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ABSTRACT 
 

Chapa, Randy G., Safety-Aware Longitudinal and Lateral Control of Autonomous Vehicles. 

Master of Science in Engineering (MSE), December 2022, 71 pp., 2 tables, 22 figures, 

references, 28 titles.  

Safety is undoubtedly the most critical design requirement regarding autonomous vehicle 

controllers. This research considers an autonomous vehicle to keep a desired distance from the 

leader vehicle, as well as stay centered within the lane. To achieve this, the lateral control 

problem and the combined longitudinal and lateral control problem were studied. Adaptive 

control laws were proposed with the aid of the backstepping technique and the barrier function 

technique. Simulation was done to verify the effectiveness of the proposed control laws.  
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CHAPTER I 

 

INTRODUCTION 

 Safety is the most important design element given the recent boom in autonomous 

vehicles (AVs) and applications. Any engineering system should, in theory, be considered "safe", 

but a safety-critical system prioritizes safety as a key design requirement. This serves as another 

motivation for low-level controller strategies that guarantee a control system—whether linear or 

non-linear—is regarded safe. With this knowledge, it is advisable to start thinking about a 

specific application for vehicle control, analyze safety factors, and then offer an alternate way 

that has advantages over methods that have already been written about. In general, certain 

currently used methods can be improved to create a new way that is unique to a particular 

application or physical model. In another section, this is discussed in more detail. 

In order to uncover useful applications of control that is assured to be safe, I thought it 

would be appropriate to investigate driver statistics regarding vehicle control. It turns out that 

lane departures account for more than 39% of crash-related fatalities and are the leading cause of 

fatal accidents in the United States [1]. In addition, the National Highway Transportation Safety 

Administration (NHTSA) estimates that up to 1.5 million incidents are the result of human error, 

with unintentional lane changes accounting for a significant portion of these accidents. Such a 

lane-keeping scenario would fall under the category of a lateral control problem. With the issue 

identified, the goal of this thesis work is to create a lateral control problem controller with safety 

as the primary design consideration. This can be achieved through the integrator backstepping 
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technique, which is derived from the use of a Lyapunov function and a barrier function. 

The next step would be to consider a combined longitudinal and lateral control problem, as this 

would be a better practical application of an autonomous vehicle. A later section will include 

technical details on how this can be accomplished. Literature has extensively discussed both 

longitudinal and lateral control issues, but what distinguishes this study is the use of integrator 

backstepping. Once the appropriate controller has been created, this effort will be a distinctive 

addition to current techniques. 

1.1 Literature Review 

1.1.1 Safety Guarantees of a System 

It is best to first define safety before diving into specifics of safety-guaranteed controllers 

that are described in the literature. The concept of safety was first discussed in [2] by Leslie 

Lamport in 1977, and once again articulated in [3]. Elegantly, it is proclaimed that safety 

requires for “bad” things to be avoided, while liveness requires that “good” things will 

eventually occur. A relevant liveness property that closely aligns with control systems is 

asymptotic stability, in which an asymptotically stable equilibrium point will eventually be 

reached. Fig. 1.1 contains the most elementary example of system stability, and we can think of 

reaching the stable equilibrium point as our “good” objective.  
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Figure 1.1 System Stability Ramp 

  

As for a safety property, invariance is a common example, meaning any trajectory starting inside 

an invariant set will never reach the complement of the set. This further proves the idea of “bad” 

things never happening or being reached. Recall that the complement of a set is everything that 

isn’t the original set itself, and a visual is shown in Fig. 1.2.  

 

 

Figure 1.2 Complement of a Set 

 

Let’s say the set A is invariant, then any trajectory that starts in A, will guarantee to stay within 

that set, never reaching the complement. With the identification of invariance as a safety 
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property, and asymptotic stability as liveness, it is evident that safety has not been a focal point 

in control theory throughout history. This is true, mainly through existing Lyapunov functions 

that stabilize systems and will be further examined later in the next section.  

1.1.2 Quadratic Program Controller 

In order to achieve a liveness objective, together with a safety objective, a quadratic 

program (QP) is often the preferred choice. One such example is to implement an adaptive cruise 

control (ACC) experiment, that utilizes a QP controller to satisfy stability and safety constraints 

[4]. The ACC example is an ideal experiment to unify the liveness and safety objectives and is 

used in a vast number of works such as [5], [6] and [7]. ACC proves to be useful because we 

associate two objectives for a following vehicle to abide to: maintain a safe distance between the 

lead vehicle and to maintain a desired velocity. One can easily see that the minimum distance to 

be enforced satisfies a safety objective, and a desired velocity represents the liveness objective. 

The challenge becomes prioritizing one objective over the other, intuitively it is known that the 

safety objective should always be satisfied before the liveness objective should be considered. 

Most works classify the safety constraints as hard constraints, and the liveness as soft constraints.  

Optimal controllers are the preferred method for the QP problems, as the target is to 

minimize the control input for the system in question. This proves to be useful, as in a practical 

scenario, the less energy that is needed to change the input, the better the performance of the 

system. Think of the ACC example, if the control input is a steering angle or a steering wheel 

force, then the objective would be to minimize the change of the angle or force, as a drastic 

change would impact the driver comfort. Driver comfort can be seen as the stability objective, 

which can be overlooked if the steering angle must undergo a drastic change to avoid a collision. 
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Another popular method that has been explored in literature is model predictive control (MPC). 

MPC considers a prediction horizon, to map out potential trajectories of a system, and determine 

which is best to follow. A basic visual for a discrete MPC design for better understanding can be 

seen in Fig. 1.3.  

 

Figure 1.3 Model Predictive Control Scheme 

 

From the figure, the designer selects a control horizon to consider, that provides one or several 

possible control inputs to follow. Finding the proper prediction horizon can be troubling, as 

selecting a large horizon can be computationally expensive, while a short horizon may not be 

able to account for an undesirable obstacle later in the trajectory. One can see how MPC could be 

used for driving scenarios, if the objective is to lane keep or to maintain travel behind a lead 

vehicle. Examples of MPC in literature include [8], [9], [10], [11] and [12] which also happens to 

incorporate the control Lyapunov function, which will be discussed in more detail in the next 

section. Overall, QP controllers have a broad use for control laws, and seem to be an ideal 

candidate for our design to test a lane keeping example.  
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1.1.3 Reinforcement Learning 

Dynamic driving environments requires safe decision making, and one method that has 

emerged recently to handle such environments are reinforcement learning (RL) strategies. To 

understand how a generic RL system works, a visual is included in Fig. 1.4.  

 

Figure 1.4 Reinforcement Learning Algorithm 

 

Essentially, RL methods can adjust to a dynamic environment, by enforcing a policy and an 

algorithm that derives an action, based on an initial observation in a system. To better understand 

with an example, let’s say the distance between a lead and following vehicle is small. The proper 

action would be to record this distance and call for an action that increases the distance, to the 

safe desired amount. A result of choosing the best action is a reward, and the main challenge 

when it comes to RL is deriving the best reward function. This is just an elementary introduction 

to RL and much more technical details can be found in [13], [14] and [15]. Several authors did 

an extensive review of existing RL approaches in [16]. For RL to address safety objectives, a 

proposed policy would need to adjust the algorithm as needed, in [17] a penalty is considered 



7 
 

that aims to avoid undesirable outcomes. In [18], the idea of Markov decision process (MDP) is 

implemented in the RL design. MDP is popular for optimization techniques, that computes 

solutions via dynamic programming.  

 Normally, a RL model can function in unknown environments and conditions but works 

such as [19] and [20] incorporate known, initial conditions to benefit the model’s learning curve. 

This drastically improves design functions and having a baseline for certain interactions between 

the agent and the environment proves to be useful. To reiterate, RL methods have shown 

promising results for autonomous safety applications but are technically challenging for a simple 

lateral control problem like lane keeping. Future work could call for RL techniques, especially if 

configured with longitudinal control as well.  

1.2 Thesis Content 

This work will first consider an error based dynamic model from [1] for a lane keeping 

control problem. Next, entry level controllers are designed and compared to stabilize the 

dynamics. From there, safety requirements can be put in place, while additionally applying a 

quadratic programmable controller from existing literature. The QP controller uses the CLF and 

CBF as objective constraints. Finally, the integrator backstepping controller solution will 

stabilize the dynamics, and ensure that the vehicle stays within the lane, this will be the safety 

guarantee. Once the lateral control problem is successfully solved and proven to be a useful 

option, a combined longitudinal and lateral control will then be introduced. Again, the integrator 

backstepping controller will be designed to fit this model, and simulations will be conducted in 

MATLAB Simulink to verify the effectiveness.  
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Chapter I includes a brief analysis of existing safety guarantees in literature, for either 

lateral control, longitudinal control or both controlled together.  

In Chapter II, the lateral dynamics are introduced, and the steady state formula is written. 

This equation will be the base of the work, with the goal being to stabilize and set some 

objectives of a lane keeping problem. 

Chapter III will introduce some preliminary results on the dynamics from chapter II, 

using feedback control laws derived from two different methods, enforcing stability on the 

system.   

Next, chapter IV considers an additional challenge by considering system dynamic 

uncertainties. This is done with the help of an integrator backstepping control law. Stability and 

safety objectives are to be met.   

Chapter V includes a quadratic programmable controller, which not only enforces safety 

and stability objectives, but minimizes the control input.  

Chapter VI will introduce the combined longitudinal and lateral control problem, and the 

proposed integrator backstepping controller will be designed to fit the model. Simulation is done 

to verify the effectiveness of the theory.  

Finally, a brief conclusion will be in chapter VII, detailing the advantages of the proposed 

unified controller along with future work.  

1.3 Thesis Contribution 

The intention of this thesis is to contribute to the existing methods of safety critical 

controllers for autonomous vehicle research. A combined longitudinal and lateral control 
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problem will be solved through the integrator backstepping controller, which is derived from a 

Lyapunov function together with a barrier function. At first, a lateral control problem is 

discussed, then after it is compared to other methods in literature, the combined model will be 

introduced. For students that are interested in control systems and/or autonomous vehicle 

applications, the hope is that this work can provide a great introduction, as extensive technical 

knowledge isn’t required to make sense of the results.   
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CHAPTER II 

LATERAL CONTROL DYNAMICS 

 To reiterate, the first goal is to propose a lateral control system which guarantees safety. 

Basic lateral driving maneuvers include lane keeping and lane change. The corresponding 

control tasks are path following and trajectory tracking. For path following, the path reference is 

independent of time. Trajectory tracking considers time as a constraint of the reference path. This 

makes sense as a path can change over time in trajectory tracking if an obstacle were to appear or 

if a preceding vehicle is being closed in on. Lane keeping is an example of a path following task, 

as the goal is to stay within the lane, while continuing to follow the road and its curvature. Lane 

changes, however, would have to consider that the trajectory can change over time, and if an 

obstacle is in the path, then to avoid it, a lane change is required. Lane keeping alone is an easier 

task to handle; longitudinal control will also be considered later. 

 Longitudinal control has been researched heavily over the past few decades, with the 

main application tested on being cruise control systems. Beyond the scope of standard cruise 

control, adaptive cruise control (ACC) has been a great tool to prove the usefulness of proposed 

control theory works in literature. Like standard cruise control, ACC maintains a velocity that the 

user likes, but when a preceding vehicle is approached, the velocity is reduced, with the goal of 

maintaining a minimum distance between the vehicles. Interestingly, this is exactly how the 
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CBF, and CLF constraint should operate under a QP controller, with the minimum distance being 

the hard requirement, and the suggested velocity being the soft requirement.  

2.1 Summary of Kinematic Model Equations 

To begin a lateral control problem, a widely used model is needed to derive dynamics 

from, and for the entirety of the works done so far, we refer to the popular bicycle model in Fig 

2.1 from the Rajamani controls textbook [1].  

 

Figure 2.1 Bicycle Kinematics  

 

In this model, the two left and right front wheels are to be represented by a single wheel, noted at 

point A. The same goes for the two rear wheels, represented at point B. Steering angles for the 

front wheels and rear wheels are noted as 𝛿𝑓 and 𝛿𝑟 respectively. In our case, only the front 

wheels can be steered, so 𝛿𝑟 is set to zero and the steering wheel angle will just be referred to as 

𝛿 . Center of gravity (c.g.) of the vehicle is noted at point C. ℓ𝑓 and ℓ𝑟 represent the distances of 
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points A and B from point C, respectively. The wheelbase of a vehicle is the length from the 

center of the front wheels to the center of the rear wheels, and in this case, it is represented by 

𝐿 =  ℓ𝑓 + ℓ𝑟.  

 Regarding motion, the coordinates required to describe the vehicle’s motion are X, Y and 

𝜓. (X, Y) are inertial coordinates of the c.g. location, and 𝜓 is the orientation of the vehicle. 

Velocity at the c.g. is denoted by V and an angle 𝛽 is created with longitudinal axis of the 

vehicle. 𝛽 is known as the slip angle. With the variables defined, now the kinematic model 

equations can be written, but it is only effective for applications that don’t include external 

forces. They are noted here however, to better understand the dynamic equations next. The 

equations of motion are given by: 

𝑋̇ = 𝑉𝑐𝑜𝑠(𝜓 + 𝛽), (2.1) 

𝑌̇ = 𝑉𝑠𝑖𝑛(𝜓 + 𝛽), (2.2) 

𝜓̇ =
𝑉𝑐𝑜𝑠(𝛽)

ℓ𝑓 + ℓ𝑟
𝑡𝑎𝑛(𝛿), (2.3) 

𝛽 = tan−1 (
ℓ𝑓𝑡𝑎𝑛(𝛿) + ℓ𝑟𝑡𝑎𝑛(𝛿)

ℓ𝑓 + ℓ𝑟
) . (2.4) 

The inputs for this model are velocity 𝑉 and the steering wheel angle 𝛿.  It is worth noting that 𝑉 

can be constant, a time varying function or can be derived from a longitudinal vehicle model. For 

this study, 𝑉 is assumed to be constant, and will be defined later in this chapter.  

2.2 Bicycle Model of Lateral Vehicle Dynamics 

Once the vehicle is at a higher speed, the assumption that each wheel’s velocity is in the 

same direction of the respective wheel cannot be made. This would call for a dynamic model for 
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lateral vehicle motion. The canonical “bicycle” model with two degrees of freedom is chosen to 

represent the dynamics, seen in Fig. 2.2.  

 

Figure 2.2 Lateral Vehicle Dynamics 

 

The two degrees of freedom are represented by vehicle yaw angle 𝜓 and lateral position 𝑦. The 

vehicle’s center of rotation is notated by the point O, and lateral position is measured along the 

vehicle’s lateral axis to that point. Measuring the vehicle yaw angle 𝜓 is done with respect to the 

global X axis. 𝑉𝑥 then represents the longitudinal velocity at c.g. of the vehicle.  

2.2.1 State Space Model – Lateral Motion       

Applying Newton’s second law of motion along the global Y axis gives,  

𝑚𝑎𝑦 = 𝐹𝑦𝑓 + 𝐹𝑦𝑟 , (2.5) 
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where 𝑎𝑦 = (
𝑑2𝑦

𝑑𝑡2
)
𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎𝑙

 denotes inertial acceleration of the vehicle from c.g. in the direction 

of the global Y axis. 𝐹𝑦𝑓 represents the front lateral tire force and 𝐹𝑦𝑟 represents the rear lateral 

tire force. 𝑎𝑦 is computed from the terms acceleration 𝑦̈ along the global Y axis, and centripetal 

acceleration 𝑉𝑥𝜓̇. This leads to  

𝑎𝑦 = 𝑦̈ + 𝑉𝑥𝜓̇. (2.6) 

By substituting  Eq. (2.6) into Eq. (2.5), an equation for lateral motion of the vehicle is defined as 

𝑚(𝑦̈ + 𝑉𝑥𝜓̇) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟 . (2.7) 

 Yaw dynamics about the global Z axis is defined as 

𝐼𝑧𝜓 ̈ = ℓ𝑓𝐹𝑦𝑓 − ℓ𝑟𝐹𝑦𝑟 , (2.8) 

where ℓ𝑓 and ℓ𝑟 are front tire and rear tire distances respectively, from c.g. of the vehicle.  

 Next, lateral tire force of the front wheels can be written as  

𝐹𝑦𝑓 = 2𝐶𝑎𝑓(𝛿 − 𝜃𝑉𝑓), (2.9) 

where 𝐶𝑎𝑓 is the constant cornering stiffness of each front tire, 𝛿 is the steering angle and 𝜃𝑉𝑓 is 

the front tire velocity angle. 2 comes from the pair of front wheels.  

 Lateral tire force for the rear wheels is then given as 

𝐹𝑦𝑟 = 2𝐶𝑎𝑟(−𝜃𝑉𝑟), (2.10) 

where similarly, 𝐶𝑎𝑟 is the constant cornering stiffness of the rear tires, and 𝜃𝑉𝑟 is the rear 

velocity angle of the tire. As a clarification, this model is for a front wheel drive vehicle, 

therefore a rear steering angle is not considered. To calculate 𝜃𝑉𝑓 and 𝜃𝑉𝑟, we use the 

relationships given from 

𝑡𝑎𝑛(𝜃𝑉𝑓) =
𝑉𝑦  + ℓ𝑓𝜓̇ 

𝑉𝑥
. (2.11) 
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𝑡𝑎𝑛(𝜃𝑉𝑟) =
𝑉𝑦  −  ℓ𝑟𝜓̇ 

𝑉𝑥
. (2.12) 

By using small angle approximations, Eq. (2.11) and Eq (2.12) can be rewritten as 

𝜃𝑉𝑓 =
𝑦̇ + ℓ𝑓𝜓̇

𝑉𝑥
. (2.13) 

𝜃𝑉𝑟 =
𝑦̇   −   ℓ𝑓𝜓̇

𝑉𝑥
. (2.14) 

 Finally, through substitution in Eqs. (2.7) and (2.8), the state space model can be written 

as  

𝑑

𝑑𝑡
[

𝑦
𝑦̇
𝜓

𝜓̇

] = 

[
 
 
 
 
 
0 1 0 0

0 −
2𝐶𝑎𝑓+2𝐶𝑎𝑟

𝑚𝑉𝑥
0 −𝑉𝑥 − 

−2𝐶𝑎𝑓ℓ𝑓+2𝐶𝑎𝑟ℓ𝑟

𝑚𝑉𝑥

0 0 0 1

0
−2𝐶𝑎𝑓ℓ𝑓 − 2𝐶𝑎𝑟ℓ𝑟

𝐼𝑧𝑉𝑥
0 −

2𝐶𝑎𝑓ℓ𝑓
2 + 2𝐶𝑎𝑟ℓ𝑟

2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 

+

[
 
 
 
 
0

2𝐶𝑎𝑓

𝑚

0
2𝐶𝑎𝑓ℓ𝑓

𝐼𝑧 ]
 
 
 
 

𝛿. (2.15) 

 With this system, the lateral position 𝑦 and the yaw angle 𝜓 can be monitored, for an application 

such as lane keeping. However, there is a more intuitive model, that can be directly used as a 

lane keeping problem, and that will be introduced in the next section.  

2.2.2 Dynamics with Respect to Road  

One way to develop a steering control system is to consider a set of dynamics with state 

variables in terms of position and orientation error, with respect to a given road. First, 𝑒1 is 

defined as the distance of the c.g. of the vehicle from the center line of the lane. 𝑒2 is the 

orientation error of the vehicle with respect to the road. It is assumed that the longitudinal 
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velocity 𝑉𝑥 is constant, and the radius of the road is noted as 𝑅. Rate of change of desired 

orientation is given as: 

𝜓𝑑𝑒𝑠̇ =
𝑉𝑥
𝑅
. (2.16) 

Desired acceleration is written as: 

𝑉𝑥
2

𝑅
= 𝑉𝑥𝜓𝑑𝑒𝑠̇ . (2.17) 

Now, 𝑒1̈ and 𝑒2 can be defined as follows:  

𝑒1̈ = (𝑦̈ + 𝑉𝑥𝜓̇) −
𝑉𝑥
2

𝑅
= 𝑦̈ + 𝑉𝑥(𝜓̇ − 𝜓𝑑𝑒𝑠̇ ), (2.18) 

and 

𝑒2 = 𝜓 − 𝜓𝑑𝑒𝑠, (2.19) 

finally,  

𝑒1̇ = 𝑦̇ + 𝑉𝑥(𝜓 − 𝜓𝑑𝑒𝑠). (2.20) 

Velocity is assumed to be constant, if it were not constant, then it would create a nonlinear, time 

varying model, which is not ideal for this study. This approach instead will design a linear time- 

invariant (LTI) model, but for continued work, a linear parameter varying (LPV) model can be 

considered in which velocity is the varying parameter. For a varying velocity, integrating Eq. 

(2.18) would obtain 

𝑒1̇ = 𝑦̇ + ∫𝑉𝑥𝑒2𝑑𝑡 , (2.21) 

 Next, substituting Eqs. (2.19) and (2.20) into (2.7) and (2.8) gives 

𝑚𝑒1̈ = 𝑒1̇ [−
2

𝑉𝑥
𝐶𝑎𝑓  −  

2

𝑉𝑥
𝐶𝑎𝑟]  + 𝑒2[2𝐶𝑎𝑓 + 2𝐶𝑎𝑟], 

+𝑒2̇ [− 
2𝐶𝑎𝑓ℓ𝑓

𝑉𝑥
+
2𝐶𝑎𝑟ℓ𝑟
𝑉𝑥

] + 𝜓𝑑𝑒𝑠̇ [− 
2𝐶𝑎𝑓ℓ𝑓

𝑉𝑥
+
2𝐶𝑎𝑟ℓ𝑟
𝑉𝑥

] + 2𝐶𝑎𝑓𝛿 (2.22)  
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as well as 

𝐼𝑧𝑒2̈ = 2𝐶𝑎𝑓ℓ1𝛿 + 𝑒1̇ [− 
2𝐶𝑎𝑓ℓ𝑓

𝑉𝑥
+
2𝐶𝑎𝑟ℓ𝑟
𝑉𝑥

] 

+𝑒2[2𝐶𝑎𝑓ℓ𝑓  −  2𝐶𝑎𝑟ℓ𝑟] + 𝑒2̇ [−
2𝐶𝑎𝑓ℓ𝑓

2

𝑉𝑥
 −
2𝐶𝑎𝑟ℓ𝑟

2

𝑉𝑥
 ] (2.23) 

−𝐼𝑧𝜓𝑑𝑒𝑠̈ + 𝜓𝑑𝑒𝑠̇ [−
2𝐶𝑎𝑓ℓ𝑓

2

𝑉𝑥
 −
2𝐶𝑎𝑟ℓ𝑟

2

𝑉𝑥
 ] 

 

With all the given equations, the state space model, as tracking error variables is given by:  

𝑑

𝑑𝑡
[

𝑒1
𝑒1̇
𝑒2
𝑒2̇

] = 

[
 
 
 
 
 
 
0 1 0 0

0 −
2𝐶𝑎𝑓 + 2𝐶𝑎𝑟

𝑚𝑉𝑥

2𝐶𝑎𝑓 + 2𝐶𝑎𝑟

𝑚

−2𝐶𝑎𝑓ℓ𝑓 + 2𝐶𝑎𝑟ℓ𝑟

𝑚𝑉𝑥
0 0 0 1

0
−2𝐶𝑎𝑓ℓ𝑓  −  2𝐶𝑎𝑟ℓ𝑟

𝐼𝑧𝑉𝑥

2𝐶𝑎𝑓ℓ𝑓  −  2𝐶𝑎𝑟ℓ𝑟

𝐼𝑧
−
2𝐶𝑎𝑓ℓ𝑓

2  +  2𝐶𝑎𝑟ℓ𝑟
2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 
 

[

𝑒1
𝑒1̇
𝑒2
𝑒2̇

] 

+

[
 
 
 
 
 

0
2𝐶𝑎𝑓

𝑚
0

2𝐶𝑎𝑓ℓ𝑓

𝐼𝑧 ]
 
 
 
 
 

𝛿 +

[
 
 
 
 
 
 

0
−2𝐶𝑎𝑓ℓ𝑓 + 2𝐶𝑎𝑟ℓ𝑟

𝑚𝑉𝑥
− 𝑉𝑥

0

−
2𝐶𝑎𝑓ℓ𝑓

2  +  2𝐶𝑎𝑟ℓ𝑟
2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 
 

𝜓𝑑𝑒𝑠̇ . (2.24) 

 

In compact form, Eq. (2.24) can be rewritten as: 

𝑥̇ = 𝐴𝑥 + 𝐵1𝛿 + 𝐵2𝜓𝑑𝑒𝑠̇ , (2.25) 
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with x being the state space vector containing [𝑒1 𝑒1̇ 𝑒2 𝑒2̇]
𝑇. Stabilizing the dynamics in 

Eq. (2.25) would satisfy the tracking objective of our steering control problem. Recall that the 

control input of the system is the steering angle 𝛿 in degrees. Road bank angle is not considered 

for this problem. Eq. (2.25) will serve as the main control problem for the rest of this work, and 

as mentioned previously, it isn’t a widely used model in existing literature.   

2.3 Summary 

 Finally, for reference, the summary of the dynamic model equations is included in Fig. 

2.3. 

 Table 2.1: Summary Table of Dynamic Model Equations 

Symbol Nomenclature Equation 

𝑥 State space vector 𝑥 =  [𝑒1 𝑒1̇ 𝑒2 𝑒2̇]
𝑇 

  𝑥̇ = 𝐴𝑥 + 𝐵1𝛿 + 𝐵2𝜓𝑑𝑒𝑠̇  

  Matrices found in Eq. (2.24) 

𝑒1 Lateral position error with 

respect to the road 

𝑦̈ + 𝑉𝑥(𝜓̇ − 𝜓𝑑𝑒𝑠̇ ) 

𝑒2 Yaw angle error with respect 

to the road (orientation error) 

𝑒2 = 𝜓 − 𝜓𝑑𝑒𝑠 

𝛿 Front wheel(s) steering angle  

𝜓𝑑𝑒𝑠̇  Desired yaw rate 
𝜓𝑑𝑒𝑠̇ =

𝑉𝑥
𝑅
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CHAPTER III 

LANE KEEPING CONTROL 

 In the previous chapter, the lateral vehicle dynamics were introduced, and the primary 

model was broken down by each term that makes up the steady-state model. It was discussed that 

by stabilizing the dynamics, this would satisfy the control objective of automatic steering, e.g., 

lane keeping of a vehicle. This chapter will discuss and compare some control designs through 

state feedback. Simulations are conducted in MATLAB, with results presented near the end of 

this chapter.  

3.1 State Feedback Control 

Recall from Chapter II, that the state space model to be considered is given as  

𝑥̇ = 𝐴𝑥 + 𝐵1𝛿 + 𝐵2𝜓𝑑𝑒𝑠̇ , (3.1) 

with 𝑥 =  [𝑒1 𝑒1̇ 𝑒2 𝑒2̇]
𝑇, the objective is to ensure that the lateral position error 𝑒1 is as 

small as possible.  

 Vehicle parameters of a sedan are included in Figure 3.1 and will be used for simulations 

through the entirety of this work.  
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Table 3.1 Parameters for MATLAB 

𝑚 = 1573 ℓ𝑓 = 1.1 ℓ𝑟 = 1.58 𝐶𝑎𝑓 = 80000 𝐶𝑎𝑟 = 80000 𝐼𝑧 = 2873 𝜓𝑑𝑒𝑠̇  = 𝑉𝑥 / R 

𝑥0 = [ 0; 0.3; 1; 0.1] 𝑉𝑥 = 30 m/s 𝐼𝑧 = 2873 𝑅 = 1000 m 

  

In Eq. (3.1), the matrix A is unstable, with two of its eigenvalues at the origin, this is proven with 

the MATLAB command  

eig(A) >> eig(A) 

ans = 

0.0000 + 0.0000i 

-6.8308 + 5.0278i 

-6.8308 - 5.0278i 

-0.0000 + 0.0000i 

To stabilize the system, feedback is considered first. The preliminary state feedback law to be 

tested is  

𝛿 = −𝐾𝑥 = −𝑘1𝑒1 − 𝑘2𝑒2 − 𝑘3𝑒3 − 𝑘4𝑒4, (3.2)  

with eigenvalues of our matrix A – BK placed at any location of our choosing. The system 

becomes closed-loop, and the resulting feedback controller is now given as 

𝑥̇ = (𝐴𝑥 − 𝐵1𝐾)𝑥 + 𝐵2𝜓𝑑𝑒𝑠,̇ (3.3) 

To compute the feedback matrix K, first a vector P containing the desired eigenvalue locations is 

selected. For this study, the same values are chosen as in [1], with P containing the vector 
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[−5 −  3𝑗 −5 +  3𝑗 −7 −10]𝑇. Then the following MATLAB command is used to 

compute K 

K = place(A, B1, P); 

 With parameters defined, and a newly configured closed-loop system from Eq. (3.3), 

simulations are done to check if lateral error 𝑒1 and yaw angle error 𝑒2 converge to a stable 

value, that is close to zero. First, the log of 𝑒1 over time is shown in Fig. 3.2.  

 

Figure 3.1 Lateral Position Error (pole placements) 

 

From the initial condition, the error surges, then settles around -2.5 m. One might see concern 

that it does not converge to zero, but due to the term  𝐵2𝜓𝑑𝑒𝑠̇  in Eq. (3.3), 𝑒1 does not need to 

converge to zero. This would make sense for a generic controller, but in our case, we want this 

error to be less than a predefined constant. Later, this will be enforced. Next, a time history of the 

orientation error 𝑒2 is shown in Fig. 3.3.  
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Figure 3.2 Yaw angle error (pole placements) 

 

Once again, 𝑒2 does not converge to zero, this is because the desired yaw rate 𝜓𝑑𝑒𝑠̇  is a non-zero 

value. It is possible to include a feedforward term to ensure that 𝑒1 converges to zero, but 𝑒2 

cannot converge to zero due to the curvature of the road. More detail on this reasoning can be 

found in Rajamani [1].  

3.1.1 State Feedback via Riccati Equation    

Another method of designing a state feedback controller for our system is through the use 

of a continuous algebraic Riccati equation (CARE). Before, we chose a feedback matrix K using 

eigenvalue pole placements. To achieve better performance, we can define a different K as 

𝐾1 = 𝑅
−1𝐵1

𝑇𝑃, (3.4) 
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where R is assumed to a real, positive definite or a real symmetric matrix [21] and P must satisfy 

the CARE  

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵1𝑅
−1𝐵1

𝑇𝑃 + 𝑄 = 0 (3.5) 

where both R and Q are selected to be identity matrices. To solve the Riccati equation, 

MATLAB has the command  

[X, K, L] = icare(A, B1, Q) 

 

where X contains the unique solution matrix, K contains the state-feedback gain, and L contains 

the closed-loop eigenvalues. Then Eq. (3.3) can be re-calculated with the new feedback gain K.   

 With an alternate closed-loop system in place, the same simulations can be done for our 

state variables 𝑒1 and 𝑒2 to see any differences in performance. The same initial condition vector 

as before is used here. First, Fig. 3.4 contains the time history of lateral position error 𝑒1.  

 

Figure 3.3 Lateral Position Error (Riccati) 
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It is shown that the initial overshoot around 0.5 seconds isn’t as large as the pole placement 

method, not much greater than zero. Before, the lateral error was around -2.5m but it does converge 

to that point slightly faster than the Riccati method. The next chapter will conduct the same 

experiment, but with a predetermined maximum lateral displacement that the system must stay 

below.  

 Next, the time history of the yaw angle error 𝑒2 is shown in Fig. 3.5.  

 

Figure 3.4 Yaw angle error (Riccati) 

 

Interestingly, the performance is roughly the same as the pole placement method, only the initial 

overshoot is slightly less. For the two methods shown in this chapter, they successfully impose 

stability on the previously unstable system, with the errors converging to a finite number. 

However, one cannot say that safety is guaranteed for this system, for all time. To do so, a safety 

objective needs to be formulated, and this will be chosen in the next chapter.  
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3.2 Summary 

This chapter introduced the lateral control problem to be considered for this work, first 

stabilizing the steady-state dynamics of Eq. (3.1). Pole placements are computed to derive a 

feedback law in Eq. (3.2), in which the system states converge to a finite value, as shown in the 

simulation Figs. (3.2, 3.3).  

Next, another method of computing the feedback matrix, 𝐾 is shown through the CARE 

method. Again, simulations are conducted, and new results are shown in Figs. (3.4, 3.5). While 

both methods do stabilize the system, there are no safety guarantees for all time, therefore a 

safety objective must be chosen to further improve on the system.     
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CHAPTER IV 

INTEGRATOR BACKSTEPPING TECHNIQUE 

 Along with the surge in safety-critical research for vehicle applications, another challenge 

can arise through some unknown parameters. One may not know explicitly some parameters of 

the system dynamics. In this case, such parameters include the vehicle mass, cornering stiffness 

of the tires, wheelbase of the vehicle and the inertial moment balance. The only predetermined 

parameter that is concrete is the velocity, which has been set to 30 m/s for the previous 

simulations. To address this challenge, we will apply the integration backstepping (IB) design, 

which is detailed in [26]. First, we apply the IB to the original system dynamics and a simulation 

will be conducted. Next, we consider the unknown parameters, derive an estimation of the 

dynamics, and conduct a simulation. The results will be compared and verify if the safety 

requirement is met.  

4.1 Integrator Backstepping 

We begin by considering the system 

𝜂̇ = 𝑓(𝜂) + 𝑔(𝜂)𝜉 (4.1) 

𝜉̇ = 𝑢 (4.2) 

where [ 𝜂𝑇 𝜉 ]𝑇 ∈  𝑅𝑛+1 is the state and 𝑢 ∈  𝑅 is the control input. Both functions, 𝑓 ∶ 𝐷 → 𝑅𝑛 

and  𝑔 ∶ 𝐷 → 𝑅𝑛 are smooth in domain, containing 𝜂 = 0, f (0) = 0. Now, state feedback 
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control law can be designed to stabilize the origin (𝜂 = 0, 𝜉 = 0). First, we assume that 𝑓 and 𝑔 

are known. This system is a cascade connection of two components, being Eq. (4.1) with an 

input 𝜉 and the integrator Eq. (4.2). Cascade control considers two controllers, with the output of 

one controller providing a set point for another, and they are configured in a feedback loop. Eq. 

(5.1) can be stabilized by the feedback control law 𝜉 = 𝜙(𝜂), 𝜙(0) = 0   

that is the origin of  

𝜂̇ = 𝑓(𝜂) + 𝑔(𝜂)𝜙(𝜂) (4.3)

is asymptotically stable. Let the Lyapunov function V (𝜂) satisfies the following inequality 

𝜕𝑉

𝜕𝜂
[𝑓(𝜂) + 𝑔(𝜂)𝜙(𝜂)] ≤ −𝑊(𝜂), ∀𝜂 ∈ 𝐷 (4.4) 

with 𝑊(𝜂) being positive definite. Now, through adding and subtracting 𝑔(𝜂)𝜙(𝜂) on the right 

side of Eq. (4.2), we rewrite the equations as 

𝜂̇ = [𝑓(𝜂) + 𝑔(𝜂)𝜙(𝜂)] + 𝑔(𝜂)[𝜉 −  𝜙(𝜂)] (4.5) 

𝜉̇ = 𝑢 (4.6) 

Next, the change of variables is written as  

𝑧 = 𝜉 − 𝜙(𝜂) (4.7) 

which results in the system 

 

𝜂̇ = [𝑓(𝜂) + 𝑔(𝜂)𝜙(𝜂)] + 𝑔(𝜂)𝑧 (4.8) 

𝑧̇ = 𝑢 − 𝜙̇ (4.9) 
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All the forms of our equations can be seen in Fig. 4.1.  

 

Figure 4.1 Block Diagram of Eqs. (4.1), (4.2) 

 

In Fig. 4.1, the transition from 4.1(b) to 4.1(c) is the backstepping from - 𝜙(𝜂) to the integrator. 

Now, the derivative on 𝜙̇ can be computed using 

𝜙̇ =
𝜕𝑉

𝜕𝜂
[𝑓(𝜂) + 𝑔(𝜂)𝜉] (4.10) 
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By rewriting the integrator term in Eq. (4.9) taking 𝑣 =  𝑢 − 𝜙̇ , we get a cascade connection, 

in the form like the original system in Eqs. (4.1, 4.2). 

  

𝜂̇ = [𝑓(𝜂) + 𝑔(𝜂)𝜙(𝜂)] + 𝑔(𝜂)𝑧 (4.11) 

𝑧̇ = 𝑣 (4.12) 

The difference in Eq. (4.11) from the original, is that asymptotically stable origin exists, at an 

input of zero. Next, we need to design 𝑣 to stabilize the entire system. This can be done using 

𝑉𝑐(𝜂, 𝜉) = 𝑉(𝜂) +
1

2
𝑧2 (4.13) 

  as a candidate of a Lyapunov function. Next, we obtain 

𝑉𝑐̇ =
𝜕𝑉

𝜕𝜂
[𝑓(𝜂) + 𝑔(𝜂)𝜙(𝜂)] +

𝜕𝑉

𝜕𝜂
𝑔(𝜂)𝑧 + 𝑧𝑣 (4.14) 

<= −𝑊(𝜂) +
𝜕𝑉

𝜕𝜂
𝑔(𝜂)𝑧 + 𝑧𝑣 

choosing 

𝑣 = −
𝜕𝑉

𝜕𝜂
𝑔(𝜂) − 𝑘𝑧, 𝑘 > 0 (4.15) 

now yields 

𝑉𝑐̇ ≤ −𝑊(𝜂) − 𝑘𝑧
2 (4.16) 
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This proves that at the origin (𝜂 = 0, 𝑧 = 0) is asymptotically stable. By 𝜙(0) = 0, it is 

concluded that the origin (𝜂 = 0, 𝜉 = 0) is also asymptotically stable. We then can substitute for 

𝑣, 𝑧 and 𝜙̇, to obtain a state feedback control law 

𝑢 =
𝜕𝜙

𝜕𝜂
[𝑓(𝜂) + 𝑔(𝜂)𝜉] −

𝜕𝑉

𝜕𝜂
𝑔(𝜂) − 𝑘[𝜉 − 𝜙(𝜂)] (4.17) 

It is concluded that the origin is globally asymptotically stable. These findings are summarized in 

the lemma below, which was written by Khalil [26].  

Lemma 5.1 Consider the system Eq. (4.1) - (4.2). Let 𝜙(𝜂) be a stabilizing state feedback 

control law for Eq. (5.1) with 𝜙(0) = 0, and 𝑉(𝜂) be a Lyapunov function satisfies Eq. (4.4) for 

some positive definite function 𝑊(𝜂). Then, the state feedback control law in Eq. (4.17) 

stabilizes the origin of Eq. (4.1) - (4.2), with 𝑉(𝜂) + [𝜉 − 𝜙(𝜂)]2/ 2 as a Lyapunov function. 

Moreover, if all the assumptions hold globally and 𝑉(𝜂)  is ” radially unbounded”, the origin will 

be globally asymptotically stable.  

4.2 Integrator Backstepping for Known Vehicle Dynamics 

Now, we can apply this backstepping technique to our system dynamics, which are 

naturally unstable, and achieve the goal of stabilizing the output states. Recall, that we also 

require that the state lateral position error |𝑒1| ≤ 0.9𝑚.  

Recall the position with respect to the road dynamics as 

𝑥̇ = 𝐴𝑥 + 𝐵1𝛿 + 𝐵2𝜓𝑑𝑒𝑠̇ (4.18) 

where we write the matrices using coefficients as 
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𝐴 =  

[
 
 
 
 
 
0 1 0 0

0
𝑎22
𝑉𝑥

𝑎23
𝑎24
𝑉𝑥

0 0 0 1

0
𝑎42
𝑉𝑥

𝑎43
𝑎44
𝑉𝑥 ]
 
 
 
 
 

 ,  

𝑏1 = [

0
𝑏12
0
𝑏14

] ,  

𝑏2 = 

[
 
 
 
 

0
𝑏22

𝑉𝑥
− 𝑉𝑥

0
𝑏24

𝑉𝑥 ]
 
 
 
 

. 

We want to design a controller 𝛿 such that |𝑥1| ≤ 𝑐. where we rewrite the x state vector as  

[𝑥1 𝑥2 𝑥3 𝑥4]𝑇. First, we will design the controller, assuming the matrices are well known.  

Case 1: Assume 𝐴, 𝑏1 and 𝑏2 are well known.  

 Define a Lyapunov function 

𝑉1 =
1

2
𝑙𝑜𝑔

𝑐2

𝑐2  −  𝑥1
2

(4.19) 

then  

𝑉1̇ =
𝑥1𝑥1̇

𝑐2  −  𝑥1
2 =

𝑥1𝑥2

𝑐2  −  𝑥1
2

(4.20) 

We can design a stabilizing function 𝛼1 as 

𝛼1 = −(𝑐
2 − 𝑥1

2)𝑘1𝑥1 (4.21)  



32 
 

 where 𝑘1 > 0, then 

𝑉1̇ = −𝑘1𝑥1
2 +

𝑥1(𝑥2−𝛼1)

𝑐2 − 𝑥1
2 (4.22) 

Let 𝑧 = 𝑥2  −  𝛼1, we have 

𝑧̇ =
𝑎22𝑥2
𝑉𝑥

+ 𝑎23𝑥3 +
𝑎24𝑥4
𝑉𝑥

+ 𝑏12𝛿 + (
𝑏22
𝑉𝑥
 − 𝑉𝑥)𝜓𝑑𝑒𝑠̇ (4.23) 

Define a Lyapunov function as 

𝑉2 = 𝑉1 +
1

2
𝑧2 (4.24) 

then 

𝑉2̇ = 𝑉1̇ + 𝑧𝑧̇ 

= −𝑘1𝑥1
2 +

𝑥1𝑧

𝑐2  −  𝑥1
2 + 𝑧 (

𝑎22𝑥2
𝑉𝑥

+ 𝑎23𝑥3 +
𝑎24𝑥4
𝑉𝑥

+ 𝑏12𝛿 + (
𝑏22
𝑉𝑥
 −  𝑉𝑥)𝜓𝑑𝑒𝑠̇ ) (4.25) 

Finally, we can choose a controller  

𝛿 = 𝑏12
−1 (−

𝑎22𝑥2
𝑉𝑥

− 𝑎23𝑥3 −
𝑎24𝑥4
𝑉𝑥

− (
𝑏22
𝑉𝑥
− 𝑉𝑥)𝜓𝑑𝑒𝑠̇ −

𝑥1

𝑐2 − 𝑥1
2 − 𝑘2𝑧) (4.26) 

where 𝑘2 > 0, then 

𝑉2̇ = −𝑘1𝑥1
2 − 𝑘2𝑧

2 (4.27) 

this means that 𝑥1 and 𝑥2 converge to zero.  

We can choose the input 𝛿 from Eq. (4.26) and conduct simulation, to verify our safety 

bounds. The first run, we choose the same initial condition as the previous chapter as 

𝑥0 = [ 0 𝑚;  0.3 𝑚/𝑠 ;  1 𝑑𝑒𝑔 ;  0.1 𝑑𝑒𝑔/𝑠𝑒𝑐] 
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The time history of lateral distance, 𝑥1 and lateral velocity 𝑥2   is shown in Fig. 4.2.  

 

Figure 4.2 Integrator Backstepping of Known Dynamics - 𝑥1 and 𝑥2 

 

The error distance manages to not only stabilize itself, but it converges back to zero, which 

wasn’t accomplished with the previous controllers. Previously, it was said that the lateral error, 

will not converge to zero due to the disturbance term 𝐵2𝜓𝑑𝑒𝑠̇ . However, this control law can get 

lateral distance and lateral velocity (𝑥1, 𝑥2) to converge to zero.  

 Next, we want to plot the other states, yaw angle (𝑥3) and yaw rate (𝑥4). Both are plotted 

in Fig. 4.3.   

 

 

 



34 
 

   

Figure 4.3 Integrator Backstepping of Known Dynamics - 𝑥3 and 𝑥4 

 

Interestingly, we first see that all states except the yaw angle (𝑥3) converge to zero, which was 

not achieved in the other controllers. Now, with the integrator backstepping technique, we 

guarantee that 𝑥1 and 𝑥2 will converge to zero. Also, we know that if 𝑥2 and 𝑥4 are zero, then we 

know what 𝑥1 and 𝑥3 will not change.  

 With the integrator backstepping controller, we ensured that the lateral distance from the 

center of the lane is at a “perfect” zero. In a practical setting, this is ideal, as the vehicle is 

centered, and would in theory be at the safest location in the event of a lane drift. The next 

challenge is to consider some system dynamic uncertainties, in the case of a simulation in which 

we are uncertain regarding the system or even the environment of the study.   
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4.3 Integrator Backstepping with System Dynamics Uncertainties 

It is reasonable to assume for future works and other works involving vehicle parameters, 

that uncertainties will arise. We will perform the same process as the previous section, except we 

will consider unknown parameters 𝑎𝑖𝑗 and 𝑏𝑖𝑗, with the only fully known parameter we choose is 

𝑉𝑥 = 30𝑚/𝑠.  

First, we design the stabilizing function 𝛼1 as 

𝛼1 = −(𝑐
2 − 𝑥1

2)𝑘1𝑥1 (4.28) 

where 𝑘1 > 0, then 

𝑉1̇ = −𝑘1𝑥1
2 +

𝑥1(𝑥2−𝛼1)

𝑐2 − 𝑥1
2 (4.29) 

We let 𝑧 = 𝑥2  − 𝛼1, we have 

𝑧̇ =
𝑎22𝑥2

𝑉𝑥
+ 𝑎23𝑥3 +

𝑎24𝑥4

𝑉𝑥
+ 𝑏12𝛿 + (

𝑏22

𝑉𝑥
 −  𝑉𝑥)𝜓𝑑𝑒𝑠̇ (4.30) 

Next, we define 𝑎̂𝑖𝑗 and 𝑏̂𝑖𝑗 to be estimates of 𝑎𝑖𝑗 and 𝑏𝑖𝑗. A Lyapunov function is then defined 

as 

𝑉2 = 𝑉1 +
1

2
𝑧2 +

𝛾1
2
𝑎̃22 +

𝛾2
2
𝑎̃23 +

𝛾3
2
𝑎̃24 +

𝛾4
2
𝑏̃12 +

𝛾5
2
𝑏̃22 (4.31) 

 where 𝑎̃𝑖𝑗 = 𝑎𝑖𝑗  − 𝑎̂𝑖𝑗 and 𝑏̃𝑖𝑗 = 𝑏𝑖𝑗  −  𝑏̂𝑖𝑗. Then we get 

𝑉2̇ = −𝑘1𝑥1
2 +

𝑥1𝑧

𝑐2  −  𝑥1
2 + 𝑧 (

𝑎22𝑥2
𝑉𝑥

+ 𝑎23𝑥3 +
𝑎24𝑥4
𝑉𝑥

+ 𝑏12𝛿 + (
𝑏22
𝑉𝑥
 −  𝑉𝑥)𝜓𝑑𝑒𝑠̇ ) 

+ 𝛾1𝑎̃22𝑎̇̃22 + 𝛾2𝑎̃23𝑎̇̃23 + 𝛾3𝑎̃24𝑎̇̃24 + 𝛾4𝑏̃12𝑏̇̃12 + 𝛾5𝑏̃22𝑏̇̃22 (4.32) 
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Now, we can choose the controller 𝛿 as 

𝛿 = 𝑏̂12
−1 (−

𝑎̂22𝑥2
𝑉𝑥

− 𝑎̂23𝑥3 −
𝑎̂24𝑥4
𝑉𝑥

− (
𝑏̂22
𝑉𝑥
− 𝑉𝑥)𝜓𝑑𝑒𝑠̇ −

𝑥1

𝑐2 − 𝑥1
2 − 𝑘2𝑧) (4.33) 

where Eq. (4.32) can be rewritten as 

𝑉2̇ = −𝑘1𝑥1
2−𝑘2𝑧^2 + 𝑧 (

𝑎̃22𝑥2
𝑉𝑥

+ 𝑎̃23𝑥3 +
𝑎̃24𝑥4
𝑉𝑥

+ 𝑏̂12𝛿 + (
𝑏̃22
𝑉𝑥
 ) 𝜓𝑑𝑒𝑠̇ ) 

+ 𝛾1𝑎̃22𝑎̇̃22 + 𝛾2𝑎̃23𝑎̇̃23 + 𝛾3𝑎̃24𝑎̇̃24 + 𝛾4𝑏̃12𝑏̇̃12 + 𝛾5𝑏̃22𝑏̇̃22 (4.34) 

The update laws are defined as 

𝑎̇̂22 =  𝛾1
−1
𝑧𝑥2
𝑉𝑥

(4.35𝑎) 

𝑎̇̂23 =  𝛾2
−1𝑧𝑥3 (4.35𝑏) 

𝑎̇̂24 =  𝛾3
−1
𝑧𝑥4
𝑉𝑥

(4.35𝑐) 

𝑏̇̂12 =  𝛾4
−1𝑧𝛿 (4.35𝑑) 

𝑏̇̂22 =  𝛾5
−1
𝑧𝜓𝑑𝑒𝑠̇

𝑉𝑥
(4.35𝑒) 

which finally gives 

𝑉2̇ = −𝑘1𝑥1
2−𝑘2𝑧

2 (4.36) 

This controller ensures that states 𝑥1, 𝑥2 and 𝑥4 converge to zero, but the yaw angle error 𝑥3 will 

not converge, due to the curvature of the road.  𝛾𝑥 must be greater than 0, the larger the value, the 
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faster the states converge to zero. For the first simulation, they will be set to 1, and their impact 

will be shown.   

 The same initial condition from before is used again also with 𝛾𝑥 = 1 , and the history of 

𝑥1 and 𝑥2 is shown in Fig. 4.4.  

  

Figure 4.4 Integrator Backstepping with Uncertainties - 𝑥1 and 𝑥2 

 

This is the first result, with the lateral states converging to zero as expected. Fig. 4.5 contains the 

time histories of the yaw states, in which the yaw angle (𝑥3) does not converge to zero, as 

anticipated.  

   



38 
 

 

Figure 4.5 Integrator Backstepping with Uncertainties - 𝑥3 and 𝑥4 

 

The performance of the uncertainties controller is a promising result, stabilizing the states, and 

the lateral distance is bounded within the requirement. The significant difference between the 

known and unknown controller parameters, is the yaw angle error. However, since the lateral 

states at zero, and the yaw angle still very small, it still satisfies our safety requirement.    
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CHAPTER V 

CONTROL LYAPUNOV AND CONTROL BARRIER FUNCTIONS  

 Having presented some basic feedback controllers as well as the proposed method of the 

integrator backstepping controller, it is relevant to consider an existing method too. The unified 

controller utilizing control Lyapunov functions (CLF) and control barrier functions (CBF) 

through a quadratic problem such as designed in [4] and [5].  

 Throughout this thesis, and through the definitions in this chapter, consider the following 

nonlinear affine control system: 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢, (5.1) 

with 𝑓 and 𝑔 as locally Lipschitz, meaning it is differentiable everywhere,  𝑥 is positive definite, 

containing all real numbers, and 𝑢 contains the set of admissible inputs.  

5.1 Control Lyapunov Functions 

First, stabilizing the system stability objective will be enforced through a CLF. Let’s 

begin by aiming to stabilize the control system in Eq. (5.1) to a point 𝑥∗ = 0, i.e., that drives 

𝑥(𝑡) → 0.  This is possible and in a nonlinear context, it is done by choosing a feedback control 

law that drives 𝑉, a positive definite function to zero. It is shown as: 

∃𝑢 = 𝑘(𝑥)    𝑠. 𝑡.     𝑉̇(𝑥, 𝑘(𝑥)) ≤ −𝛾(𝑉(𝑥)), (5.2) 
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where  

𝑉̇(𝑥, 𝑘(𝑥))  =  𝐿𝑓𝑉(𝑥)  + 𝐿𝑔𝑉(𝑥)𝑘(𝑥),  

and with this, the system becomes stable to 𝑉(𝑥 ∗)  =  0. 𝛾 is a class K function, and in control 

theory, they are used for system stability tests. They are continuous, strictly increasing, and 

𝛾(0)  =  0.  𝐿𝑓𝑉(𝑥)  and 𝐿𝑔𝑉(𝑥) are the Lie-derivatives of 𝑉(𝑥) along  𝑓(𝑥) and 𝑔(𝑥), 

respectively.  

 The aforementioned facts presented lead to the idea of the CLF, in which it is 

demonstrated that a function 𝑉 can stabilize a system without structuring a feedback controller 

such as 𝑢 =  𝑘(𝑥). Initially noted in [22], [23], [24], all that is required for a controller is to 

satisfy the inequality in Eq. (5.2). It is now established that if 𝑉 is positive definite and meets the 

following criteria:    

inf
𝑢∈𝑈
[𝐿𝑓𝑉(𝑥) + 𝐿𝑔𝑉(𝑥)𝑢] ≤ −𝛾(𝑉(𝑥)) , (5.3) 

then 𝑉 is a valid CLF. Through the definition in Eq. (5.3), it is seen that 𝑢 is constrained to 

satisfy the inequality as well, this allows the formulation of optimization-based controllers. This 

is key, as once the CBF definition and constraint is defined later in this chapter, we can structure 

an optimization controller that enforces multiple constraints on the system. As a general remark, 

we the following for CLFs from [25].  

Theorem 1. For the nonlinear control system (5.1), if there exists a control Lyapunov function 

𝑉 ∶  𝐷 → ℝ≥0, i.e., a positive definite function satisfying Eq. (5.3), then any Lipschitz continuous 

feedback controller 𝑢(𝑥) that also satisfies Eq. (5.3) asymptotically stabilizes the system to x* = 

0. [4] 
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5.2 Control Barrier Functions 

Stability was shown to drive a system to a particular point or set, this being the liveness 

property that has been mentioned previously. Safety, again, enforces invariance of a set, staying 

within the safe set. We can define a set 𝐶 as a superlevel set of the continuously differentiable 

function ℎ ∶  𝐷 ⊂  ℝ𝑛 → ℝ, that gives 

𝐶 =  {𝑥 ∈ 𝐷 ⊂ ℝ𝑛: ℎ(𝑥) ≥ 0}, 

𝜕𝐶 = {𝑥 ∈ 𝐷 ⊂ ℝ𝑛: ℎ(𝑥) = 0}, (5.4) 

𝐼𝑛𝑡(𝐶) = {𝑥 ∈ 𝐷 ⊂ ℝ𝑛: ℎ(𝑥) > 0}. 

𝐶 is known to be the safe set.  

 Now, let 𝑢 =  𝑘(𝑥) be a feedback controller, such as previously defined in Eq. (3.2), be 

applied to the system in (5.1)  

𝑥̇ = 𝑓𝑐𝑙(𝑥) ≔ 𝑓(𝑥) + 𝑔(𝑥)𝑘(𝑥). (5.5) 

    If Eq. (5.5) is locally Lipschitz, this means that the system does not drastically change over a 

short amount of time. The derivative for any point must be bounded. Under this assumption, if 

the initial x state, 𝑥0 is real, and results in a unique solution 𝑥𝑡 eventually, then the set C is 

forward invariant. For proof, refer to [26].  

 Similar to the structure of the CLF, a CBF function h needs to be chosen. First, h is a 

valid candidate if  
𝜕ℎ

𝜕𝑥
≠  0 for all 𝑥 ∈  𝜕𝐶 and class 𝐾∞ function 𝛼 exists. Then, h must satisfy: 

∃ 𝑢   𝑠. 𝑡.   ℎ̇(𝑥, 𝑢) ≥ −𝛼(ℎ(𝑥)), 𝛼 ∈ 𝐾∞. (5.6) 

With the above defined, the proper defined of a CBF h can be expressed as: 
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𝑠𝑢𝑝
𝑢∈𝑈

[𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢] >= −𝛼(ℎ(𝑥)) . (5.7) 

Again, like the CLF criteria defined in Eq. (5.3), 𝑢 is constrained to only the set of control inputs 

that render the system safe. As a result, found through [4], is that if a CBF exists for the system 

in question, this means that the control system is deemed safe.  

Theorem 2. Let 𝐶 be a set defined as superlevel set of a continuously differentiable function ℎ ∶

 𝐷 ⊂  ℝ𝑛 → ℝ. If h is a CBF on D and 
𝜕ℎ

𝜕𝑥
≠  0 for all 𝑥 ∈  𝜕𝐶, then any controller u(x) for the 

system in Eq. (5.1) renders the set C safe. [4]  

One remark, again a result found from [4], is that disturbances could drive the system out of the 

safe set C, but since the controller u(x) satisfies Eq. (5.6) it is also guaranteed that the system will 

return to the safe set, therefore C is asymptotically stable as well.  

 Finally, it is noted that CBFs provide the best conditions to enforce safety, both necessary 

and sufficient.  

Theorem 3.  Let 𝐶 be a set defined as the superlevel set of a continuously differentiable function 

ℎ ∶  𝐷 ⊂  ℝ𝑛 → ℝ with the property that 
𝜕ℎ

𝜕𝑥
≠  0 for all 𝑥 ∈  𝜕𝐶. If there exists a control law 

u=k(x) that renders 𝐶 safe, i.e., 𝐶 is forward invariant with respect to Eq. (5.5), then ℎ|𝐶: 𝐶 → ℝ 

is a CBF on 𝐶. [4]       

5.3 Optimization Based Control 

After it has been determined that control barrier functions provide (required and 

sufficient) conditions for safety, the question of how to create controllers arises. Importantly, we 

want to accomplish so with the least amount of disruption possible, which means we'll only 
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make minor changes to an existing controller to ensure safety. As a result of this requirement, 

optimization-based controllers emerge naturally as a contender to handle this problem. 

5.3.1 CBF Constraint 

Given the nominal feedback controller u=k(x) for the affine system back in Eq. (5.1), the 

objective is to guarantee safety. However, the chosen k(x) may not be an eligible controller for 

the CBF condition in Eq. (5.7). To adjust this controller to guarantee safety, we would like to do 

so while being minimally invasive as possible. From the affine relationship on 𝑢 in Eq. (5.7), a 

new controller design can be written, one that is safety critical. This calls for a quadratic program 

(QP) based controller, and we can define one on u as:  

𝑢(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢∈ℝ𝑚

1

2
‖𝑢 − 𝑘(𝑥)‖2 (5.8) 

                                           𝑠. 𝑡.  𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 ≥   −𝛼(ℎ(𝑥)) 

If the system has no input constraints, then only the CBF inequality constraint exists, and Eq. 

(5.8) becomes a valid closed-loop solution that guarantees safety.  

 5.3.2 CLF Constraint 

Having structured the QP formula for a safety-critical controller, a medium of unifying 

both safety and stability requirements has emerged. Combining multiple objectives into an 

optimization controller has been done with CLFs, in both [27] and [28]. Considering the CLF 

criteria in Eq. (5.3) into the QP controller, we have: 

 

𝑢(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢,𝛿 ∈ℝ𝑚+1

1

2
𝑢𝑇𝐻(𝑥)𝑢 + 𝑝𝛿2 (5.9) 
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          𝑠. 𝑡.          𝐿𝑓𝑉(𝑥) + 𝐿𝑔𝑉(𝑥)𝑢 ≤  −𝛾(𝑉(𝑥)) + 𝛿  

                    𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 ≥   −𝛼(ℎ(𝑥))   

in which 𝐻(𝑥) is any positive definite matrix. Additionally, a relaxation term, 𝛿 is considered to 

ensure the QP is feasible and is penalized by p > 0. To ensure a solution is computed, the 

stability constraint can be relaxed. This is done because for the safety critical system, safety 

should always be guaranteed and meeting the constraint should be a priority over stability.  

The controller in Eq. (5.9) will serve as the base of this chapter, and simulations will be 

conducted following a similar problem formulation. Although both stability and safety objectives 

can be achieved through the controller, input constraints are not considered. This can lead to an 

infeasible optimization problem, and if safety cannot be guaranteed, then the safety-critical 

design is flawed. This is addressed in [5], through pointwise feasibility. For this work, we will 

not consider input constraints on the lateral control problem.  

5.4 Lane Keeping via QPs  

Finally, simulations can be conducted on the lane keeping problem we conducted in the 

previous chapter. In literature, most simulations are done for ACC applications, with a desired 

velocity acting as the CLF constraint, and the minimum distance behind the lead vehicle acting 

as the CBF constraint. For a lane keeping problem, we would like to ensure that the error state 

vector x is stable for all time, and this will act as the CLF constraint. The CBF constraint will 

require that the vehicle stays “centered” in the lane, assuming a constant longitudinal velocity 

like before. Applying the LK problem using the QP defined in the previous subsection, will ask 

to provide a steering input angle to keep the vehicle in the center of the lane. There will be no 

input constraint for this simulation. First, the original dynamics are rewritten in the affine form. 
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Then the safety and stability constraints will be defined, finally results of the errors will be 

plotted.  

The lateral vehicle dynamics from Eq. (3.1) is rewritten in the control affine form as: 

𝑥̇ = 𝐴𝑥 +  𝐵2𝜓𝑑𝑒𝑠̇⏟        
𝑓(𝑥)

+ 𝐵1𝑢 ⏟
𝑔(𝑥)

, (5.10)
 

where 𝑥 is the state error vector containing [𝑒1 𝑒1̇ 𝑒2 𝑒2̇]
𝑇 . The control input 𝛿 is the 

steering angle, and is rewritten as 𝑢 for simplicity. Next, the control objectives can be 

introduced.  

5.4.1 Safety Objective for LK  

For this safety-critical design, we want to reiterate that the safety requirement is enforced 

as a hard constraint, which means that it must not be violated at any point over time. To choose 

such constraint for a LK problem, we know that 𝑒1 is the lateral distance between the c.g. of the 

vehicle to the center of the lane. Thus, we would want to ensure the distance stays under a certain 

maximum. In the U.S., the width of a lane is 12ft, and the typical car width is around 6ft. This 

leaves 3ft, on each side of the vehicle to maneuver within. 3ft is about 0.9 meters, giving us the 

term 𝑒1𝑚𝑎𝑥 . This gives us the hard constraint to be enforced on 𝑒1 as: 

|𝑒1| ≤ 𝑒1𝑚𝑎𝑥 (5.11) 

Now, the CBF written to enforce safety on Eq. (5.10) is: 

ℎ = 𝑒1𝑚𝑎𝑥 − 𝑠𝑖𝑔𝑛(𝑒1)𝑒1 (5.12) 
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5.4.2 Stability Objective for LK 

For stability, we would like to ensure that the entire state vector 𝑥 stays finite, this can be 

done easily through the general Lyapunov function: 

𝑉 = 𝑥𝑇𝑃𝑥 (5.13) 

Recall that the system (5.10) is unstable by nature, so by choosing the CLF to stabilize all the 

states, a feasible solution is guaranteed for all time. And if a feasible solution is guaranteed, 

coexisting with the hard CBF safety constraint, we have a valid safety-critical controller design. 

As far as input constraints, it is known that the range of a steering angle is: 

−30° ≤  𝑢 ≤ 30° 

However, this is not considered for the simulations done in this work. 

5.5 Simulation Results 

To compare the results of this controller versus the previous chapter, first the initial 

condition will be tested. Further, 𝑒1, 𝑒2 and their respective velocities will be adjusted to see the 

differences in performance from varying initial states. The initial state vector from the previous 

chapter was chosen as 𝑥0 = [ 0 𝑚;  0.3 𝑚/𝑠 ;  1 𝑑𝑒𝑔 ;  0.1 𝑑𝑒𝑔/𝑠𝑒𝑐]. It is worth mentioning that 

an initial condition that does not satisfy the CBF constraint will not compute a result, and this is 

what we want from a safety-critical system. We know that it can still, in theory, converge back to 

the safe set, but safety conditions are strictly enforced.  

First, the time histories of the lateral position error and orientation error are found in Fig. 

5.1.  
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Figure 5.1 CBF-CLF-QP Controller 

 

We can see that both displacements converge to a finite value, and notably 𝑒1 stays within the 

safe set, defined by the region in red borders. The orientation error  𝑒2 also converges to a very 

small value, which is ideal for a vehicle along a road curvature.    
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 When compared to the pole placement method in the previous chapter, 𝑒1 does not follow 

the safety constraint and was never capable of doing so. Although the value settles to a finite 

value, it would not meet our requirement of guaranteeing safety for all time. However, the 

Riccati method manages to just stay in the safe bounds. While a nice performance, keep in mind 

an adjustment to the initial condition can lead to a safety violation, that is if the initial states are 

also within the bounds. This is proven in a “stress test”, next we will choose 𝑒1(0)  =  0.89𝑚. 

Additionally, it makes sense to set 𝑒2(0)  =  0 𝑑𝑒𝑔, therefore it will stay at zero for other state 

adjustments. Fig. 5.2 shows lateral displacement, using the Riccati control method from the 

previous chapter. Fig. 5.3 uses the QP method, both tests with the new initial state for  𝑒1(0). 

 

Figure 5.2 Riccati Stress Test 
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Figure 5.3 CBF-CLF-QP Stress Test 

 

It is confirmed that the Riccati method does not satisfy the hard constraint by nature. Even if it is 

by less than 1% different than the 0.9 mark, any violation renders the system unsafe. In a 
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practical example, this would result in a potential collision. As for the QP controller, the lateral 

position error quickly moves away from the border of the unsafe set and settles at a comfortable 

displacement value.  

5.6 Conclusion 

It is proven that the CBF-CLF-QP controller can guarantee safety as a design requirement. 

Although a liveness property can be relaxed to achieve safety, the system still proves to be an 

impactful design for various control problems. This controller would outperform the integrator 

backstepping controller, but what the CBF-CLF controller doesn’t consider is uncertainties in the 

dynamics. Additionally, the desired error states do not converge to zero, which will be a 

requirement going forward to guarantee safety. These challenges are to be addressed in the next 

chapter.
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CHAPTER VI 

COMBINED LONGITUDINAL AND LATERAL CONTROL 

 Thus far, this work has only considered lateral control of a vehicle, a study of path 

following. For a more realistic, and useful study, we now want to consider combined 

longitudinal and lateral control of a vehicle. This scenario will consider a follower vehicle, and 

the leader vehicle traveling along a curved road. The follower vehicle must maintain a desired 

distance from the leader, as well as stay centered in the lane. To achieve this, we will once again 

design an adaptive feedback controller through the integrator backstepping technique, like shown 

in chapter IV.  

6.1 System Dynamics 

 First, let’s consider the dynamics of the follower and leader vehicle. In Fig. 6.1, the 

model of the leader and follower vehicle are shown. F is the follower, L is the leader, R is the 

constant radius of the path, and we define 𝜅 = 1/𝑅 as the curvature of said path. The position of 

the leader vehicle is noted by the coordinates 𝑥𝐿 , 𝑦𝐿. 𝜙𝐿 is the yaw angle of the leader, 𝑉𝐿 and 𝜔𝐿 

are the velocity and angular velocity of the leader. Finally, 𝑎𝐿 and 𝛺𝐿 are the acceleration and 

angular acceleration of the leader. 
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Figure 6.1 Leader and Follower; Follower Dynamics  

Now, the states of the leader can be defined as 𝑋𝐿 = [𝑥𝐿 , 𝑦𝐿 , 𝜙𝐿 , 𝑉𝐿 , 𝜔𝐿 ]
𝑇. Further, the kinematics 

of the ideal unicycle model are used here, as 

𝑥̇𝐿 = 𝑉𝐿𝑐𝑜𝑠(𝜙𝐿), 𝑦̇𝐿 = 𝑉𝐿𝑠𝑖𝑛(𝜙𝐿) (6.1) 

𝜙̇𝐿 = 𝜔𝐿 , 𝑉̇𝐿 = 𝑎𝐿 , 𝜔̇𝐿 = 𝛺𝐿 

 Next, we can define the dynamics of the follower vehicle. Let (𝑥, 𝑦) be the position of the 

center mass of the follower vehicle, and 𝜙 be the yaw angle. The kinematics are defined as 

𝑥̇ = 𝑉𝑥𝑐𝑜𝑠(𝜙) − 𝑉𝑦𝑠𝑖𝑛(𝜙) (6.2𝑎) 

𝑦̇ = 𝑉𝑥𝑠𝑖𝑛(𝜙) + 𝑉𝑦𝑐𝑜𝑠(𝜙) (6.2𝑏) 

𝜙̇ = 𝜔 (6.2𝑐) 

where 𝑉𝑥, 𝑉𝑦 and 𝜔 are the longitudinal, lateral and yaw angular velocity of the follower vehicle. 

Now, the dynamics are defined as 

𝑉̇𝑥 = 𝑉𝑦𝜔 − 
𝐶𝑎
𝑀
𝑉𝑥
2 +

2𝑘

𝑀
𝑢1 +

2𝑘

𝑀
𝑢3 
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𝑉̇𝑦 = −𝑉𝑥𝜔 −
𝐶𝑓 + 𝐶𝑟

𝑀

𝑉𝑦

𝑉𝑥
+
𝐶𝑟𝑙𝑟  −  𝐶𝑓𝑙𝑓

𝑀

𝜔

𝑉𝑥
+
𝐶𝑓

𝑀
𝑢2 (6.3) 

𝜔̇ =
𝐶𝑟𝑙𝑟  −  𝐶𝑓𝑙𝑓

𝐼𝑧

𝑉𝑦

𝑉𝑥
 −  

𝐶𝑓𝑙𝑓
2 + 𝐶𝑟𝑙𝑟

2

𝐼𝑧

𝜔

𝑉𝑥
 −  

2𝑙𝑠𝑘

𝐼𝑧
𝑢1 +

𝐶𝑓𝑙𝑓

𝐼𝑧
𝑢2 +

2𝑙𝑠𝑘

𝐼𝑧
𝑢3 

where 𝑀 is the vehicle mass, 𝐼𝑧 is inertia moment, 𝐶𝑎 is a ratio related aerodynamic drag, 𝐶𝑟 and 

𝐶𝑓 are the tire cornering stiffness of the rear and front wheels. 𝑢𝑖 are the driving signal inputs of 

various motors, where 𝑘 is the gain of the motor. 𝑢1 = 𝑢𝑓𝑙 = 𝑢𝑟𝑙, 𝑢2 = 𝛿 and 𝑢3 = 𝑢𝑓𝑟 = 𝑢𝑟𝑟. 

For convenience, we can write the entire dynamics as 

[
𝑋̇𝑥
𝑉̇𝑦
𝜔̇

] = 𝐹1 + 𝐹2
𝑇𝑎 + 𝐹3𝑢 (6.4) 

where  

𝑎 = [
𝐶𝑎
𝑀
,
𝐶𝑓 + 𝐶𝑟

𝑀
,
𝐶𝑟𝑙𝑟  − 𝐶𝑓𝑙𝑓

𝑀
,
𝐶𝑟𝑙𝑟  − 𝐶𝑓𝑙𝑓

𝐼𝑧
,
𝐶𝑓𝑙𝑓

2 + 𝐶𝑟𝑙𝑟
2

𝐼𝑧
]

𝑇

 

𝑏 = [
𝑘

𝑀
,
𝐶𝑓

𝑀
,
𝑙𝑠𝑘

𝐼𝑧
,
𝐶𝑓𝑙𝑓

𝐼𝑧
]

𝑇

 

𝐹1 = [
𝑉𝑦𝜔

−𝑉𝑥𝜔
0

] 

𝐹2 =

[
 
 
 
 
 
 
 
 
 
−𝑉𝑥

2 0 0

0 −
𝑉𝑦

𝑉𝑥
0

0
𝜔

𝑉𝑥
0

0 0
𝑉𝑦

𝑉𝑥

0 0 −
𝜔

𝑉𝑥]
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𝐹3 =

[
 
 
 
 
 
 
2𝑘

𝑀
0

2𝑘

𝑀

0
𝐶𝑓

𝑀
0

− 
2𝑙𝑠𝑘

𝐼𝑧

𝐶𝑓𝑙𝑓

𝐼𝑧

2𝑙𝑠𝑘

𝐼𝑧 ]
 
 
 
 
 
 

 

 We consider a tracking control problem of the follower vehicle to the leader vehicle. To 

avoid the cutting-corner problem, the follower vehicle tracks a virtual point S which is the 

intersection between the line of forward velocity of the follower vehicle, and the line which is 

perpendicular to the forward velocity of the leader vehicle. If 𝑑 is a constant look-ahead distance, 

we can define s as 

𝑠 = 𝑅
√1 + 𝜅2𝑑2  −  1

𝜅
(6.5) 

The angle 𝛾 is calculated as 

𝛾 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝜅𝑑) (6.6) 

Finally, the coordinates of the virtual point of S is  

𝑆 = [
𝑆𝑥
𝑆𝑦
] = [

𝑥𝐿 + 𝑠 ∗ 𝑠𝑖𝑛(𝜙𝐿)

𝑦𝐿 − 𝑠 ∗ 𝑐𝑜𝑠(𝜙𝐿)
] (6.7) 

To properly define the follower vehicle to track the leader vehicle with a desired constant 

distance, we define the error variables 

𝑧1 = 𝑐𝑜𝑠(𝜙 + 𝛾)(𝑥𝐿 + 𝑠𝑠𝑖𝑛(𝜙𝐿) − 𝑥 − 𝑑𝑐𝑜𝑠(𝜙) 

+ 𝑠𝑖𝑛(𝜙 + 𝛾)(𝑦𝐿 − 𝑠𝑐𝑜𝑠(𝜙𝐿) − 𝑦 −  𝑑𝑠𝑖𝑛(𝜙) 

𝑧2 = −𝑠𝑖𝑛(𝜙 + 𝛾)(𝑥𝐿 + 𝑠𝑠𝑖𝑛(𝜙𝐿) − 𝑥 − 𝑑𝑐𝑜𝑠(𝜙) 
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+𝑐𝑜𝑠(𝜙 + 𝛾))(𝑦𝐿 − 𝑠𝑐𝑜𝑠(𝜙𝐿) − 𝑦 −  𝑑𝑠𝑖𝑛(𝜙) 

𝑧3 = 𝜙𝐿 − 𝜙 − 𝛾 (6.8) 

  𝑧4 = 𝑉𝐿 − 𝑉𝑥 

𝑧5 = −𝑉𝑦 

𝑧6 = 𝜔𝐿 − 𝜔 

Then, we define the derivative terms as 

𝑧̇1 = 𝑧2𝜔 + (𝑉𝐿 + 𝑠𝜔𝐿)𝑐𝑜𝑠(𝑧3)  −  (𝑉𝐿 − 𝑧4)𝑐𝑜𝑠(𝛾) + (𝑧5 − 𝑑𝜔𝐿 + 𝑑𝑧6)𝑠𝑖𝑛(𝛾) 

𝑧̇2 = −𝑧1𝜔 + (𝑉𝐿 + 𝑠𝜔𝐿)𝑠𝑖𝑛(𝑧3) + (𝑉𝐿 − 𝑧4)𝑠𝑖𝑛(𝛾) + (𝑧5 − 𝑑𝜔𝐿 + 𝑑𝑧6)𝑐𝑜𝑠(𝛾) 

𝑧̇3 = 𝑧6 (6.9) 

𝑧̇4 = 𝑎𝐿 + 𝑧5(𝜔𝐿 − 𝑧6) +
𝐶𝑎
𝑀
(𝑉𝐿

2 − 2𝑉𝐿𝑧4 + 𝑧4
2) −

2𝑘

𝑀
𝑢1 −

2𝑘

𝑀
𝑢3 

𝑧̇5 = 𝑉𝑥𝜔 +
𝐶𝑓 + 𝐶𝑟

𝑀

𝑉𝑦

𝑉𝑥
−
𝐶𝑟𝑙𝑟  −  𝐶𝑓𝑙𝑓

𝑀

𝜔

𝑉𝑥
−
𝐶𝑓

𝑀
𝑢2 

𝑧̇6 = 𝛺𝐿 −
𝐶𝑟𝑙𝑟  − 𝐶𝑓𝑙𝑓

𝐼𝑧

𝑉𝑦

𝑉𝑥
 +  

𝐶𝑓𝑙𝑓
2 + 𝐶𝑟𝑙𝑟

2

𝐼𝑧

𝜔

𝑉𝑥
 +  

2𝑙𝑠𝑘

𝐼𝑧
𝑢1 −

𝐶𝑓𝑙𝑓

𝐼𝑧
𝑢2 −

2𝑙𝑠𝑘

𝐼𝑧
𝑢3 

In compact, cascade control form, the dynamics can be rewritten as  

𝑧̇13̅̅̅̅ = 𝑓1 + 𝑔1𝑧46̅̅̅̅ (6.10𝑎) 

𝑧̇46̅̅̅̅ = 𝑓2 + 𝑔2𝑢 (6.10𝑏) 

where we let 𝑧13̅̅̅̅ = [𝑧1, 𝑧2, 𝑧3] 
𝑇and 𝑧46̅̅̅̅ = [𝑧4, 𝑧5, 𝑧6] 

𝑇. 

Also, we define 
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𝑓1 = [−
𝑧2𝜔 + (𝑉𝐿 + 𝑠𝜔𝐿)𝑐𝑜𝑠(𝑧3) − 𝑉𝐿𝑐𝑜𝑠(𝛾) − 𝑑𝜔𝐿𝑠𝑖𝑛(𝛾)
𝑧1𝜔 + (𝑉𝐿 + 𝑠𝜔𝐿)𝑠𝑖𝑛(𝑧3) + 𝑉𝐿𝑠𝑖𝑛(𝛾) − 𝑑𝜔𝐿𝑐𝑜𝑠(𝛾)

0

] 

𝑔1 = [
𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛾) 𝑑𝑠𝑖𝑛(𝛾)
−𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛾) 𝑑𝑐𝑜𝑠(𝛾)

0 0 1

] 

𝑓2 =

[
 
 
 
 
 
 𝑎𝐿 − 𝑉𝑦𝜔 +

𝐶𝑎
𝑀
𝑉𝑥
2

𝑉𝑥𝜔 +
𝐶𝑓 + 𝐶𝑟

𝑀

𝑉𝑦

𝑉𝑥
−
𝐶𝑟𝑙𝑟  −  𝐶𝑓𝑙𝑓

𝑀

𝜔

𝑉𝑥

𝛺𝐿 −
𝐶𝑟𝑙𝑟  −  𝐶𝑓𝑙𝑓

𝐼𝑧

𝑉𝑦

𝑉𝑥
 +  

𝐶𝑓𝑙𝑓
2 + 𝐶𝑟𝑙𝑟

2

𝐼𝑧

𝜔

𝑉𝑥]
 
 
 
 
 
 

 

= [

𝑎𝐿
0
𝛺𝐿
] − 𝐹1 − 𝐹2

𝑇𝑎 

𝑔2 = −𝐹3 

 Finally, we can define the problem for this chapter, to design a controller 𝑢 such that 𝑧13̅̅̅̅  

converges to zero. They also converge to zero under assumptions regarding unknown parameters 

such as inertia.    

6.2 Tracking Controller Design – Known Dynamics 

This section will consider all known parameters for the controller design. Given the cascade 

structure of the error system, we once again consider a backstepping controller design procedure. 

First, to ensure that 𝑧1, 𝑧2 and 𝑧3 converge to zero, we choose a Lyapunov function as 

𝑉1 =
1

2
𝑧13̅̅̅̅
 𝑇 𝑧13̅̅̅̅ (6.11) 
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The derivative of the Lyapunov function Eq. (6.11) is  

𝑉̇1 = 𝑧13̅̅̅̅
 𝑇 𝑧̇13 = 𝑧13̅̅̅̅

 𝑇 (𝑓1 + 𝑔1𝑧46̅̅̅̅ ) (6.12) 

Then, to make Eq. (6.12) a negative definite function, we choose a virtual control input  

𝛼1 = 𝑔1
−1(−𝑓1 − 𝐾1𝑧13̅̅̅̅ ) (6.13) 

where 𝐾1 is a positive definite matrix. If 𝑧46̅̅̅̅ = 𝛼1, then 

𝑉̇1 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ ≤ 0. 

However, since 𝑧46̅̅̅̅  is not a real control input, 𝑧46̅̅̅̅  does not equal to 𝛼1. Next, we can define 

 𝑒1 = 𝑔1𝑧46̅̅̅̅ − 𝑔1𝛼1, then 

𝑧̇13̅̅̅̅ = −𝐾1𝑧13̅̅̅̅ + 𝑒1 (6.14) 

   

𝑒̇1 = 𝑔̇1𝑧46̅̅̅̅ + 𝑔1𝑓2 + 𝑔1𝑔2𝑢 −
𝑑(𝑔1𝛼1)

𝑑𝑡
(6.15) 

Next, another Lyapunov function is chosen as 

𝑉2 = 𝑉1 +
1

2
𝑒1
𝑇𝑒1 

then, the derivative 

𝑉̇2 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ + 𝑧13̅̅̅̅

 𝑇 𝑒1 + 𝑒1
𝑇 (𝑔̇1𝑧46̅̅̅̅ + 𝑔1𝑓2 + 𝑔1𝑔2𝑢 −

𝑑(𝑔1𝛼1)

𝑑𝑡
). 

Finally, the control input 𝑢 is chosen as 
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𝑢 = (𝑔1𝑔2)
−1 (−𝑔̇1𝑧46̅̅̅̅ − 𝑔1𝑓2 − 𝑧13̅̅̅̅ − 𝐾2𝑒1 +

𝑑(𝑔1𝛼1)

𝑑𝑡
) (6.16) 

where 𝐾2 is a positive definite constant. Then, 𝑒̇1 and 𝑉̇2 can be rewritten as 

𝑒̇1 = −𝑧13̅̅̅̅ − 𝐾2𝑒1 

𝑉̇2 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ − 𝑒1

𝑇𝐾2𝑒1 

which means that 𝑧13̅̅̅̅ , as well as 𝑒1 converges to zero.  

Theorem 6.1: The control law Eq. (6.16) ensures that 𝑧13̅̅̅̅  converges to zero. 

 The result of Theorem 6.1 is proven through simulation. With the control law from Eq. 

(6.16), Fig. 6.2 shows the plot of 𝑧13̅̅̅̅  with respect to time. 𝑧13̅̅̅̅ (0) = [5,−5, 0]
𝑇. Additionally, it 

is also proven that 𝑒1 converges to zero too, this is shown in Fig. 6.3.  
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Figure 6.2 Combined Longitudinal and Lateral Controller – Known Dynamics - 𝑧13̅̅̅̅  

 

 

 

Figure 6.3 Combined Longitudinal and Lateral Controller – Known Dynamics – e1 
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 With the above simulation results, the controller in Eq. (6.16) proves Theorem 6.1 to be 

satisfied. The next step is to consider uncertainties in the dynamics, specifically regarding the 

moment of Inertia values.  

6.3 Tracking Controller Design – Unknown Parameters 

 If there are uncertainties regarding the inertia and/or tire stiffness parameters, the error 

system previously stated in Eq. (6.10) can be rewritten as 

𝑧̇13̅̅̅̅ = 𝑓1 + 𝑔1𝑧46̅̅̅̅ (6.16𝑎) 

𝑧̇46̅̅̅̅ = 𝑓3 + 𝑌1
𝑇𝑎 + 𝑌2

𝑇(𝑢)𝑏 (6.16𝑏) 

where  

𝑓3 = [

𝑎𝐿 − 𝑉𝑦𝜔

𝑉𝑥𝜔
𝛺𝐿

] 

𝑌1 =

[
 
 
 
 
 
 
 
 
 
𝑉𝑥
2 0 0

0
𝑉𝑦

𝑉𝑥
0

0 −
𝜔

𝑉𝑥
0

0 0 −
𝑉𝑦

𝑉𝑥

0 0
𝜔

𝑉𝑥 ]
 
 
 
 
 
 
 
 
 

= −𝐹2 

𝑌2(𝑢) = [

−2(𝑢1 + 𝑢3) 0 0
0 −𝑢2 0

0 0 2(𝑢1 − 𝑢3)

0 0 −𝑢2

] 
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 First, if 𝑧46̅̅̅̅  is assumed to be a virtual control input. To make 𝑧13̅̅̅̅  converge to zero, a 

Lyapunov function is chosen as 

𝑉1 =
1

2
𝑧13̅̅̅̅
 𝑇 𝑧13̅̅̅̅  

And the derivative being 

𝑉̇1 = 𝑧13̅̅̅̅
 𝑇 𝑧̇13 = 𝑧13̅̅̅̅

 𝑇 (𝑓1 + 𝑔1𝑧46̅̅̅̅ ) 

which are both the same as the previous step. Similarly, to ensure that 𝑉̇1 is a negative definite 

function, a virtual control input is chosen as 

𝛼1 = 𝑔1
−1(−𝑓1 − 𝐾1𝑧13̅̅̅̅ ) 

where 𝐾1 is a positive definite matrix. If 𝑧46̅̅̅̅ = 𝛼1, then 

𝑉̇1 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ ≤ 0. 

However, since 𝑧46̅̅̅̅  is not a real control input, 𝑧46̅̅̅̅  does not equal to 𝛼1. Next, we can define 

 𝑒1 = 𝑔1𝑧46̅̅̅̅ − 𝑔1𝛼1, then 

𝑧̇13̅̅̅̅ = −𝐾1𝑧13̅̅̅̅ + 𝑒1 (6.17) 

𝑒̇1 = 𝑔1(𝑓3 + 𝑌1
𝑇𝑎 + 𝑌2

𝑇𝑏) + 𝑔̇1𝑧46̅̅̅̅ −
𝑑(𝑔1𝛼1)

𝑑𝑡
(6.18) 

= 𝑔1𝑓3 + 𝑔1𝑌1
𝑇𝑎̂ + 𝑔1𝑔2(𝑏̂)𝑢 + 𝑔̇1𝑧46̅̅̅̅ −

𝑑(𝑔1𝛼1)

𝑑𝑡
+ 𝑔1𝑌1

𝑇(𝑎 − 𝑎̂) + 𝑔1𝑌2
𝑇(𝑏 − 𝑏̂) 

Another Lyapunov function is chosen as 
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𝑉2 = 𝑉1 +
1

2
𝑒1
𝑇𝑒1 +

1

2
𝑎̃𝑇𝛤1

−1𝑎̃ +
1

2
𝑏̃𝑇𝛤2

−1𝑏̃ 

Then, the derivative is  

𝑉̇2 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ + 𝑧13̅̅̅̅

 𝑇 𝑒1

+ 𝑒1
𝑇 (𝑔1𝑓3 + 𝑔1𝑌1

𝑇𝑎̂ + 𝑔1𝑔2(𝑏̂)𝑢 + 𝑔1𝑌1
𝑇(𝑎 − 𝑎̂) + 𝑔1𝑌2

𝑇(𝑏 − 𝑏̂) + 𝑔̇1𝑧46̅̅̅̅

−
𝑑(𝑔1𝛼1)

𝑑𝑡
) + 𝑎̃𝑇𝛤1

−1𝑎̇̃ + 𝑏̃𝑇𝛤2
−1𝑏̇̃ 

Finally, the control input 𝑢, as well as the adaptive laws of 𝑎̂ and 𝑏̂ as chosen as 

𝑢 = (𝑔1𝑔2(𝑏̂))
−1

(−𝑔1𝑓3 +
𝑑(𝑔1𝛼1)

𝑑𝑡
− 𝑔̇1𝑧46̅̅̅̅ − 𝑔1𝑌1

𝑇𝑎̂ − 𝑧13̅̅̅̅ − 𝐾2𝑒1) (6.19) 

𝑎̇̂ = 𝛤1𝑌1𝑔1
−1𝑒1 (6.20𝑎) 

𝑏̇̂ = 𝛤2𝑌2𝑔1
−1𝑒1 (6.20𝑏) 

where 𝐾2 is a positive definite constant. Then,  

𝑉̇2 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ − 𝑒1

 𝑇𝐾2𝑒1 

which means that 𝑧13̅̅̅̅  and 𝑒1 converge to zero, as well as bounding both 𝑎̂ and 𝑏̂.  

 Again, the results from this section are summarized in the following theorem below.  

Theorem 6.2: The control law Eq. (6.19) and the adaptive laws Eq. (6.20) ensure that 𝑧13̅̅̅̅  and 𝑒1 

converge to zero, as well as bounding both 𝑎̂ and 𝑏̂.  
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 Additionally, in the control law design, 𝑏̂ should be chosen such that 𝑔2(𝑏̂) is 

nonsingular. It can be shown that 𝑔2(𝑏̂) is nonsingular if each element of 𝑏̂ is positive. To this 

end, the project operator may be introduced in the adaptive law of 𝑏̂. To make all elements of 𝑏̂ 

positive, the adaptive law of 𝑏̂ can be changed as follows 

𝑏̇̂ = 𝑃𝑟𝑜𝑗𝛺(𝛤2𝑌2𝑔1
−1𝑒1) 

𝑏̇̂𝑗 = {
𝛤2𝑌2𝑔1

−1𝑒1, 𝑖𝑓 𝑏̂𝑗 > 0 𝑜𝑟 𝑏̂𝑗 = 0 𝑎𝑛𝑑 𝑌𝑗2𝑔1
−1𝑒1 > 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 where 𝛺 = 𝑅+and 𝑌𝑗2 denotes the 𝑗-th row of 𝑌2.   

 Finally, the plot of 𝑧13̅̅̅̅  is shown in Fig. 6.4, which considers the unknown parameters of 

vector a and vector b. As mentioned previously, the states do in fact converge to zero.   

   

Figure 6.4 Combined Longitudinal and Lateral Controller – Unknown Dynamics - 𝑧13̅̅̅̅  
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Also, in Fig. 6.5, 𝑒1 is also shown to converge to zero, although not as smoothly as with the 

known dynamic model, which is to be expected.   

  

Figure 6.5 Combined Longitudinal and Lateral Controller – Unknown Dynamics - 𝑒1 

 

With the above simulation results, Theorem 6.2 is proven to hold true for this study. The final 

consideration for this work is to consider a safety boundary within the controller design.    
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6.4 Tracking Controller Design with Unknown Parameters and Safety Consideration 

Finally, this work will look to design a controller with unknown parameters, considering 

a safety boundary for 𝑧1 and 𝑧2. The same cascade structure from Eq. (6.16) in the previous 

subsection is considered, along with the previously defined vectors and matrices.  

First, it is assumed that 𝑧46̅̅̅̅  is a virtual control input. To make 𝑧1 and 𝑧2 converge to zero, 

as well as enforcing |𝑧1| < 𝑐1 and |𝑧2| < 𝑐2, we choose a Lyapunov function 

𝑉1 =
1

2
𝑙𝑜𝑔

𝑐1
2

𝑐1
2 − 𝑧1

2 +
1

2
𝑙𝑜𝑔

𝑐2
2

𝑐2
2 − 𝑧2

2 +
1

2
𝑧3
2. 

Then, the derivative of 𝑉1 is 

𝑉̇1 =
𝑧1𝑧̇1

𝑐1
2 − 𝑧1

2 +
𝑧2𝑧̇2

𝑐2
2 − 𝑧2

2 + 𝑧3𝑧̇3 

= [
𝑧1

𝑐1
2 − 𝑧1

2 ,
𝑧2

𝑐2
2 − 𝑧2

2 , 𝑧3] 𝑧̇13 

= [
𝑧1

𝑐1
2 − 𝑧1

2 ,
𝑧2

𝑐2
2 − 𝑧2

2 , 𝑧3] (𝑓1 + 𝑔1𝑧46̅̅̅̅ ). 

To make 𝑉̇1 a negative definite function, we choose a virtual control input as 

𝛼1 = 𝑔1
−1(−𝑓1 − 𝐾1𝑑𝑖𝑎𝑔([𝑐1

2 − 𝑧1
2, 𝑐2

2 − 𝑧2
2, 1])𝑧13̅̅̅̅ ) (6.21) 

where 𝐾1 is a positive definite matrix. If 𝑧46̅̅̅̅ = 𝛼1, then  

𝑉̇1 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ ≤ 0. 

 The next step is to consider 𝑧46̅̅̅̅  as a not real control input, therefore 𝑧46̅̅̅̅  does not equal 

𝛼1. Let 𝑒1 = 𝑔1𝑧46̅̅̅̅ − 𝑔1𝛼1, then 
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𝑧̇13̅̅̅̅ = −𝐾1𝑑𝑖𝑎𝑔([𝑐1
2 − 𝑧1

2, 𝑐2
2 − 𝑧2

2, 1])𝑧13̅̅̅̅ + 𝑒1 (6.22) 

𝑒̇1 = 𝑔1(𝑓3 + 𝑌1
𝑇𝑎 + 𝑌2

𝑇𝑏) + 𝑔̇1𝑧46̅̅̅̅ −
𝑑(𝑔1𝛼1)

𝑑𝑡
(6.23) 

= 𝑔1𝑓3 + 𝑔1𝑌1
𝑇𝑎̂ + 𝑔1𝑔2(𝑏̂)𝑢 + 𝑔̇1𝑧46̅̅̅̅ −

𝑑(𝑔1𝛼1)

𝑑𝑡
+ 𝑔1𝑌1

𝑇(𝑎 − 𝑎̂) + 𝑔1𝑌2
𝑇(𝑏 − 𝑏̂). 

Another Lyapunov function is chosen as 

𝑉2 = 𝑉1 +
1

2
𝑒1
𝑇𝑒1 +

1

2
𝑎̃𝑇𝛤1

−1𝑎̃ +
1

2
𝑏̃𝑇𝛤2

−1𝑏̃ 

then its derivative is 

𝑉̇2 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ + [

𝑧1

𝑐1
2 − 𝑧1

2 ,
𝑧2

𝑐2
2 − 𝑧2

2 , 𝑧3] 𝑒1

+ 𝑒1
𝑇 (𝑔1𝑓3 + 𝑔1𝑌1

𝑇𝑎̂ + 𝑔1𝑔2(𝑏̂)𝑢 + 𝑔1𝑌1
𝑇(𝑎 − 𝑎̂) + 𝑔1𝑌2

𝑇(𝑏 − 𝑏̂) + 𝑔̇1𝑧46̅̅̅̅

−
𝑑(𝑔1𝛼1)

𝑑𝑡
) + 𝑎̃𝑇𝛤1

−1𝑎̇̃ + 𝑏̃𝑇𝛤2
−1𝑏̃.̇  

Finally, the control input 𝑢 and the adaptive laws of 𝑎̂ and 𝑏̂ as chosen as 

𝑢 = (𝑔1𝑔2(𝑏̂))
−1
(−𝑔1𝑓3 +

𝑑(𝑔1𝛼1)

𝑑𝑡
− 𝑔̇1𝑧46̅̅̅̅ − 𝑔1𝑌1

𝑇𝑎̂ − [
𝑧1

𝑐1
2 − 𝑧1

2 ,
𝑧2

𝑐2
2 − 𝑧2

2 , 𝑧3]

𝑇

− 𝐾2𝑒1) (6.24) 

𝑎̇̂ = 𝛤1𝑌1𝑔1
−1𝑒1 (6.25𝑎) 

𝑏̇̂ = 𝛤2𝑌2𝑔1
−1𝑒1 (6.25𝑏) 

where 𝐾2 is a positive definite constant. Then,  
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𝑉̇2 = −𝑧13̅̅̅̅
 𝑇𝐾1𝑧13̅̅̅̅ − 𝑒1

 𝑇𝐾2𝑒1 

which means that 𝑧13̅̅̅̅  and 𝑒1 converge to zero, as well as bounding both 𝑎̂ and 𝑏̂.  

 Like before, the theory of this subsection is summarized in Theorem 6.3. 

Theorem 6.3: The control law Eq. (6.24) and the adaptive laws Eq. (6.25) ensure that 𝑧13̅̅̅̅  and 𝑒1 

converge to zero, as well as bounding both 𝑎̂ and 𝑏̂. 

 Additionally, in the control law design, 𝑏̂ should be chosen such that 𝑔2(𝑏̂) is 

nonsingular. It can be shown that 𝑔2(𝑏̂) is nonsingular if each element of 𝑏̂ is positive. To this 

end, the project operator may be introduced in the adaptive law of 𝑏̂. To make all elements of 𝑏̂ 

positive, the adaptive law of 𝑏̂ can be changed as follows 

𝑏̇̂ = 𝑃𝑟𝑜𝑗𝛺(𝛤2𝑌2𝑔1
−1𝑒1) 

𝑏̇̂𝑗 = {
𝛤2𝑌2𝑔1

−1𝑒1, 𝑖𝑓 𝑏̂𝑗 > 0 𝑜𝑟 𝑏̂𝑗 = 0 𝑎𝑛𝑑 𝑌𝑗2𝑔1
−1𝑒1 > 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 where 𝛺 = 𝑅+and 𝑌𝑗2 denotes the 𝑗-th row of 𝑌2.   

 At this time, tuning to the gamma and gain parameters are needed to prove Theorem 6.3 

to hold true. Future work will include verifying the theorem for this application.  
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CHAPTER VII 

CONCLUSION 

 This thesis considered the integrator backstepping technique to guarantee safety for both 

lateral control problems, as well as combined longitudinal and lateral control problems. 

Additionally, this control technique can be designed to consider uncertainties in the dynamics 

and its parameters. The controller design ensures that our desired states converge to either a 

chosen value, or to zero. Simulations were conducted in MATLAB/Simulink to prove our 

expected results.  

 Two different autonomous vehicle applications were considered for this work, a lane 

keeping problem, in which we track the lateral distance, lateral velocity, yaw angle and yaw rate. 

Ideally, the lateral distance and lateral velocity converge to zero, ensuring that the vehicle is 

centered within a lane. Then, a combined longitudinal and lateral control problem was 

considered, not only a lane keeping problem, but a trajectory tracking problem of a leader and 

follower vehicle. Both problems assuming a road with curvature, not a straight-line path.  

 Each control problem’s controller design considers the integrator backstepping technique, 

both for fully known dynamics and unknown dynamics. From this point, future work can be to 

consider additional update laws for the dynamics, or to utilize a different technique for the 

controller design such as reinforcement learning.     
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