glitch and more power around the glitch. Also, we see that there

is a clear trace of the glitch left behind in the third panel of fig. 4.16 (b), which can be seen at

around 500 Hz. The trace is visible in this case. It is more visible in the adaptive spectrogram.

The combination of the estimation of SHAPES and waveshrink, fig. 4.16 (b) right panel, failed to

remove the glitch in this case. From the result in the right panel of the fig. 4.16 (b), we can confirm

that the combination of SHAPES and waveshrink will not work on the high-frequency glitch. A

linear chirp signal with SNR 25 is injected into the data around the glitch i.e. around 1.9 s. Using

equation 3.22 and equation 3.23, we get SNR values and loss percentage for tomte glitch as written
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in Table 4.1. From the loss percentage, we can say that SHAPES and waveshrink performs way

better than the current aLIGO method i.e. gating. Amongst the SHAPES and waveshrink, we can

see that SHAPES performing better than waveshrink. Also, we can see that the higher the frequency

is, the worse the estimation of the combination approach of SHAPES and waveshrink becomes.

4.5 Slow Scattering Glitch

4.5.1 Results using amplitude threshold method

Fig. 4.17 (a) is the comparison of timeseries, from where we can see that at the top left panel,

and the bottom right panel, the estimation made by the combination of SHAPES and waveshrink is

smoother than the estimation of SHAPES and the estimation of waveshrink individually. In the case

of SHAPES, the segment length 16384 has been applied to the rest of the data, other than the glitch

part of the data. In the main glitch part of the data, the segment length is 6144. As the glitch is

long in this case, SHAPES take out a lot of power below 50 Hz. When the glitch is removed using

waveshrink, as the estimation of waveshrink is following the general noise more closely than the

estimation of SHAPES, it takes out more power from the general noise part. In the third panel of

the fig. 4.17 (b), there is less power below between 10-70 Hz, which is caused by the overfitting

of the waveshrink. From the right panel of the fig. 4.17 (b), we see that there is very less power

taken out from the general noise, and the glitch is removed from the data. From fig. 4.17 (a), the

top right panel and the bottom left panel are the estimations of the glitch by SHAPES, waveshrink,

and a combination of SHAPES and waveshrink. In this case, the individual estimation made by

SHAPES and Waveshrink followed the glitch very closely, but in some cases, SHAPES is following

data closely, which is evident from the maximum and minimum peak of the glitch [Fig. 4.17 (a)].

That is why we can see from fig. 4.17 (b), that SHAPES is taking out the glitch and more power

around the glitch below 50 Hz as before. The estimation made by the combination of SHAPES and

waveshrink, fig. 4.17 (b) right panel, followed the glitch part of the data lesser than the individual

estimation of SHAPES and Waveshrink. Thus, it takes out very less power from the glitch part of
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(a)

(b)

(c)

Figure 4.17: Estimation and removal of the slow scattering glitch using 6144 as a segment length 
on the glitch with signal I for fitting the data. Figure (a) is the comparison of the estimation of 
methods in time series (Gray = data, red = estimation of SHAPES, blue = estimation of waveshrink, 
green = estimation of the combination of SHAPES and waveshrink). Figure (b) is the comparison 
of glitch removal (first panel = data, second panel = Glitch Removal by SHAPES, third panel = 
Glitch removal by WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and 
Waveshrink). Figure (c) is the data and residual of the data using the combination approach of 
SHAPES and waveshrink.
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the data compared to the general spectrogram of the individual glitch removal of SHAPES

and Waveshrink. From this result, we can confirm that the combination of SHAPES and waveshrink

performs better in low-frequency glitches. It is also confirmed by the SNR values in table 4.1. The

first linear chirp signal (sig. I in table 4.1) is injected around 2s i.e. in the middle of one of the glitch

islands. From the loss percentage and values of SNR, we can say that SHAPES and waveshrink

both performed better than the gating procedure of LIGO. Amongst SHAPES and waveshrink,

SHAPES performs similarly to waveshrink for preserving the signal. The percentage difference

is very small. But the combination of SHAPES and waveshrink in this case works better than

the individual systems by considering the loss percentage and SNR values, which is also evident

from figure 4.17 (b). Therefore, it also confirms from the values of SNR and loss percentage in

table 4.1 that the combination of SHAPES and waveshrink works better in low-frequency glitches

(the assumption we made in section 4.5.1).

Also, in the previous fig. 4.17, the signal started from the middle of the glitch. But if the

signal (sig. II in table 4.1) started in between the glitch islands i.e. the low frequency of glitch will

start from the part where is no glitch present, SHAPES preserve the full signal approximately. As

SHAPES preserve the signal, the combination of SHAPES and waveshrink also preserves the signal.

However, waveshrink removed the low-frequency part of the signal. These statements are illustrated

in the below fig. 4.18. Thus, from the loss percentage and SNR in the table 4.1, we can say that

SHAPES and waveshrink both performed better than the gating procedure of LIGO, as before.

Amongst SHAPES and waveshrink, SHAPES preserved more signal parts than waveshrink. But the

combination of SHAPES and waveshrink in this case works better than the individual systems, as it

preserves signal and general noise more than both systems.

For getting figure 4.19, we have applied 6144 segment length in the glitch part and 16384

segment length in the rest of the data for making the estimation of SHAPES. Also, figure 4.19 has

two signals (sig. I and sig. II) in the same data as we can see from the spectrogram [figure 4.19 (b)].

That means we have added two signals in the same data and checked whether it affects the estimate

of the SHAPES, which gives a result with no change i.e. no extra effect on the signals.
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(b)
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Figure 4.18: Estimation and removal of the slow scattering glitch using 6144 as a segment length 
on the glitch with signal II for fitting the data. Figure (a) is the comparison of the estimation of 
methods in time series (Gray = data, red = estimation of SHAPES, blue = estimation of waveshrink, 
green = estimation of the combination of SHAPES and waveshrink). Figure (b) is the comparison 
of glitch removal (first panel = data, second panel = Glitch Removal by SHAPES, third panel = 
Glitch removal by WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and 
Waveshrink). Figure (c) is the data and residual of the data using the combination approach of 
SHAPES and waveshrink.
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(b)

(c)

Figure 4.19: Estimation and removal of the slow scattering glitch using 6144 as a segment length 
on the glitch with two signals for fitting the data. These figures have regulator gain 0.3. Figure (a) is 
the comparison of the estimation of methods in time series (Gray = data, red = estimation of 
SHAPES, blue = estimation of waveshrink, green = estimation of the combination of SHAPES and 
waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using the combination approach of SHAPES and waveshrink, black boxes around the glitch is 
the glitch boundary identified by amplitude threshold method.
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Figure 4.20: Estimation and removal of the slow scattering glitch using 6144 as a segment length 
on the glitch with two signals for fitting the data.These figures have regulator gain 0.1. Figure (a) is 
the comparison of the estimation of methods in time series (Gray = data, red = estimation of 
SHAPES, blue = estimation of waveshrink, green = estimation of the combination of SHAPES and 
waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using the combination approach of SHAPES and waveshrink, black boxes around the glitch is 
the glitch boundary identified by amplitude threshold method.
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Figure 4.17, figure 4.18, figure 4.19 has regulator gain 0.3, unlike the other figures in

the whole chapter IV. Though it is preserving more signal (not significantly different), changing

the regulator gain a little does not affect much in case of glitches and signal as we can see from

comparing fig. 4.20 (b) with fig. 4.19 (b). Changing the regulator gain, by 0.01 - 0.15, does not have

a noticeable effect in case of glitches, which has more frequencies than 100 Hz. If the regulator gain

is increased after a certain value, which varies with glitches (for example, 0.15 for GW170817),

it starts to keep parts of the glitch. But it has a significant effect on signal II which is in between

the glitch islands and buried behind the gaussian noise. In the case of figure 4.19 (b), we can see

that it nearly preserved the whole signal II whereas it is not preserved equally in fig. 4.20 (b). The

difference is also apparent in the SNR values and loss percentage from table 4.1. So, we can say

that by making the estimation smoother, by changing regulator gain, in the Gaussian noise (general

noise) part of the data, more power can be saved.

All of the previous graphs are for normalized data i.e. with a standard deviation value of 1.

With a standard deviation of the noise is 1, waveshrink performs better to remove high-frequency

glitches. But due to this good performance, it takes out more power around the glitch which we

can see from the third panel of the fig. 4.17 (b) or the fig. 4.18 (b) or the fig. 4.19 (b). After data

conditioning of GW strain data in our case, the standard deviation is a little less than 1, to be exact

0.8699 for slow scattering glitch. If we do not make standard deviation 1, then the combination of

SHAPES and waveshrink performs even better than the previous graphs of slow scattering glitches.

We get figure 4.21 by applying segment length 6144 in the glitch part and 16384 in the rest of the

data for fitting the data by SHAPES.

From the right panel of the figure 4.21 (b), we can see that there is more general noise than

in the fig. 4.17 (b) or the fig. 4.18 (b) or the fig. 4.19 (b) of the slow scattering glitch. From the

second and third panel of fig.4.21 (b), we can see that both SHAPES and waveshrink is removing

less power than in the previous graph. Even the SNR values recovered by the combination of

SHAPES and waveshrink, including individual systems (SHAPES, and waveshrink ), is higher than

the normalized data. When we injected the signal into glitch-removed data, the SNR of the signal
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(a)

(b)

(c)

Figure 4.21: Estimation and removal of the slow scattering glitch using 6144 as a segment length 
on the glitch for fitting the data. In this case, standard deviation of the data is not normalized. 
Figure (a) is the comparison of the estimation of methods in time series (Gray = data, red = 
estimation of SHAPES, blue = estimation of waveshrink, green = estimation of the combination of 
SHAPES and waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, 
second panel = Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth 
panel = Glitch removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and 
residual of the data using the combination approach of SHAPES and waveshrink.
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(a)

(b)

(c)

Figure 4.22: Estimation and removal of the slow scattering glitch using 4096 as a segment length 
on the glitch for fitting the data. In this case, standard deviation of the data is not normalized. 
Figure (a) is the comparison of the estimation of methods in time series (Gray = data, red = 
estimation of SHAPES, blue = estimation of waveshrink, green = estimation of the combination of 
SHAPES and waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, 
second panel = Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth 
panel = Glitch removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and 
residual of the data using the combination approach of SHAPES and waveshrink.
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Figure 4.23: Glitch removal with applying 8192 segment length in the glitch part of the data for 
fitting the data

became 25.8172. After glitch removal, the SNR recovered by SHAPES is 24.8348 (which 

is 3.80% less than SNR in glitch removed data) and the SNR recovered by waveshrink is 24.4710 

(which is 5.21% less than SNR in glitch removed data). With the current procedure of LIGO (gating 

the data around the glitch), the amount of SNR of the chirp signal recovered is 10.5899 (which is 

58.98% less than SNR in the glitch removed data). From the percentage and values of SNR, we 

can say that SHAPES and waveshrink both performed better than the gating procedure of LIGO. 

Amongst SHAPES and waveshrink, SHAPES performs similarly to waveshrink for preserving 

the signal. Again, the combination of SHAPES and waveshrink in this case works better than the 

individual systems. In the case of the glitch removal, the SNR recovered by the combination of 

SHAPES and waveshrink is 25.2234 (which is 2.30% less than SNR in the glitch removed data). 

So, in case of a slow scattering glitch, the combination of SHAPES and waveshrink performs 

better. This result also confirms that the combination of SHAPES and waveshrink works better in 

low-frequency glitches.

The slow scattering glitch can be subtracted using a lower segment length value. But if we 

apply a higher segment length value than 6144 i.e. 8192 for fitting the data by SHAPES, it can not 

remove the full glitch [Fig. 4.23. The below fig. 4.22 of slow scattering has 4096 segment length 

in the glitch part and 16384 segment length in the rest of the data for fitting the data by SHAPES. 

Also, figure 4.22 have two signal (sig.I and sig.II) as we can see from spectrogram [figure 4.22 (b)].
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4.6 Fast Scattering Glitch

4.6.1 Results using amplitude threshold method

Figure 4.24 (a) is the comparison of timeseries, from where we can see that at the top left

panel in between 0-0.6s and 1.8-2.1s, the bottom left panel and the bottom right panel in between

6.5-7.1s, the estimation made by the combination of SHAPES and waveshrink is smoother than the

estimation of SHAPES and the estimation of waveshrink individually. In the case of SHAPES, the

segment length 16384 has been applied to the rest of the data, other than the glitch part of the data.

In the glitch part of the data, the segment length is 4096. As the glitch is long in this case, SHAPES

take out a lot of power below 90 Hz. When the glitch is removed using waveshrink, as the estimation

of waveshrink is following the general noise more closely than the estimation of SHAPES, it takes

out more power from the general noise part. In the third panel of the fig. 4.24 (b), there is less power

below between 07-40 Hz, which is caused by the overfitting of the waveshrink. But in this case,

it takes out less power than SHAPES. It is caused by the small gap (less time interval) between

the islands of glitch. From the right panel of the fig. 4.24 (b), we see that there is very less power

taken out from the general noise, and the glitch is removed from the data. From fig. 4.24 (a), the

top right panel and the bottom left panel are the estimations of the glitch by SHAPES, waveshrink,

and a combination of SHAPES and waveshrink. In this case, the individual estimation made by

SHAPES and Waveshrink followed the glitch very closely, but in some cases, SHAPES is following

data closely, which is evident from the maximum and minimum peak of the glitch [Fig. 4.24 (a)].

That is why we can see from fig. 4.24 (b), that SHAPES is taking out the glitch and more power

around the glitch below 50 Hz as before. The estimation made by the combination of SHAPES and

waveshrink, fig. 4.24 (b) right panel, followed the glitch part of the data lesser than the individual

estimation of SHAPES and Waveshrink. Thus, it takes out very less power from the glitch part

of the data compared to the general spectrogram of the individual glitch removal of SHAPES and

Waveshrink. From this result, we can confirm that the combination of SHAPES and waveshrink

performs better in low-frequency glitches.
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(a)

(b)

(c)

Figure 4.24: Estimation and removal of the fast scattering glitch using 4096 as a segment length on 
the glitch with signal I for fitting the data. Figure (a) is the comparison of the estimation of methods 
in time series (Gray = data, red = estimation of SHAPES, blue = estimation of waveshrink, green = 
estimation of the combination of SHAPES and waveshrink). Figure (b) is the comparison of glitch 
removal (first panel = data, second panel = Glitch Removal by SHAPES, third panel = Glitch 
removal by WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and 
Waveshrink). Figure (c) is the data and residual of the data using the combination approach of 
SHAPES and waveshrink.
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It is also confirmed by the SNR values in table 4.1. The first linear chirp signal (sig. I in

table 4.1) is injected around 1 s. From the loss percentage and values of SNR, we can say that

SHAPES and waveshrink both performed better than the gating procedure of LIGO, as before.

Amongst SHAPES and waveshrink, SHAPES performs worse to waveshrink for preserving the

signal. But the combination of SHAPES and waveshrink in this case works better than the individual

systems by considering the loss percentage and SNR values in table 4.1, which is slightly lower

and slightly higher (respectively) than waveshrink. Also, the combination method of SHAPES and

waveshrink preserves more gaussian (general) noise than SHAPES and waveshrink individually.

Therefore, it also confirms that the combination of SHAPES and waveshrink works better in

low-frequency glitches.

We have added a second signal (sig. II in table 4.1 in the data, where SHAPES is taking

out less power to see the effect of estimation (as we have done in section 4.5.1). In the case of fast

scattering, it preserves the signal more [Fig. 4.25 (b)] if the signal started from a position where is

no glitch present. It is more evident in SNR values and loss percentage of sig. II in table 4.1, that

starts from 4 s. In case of fast scattering, the loss percentage and SNR sig.II is lower and higher than

sig.I. But the preservation of signal is not as good as sig. II of slow scattering case. That means, the

combination of SHAPES and waveshrink still performing better than individual methods. But it did

not perform as good as slow scattering cases, where it preserved more parts of the signal [Fig. 4.19].

The fast scattering glitch can also be removed using 6144 as a segment length for fitting

the data by SHAPES [Fig. 4.26. It keeps more power around the glitch in the data as we can see

from figure 4.26 (b). But above 6144 like 8192 as a segment length, will keep glitch in the data

[Fig. 4.28].

Similar to the slow scattering glitch, the performance of the combination of SHAPES and

waveshrink is better if the data is not normalized. In case of fast scattering glitch, the standard

deviation is 0.9052. The below figure shows the application of the code on GW strain data which is

not normalized.
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(a)

(b)

(c)

Figure 4.25: Estimation and removal of the fast scattering glitch using 4096 as a segment length on 
the glitch for fitting the data. These figures have two signal in the data. Figure (a) is the comparison 
of the estimation of methods in time series (Gray = data, red = estimation of SHAPES, blue = 
estimation of waveshrink, green = estimation of the combination of SHAPES and waveshrink). 
Figure (b) is the comparison of glitch removal (first panel = data, second panel = Glitch Removal by 
SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch removal by the 
combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the data using the 
combination approach of SHAPES and waveshrink, black boxes around the glitch is the glitch 
boundary identified by amplitude threshold method.
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(a)

(b)

(c)

Figure 4.26: Estimation and removal of the fast scattering glitch using 6144 as a segment length on 
the glitch for fitting the data. These figures have two signal. Figure (a) is the comparison of the 
estimation of methods in time series (Gray = data, red = estimation of SHAPES, blue = estimation 
of waveshrink, green = estimation of the combination of SHAPES and waveshrink). Figure (b) is 
the comparison of glitch removal (first panel = data, second panel = Glitch Removal by SHAPES, 
third panel = Glitch removal by WaveShrink, fourth panel = Glitch removal by the combination of 
SHAPES and Waveshrink). Figure (c) is the data and residual of the data using the combination 
approach of SHAPES and waveshrink, black boxes around the glitch is the glitch boundary 
identified by amplitude threshold method.
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(a)

(b)

(c)

Figure 4.27: Estimation and removal of the fast scattering glitch using 6144 as a segment length on 
the glitch for fitting the data. These figures have been produced without normalized data. Figure (a) 
is the comparison of the estimation of methods in time series (Gray = data, red = estimation of 
SHAPES, blue = estimation of waveshrink, green = estimation of the combination of SHAPES and 
waveshrink). Figure (b) is the comparison of glitch removal (first panel = data, second panel = 
Glitch Removal by SHAPES, third panel = Glitch removal by WaveShrink, fourth panel = Glitch 
removal by the combination of SHAPES and Waveshrink). Figure (c) is the data and residual of the 
data using the combination approach of SHAPES and waveshrink.
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From the right panel of the fig. 4.27 (b), we can see that there is more general noise around

10-30 Hz than in the previous graph of the glitch. From the second and third panel of fig. 4.27 (b),

we can see that both SHAPES and waveshrink is removing less power than in the previous graph.

When we injected the signal into glitch-removed data, the SNR of the signal became 24.8070.

After glitch removal, the SNR recovered by SHAPES is 21.6444 (which is 12.74% less than

SNR in glitch removed data) and the SNR recovered by waveshrink is 22.4160 (which is 9.63%

less than SNR in glitch removed data). With the current procedure of LIGO (gating the data

around the glitch), the amount of SNR of the chirp signal recovered is 7.9085 (which is 68.12%

less than SNR in the glitch removed data). Thus, from the percentage and values of SNR, we

can say that SHAPES and waveshrink both performed better than the gating procedure of LIGO.

Amongst SHAPES and waveshrink, waveshrink performs better than SHAPES for preserving the

signal. Again, the combination of SHAPES and waveshrink in this case works better than the

individual systems. In the case of the glitch removal, the SNR recovered by the combination of

SHAPES and waveshrink is 22.6431 (which is 8.72% less than SNR in the glitch removed data). So,

in case of the fast scattering glitch, the combination of SHAPES and waveshrink performs better.

Figure 4.28: Glitch removal with applying 8192 segment length, on the glitch part of the data, for 
fitting the data
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4.7 Extremely Loud Glitch

4.7.1 Results using amplitude threshold method

Fig. 4.29 (a) is the comparison of timeseries, from where we can see that at the top left panel,

the estimation made by SHAPES is smoother than the waveshrink. In all other panels of fig. 4.29 (a),

both methods, SHAPES, and waveshrink estimate the glitch very closely. In some cases, we can see

that the estimation of the SHAPES (red color estimation in fig.4.29 (a)) is following the data more

closely as the peak is seen behind the estimation of waveshrink (green color estimation fig.4.29 (a)),

for example, 0.65s - 0.7s at the top left panel. In the case of SHAPES, the segment length 16384

has been applied for getting the estimation of the data, other than the glitch part. In the glitch part

of the data, the segment length applied is 256. When the glitch is removed using waveshrink, as

the estimation of waveshrink is following the general noise more closely than the estimation of

SHAPES (what can be seen in the top left panel of fig. 4.29 (a) from 0s to 0.65s), it takes out more

power in case of general/Gaussian noise. The power difference is visible from the third panel of

the general spectrogram figure [figure 4.29 (b)]. In the third panel of figure 4.29 (b), there is less

power between 0s and 0.6s approximately, which is caused by the overfitting of the waveshrink.

From figure 4.29 (a), the top right panel and the bottom panels are the estimations of the glitch

by SHAPES and waveshrink. The glitch is very long, approximately 900s long disturbance of the

data. In normal cases, probably this data will be vetoed by data quality. In this case, both systems

estimated the glitch pretty well [fig. 4.29 (a)]. But from the spectrogram of figure 4.29 (b), we see

that there is a trace of the glitch left behind in the second panel, which is a result of glitch removal

by SHAPES estimation. The combination of the estimation of SHAPES and waveshrink failed in

this case as we can see from figure 4.29 (b) right panel. From section 4.1, 4.2, 4.3, 4.4, and this

section, we can conclude that the combination approach of SHAPES and waveshrink will fail if

either of the individual systems fails in any glitch cases. A linear chirp signal is injected into data

around 0.7s. But neither of the methods kept a trace of the signal in this glitch case. Also, these

methods did not affect the general/Gaussian noise much after 700 Hz.
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(a)

(b)

(c)

Figure 4.29: Estimation and removal of the extremely loud glitch using 256 as a segment length on 
the glitch part of the data for fitting the data. These figures have been produced without normalized 
data. Figure (a) is the comparison of the estimation of methods in time series (Gray = data, green = 
estimation of waveshrink, red = estimation of SHAPES). Figure (b) is the comparison of glitch 
removal (first panel = data, second panel = Glitch Removal by SHAPES, third panel = Glitch 
removal by WaveShrink, fourth panel = Glitch removal by the combination of SHAPES and 
Waveshrink). Figure (c) is the data and residual of the data using waveshrink.
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Glitch Name
SNR SNR SNR SNR SNR

(in residual)
(from
SHAPES
residual)

(from
Waveshrink
residual)

(from
SHAPES and
waveshrink
residual)

(from
gating
procedure)

Loss Loss Loss Loss
LFB 24.49 2.11 15.22 2.28 24.00
KF 25.06 5.38 17.12 2.72 24.62
Tm 25.60 14.29 33.79 6.45 45.42
SS (sig.I)

25.43 9.56 9.84 6.11 69.61
(6144) (rg-0.3)
SS (sig.II)

26.00 0.01 5.68 0.16 53.27
(6144) (rg-0.3)
SS (sig.I)

25.43 8.75 9.85 6.08 71.07
(6144) (rg – 0.1)
SS (sig.II)

26.00 5.91 5.67 2.79 61.06
(6144) (rg-0.1)
SS (sig.I)

25.34 16.01 9.56 7.63 69.52
(4096)
SS (sig.II)

25.96 3.06 5.26 0.10 70.24
(4096)
FS (sig.I)

23.73 16.69 8.88 8.64 100
(4096)
FS (sig.II)

23.92 13.16 8.68 7.20 100
(4096)
FS (sig.I)

23.73 16.69 8.88 8.64 100
(6144)
FS (sig.II)

23.92 13.16 8.68 7.20 100
(6144)
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Table 4.1: SNR Values, using amplitude threshold, for linear chirp signal in the data. The loss for 
every method is a percentage. In the first column of the table, glitch type is written in short form. 
Full forms of glitches are LFB = Low Frequency Blip, KF = Koi Fish, Tm = Tomte, SS = Slow 
Scattering, and FS = Fast Scattering. Also, in this table, SS (sig.I) (6144) (rg-0.3) means that it is 
the slow scattering glitch, the sig.I is the injected signal in the first position in the case of two signal 
injections, 6144 means that the segment length 6144 is applied for estimating the glitch part of the 
data, and rg -0.3 means that the regulator gain is 0.3. Similarly, other glitch naming is written for 
slow scattering (SS) and fast scattering (FS). Other than slow scattering glitch (6144) cases, all of 
the glitches estimations are done with regulator gain 0.1.



Glitch
SNR SNR SNR SNR SNR

(in
residual)

(from
SHAPES
residual)

(from
Waveshrink
residual)

(from
SHAPES and
waveshrink
residual)

(from
gating
procedure)

SNR Loss SNR Loss SNR Loss SNR Loss
LFB 24.49 24.03 1.84 20.76 15.21 23.94 2.22 23.57 24.00
KF 25.06 24.23 3.3 20.76 17.13 24.61 1.77 22.94 24.62

Table 4.2: SNR Values, using bestfitness-spectrogram threshold, for linear chirp signal in the data. 
The loss for every method is a percentage. In the first column of table, glitch type is written in short 
form. Full forms of glitches are: LFB = Low Frequency Blip, KF = Koi Fish

Glitch Name GPS start time
(timeseries)

Glitch start time
(around)

Detector

GW170817 (Loud
Blip)

1187006835 1187008882.4 Livingstone

Low Frequency Blip 1136365568 1136368106 Hanford
Tomte 1252900864 1252903456 Livingstone

Koi Fish 1132929024 1132939287 Hanford
Slow Scattering 1238511616 1238512894 Livingstone
Fast Scattering 1265315840 1265319354 Livingstone

Extremely Loud
Glitch

1136365568 1136368605 Hanford
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Table 4.3: Glitch Timeseries. This table contains all the GPS timeseries that we have dealt in this 
research



CHAPTER V

CONCLUSION

Noise is a problem in every type of data including GW data. The linear noise in GW data has

been dealt with by aLIGO. Glitch is also a type of non-stationary noise, which is better known as

non-astrophysical signals or transient signals. Glitch is unexpected and also the waveform of glitch

varies with the type of glitch. It even varies with the difference in detector systems. Thus, estimating

and removing a glitch from the GW data is a very challenging task. It needs to be removed from

the data, as glitch increases the false alarm rate, causes a problem for parameter estimation of the

signal, and limits the aLIGO sensitivity. Classifying the glitches helps, but it is not a solution. As

the aLIGO sensitivity is increasing, a new glitch may be introduced to data. As it is a new glitch, it

would not fall into any old classification.

Using the classification of the glitch and auxiliary channels to model the glitch, some

algorithms have been built as discussed in section 2.3. But these methods will fail to detect new

glitches without any previous knowledge of the glitch. Even with the training of specific glitches in

these algorithms, it could not detect the glitches from other detectors as the waveform varies. The

new algorithm, SHAPES , that we applied to the GW data, does not need any previous knowledge

of the glitches to identify, estimate, and remove the glitches. Therefore, SHAPES can detect new

glitches, along with the classified glitches, without any training or previous knowledge of the

glitches. Bayeswave, which is mostly used in GW data analysis in aLIGO, takes too much time to

estimate and model a glitch. Compared to Bayeswave, SHAPES takes much less time to identify,

and estimate the glitch. If SHAPES is applied to the glitch-only part, it can identify, estimate and

remove glitches in 4096 s data in 5-30 minutes (depending on how noisy the data is). In case of

two noisy data i.e. repeated slow scattering glitch, fast scattering glitch, it will take longer time
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than the time mentioned before. If SHAPES is applied on the full data as in the chapter IV, it will

take longer time i.e. 2-3 hours. Waveshrink takes time in seconds to build an estimation. Thus,

the combination of SHAPES and waveshrink takes similar time to SHAPES to estimate the data.

Still SHAPES is faster than Bayeswave in all cases. Moreover, SHAPES and the combination

of SHAPES and waveshrink work on a wide variety of glitches and various frequencies, while the

methods mentioned in 2.3 work on a particular type of glitches.

The amplitude threshold method for identification of the glitches can identify the glitch

very fast i.e. approximately in 1µs. But in the case of the best fitness-spectrum threshold method,

it takes more time than the amplitude threshold method. For acquiring a good estimation of

the data including glitch by SHAPES , glitch boundary needs to be defined accurately. From

section 4.1, section 4.2, and section 4.3, it is clear that the best fitness-spectrum threshold method

works more accurately to define glitch boundary than the amplitude threshold method. Also,

as SHAPES is applied repeatedly in the case of the best fitness-spectrum threshold method, it needs

more computational power than the amplitude threshold method.

The segment length for fitting the glitch part of the data is shorter than the Gaussian/general

noise of the data. Also, the segment length varies with the frequency of the glitches. The higher

the frequency, the shorter the segment length should be. As discussed in 4.2 , 4.3 ,and 4.4, the

glitch is completely subtracted by using a longer segment length than the glitch boundary if the

glitch is a low-frequency or mid-frequency i.e. around 10-600 Hz, and short duration glitch. For

high-frequency glitches, a shorter segment length can subtract the glitches from the data. But the

segment length varies with different high-frequency glitches i.e. the value or a pattern is still not

generalized. Thus, there is some manual tuning needed for high-frequency glitches. Therefore,

the system is not fully automatic, and more work needed to be done in case of finding a pattern in

high-frequency glitches. . Furthermore, the methods take out more power, when it is applied to

shorter segment length (e.g. glitch part of the data), which is a problem for short duration signals.

In future work, it should be investigated how the subtraction of more power can be reduced. One of

the possible solutions is to increase the regulator gain value [sec. 4.5].
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APPENDIX A

GLITCH REMOVAL CODES

The code, that is given here, is an example of glitch removal method by amplitude threshold

method. Also, this code is for koi fish glitch.

1 % S c r i p t f o r g l i t c h remova l − Koi F i s h G l i t c h

2 % SHPS r u n s t h e SHAPES a l g o r i t h m on g i v e n d a t a .

3 % a d d p a t h ’F : \ UTRGV_Spring_2021 \ S t a t i s t i c a l _ M e t h o d s \ SDMBIGDAT19 \

CODES’

4 % a d d p a t h ’D : \ MS_Research \ SHAPES’

5 % a d d p a t h ’D : \ MS_Research \ Codes \ E d i t e d _ c o d e s \ Main_codes ’

6 % a d d p a t h ’D : \ MS_Research \ Codes \ E d i t e d _ c o d e s \ Automation_work ’

7

8 %I n p u t d a t a f i l e ( C o l l e c t t h e d a t a from GWOSC, w h i t e n t h e da t a ,

and keep i t

9 % i n a f o l d e r . Add t h e w h i t e n e d d a t a h e r e as a i n p u t f i l e . )

10 i n D a t a F i l e = f u l l f i l e ( ’D: ’ , ’ MS_Research ’ , ’ Codes ’ , ’ E d i t e d _ c o d e s ’ , ’

C o n d i t i o n e d _ d a t a ’ , ’ Ko i_F i sh ’ , ’H−H1_LOSC_4_V1−1132929024 −4096

_dtrndWhtnBndpss . hdf5 ’ ) ;

11

12 % R e g u l a t o r g a i n

13 rGa in = 0 . 1 ;

14 % Number o f k n o t s ove r which t o pe r fo rm model s e l e c t i o n

15 nKnts = { [ 5 , 6 ] , [ 7 , 8 , 9 ] , [ 1 0 , 1 2 , 1 4 , 1 6 , 1 8 ] , . . .
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16 [ 2 0 , 2 5 , 3 0 , 3 5 , 4 0 ] } ; %Base s e t

17 % Number o f i n d e p e n d e n t PSO r u n s

18 nRuns = 4 ;

19 % PSO p a r a m e t e r s

20 psoParams = s t r u c t ( . . .

21 ’ p o p s i z e ’ , 4 0 , . . .

22 ’ maxSteps ’ , 1 0 0 , . . .

23 ’ c1 ’ , 2 , . . .

24 ’ c2 ’ , 2 , . . .

25 ’ maxVeloc i ty ’ , 0 . 5 , . . .

26 ’ s t a r t I n e r t i a ’ , 0 . 9 , . . .

27 ’ e n d I n e r t i a ’ , 0 . 4 , . . .

28 ’ boundaryCond ’ , ’ ’ , . . .

29 ’ nbrhdSz ’ , 3 ) ;

30 % Upsampling f a c t o r

31 upSmplMl tp l r = 2 ; %S e t t o [ ] t o have no upsampl ing

32

33 % Nominal Segment l e n g t h

34 nSegSmpls = [ 2 5 6 , 5 1 2 , 1 0 2 4 , 2 0 4 8 , 4 0 9 6 , 8 1 9 2 , 1 6 3 8 4 , 3 2 7 6 8 ] ;%256*

upSmplMl tp l r ;

35 % Minimum number o f samples i n a segment

36 minNSegSmpls = 3 5 ;

37 % Segment o v e r l a p

38 nOvr lp = 3 0 ;

39 % Decay r a t e o f e x p o n e n t i a l i n o v e r l a p − a v e r a g e

40 dkRate = 1 6 ; %End v a l u e = exp ( − dkRate )

41 % Window l e n g t h f o r a v e r a g i n g t h e d a t a
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42 winLen = [ ] ; %1 2 ; %S e t t o [ ] t o have no a v e r a g i n g

43

44

45 %% Reading f i l e s

46 % In t h i s case , on ly ’ * . mat ’ and ’ * . hdf5 ’ f i l e i s used . Using

more ’ case ’ ,

47 % we can add any f o r m a t we want t o add her , f o r example ’ * . gwf ’ ,

’ * . x l s x . ’ ,

48 % ’ * . csv ’ , e t c . The f u n c t i o n s ’ m a t t o d a t a ’ and ’ h d f t o d a t a ’ r e a d s

t h e d a t a

49 % from t h e f i l e .

50 [ f P a t h , fName , f E x t ] = f i l e p a r t s ( i n D a t a F i l e ) ;

51 s w i t c h lower ( f E x t )

52 c a s e ’ . mat ’

53 [ da ta1 , d a t a 2 ] = m a t t o d a t a ( i n D a t a F i l e ) ;

54 c a s e ’ . hdf5 ’

55 [ da ta1 , d a t a 2 ] = h d f t o d a t a ( i n D a t a F i l e ) ;

56 o t h e r w i s e

57 e r r o r ( ’ Unexpec ted f i l e e x t e n s i o n : %s ’ , f E x t ) ;

58 end

59

60 %% Measur ing s t a n d a r d d e v i a t i o n

61 %S t a r t and s t o p t ime ( s e t t o [ ] f o r d e f a u l t v a l u e s o f 1 and end

of da t a ,

62 %r e s p e c t i v e l y ) . Use a p a r t o f da t a , where no g l i t c h o r major

change i s

63 %p r e s e n t .
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64 s t r t D a t a T i m e = [ 1 1 3 2 9 3 1 0 3 9 ] ;

65 s tpDa taT ime = [ 1 1 3 2 9 3 1 0 4 4 ] ;

66

67 % I f t h e s t a r t and s t o p t ime i s b lank , t h e n i t w i l l c o n t i n u e t o

f o l l o w

68 % t h e s e s t e p s . Not recomended f o r s t a n d r a d d e v i a t i o n measurement .

69 i f i s e m p t y ( s t r t D a t a T i m e )

70 %idx1 =1;

71 s t r t D a t a T i m e = d a t a 1 ( 1 ) ;

72 end

73 i f i s e m p t y ( s tpDa taT ime )

74 %idx2 = l e n g t h ( d a t a 1 ) ;

75 s tpDa taT ime = d a t a 1 ( end ) ;

76 end

77

78 % f i n d i n g t h e i n d e x v a l u e s o f t h e samples i n between t h e s t a r t

and s t o p

79 % time f o r s e l e c t i n g t h e d a t a

80 i d x = f i n d ( da ta1 >= s t r t D a t a T i m e & da ta1 <= s tpDa taT ime ) ;

81

82 %d a t a x = d a t a 1 ( i d x ) ; % d a t a x i s n o t needed f o r measu r ing s t a n d a r d

d e v i a t i o n

83 d a t a y = d a t a 2 ( i d x ) ;

84 s t d _ d a t a = s t d ( d a t a y ) ;

85

86 %% Data s e l e c t i o n ; a m p l i t u d e t h r e s h o l d s e l e c t i o n

89



87 % f i n d i n g t h e i n d e x v a l u e s o f d a t a f o r measu r ing maximum and

minimum v a l u e s

88 % of g e n e r a l / G a u s s i a n n o i s e . S e l e c t t h e q u i e t e s t p a r t o f t h e d a t a

f o r

89 % measu r ing t h e s e v a l u e s .

90 i d x = f i n d ( d a t a 1 >= 1132929200 & d a t a 1 <= 1132929250) ; % f o r k o i

f i s h

91 % d a t a s e l e c t i o n u s i n g t h e i n d e x v a l u e s

92 %d a t a x = d a t a 1 ( i d x ) ; % t i m e s e r i e s d a t a i s n o t needed f o r

measu r ing

93 %t h r e s h o l d

94 d a t a y = d a t a 2 ( i d x ) ;

95

96 % f i n d i n g minimum and maximum of g e n e r a l / g a u s s i a n n o i s e

97 minDatVal = min ( d a t a y ) ;

98 maxDatVal = max ( d a t a y ) ;

99 % c r e a t i n g t h e t h r e s h o l d v a l u e s by a dd i n g some v a l u e s t 0 i t . I n

c a s e o f

100 % s c a t t e r i n g c a s e s , t h e v a l u e s s h o u l d be ve ry low , f o r example ,

0 . 1 0 o r o . 1 5

101 maxDatValAdd = maxDatVal + 5 ;

102 minDatValAdd = minDatVal − 5 ;

103

104 %S t a r t and s t o p t ime ( s e t t o [ ] f o r d e f a u l t v a l u e s o f 1 and end

of da t a ,

105 %r e s p e c t i v e l y ) . S e l e c t i o n o f t h e d a t a i n between t h e s t a r t and

s t o p t ime
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106 %f o r g e t t i n g an e s t i m a t i o n .

107 s t r t D a t a T i m e = [ 1 1 3 2 9 2 9 2 8 4 ] ;

108 s tpDa taT ime = [ 1 1 3 2 9 2 9 2 9 2 ] ;

109

110 % I f t h e s t a r t and s t o p t ime i s b lank , t h e n i t w i l l c o n t i n u e t o

f o l l o w

111 % t h e s e s t e p s . T h e r e f o r e , i t w i l l i n s e r t t h e f u l l d a t a .

112 i f i s e m p t y ( s t r t D a t a T i m e )

113 %idx1 =1;

114 s t r t D a t a T i m e = d a t a 1 ( 1 ) ;

115 end

116 i f i s e m p t y ( s tpDa taT ime )

117 %idx2 = l e n g t h ( d a t a 1 ) ;

118 s tpDa taT ime = d a t a 1 ( end ) ;

119 end

120 % f i n d i n g t h e i n d e x v a l u e s o f t h e samples i n between t h e s t a r t

and s t o p

121 % time f o r s e l e c t i n g t h e d a t a

122 i d x = f i n d ( da ta1 >= s t r t D a t a T i m e & da ta1 <= s tpDa taT ime ) ;

123

124 % Data s e l e c t i o n : e s t i m a t i o n w i l l be produced f o r t h i s d a t a . I t

can be t h e

125 % f u l l d a t a o r a p a r t o f i t .

126 d a t a x = d a t a 1 ( i d x ) ;

127 d a t a y = d a t a 2 ( i d x ) ;

128 d a t a y = d a t a y . / s t d _ d a t a ;

129
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130 %% S i g n a l i n j e c t i o n

131 % % S i g n a l p a r a m e t e r s

132 t _ a = d a t a x ( 1 ) + 2 ; % s t a r t t ime of t h e s i g n a l

133 L = 2 . 5 ; % l e n g t h o f t h e s i g n a l

134 % f r e q u e n c y , phase and SNR v a l u e s e l e c t i o n

135 s g n l P a r a m s = s t r u c t ( ’ Freq1 ’ , 30 , ’ Freq2 ’ , 600 , ’ phase ’ , 0 , ’ s n r ’ ,

25) ;

136

137 % A l i n e a r c h i r p s i g n a l i s p roduced u s i n g ’ a t c s m g e n l t c s i g .m’ .

138 s igVec = a t c s m g e n l t c s i g ( da tax , [ t_a , t _ a + L ] , s g n l P a r a m s . snr , [

s g n l P a r a m s . Freq1 , s g n l P a r a m s . Freq2 ] , s g n l P a r a m s . phase ) ;

139

140 % I n j e c t i n g t h e s i g n a l i n t o d a t a

141 d a t a y = d a t a y + s igVec ;

142

143 %% I d e n t i f y i n g g l i t c h and d i v i d i n g t h e d a t a i n sub − segmen t s

144 % F i n d i n g t h e d a t a t h a t s u r p a s s t h e a m p l i t u d e t h r e s h o l d v a l u e

145 f = f i n d ( da tay >maxDatValAdd | d a t a y <minDatValAdd ) ;

146

147 % There i s a f u n c t i o n a l a p p r o a c h f o r t h i s method . ’ s p a r t n V 2 .m’ i s

a

148 % f u n c t i o n f o r i d e n t i f y i n g g l i t c h . C a l l i n g t h e f u n c t i o n f o r

f i n d i n g

149 % i n d e x of g l i t c h e s

150 %[ n , ~ ] = s e p a r t n V 2 ( h ) ; % column numbers can be d e c i d e d by n+1

151 %[ ~ , idx1 , i dx2 ] = s e p a r t n V 2 ( h ) ;

152
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153 %f i n d i n g t h e d i f f e r e n c e between t h e i n d e x e s

154 m = d i f f ( f ) ;

155

156 % c r e a t i n g t h e t a b l e f o r d i f f e r e n c e s

157 h t = t a b l e ( f ’ ) ;

158 m = [ 0 ,m] ;

159 h t .m = m’ ;

160 % renaming t h e v a r i a b l e s

161 h t = r e n a m e v a r s ( ht , [ " Var1 " , "m" ] , [ " I n d e x _ V a l u e s " , " D i f f e r e n c e s

" ] ) ;

162

163 % Smal l ’m’ v a l u e s be lo ng t o t h e same g l i t c h . Higher ’m’ v a l u e s

a r e f o r

164 % d i f f e r e n t g l i t c h e s . Thus , u s i n g one p a r a m e t e r we can i d e n t i f y

d i f f e r e n t

165 % g l i t c h e s . F i n d i n g ’m’ v a l u e s t h a t a r e h i g h e r t h a n a t h r e s h o l d

166 n = f i n d ( h t . D i f f e r e n c e s >100) ;

167 i d xV a l = h t . I n d e x _ V a l u e s ( n ) ;

168

169 % S e l e c t i o n o f g l i t c h boundary

170 i d x V a l s 1 = h t . I n d e x _ V a l u e s ( 1 ) − 200 ;

171 i d x V a l s 2 = i dx Va l − 100 ;

172 i d x V a l e 1 = h t . I n d e x _ V a l u e s ( n −1) +200;

173 i d x V a l e 2 = h t . I n d e x _ V a l u e s ( end ) + 200 ;

174

175 i d x V a l s = [ i d x V a l s 1 ; i d x V a l s 2 ] ;

176 i d x V a l e = [ i d x V a l e 1 ; i d x V a l e 2 ] ;
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177 i d x V a l f = [ idxVa l s , i d x V a l e ] ;

178

179

180 % S e l e c t i o n o f t h e d a t a o t h e r t h a n t h e g l i t c h p a r t i . e . g e n e r a l /

G a u s s i a n

181 % n o i s e .

182 idxValfW1s = f i n d ( d a t a x == d a t a x ( 1 ) ) ;

183 idxValfW1e = i d x V a l f ( 1 , 1 ) + 5 0 ;

184 idxValfW2s = i d x V a l f ( 1 , 2 ) − 5 0 ;

185 idxValfW2e = f i n d ( d a t a x <= d a t a x ( end ) ) ;

186 idxValfW2e = idxValfW2e ( end ) ;

187

188 idxValWs = [ idxValfW1s ; idxValfW2s ] ;

189 idxValWe = [ idxValfW1e ; idxValfW2e ] ;

190 idxValW = [ idxValWs , idxValWe ] ;

191

192 % manual d a t a s e l e c t i o n f o r s e c o n d a r y g l i t c h which i s v i s i b l e i n

t h e da t a ,

193 % s p e c i f i c f o r k o i f i s h o r t h i s d a t a

194 i d x V a l f P 1 s = i d x V a l f ( 1 , 1 ) − 1300 ;

195 i d x V a l f P 1 e = i d x V a l f ( 1 , 1 ) − 700 ;

196

197

198 i d x V a l P s = [ i d x V a l f P 1 s ] ;

199 i dxVa lPe = [ i d x V a l f P 1 e ] ;

200 idxValP = [ idxValPs , idxVa lPe ] ;

201
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202 % Sometimes t h e d a t a s t a r t w i th a g l i t c h . Thus , t h e method w i l l

203 % g e t some n e g a t i v e v a l u e s f o r t h e i n d e x . I f t h e g l i t c h i s a t t h e

end of t h e

204 % data , t h e i n d e x w i l l be more t h a n t h e l e n g t h o f t h e d a t a . Both

o f t h e s e

205 % c a s e s w i l l p roduce an e r r o r . Th i s problem / bug i s f i x e d i n t h i s

p a r t o f t h e

206 % code .

207 i f i d x V a l f ( 1 , 1 ) <= 0

208 i d x V a l f ( 1 , 1 ) = 1 ;

209 e l s e i f i d x V a l f ( end , 2 ) > l e n g t h ( d a t a x )

210 i d x V a l f ( end , 2 ) = l e n g t h ( d a t a x ) ;

211 end

212

213 % e s t i m a t i o n p a r a m e t e r f o r SHAPES . A l l o c a t i n g p l a c e s f o r t h e

e s t i m a t i o n

214 % w i l l make t h e p r o c e s s f a s t e r .

215 e s t S i g = z e r o s ( 1 , l e n g t h ( d a t a y ) ) ;

216

217 %% Segment a n a l y s i s

218 % This s e c t i o n w i l l p roduce t h e f i g u r e f o r sub −segment , t h a t i s

p roduced by

219 % a m p l i t u d e t h r e s h o l d .

220 f i g u r e ;

221 d a t a x 1 = da tax − d a t a x ( 1 ) ;

222 p l o t ( d a t a x 1 ( idxValW ( 1 , 1 ) : idxValW ( end , 2 ) ) , d a t a y ( idxValW ( 1 , 1 ) :

idxValW ( end , 2 ) ) )
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223 f o r i = 1 : l e n g t h ( idxValW ( : , 1 ) )

224 r e c t a n g l e ( ’ P o s i t i o n ’ , [ d a t a x 1 ( idxValW ( i , 1 ) ) , −20 , d a t a x 1 (

idxValW ( i , 2 ) ) − d a t a x 1 ( idxValW ( i , 1 ) ) , 4 0 ] , ’ EdgeColor ’ ,

[ 1 , 0 , 0 , 0 . 3 ] ) ;

225 end

226 f o r i = 1 : l e n g t h ( i d x V a l f ( : , 1 ) )

227 r e c t a n g l e ( ’ P o s i t i o n ’ , [ d a t a x 1 ( i d x V a l f ( i , 1 ) ) , −25 , d a t a x 1 (

i d x V a l f ( i , 2 ) ) − d a t a x 1 ( i d x V a l f ( i , 1 ) ) , 5 0 ] , ’ EdgeColor ’ ,

[ 0 , 0 , 1 , 0 . 3 ] ) ;

228 end

229 f o r i = 1 : l e n g t h ( idxValP ( : , 1 ) )

230 r e c t a n g l e ( ’ P o s i t i o n ’ , [ d a t a x 1 ( idxValP ( i , 1 ) ) , −15 , d a t a x 1 (

idxValP ( i , 2 ) ) − d a t a x 1 ( idxValP ( i , 1 ) ) , 2 5 ] , ’ EdgeColor ’ ,

[ 0 , 1 , 0 , 0 . 3 ] ) ;

231 end

232

233 x l a b e l ( ’ Time ( s e c ) ’ )

234 y l a b e l ( ’ Whitened GW S t r a i n ’ )

235

236 %% Working s e c t i o n o f SHAPES : G a u s s i a n n o i s e

237 % t h i s s e c t i o n w i l l p roduce t h e e s t i m a t i o n f o r t h e g e n e r a l /

G a u s s i a n n o i s e

238 f o r i = 1 : l e n g t h ( idxValW ( : , 1 ) )

239 d a t a x 1 = d a t a x ( idxValW ( i , 1 ) : idxValW ( i , 2 ) ) ;

240 d a t a y 1 = d a t a y ( idxValW ( i , 1 ) : idxValW ( i , 2 ) ) ;

241 e s t s i g = e s t S i g ( idxValW ( i , 1 ) : idxValW ( i , 2 ) ) ;

242
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243 %Moving a v e r a g e

244 i f ~ i s e m p t y ( winLen )

245 winVec = b l a c k m a n h a r r i s ( winLen ) ;

246 winVec = winVec ( : ) ’ ;

247 r e s d l t m p = conv ( winVec , d a t a y ) / sum ( winVec ) ;

248 d a t a y = r e s d l t m p ( 1 : l e n g t h ( d a t a y ) ) ;

249 end

250

251 %Upsampling

252 i f ~ i s e m p t y ( upSmplMl tp l r )

253 s m p l I n t r v l = min ( d i f f ( d a t a x 1 ) ) ;

254 [ dataY , dataX ] = r e s a m p l e ( da tay1 , da tax1 , 2 * upSmplMl tp l r * ( 1 /

s m p l I n t r v l ) , . . .

255 upSmplMltp l r , 1 ) ;

256 [ e s t s i g , ~] = r e s a m p l e ( e s t s i g , da tax1 , 2* upSmplMl tp l r * ( 1 /

s m p l I n t r v l ) , . . .

257 upSmplMltp l r , 1 ) ;

258

259 end

260

261 % S e l e c t i o n o f t h e segment l e n g t h t h a t we s h o u l d a p p l y on t h e

d a t a

262 idxSegSmpls = f i n d ( nSegSmpls >= l e n g t h ( dataX ) ) ;

263 i f i s e m p t y ( idxSegSmpls )

264 idxSegSmpls = 1 : l e n g t h ( nSegSmpls ) ;

265 nSegSmpls ( idxSegSmpls ( 1 ) ) = nSegSmpls ( end −1) ;

266 end
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267 % s e l e c t i o n o f sub − segment o f t h e upsampled d a t a

268 nSamples = l e n g t h ( dataX ) ;

269 s e g B n d s S t r t = 1 : ( nSegSmpls ( idxSegSmpls ( 1 ) ) −nOvr lp ) : nSamples ;

270 segBndsEnd = s e g B n d s S t r t + ( nSegSmpls ( idxSegSmpls ( 1 ) ) ) −1;

271 nSmplsEndSeg = nSamples − s e g B n d s S t r t ( end ) +1;

272 w h i l e nSmplsEndSeg < (2* upSmplMl tp l r *minNSegSmpls )

273 s e g B n d s S t r t ( end ) = [ ] ;

274 segBndsEnd ( end ) = [ ] ;

275 nSmplsEndSeg = nSamples − s e g B n d s S t r t ( end ) +1;

276 end

277 segBndsEnd ( end ) = min ( nSamples , segBndsEnd ( end ) ) ;

278 segBnds = [ s e g B n d s S t r t ( : ) , segBndsEnd ( : ) ] ;

279

280 % P a r a m e t e r s f o r SHPS

281 i f ~ i s c e l l ( nKnts )

282 params = s t r u c t ( ’ dataY ’ , dataY ( : ) ’ , ’ dataX ’ , dataX ( : ) ’ , . . .

283 ’ nBrks ’ , nKnts , ’ rGa in ’ , rGain , . . .

284 ’ segBnds ’ , segBnds , ’ dkRate ’ , dkRate ) ;

285 e l s e

286 params = s t r u c t ( ’ dataY ’ , dataY ( : ) ’ , ’ dataX ’ , dataX ( : ) ’ , . . .

287 ’ nBrks ’ ,{ nKnts } , ’ rGa in ’ , rGain , . . .

288 ’ segBnds ’ , segBnds , ’ dkRate ’ , dkRate ) ;

289 end

290

291

292 psoP = s t r u c t ( ’ nRuns ’ , nRuns , . . .

293 ’ psoParams ’ , psoParams ) ;
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294 % C a l l i n g t h e SHAPES f u n c t i o n and g e t t i n g t h e e s t i m a t i o n

295 [ e s t s i g , b e s t M d l R e s u l t s A l l S e g , a l l M d l R e s u l t s A l l S e g ] =

s h p s l o n g _ c o r e ( params , psoP ) ;

296

297 % down− s a m p l i n g t h e e s t i m a t i o n . I t a l s o can be downsampled

u s i n g t h e

298 %t e c h n i q u e i n upsampl ing f a c t o r .

299 e s t s i g = r e s a m p l e ( e s t s i g , 1 , 4 ) ;

300 % r e p l a c i n g t h e z e r o s o f e s t S i g wi th t h e e s t i m a t i o n made by

SHAPES

301 e s t S i g ( idxValW ( i , 1 ) : idxValW ( i , 2 ) ) = e s t s i g ;

302 end

303

304 %% Working s e c t i o n o f SHAPES : G l i t c h

305 % t h i s s e c t i o n w i l l p roduce t h e e s t i m a t i o n f o r t h e g l i t c h e s

306 f o r i = 1 : l e n g t h ( i d x V a l f ( : , 1 ) )

307 d a t a x 1 = d a t a x ( i d x V a l f ( i , 1 ) : i d x V a l f ( i , 2 ) ) ;

308 d a t a y 1 = d a t a y ( i d x V a l f ( i , 1 ) : i d x V a l f ( i , 2 ) ) ;

309 e s t s i g = e s t S i g ( i d x V a l f ( i , 1 ) : i d x V a l f ( i , 2 ) ) ;

310

311 %Moving a v e r a g e

312 i f ~ i s e m p t y ( winLen )

313 winVec = b l a c k m a n h a r r i s ( winLen ) ;

314 winVec = winVec ( : ) ’ ;

315 r e s d l t m p = conv ( winVec , d a t a y ) / sum ( winVec ) ;

316 d a t a y = r e s d l t m p ( 1 : l e n g t h ( d a t a y ) ) ;

317 end
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318

319 %Upsampling

320 i f ~ i s e m p t y ( upSmplMl tp l r )

321 s m p l I n t r v l = min ( d i f f ( d a t a x 1 ) ) ;

322 [ dataY , dataX ] = r e s a m p l e ( da tay1 , da tax1 , 2 * upSmplMl tp l r * ( 1 /

s m p l I n t r v l ) , . . .

323 upSmplMltp l r , 1 ) ;

324 [ e s t s i g , ~] = r e s a m p l e ( e s t s i g , da tax1 , 2 * upSmplMl tp l r * ( 1 /

s m p l I n t r v l ) , . . .

325 upSmplMltp l r , 1 ) ;

326

327 end

328

329 % S e l e c t i o n o f t h e segment l e n g t h t h a t we s h o u l d a p p l y on t h e

d a t a

330 idxSegSmpls = f i n d ( nSegSmpls >= l e n g t h ( dataX ) ) ;

331 %m l t p l y _ s e g = nSegSmpls ( idxSegSmpls ( 1 ) ) / nSegSmpls ;

332 % s e l e c t i o n o f sub − segment o f t h e upsampled d a t a

333 nSamples = l e n g t h ( dataX ) ;

334 s e g B n d s S t r t = 1 : ( nSegSmpls ( idxSegSmpls ( 1 ) ) −nOvr lp ) : nSamples ;

335 segBndsEnd = s e g B n d s S t r t + ( nSegSmpls ( idxSegSmpls ( 1 ) ) ) −1;

336 nSmplsEndSeg = nSamples − s e g B n d s S t r t ( end ) +1;

337 w h i l e nSmplsEndSeg < (2* upSmplMl tp l r *minNSegSmpls )

338 s e g B n d s S t r t ( end ) = [ ] ;

339 segBndsEnd ( end ) = [ ] ;

340 nSmplsEndSeg = nSamples − s e g B n d s S t r t ( end ) +1;

341 end
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342 segBndsEnd ( end ) = min ( nSamples , segBndsEnd ( end ) ) ;

343 segBnds = [ s e g B n d s S t r t ( : ) , segBndsEnd ( : ) ] ;

344

345 % P a r a m e t e r s f o r SHPS

346 i f ~ i s c e l l ( nKnts )

347 params = s t r u c t ( ’ dataY ’ , dataY ( : ) ’ , ’ dataX ’ , dataX ( : ) ’ , . . .

348 ’ nBrks ’ , nKnts , ’ rGa in ’ , rGain , . . .

349 ’ segBnds ’ , segBnds , ’ dkRate ’ , dkRate ) ;

350 e l s e

351 params = s t r u c t ( ’ dataY ’ , dataY ( : ) ’ , ’ dataX ’ , dataX ( : ) ’ , . . .

352 ’ nBrks ’ ,{ nKnts } , ’ rGa in ’ , rGain , . . .

353 ’ segBnds ’ , segBnds , ’ dkRate ’ , dkRate ) ;

354 end

355

356

357 psoP = s t r u c t ( ’ nRuns ’ , nRuns , . . .

358 ’ psoParams ’ , psoParams ) ;

359 % C a l l i n g t h e SHAPES f u n c t i o n and g e t t i n g t h e e s t i m a t i o n

360 [ e s t s i g , b e s t M d l R e s u l t s A l l S e g , a l l M d l R e s u l t s A l l S e g ] =

s h p s l o n g _ c o r e ( params , psoP ) ;

361

362 % down− s a m p l i n g t h e e s t i m a t i o n . I t a l s o can be downsampled

u s i n g t h e

363 %t e c h n i q u e i n upsampl ing f a c t o r .

364 e s t s i g = r e s a m p l e ( e s t s i g , 1 , 4 ) ;

365 % r e p l a c i n g t h e z e r o s o f e s t S i g wi th t h e e s t i m a t i o n made by

SHAPES
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366 e s t S i g ( i d x V a l f ( i , 1 ) : i d x V a l f ( i , 2 ) ) = e s t s i g ;

367

368 end

369

370 %% Working s e c t i o n o f SHAPES : s e c o n d a r y G l i t c h

371 % t h i s s e c t i o n w i l l p roduce t h e e s t i m a t i o n f o r t h e g l i t c h e s . I t

i s n o t

372 % needed f o r maximum d a t a . I t i s uncommon t o have t h i s t y p e o f

373 % s e c o n d a r y g l i t c h i n t h e d a t a

374 f o r i = 1 : l e n g t h ( idxValP ( : , 1 ) )

375 d a t a x 1 = d a t a x ( idxValP ( i , 1 ) : idxValP ( i , 2 ) ) ;

376 d a t a y 1 = d a t a y ( idxValP ( i , 1 ) : idxValP ( i , 2 ) ) ;

377 e s t s i g = e s t S i g ( idxValP ( i , 1 ) : idxValP ( i , 2 ) ) ;

378

379 %Moving a v e r a g e

380 i f ~ i s e m p t y ( winLen )

381 winVec = b l a c k m a n h a r r i s ( winLen ) ;

382 winVec = winVec ( : ) ’ ;

383 r e s d l t m p = conv ( winVec , d a t a y ) / sum ( winVec ) ;

384 d a t a y = r e s d l t m p ( 1 : l e n g t h ( d a t a y ) ) ;

385 end

386

387 %Upsampling

388 i f ~ i s e m p t y ( upSmplMl tp l r )

389 s m p l I n t r v l = min ( d i f f ( d a t a x 1 ) ) ;

390 [ dataY , dataX ] = r e s a m p l e ( da tay1 , da tax1 , 2 * upSmplMl tp l r * ( 1 /

s m p l I n t r v l ) , . . .
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391 upSmplMltp l r , 1 ) ;

392 [ e s t s i g , ~] = r e s a m p l e ( e s t s i g , da tax1 , 2* upSmplMl tp l r * ( 1 /

s m p l I n t r v l ) , . . .

393 upSmplMltp l r , 1 ) ;

394

395 end

396

397 % S e l e c t i o n o f t h e segment l e n g t h t h a t we s h o u l d a p p l y on t h e

d a t a

398 idxSegSmpls = f i n d ( nSegSmpls >= l e n g t h ( dataX ) ) ;

399 %m l t p l y _ s e g = nSegSmpls ( idxSegSmpls ( 1 ) ) / nSegSmpls ;

400 % s e l e c t i o n o f sub − segment o f t h e upsampled d a t a

401 nSamples = l e n g t h ( dataX ) ;

402 s e g B n d s S t r t = 1 : ( nSegSmpls ( idxSegSmpls ( 1 ) ) −nOvr lp ) : nSamples ;

% 18 f o r tomte

403 segBndsEnd = s e g B n d s S t r t + ( nSegSmpls ( idxSegSmpls ( 1 ) ) ) −1;

404 nSmplsEndSeg = nSamples − s e g B n d s S t r t ( end ) +1;

405 w h i l e nSmplsEndSeg < (2* upSmplMl tp l r *minNSegSmpls )

406 s e g B n d s S t r t ( end ) = [ ] ;

407 segBndsEnd ( end ) = [ ] ;

408 nSmplsEndSeg = nSamples − s e g B n d s S t r t ( end ) +1;

409 end

410 segBndsEnd ( end ) = min ( nSamples , segBndsEnd ( end ) ) ;

411 segBnds = [ s e g B n d s S t r t ( : ) , segBndsEnd ( : ) ] ;

412

413 % P a r a m e t e r s f o r SHPS

414 i f ~ i s c e l l ( nKnts )
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415 params = s t r u c t ( ’ dataY ’ , dataY ( : ) ’ , ’ dataX ’ , dataX ( : ) ’ , . . .

416 ’ nBrks ’ , nKnts , ’ rGa in ’ , rGain , . . .

417 ’ segBnds ’ , segBnds , ’ dkRate ’ , dkRate ) ;

418 e l s e

419 params = s t r u c t ( ’ dataY ’ , dataY ( : ) ’ , ’ dataX ’ , dataX ( : ) ’ , . . .

420 ’ nBrks ’ ,{ nKnts } , ’ rGa in ’ , rGain , . . .

421 ’ segBnds ’ , segBnds , ’ dkRate ’ , dkRate ) ;

422 end

423

424

425 psoP = s t r u c t ( ’ nRuns ’ , nRuns , . . .

426 ’ psoParams ’ , psoParams ) ;

427 % C a l l i n g t h e SHAPES f u n c t i o n and g e t t i n g t h e e s t i m a t i o n

428 [ e s t s i g , b e s t M d l R e s u l t s A l l S e g , a l l M d l R e s u l t s A l l S e g ] =

s h p s l o n g _ c o r e ( params , psoP ) ;

429

430 % down− s a m p l i n g t h e e s t i m a t i o n . I t a l s o can be downsampled

u s i n g t h e

431 % t e c h n i q u e i n upsampl ing f a c t o r .

432 e s t s i g = r e s a m p l e ( e s t s i g , 1 , 4 ) ;

433 % r e p l a c i n g t h e z e r o s o f e s t S i g wi th t h e e s t i m a t i o n made by

SHAPES

434 e s t S i g ( idxValP ( i , 1 ) : idxValP ( i , 2 ) ) = e s t s i g ;

435

436 end

437 %% Work s e c t i o n o f w a v e s h r i n k

438 % Waveshr ink i n p u t d a t a r e q u i r e m e n t s :
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439 % y 1−d s i g n a l . l e n g t h ( y ) = 2^ J

440 % Normal ized t o n o i s e l e v e l 1 ! ( See NoiseNorm )

441

442 %Waveshr ink p a r a m e t e r s

443 % −− Type of s h r i n k a g e a p p l i e d :

444 % ’ Visu ’ , ’SURE’ , ’ Hybrid ’ , ’ MinMax ’ , ’MAD’

445 % O p t i o n a l ; d e f a u l t == ’ Visu ’

446 wvshrnkTypeParam = ’ Hybr id ’ ;

447 % L Low− Frequency c u t o f f f o r s h r i n k a g e ( e . g . L=4)

448 % Should have L << J !

449 wvshrnkLParamVec = 1 ;

450 % qmf Q u a d r a t u r e M i r r o r F i l t e r f o r Wavele t Trans fo rm

451 % O p t i o n a l , D e f a u l t = Symmlet 8 .

452

453 wvshrnkQMFParam = [ ] ;

454

455 % e s t i m a t i o n p a r a m e t e r f o r Waveshr ink . A l l o c a t i n g p l a c e s f o r t h e

e s t i m a t i o n

456 % w i l l make t h e p r o c e s s f a s t e r .

457 a l l E s t S i g D a t = z e r o s ( 1 , l e n g t h ( d a t a x ) ) ; %e s t i m a t i o n on d a t a

458 a l l E s t S i g E s t = z e r o s ( 1 , l e n g t h ( d a t a x ) ) ; % e s t i m a t i o n on SHAPES

e s t i m a t i o n

459

460 % w a v e s h r i n k on w h i t e n e d d a t a

461 i f i s e m p t y ( wvshrnkQMFParam )

462 [ a l l E s t S i g D a t , ~ ] = WaveShrink ( da tay , wvshrnkTypeParam ,

wvshrnkLParamVec ) ;
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463 e l s e

464 [ a l l E s t S i g D a t , ~ ] = WaveShrink ( da tay , wvshrnkTypeParam ,

wvshrnkLParamVec , wvshrnkQMFParam ) ;

465 end

466

467 % w a v e s h r i n k on e s t i m a t e o f t h e SHAPES . The c o m b i n a t i o n a p p r o a c h

of SHAPES

468 % and w a v e s h r i n k .

469 i f i s e m p t y ( wvshrnkQMFParam )

470 [ a l l E s t S i g E s t , ~ ] = WaveShrink ( e s t S i g , wvshrnkTypeParam ,

wvshrnkLParamVec ) ;

471 e l s e

472 [ a l l E s t S i g E s t , ~ ] = WaveShrink ( e s t S i g , wvshrnkTypeParam ,

wvshrnkLParamVec , wvshrnkQMFParam ) ;

473 end

474

475 %% F i n d i n g r e s i d u a l from t h e d a t a

476 % r e s i d u a l from SHAPES

477 r s d l S = da tay − e s t S i g ;

478

479 % R e s i d u a l From Waveshr ink

480 rsdlW = da tay − a l l E s t S i g D a t ;

481

482 % R e s i d u a l From t h e c o m b i n a t i o n a p p r o a c h of SHAPES and Waveshr ink

483 rsdlSW = da tay − a l l E s t S i g E s t ;

484

485 %% D e t e r m i n i n g SNR v a l u e s i n r e s i d u a l s
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486 % SNR v a l u e o f d a t a

487 s n r S h r t S i g D a t a y = d a t a y * ( s igVec ’ / norm ( s igVec ) ) ;

488 d i s p ( s n r S h r t S i g D a t a y )

489

490 %SNR v a l u e o f SHAPES r e s i d u a l

491 s n r S h r t S i g R s d l S = r s d l S * ( s igVec ’ / norm ( s igVec ) ) ;

492 d i s p ( s n r S h r t S i g R s d l S )

493

494 % SNR v a l u e o f Waveshr ink r e s i d u a l

495 sn rSh r tS igRsd lW = rsdlW *( sigVec ’ / norm ( s igVec ) ) ;

496 d i s p ( sn rSh r tS igRsd lW )

497

498 % SNR v a l u e o f t h e r e s i d u a l from t h e c o m b i n a t i o n a p p r o a c h pf

SHAPES and

499 % w a v e s h r i n k

500 sn rShr tS igRsd lSW = rsdlSW *( sigVec ’ / norm ( s igVec ) ) ;

501 d i s p ( sn rShr tS igRsd lSW )

502

503 % c u r r e n t p r o c e d u r e o f aLIGO . g a t i n g p r o c e d u r e

504 t empidx1 = f i n d ( da tax >= 2 . 4 & da tax <= 2 . 9 ) ;

505 rsdlM = d a t a y ;

506 rsdlM ( tempidx1 ) = 0 ;

507 % g a t i n g can a l s o be done on ly on to t h e p a r t o f t h e s e c o n d a r y

508 % n o i s e and g l i t c h boundary d e c i d e d by a m p l i t u d e t h r e s h o l d method

.

509 % This way we can r e d u c e t h e p e r c e n t a g e o f g a t i n g b u t i t miss

510 % miss l i n e a r n o i s e i n between k o i f i s h and s e c o n d a r y n o i s e .
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511 % f o r i = 1 : l e n g t h ( i d x V a l f ( : , 1 ) )

512 % rsdlM ( i d x V a l f ( i , 1 ) : i d x V a l f ( i , 2 ) ) = 0 ;

513 % end

514 % f o r i = 1 : l e n g t h ( idxValP ( : , 1 ) )

515 % rsdlM ( idxValP ( i , 1 ) : idxValP ( i , 2 ) ) = 0 ;

516 % end

517 % SNR v a l u e o f t h e d a t a from t h e z e r o i n g p r o c e d u r e

518 s n r S h r t S i g R s d l M = rsdlM *( sigVec ’ / norm ( s igVec ) ) ;

519 d i s p ( s n r S h r t S i g R s d l M )

520

521 %% P l o t t i n g s f o r i n d i n i d u a l e s t i m a t i o n i n t i m e s e r i e s

522 % c h a n g i n g t ime s e r i e s from UTC t o s

523 d a t a x = d a t a x − d a t a x ( 1 ) ;

524

525 % p l o t o f d a t a and e s t i m a t e

526 f i g u r e ;

527 s u b p l o t ( 1 , 2 , 1 )

528 p l o t ( da tax , d a t a y )

529 ho ld on

530 p l o t ( da tax , e s t S i g )

531 ho ld o f f

532 x l a b e l ( " Time ( s ) " )

533 y l a b e l ( " S t r a i n ( a r b i t r a r y u n i t s ) " )

534 l e g e n d ( " Data " , " E s t i m a t i o n by SHAPES " )

535 s u b t i t l e ( ’ E s t i m a t e − Shapes ’ )

536

537 % P l o t o f d a t a and r e s i d u a l
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538 s u b p l o t ( 1 , 2 , 2 )

539 p l o t ( da tax , d a t a y )

540 ho ld on

541 p l o t ( da tax , r s d l S )

542 ho ld o f f

543 x l a b e l ( " Time ( s ) " )

544 y l a b e l ( " S t r a i n ( a r b i t r a r y u n i t s ) " )

545 l e g e n d ( " Data " , " R e s i d u a l " )

546 s u b t i t l e ( " R e s i d u a l − Shapes " )

547

548 % p l o t o f d a t a and e s t i m a t e

549 f i g u r e ;

550 s u b p l o t ( 1 , 2 , 1 )

551 p l o t ( da tax , d a t a y )

552 ho ld on

553 p l o t ( da tax , a l l E s t S i g D a t )

554 ho ld o f f

555 x l a b e l ( " Time ( s ) " )

556 y l a b e l ( " S t r a i n ( a r b i t r a r y u n i t s ) " )

557 l e g e n d ( " Data " , " E s t i m a t i o n by Waveshr ink " )

558 s u b t i t l e ( ’ E s t i m a t e − w a v e s h r i n k ’ )

559

560 % P l o t o f d a t a and r e s i d u a l

561 s u b p l o t ( 1 , 2 , 2 )

562 p l o t ( da tax , d a t a y )

563 ho ld on

564 p l o t ( da tax , rsdlW )
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565 ho ld o f f

566 x l a b e l ( " Time ( s ) " )

567 y l a b e l ( " S t r a i n ( a r b i t r a r y u n i t s ) " )

568 l e g e n d ( " Data " , " R e s i d u a l " )

569 s u b t i t l e ( " R e s i d u a l − w a v e s h r i n k " )

570

571 % p l o t o f d a t a and e s t i m a t e

572 f i g u r e ;

573 s u b p l o t ( 1 , 2 , 1 )

574 p l o t ( da tax , d a t a y )

575 ho ld on

576 p l o t ( da tax , a l l E s t S i g E s t )

577 %ah= a n n o t a t i o n ( ’ arrow ’ , [m, . 9 ] , [ n , 0 . 9 ] , ’ Color ’ , ’ r ’ ) ;

578 ho ld o f f

579 x l a b e l ( " Time ( s ) " )

580 y l a b e l ( " S t r a i n ( a r b i t r a r y u n i t s ) " )

581 l e g e n d ( " Data " , " E s t i m a t i o n by SHAPES + w a v e s h r i n k " )

582 s u b t i t l e ( ’ E s t i m a t e − Shapes + w a v e s h r i n k ’ )

583

584 % P l o t o f d a t a and r e s i d u a l

585 s u b p l o t ( 1 , 2 , 2 )

586 p l o t ( da tax , d a t a y )

587 ho ld on

588 p l o t ( da tax , rsdlSW )

589 ho ld o f f

590 x l a b e l ( " Time ( s ) " )

591 y l a b e l ( " S t r a i n ( a r b i t r a r y u n i t s ) " )
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592 l e g e n d ( " Data " , " R e s i d u a l " )

593 s u b t i t l e ( " R e s i d u a l − Shapes + w a v e s h r i n k " )

594 %% T i m e s e r i e s : f o r compar i son

595 f i g u r e ;

596 s u b p l o t ( 2 , 2 , 1 )

597 p l o t ( d a t a x 1 ( tempidx ) , d a t a y ( tempidx ) , ’ Co lo r ’ , [ 1 9 2 , 1 9 2 , 1 9 2 ] / 2 5 5 ,

’ LineWidth ’ , 4 )

598 ho ld on

599 p l o t ( d a t a x 1 ( tempidx ) , a l l E s t S i g D a t ( t empidx ) , ’ r ’ )

600 p l o t ( d a t a x 1 ( tempidx ) , e s t S i g ( tempidx ) , ’ g ’ )

601 a x i s t i g h t ;

602 y l a b e l ( " Whitened GW S t r a i n " , " F o n t S i z e " , 1 4 )

603 t i t l e ( " D e t e c t o r : LIGO Hanford , GPS Time : 1132929284")

604

605 s u b p l o t ( 2 , 2 , 2 )

606 p l o t ( d a t a x 1 ( tempidx ) , d a t a y ( tempidx ) , ’ Co lo r ’ , [ 1 9 2 , 1 9 2 , 1 9 2 ] / 2 5 5 ,

’ LineWidth ’ , 4 )

607 ho ld on

608 p l o t ( d a t a x 1 ( tempidx ) , a l l E s t S i g D a t ( t empidx ) , ’ r ’ )

609 p l o t ( d a t a x 1 ( tempidx ) , e s t S i g ( tempidx ) , ’ g ’ )

610 a x i s t i g h t ;

611

612 s u b p l o t ( 2 , 2 , 3 )

613 p l o t ( d a t a x 1 ( tempidx ) , d a t a y ( tempidx ) , ’ Co lo r ’ , [ 1 9 2 , 1 9 2 , 1 9 2 ] / 2 5 5 ,

’ LineWidth ’ , 4 )

614 ho ld on

615 p l o t ( d a t a x 1 ( tempidx ) , a l l E s t S i g D a t ( t empidx ) , ’ r ’ )
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616 p l o t ( d a t a x 1 ( tempidx ) , e s t S i g ( tempidx ) , ’ g ’ )

617 a x i s t i g h t ;

618 x l a b e l ( " Time ( s e c ) " , ’ F o n t S i z e ’ , 1 4 )

619 y l a b e l ( " Whitened GW S t r a i n " , " F o n t S i z e " , 1 4 )

620

621

622 s u b p l o t ( 2 , 2 , 4 )

623 p l o t ( d a t a x 1 ( tempidx ) , d a t a y ( tempidx ) , ’ Co lo r ’ , [ 1 9 2 , 1 9 2 , 1 9 2 ] / 2 5 5 ,

’ LineWidth ’ , 4 )

624 ho ld on

625 p l o t ( d a t a x 1 ( tempidx ) , a l l E s t S i g D a t ( t empidx ) , ’ r ’ )

626 p l o t ( d a t a x 1 ( tempidx ) , e s t S i g ( tempidx ) , ’ g ’ )

627 a x i s t i g h t ;

628 x l a b e l ( " Time ( s e c ) " , ’ F o n t S i z e ’ , 1 4 )

629

630 %% G e n e r a l s p e c t r o g r a m : f o r compar i son

631 f i g u r e ;

632 % i n d e x v a l u e s f o r making s p e c t r o g r a m around t h e g l i t c h

633 t empidx = idxValW ( 1 , 1 ) : idxValW ( end , 2 ) ;

634 s u b p l o t ( 1 , 4 , 1 )

635 [ Si , Fi , Ti ] = s p e c t r o g r a m ( d a t a y ( tempidx ) , 1 0 2 4 , 9 6 0 , [ ] , 4 0 9 6 ) ;

636 t h = 1 0 ; % t h r e s h o l d v a l u e

637 Si ( abs ( S i ) <= t h ) = t h ;

638 imagesc ( Ti , Fi , l og10 ( abs ( S i ) ) ) ; a x i s xy ; c o l o r b a r ;

639 yl im ( [ 0 1 0 0 0 ] )

640 x l a b e l ( ’ Time ( s e c ) ’ , ’ F o n t S i z e ’ , 1 4 ) ;

641 y l a b e l ( ’ F requency ( Hz ) ’ , ’ F o n t S i z e ’ , 1 4 ) ;
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642

643

644 s u b p l o t ( 1 , 4 , 2 )

645 [ Sr , Fr , Tr ] = s p e c t r o g r a m ( r s d l S ( tempidx ) , 1 0 2 4 , 9 6 0 , [ ] , 4 0 9 6 ) ;

646 Sr ( abs ( Sr ) <= t h ) = t h ;

647 imagesc ( Tr , Fr , l og10 ( abs ( Sr ) ) ) ; a x i s xy ; c o l o r b a r ;

648 yl im ( [ 0 1 0 0 0 ] )

649 x l a b e l ( ’ Time ( s e c ) ’ , ’ F o n t S i z e ’ , 1 4 ) ;

650 s e t ( gca , ’ YTickLabel ’ , [ ] ) ;

651

652 s u b p l o t ( 1 , 4 , 3 )

653 [ Sr1 , Fr1 , Tr1 ] = s p e c t r o g r a m ( rsdlW ( tempidx ) , 1 0 2 4 , 9 6 0 , [ ] , 4 0 9 6 ) ;

654 Sr1 ( abs ( Sr1 ) <= t h ) = t h ;

655 imagesc ( Tr1 , Fr1 , log10 ( abs ( Sr1 ) ) ) ; a x i s xy ; c o l o r b a r ;

656 yl im ( [ 0 1 0 0 0 ] )

657 x l a b e l ( ’ Time ( s e c ) ’ , ’ F o n t S i z e ’ , 1 4 ) ;

658 s e t ( gca , ’ YTickLabel ’ , [ ] ) ;

659

660 s u b p l o t ( 1 , 4 , 4 )

661 [ Sr2 , Fr2 , Tr2 ] = s p e c t r o g r a m ( rsdlSW ( tempidx ) , 1 0 2 4 , 9 6 0 , [ ] , 4 0 9 6 ) ;

662 Sr2 ( abs ( Sr2 ) <= t h ) = t h ;

663 imagesc ( Tr2 , Fr2 , log10 ( abs ( Sr2 ) ) ) ; a x i s xy ; c o l o r b a r ;

664 yl im ( [ 0 1 0 0 0 ] )

665 x l a b e l ( ’ Time ( s e c ) ’ , ’ F o n t S i z e ’ , 1 4 ) ;

666 s e t ( gca , ’ YTickLabel ’ , [ ] ) ;

667

668 %% t u r n c a t e d / a d a p t i v e s p e c t r o g r a m
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669 [ Fd_t , Td_t , P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e ] = a d a p t s p e c g r m ( d a t a y ( tempidx )

, 8 , [ 1 2 8 , 2 5 6 , 5 1 2 , 1 0 2 4 ] , [ 1 0 , 5 0 ] , 4 0 9 6 ) ;

670 f i g u r e ; imagesc ( Td_t , Fd_t , P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e ) ; a x i s xy ; c o l o r b a r ;

671 yl im ( [ 0 , 1 0 0 0 ] ) ; x l a b e l ( ’ Time ( s e c ) ’ ) ; y l a b e l ( ’ F requency ( Hz ) ’ ) ;

672

673 % t h r e s h o l d i n g t h e s p e c t r o g r a m

674 P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h = P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e ;

675 t h r e s h = 0 . 0 1 ;

676 P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h ( P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h >= t h r e s h )

= t h r e s h ;

677 f i g u r e ; imagesc ( Td_t , Fd_t , ( P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h ) ) ; a x i s xy ;

c o l o r b a r ; y l im ( [ 0 , 1 0 0 0 ] ) ; x l a b e l ( ’ Time ( s e c ) ’ ) ; y l a b e l ( ’

F requency ( Hz ) ’ ) ;

678

679

680

681 %

682 [ F r_ t , Tr_ t , PxxR_res_10_50_coa r se ] = a d a p t s p e c g r m ( r s d l S ( tempidx )

, 8 , [ 1 2 8 , 2 5 6 , 5 1 2 , 1 0 2 4 ] , [ 1 0 , 5 0 ] , 4 0 9 6 ) ;

683 P x x R _ r e s _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h = PxxR_res_10_50_coa r se ;

684 P x x R _ r e s _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h ( P x x R _ r e s _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h >= t h r e s h

) = t h r e s h ;

685 f i g u r e ; imagesc ( Tr_ t , F r_ t , ( P x x R _ r e s _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h ) ) ; a x i s xy

; c o l o r b a r ;

686 yl im ( [ 0 , 1 0 0 0 ] ) ; x l a b e l ( ’ Time ( s e c ) ’ ) ; y l a b e l ( ’ F requency ( Hz ) ’ ) ;

687

688
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689 %% f i g u r e o f t i m e s e r i e s and s p e c t r o g r a m around t h e g l i t c h

690 %i n d e x f o r f i g u r e

691 d a t a x 1 = d a t a x ;

692 d a t a x 1 = d a t a x 1 − d a t a x 1 ( tempidx ( 1 ) ) ;

693

694 f i g u r e ;

695 s u b p l o t ( 1 , 3 , 1 )

696 p l o t ( d a t a x 1 ( tempidx ) , d a t a y ( tempidx ) )

697 ho ld on

698 p l o t ( d a t a x 1 ( tempidx ) , e s t S i g ( tempidx ) , ’ r ’ )

699 p l o t ( d a t a x 1 ( tempidx ) , r s d l S ( tempidx ) , ’ b ’ )

700 ho ld o f f

701 x l a b e l ( " Time ( s e c ) " , ’ F o n t S i z e ’ , 1 4 )

702 y l a b e l ( " Whitened GW S t r a i n " , " F o n t S i z e " , 1 4 )

703 l e g e n d ( " Data " , " E s t i m a t i o n " , " R e s i d u a l " )

704 t i t l e ( " D e t e c t o r : LIGO Hanford , GPS Time : 1132929284")

705 ax . F o n t s i z e = 1 4 ;

706

707

708 s u b p l o t ( 1 , 3 , 2 )

709 imagesc ( Td_t , Fd_t , ( P x x _ d a t _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h ) ) ; a x i s xy ;

c o l o r b a r ;

710 yl im ( [ 0 1 0 0 0 ] )

711 x l a b e l ( ’ Time ( s e c ) ’ , ’ F o n t S i z e ’ , 1 4 ) ;

712 y l a b e l ( ’ F requency ( Hz ) ’ , ’ F o n t S i z e ’ , 14) ;

713 ax . F o n t s i z e = 1 4 ;

714
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715

716 s u b p l o t ( 1 , 3 , 3 )

717 imagesc ( Tr_ t , F r_ t , ( P x x R _ r e s _ 1 0 _ 5 0 _ c o a r s e _ t h r e s h ) ) ; a x i s xy ;

c o l o r b a r ;

718 yl im ( [ 0 1 0 0 0 ] )

719 x l a b e l ( ’ Time ( s e c ) ’ , ’ F o n t S i z e ’ , 14) ;

720 ax . F o n t s i z e = 1 4 ;

721 s e t ( gca , ’ YTickLabel ’ , [ ] ) ;

722

723 %% Saving t h e d a t a

724 % Put a name i n t h e p l a c e o f ’* ’

725 s ave * . mat
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APPENDIX B

FUNCTIONS

The functions mentioned here are used for glitch removing algorithms (amplitude threshold

and bestfitness-spectrum threshold). Function ’mattodata’ and ’hdftodata’ read ’*.mat’ and ’*.hdf5’

files, respectively, to give the data. Function ’atcsmgenltcsig’ generates a linear chirp signal.

1 f u n c t i o n [ dataX , dataY ] = m a t t o d a t a ( i n F i l e )

2 % Read t h e d a t a from mat f i l e

3 % [X,Y] = m a t t o d a t a ( F )

4 % X i s t h e t i m e s e r i e s and Y i s t h e s t r a i n d a t a t h a t w i l l be

c o l l e c t e d from

5 % t h e i n p u t f i l e F .

6 % Mohammad Abu Thaher Chowdhury , 08 /2021

7

8 m a t F i l e = l o a d ( i n F i l e ) ;

9

10 dataX = m a t F i l e . dataX ;

11 dataY = m a t F i l e . dataY ;

12

13 end

1 f u n c t i o n [ dataX , dataY ] = h d f t o d a t a ( i n F i l e )

2 % Read t h e d a t a from hdf5 f i l e

3 % [X,Y] = h d f t o d a t a ( F )
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4 % X i s t h e t i m e s e r i e s and Y i s t h e s t r a i n d a t a t h a t w i l l be

c o l l e c t e d from

5 % t h e i n p u t f i l e F .

6 %Mohammad Abu Thaher Chowdhury , 08 /2021

7

8 % Reading s t r a i n d a t a from f i l e

9 dataY = h5 re ad ( i n F i l e , ’ / s t r a i n / S t r a i n ’ ) ;

10 dataY = dataY ’ ;

11

12 % Reading a t t r i b u t e s from f i l e

13 g p s S t a r t = h 5 r e a d a t t ( i n F i l e , ’ / s t r a i n / S t r a i n ’ , ’ X s t a r t ’ ) ;

14 d u r a t i o n = h5 re ad ( i n F i l e , ’ / meta / D u r a t i o n ’ ) ;

15

16 % C r e a t i n g t ime s e r i e s

17 dataX = l i n s p a c e ( d ou b l e ( g p s S t a r t ) , dou b l e ( g p s S t a r t + d u r a t i o n ) ,

l e n g t h ( dataY ) ) ;

18 end

1 f u n c t i o n s igVec = a t c s m g e n l t c s i g ( t imeData , t i m e S t e p s , sn r , f r e q ,

phase )

2 % G e n e r a t e a l i n e a r t r a n s i e n t c h i r p s i g n a l

3 % S = ATCSMGENLTCSIG( T , TS , SNR, FQ , P )

4 % G e n e r a t e s a l i n e a r t r a n s i e n t c h i r p s i g n a l S . T i s t h e v e c t o r o f

5 % time s tamps a t which t h e samples o f t h e s i g n a l a r e t o be

computed . TS i s

6 % t h e v e c t o r o f t ime l i m i t s [ t_a , t −a + L ] , s i g n a l has z e r o v a l u e

o u t o f

7 % t h i s i n t e r v a l . SNR i s t h e matched f i l t e r i n g s i g n a l − to − n o i s e
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r a t i o o f S ,

8 % FQ i s t h e v e c t o r o f f r e q u e n c i e s [ f_0 , f_1 ] , and P i s t h e

i n i t i a l phase .

9 % FQ and TS components t h a t p a r a m e t r i z e t h e phase o f t h e s i g n a l :

10 % f_0 * ( t − t _ a ) + f_1 * ( t − t _ a ) . ^ 2 + ( phase / (2 * p i ) .

11

12 %Mohammad Abu Thaher Chowdhury , J a n u a r y 2021

13

14 i d x t = f i n d ( t imeData >= t i m e S t e p s ( 1 ) & t i m e D a t a <= t i m e S t e p s ( 2 ) ) ;

15 s igVec = z e r o s ( 1 , l e n g t h ( t i m e D a t a ) ) ;

16 c h i r p _ s l o p e = ( f r e q ( 2 ) − f r e q ( 1 ) ) / ( t i m e S t e p s ( 2 ) − t i m e S t e p s ( 1 ) ) ;

17 phaseVec = ( f r e q ( 1 ) * ( t i m e D a t a ( i d x t ) − t i m e S t e p s ( 1 ) ) + 0 . 5 *

c h i r p _ s l o p e . * ( t i m e D a t a ( i d x t ) − t i m e S t e p s ( 1 ) ) . ^ 2 ) + ( phase /

(2 * p i ) ) ;

18 t r i g S i n = s i n (2 * p i * phaseVec ) ;

19 s igVec ( i d x t ) = s n r * t r i g S i n / norm ( t r i g S i n ) ;

20

21 end
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