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ABSTRACT 

Villafranca, Leonel, Predicting The Remaining Service Life Of Railroad Bearings:  Leveraging 

Machine Learning And Onboard Sensor Data. Master of Science in Engineering (MSE), July, 

2022, 94 pp., 16 tables, 50 figures, references, 41 titles.

Bearing health monitoring is a crucial aspect of the railway industry to avoid human and 

economic losses due to derailments, unexpected downtime for maintenance, and inefficient 

performance. The University Transportation Center for Railway Safety (UTCRS) at The 

University of Texas Rio Grande Valley has made major advancements in developing algorithms 

and onboard sensor modules to tackle the shortcomings of the spatially dispersed wayside bearing 

health monitoring systems currently in use in the U.S. rail industry. These sensor modules, which 

have been extensively tested and validated through both laboratory testing and targeted pilot field 

tests, can continuously monitor the health of train bearings in terms of their temperature and 

vibration levels. A data-driven machine learning algorithm is presented, which can unravel the 

functional relationship between the sensor-acquired bearing health data (i.e., response variable) 

with several explanatory factors that potentially influence the bearing deterioration (i.e., input 

variables). More specifically, a Gradient Boosting Machine (GBM) is trained using the vast 

amount of data collected at the UTCRS over the course of more than a decade. By strategically 

combining multiple single decision tree models instead of fitting the best single decision tree, 

GBM obtains a strong ensemble prediction. The trained GBM is further compared against other 



statistical methods to test for accuracy in determining the remaining service life of a bearing in 

terms of the remaining operation mileage. 
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BACKGROUND AND INTRODUCTION 

 

 

1.1 Railroad Industry Overview 

 Operating over 140,000 miles of track, freight rail represents an $80 billion dollar 

industry in the United States alone. The U.S. and the Canadian rail network, which extends for 

an additional 30,000 miles, compose the North American Rail Network. Seven of the railroads 

operating on this 170,000-mile-long network are classified as “Class 1” which means their 

operating revenue exceeds $490 million and together represent approximately 94% of the total 

railroad revenue [1] [2]. Such an extensive network poses complex challenges regarding safe and 

efficient operations. Among these challenges are derailments and delays due to maintenance, 

which represent millions of dollars in losses for rail companies, and risk human lives. According 

to data from the Bureau of Transportation Statistics, there were a total of 1,114 derailments in the 

year 2020, while a cost-benefit analysis determined that the average cost per derailment in Class 

1 railroad mainlines was of $391,479 dollars in 2008 [3] [4]. 

1.2 Tapered-Roller Bearings and Common Defects 

 From 2010 to 2020, the Federal Railroad Administration (FRA) reported 65% of 

axle/bearing related accidents were caused by overheating/defective tapered-roller bearings [5]. 

Given the economic impact of derailments, there is an incentive to identify defective bearings in 

active operation to prevent catastrophic failure. Tapered-Roller bearings are a crucial component 

in freight rail operations; however, they are subjected to harsh operating conditions which make  
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them prone to failure. These bearings are expected to run at speeds of up to 80 mph in addition to 

carrying the combined weight of the railcar and cargo. Each individual bearing experiences a 

load of 26 kN or 5,845 lbf when the railcar is empty, which is referred to as 17% load conditions, 

with this value increasing to 153 kN or 34,400 lbf when fully loaded (100% load conditions) and 

reaching a maximum of 168 kN or 37,800 lbf if the train is allowed to be overloaded (110% load 

conditions) [6]. These journal bearings consist of three fundamental elements: rollers, inner rings 

also called cones, and outer rings also known as cups. Out of these three elements— showcased 

in Figure 1— the cones and cups are the most susceptible to develop defects such as the spalls 

shown in Figure 2. These defects cause an increase in friction between the rollers and raceways 

which in turn increases the bearing’s operating temperature, and if left unattended, may lead to 

costly malfunctions and dangerous derailments.

 

Figure 1: Components of freight railcar tapered-roller bearings. [7]. 
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Figure 2: Cone spall (left) and Cup spall (right) 

1.3 Wayside Detection Systems 

To identify defective bearings in the field, wayside detection systems have been 

developed, with the two most prominent technologies in use in North America being the 

Trackside Acoustic Detection System (TADS™) and the Hot-Box Detectors (HBDs) [8]. The 

TADS™, shown in Figure 3, is geared towards flagging severely defective bearings and works 

by capturing the acoustic signatures of passing bearings. The acoustic signals are captured using 

an array of microphones and are then compared against the signals from defective bearings. If 

the acoustic signal from a bearing matches that of a defective bearing, the bearing is then flagged 

as potentially defective, and the operator is alerted [8]. 



4 

Figure 3: Trackside Acoustic Detector System (TADS™) [8] 

In contrast to the TADS™, HBDs, depicted in  

Figure 4, use infrared sensors to measure the temperature of bearings during operation. 

The bearing operating temperature is measured as the train passes by these wayside devices, and 

conductors are alerted when a bearing’s temperature is 94.4°C (170°F) above ambient 

temperature or alternatively if it is 52.8°C (95°F) above the temperature of the mate bearing 

mounted on the same axle. 

Figure 4: Hot Box Detectors (HBDs) [8] 
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Although these detection systems have provided favorable results over the years, they 

remain an unreliable option to detect bearing defects in a timely and accurate manner [6]. There 

are less than 20 TADS™ stations in service throughout the US and Canada regions combined. 

Furthermore, TADS™ are not suited to detect certain bearing defects such as those located at the 

inner cone [8]. While HBDs are far more prevalent in the rail network, with 6,000 units in use in 

North America, they are still not an optimal solution for defect detection given that some 

bearings with relatively large defects may still operate at temperatures lower than the established 

flagging threshold [9]. 

1.4 Accident Case Study 

To highlight the weaknesses in TADS™ and HBD systems, the case study of Canadian 

Pacific Train 220 is presented. This derailment report is provided by the Transportation Safety 

Board of Canada which releases detailed information of all derailments in the country. This 

accident took place on January 26, 2011, with loaded Canadian Pacific Railway freight train 220 

traveling southward from Sudbury to Toronto at about 45 mph [10]. As can be appreciated in the 

map shown in Figure 5, the yellow star represents the point of derailment, and the green triangles 

represent hot box detectors. No TADS™ stations are present at any point in this route. The 

derailment took place in a section of the railroad where no hot box detectors were installed. The 

partial or total lack of both these systems showcases the difficulty in covering a portion of the 

rail network adequate for timely detection of defective bearings. 
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Figure 5: Map of derailment location of Canadian Pacific train 220 [10] 

From this report, it can be appreciated that the impact of derailments is not only seen on 

the faulty components and the railcar where they are installed but also on adjacent trains, tracks, 

and the surrounding environment. Figure 6 shows that the damage from this accident was not 

only seen on derailed train 220 and the tracks where it was traveling but also on train 221 which 

was hit by the derailed cars while traveling northbound on the siding, clear from the main track. 

Given the potential spill of the chemical cargo of train 220, an 800-meter exclusion zone was set 
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up and 15 families were evacuated, highlighting how the impact of derailments goes beyond the 

economical aspect [10]. 

 

Figure 6: Canadian Pacific train 220 derailment diagram [10] 

It was noted on the report for this incident that the defective bearing was on left side of 

wheelset number 4 in railcar SKPX 625514 referred to as L-4 bearing. Inspection carried out 

after the derailment showed that this L-4 bearing had a spalled cup raceway as can be 

appreciated from Figure 7. The report highlights that for four of the last five HBDs that train 220 

encountered, the L4 roller bearing on car SKPX 625514 recorded readings that indicated a low-

level alert which did not require any action from the conductor [10]. 
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Figure 7: L-4 spalled inboard cup believed to be responsible for derailment [10] 

The scarcity of TADS™ stations and their focus on severely defective bearings along 

with the unreliability of the HBDs alert system, gives place to a significant margin of error where 

defective bearings can go undetected. Furthermore, the nature of these monitoring systems is 

reactive, meaning that once a bearing is flagged as defective, operations must be immediately 

brought to a halt and proper maintenance procedures must be performed to avoid catastrophic 

failure. A track-obstructing operation, be it due to a derailment or due to maintenance, can cost 

stakeholders anywhere from $25,000 to $250,000 per hour depending on the location [11]. The 

challenges associated with these two detection systems highlight the need for the development of 

alternative methods that can detect defective bearings in an accurate and timely manner. 

1.5 On-board Wireless Monitoring System 

 Having this problem in mind, the research team at the University Transportation Center 

for Railway Safety (UTCRS) at the University of Texas Rio Grande Valley (UTRGV) has been 

focused on developing an onboard monitoring sensor which could keep track of a bearing’s 

condition along an entire journey. This onboard monitoring system, shown in Figure 8, provides 
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vibration and temperature readings for a given bearing by using an accelerometer and a 

thermocouple mounted onto the bearing adapter which has been slightly modified to accept this 

wireless module [6]. 

 

Figure 8: Wireless Onboard Condition Monitoring System powered by a battery pack [6] 

Using accelerometers and thermocouples, bearing vibration and temperature data can be 

accurately measured in a laboratory setting. The team at the UTCRS has been working on this 

technology for more than a decade, during which vast amounts of data on defective and healthy 

bearings has been collected.          

 This study intends to leverage this data archive to develop a machine learning algorithm 

capable of modeling the future vibration curve of a bearing with the goal of changing the nature 

of maintenance schedules from reactive to preventive. The modeled vibration curve will provide 

stakeholders with a prediction of when a bearing’s vibration levels will go above an established 

threshold for safe operation, indicating end of service life. This approach takes advantage of the 

data-driven nature of machine learning algorithms which strays away from the limitations 

imposed by traditional statistical models such as the need to know the functional relationship 

between the response and input variable. More specifically, a Gradient Boosting Regressor and 
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its optimized version, the eXtreme Gradient Boosting Regressor, will be used to perform the 

predictions. These ensemble-based algorithms combine the predictions of so called “weak 

learners” to create a “strong learner” to achieve an accurate final prediction [12]. Furthermore, a 

second project is introduced where these gradient boosting regressors are trained in a privacy-

preserving “Federated Learning” framework which allows for multiple parties to simultaneously 

contribute to the training stage of the model without sharing or disclosing their individual data to 

any other party involved.  
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MACHINE LEARNING OVERVIEW AND RELATED WORK 

 

2.1 Machine Learning Overview 

Machine learning refers to the field of study where computer science and statistics 

intersect, allowing computational processes to deliver desired results using input data and 

without the need to be explicitly programmed [13].  

 Machine learning algorithms can be organized in two main categories: supervised and 

unsupervised. Supervised learning is used to approximate an unknown function between input 

and output variables having known input and output samples. In unsupervised learning, only 

input samples are given to the learning system for it to find trends or other characteristic 

information on the data (e.g., clustering and estimation of probability density function) [13]. The 

scope of this project falls under supervised learning and therefore this category will be used to 

present further discussion on machine learning. 

 Supervised machine learning algorithms automatically adapt their architecture through 

repetitive steps which increase their performance, i.e., their ability to achieve a desired outcome, 

as assessed by a specified metric [13]. This adaptation process is called training, where both 

input samples and desired outputs are provided for the algorithm to unravel the relation between 

the two. A key advantage of machine learning algorithms is their optimal self-configuration 

geared towards providing a desired outcome when presented with new, unseen data. The training 

phase of the algorithm is the “learning” part of the term machine learning. The training does not

CHAPTER II 
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have to be limited to an initial adaptation during a finite interval. As with humans, a good 

algorithm can practice “lifelong” learning as it processes new data and learns from its mistakes 

[13]. 

2.1.1 The predictive problem 

The focus of this work is on the development of a predictive model. To this end, it is 

beneficial to establish this goal in mathematical terms to define the steps needed to achieve it and 

introduce performance indicators to keep track of progress or the lack thereof. This problem of 

function estimation or “predictive learning” has been widely discussed in the field of machine 

learning. Definitions of this problem which are highly relevant to this thesis come from the work 

done by Friedman in 1999 [14] and Natekin and Knoll in 2013 [15].  

The problem is framed as having a system consisting of an 𝑥 and 𝑦 data space, where 𝑥 is a 

set of random “input” or “explanatory” variables 𝑥 =  {𝑥1, … , 𝑥𝑛  } and 𝑦 is a random “output” 

or “response” variable. From this system, “training” samples {𝑥𝑖, 𝑦𝑖}
𝑁
1

, consisting of known 

(𝑥, 𝑦)-values are used to reconstruct the unknown functional dependence 𝑥 
𝑓
→  𝑦, through an 

estimate 𝑓(𝑥). The model is then instructed to minimize a specified loss function 𝐿(𝑦, 𝐹(𝑥)), 

which calculates the discrepancy between actual and predicted values as an indicator of whether 

the estimate function 𝑓(𝑥) is a suitable approximation [14] [15]. Equation (1) gives the 

mathematical representation of this minimization task. 

𝑓(𝑥) = 𝑎𝑟𝑔 min
𝑓(𝑥)

𝐿(𝑦, 𝑓(𝑥))                                          (1) 

 A key advantage in the process described up to this point is that no assumptions have 

been made about the form of the true functional dependence 𝑓(𝑥) nor the function estimate 𝑓(𝑥). 
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2.1.2 Hyperparameters 

There exist several different machine learning algorithms which could be used for 

predictive tasks, namely, support vector machines, random forest machines, neural networks, and 

the gradient boosting machine, which is the algorithm of choice for this project, among others. 

While all these algorithms perform their learning task in a unique way, they all share one 

fundamental characteristic: hyperparameter values must be assigned before the training phase.  

Hyperparameters are parameters inherent to each machine learning algorithm whose 

values shape the general model structure and have a direct impact on the speed and quality of the 

learning process. Hyperparameters control the complexity of the model and thus dictate how well 

the model will be able to unravel the functional dependence between input and output variables. 

The best results for any model are achieved through optimization of these values which will lead 

to an adequate balance between bias and variance in the reconstructed functional relationship 

[16]. 

2.1.3 Bias and Variance 

A prevalent obstacle in training machine learning models is finding the right balance 

between bias and variance. A biased model will result in an “underfit” of the training data while 

high variance will cause the model to “overfit” the data, with both instances yielding a model 

with poor performance on new unseen data. Figure 9 provides an example of these different 

scenarios. 
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Figure 9: Graphical representation of overfitting, underfitting and optimal fitting [12] 

Underfitting happens when a machine learning model cannot effectively unravel the 

mapping function between input and output variables, with this model type having a poor 

performance on both the preexisting training data set and newly introduced data. Such a model is 

said to have high bias and the cause may be attributed to the model generating a functional 

relationship that is too simple. Another cause for a highly biased model is that the training data is 

simply insufficient or has such low quality that there is no relation between the input and output 

variables to be found by the model in the first place. Common solutions to address underfitting 

problems are increasing the model complexity by tuning hyperparameters to optimal values and 

increasing the number of input variables or modifying them to reveal more information (feature 

engineering). Removal of noise from training data, or simply using a different machine learning 

model may also prove beneficial [17]. 

Overfitting occurs when a model generates an extremely detailed function mapping input 

to output variables. A model that overfits the training data is said to have high variance and is 

characterized by yielding extremely low error rates on the training data set but very high error 

rates on new data. The issue with using such a complex function for predictive tasks is that this 

function may be too specific to the training data set and thus will have a poor performance when 

making predictions using unseen data. Overfitting may occur when a model is too complex, 
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meaning the hyperparameter values set prior to the training phase capture too much detail from 

the data or even allow the model to interpret noise in the data or inaccurate data entries as 

relevant information. Another cause for overfitting is a training data set with very few entries or 

a very simple functional relationship between input and output variables which does not warrant 

the use of machine learning. Solutions to overfitting include increasing the training data so as to 

increase the complexity of the input-output functional relationship, reduce model complexity by 

optimizing or “tuning” hyperparameter values and the addition of regularizing terms which 

penalize model complexity [17] [18]. 

2.2 Gradient Boosting Machine 

As mentioned in previous sections, there are several machine learning techniques or 

models available which dictate in which way the learning task will be performed. This thesis 

focuses on the use of the Gradient Boosting Machine developed by Jerome Friedman [14], 

specifically Gradient Boosted Decision Trees for a regression task. 

Gradient Boosting falls under a category of machine learning models called “ensemble 

methods” where several models are used simultaneously to reach a single prediction. Ensemble 

methods come as the counterpart to the more prevalent approach in data-driven modeling where 

a single strong predictive model is used. The counter-intuitive aspect of this specific ensemble 

method is that the individual models are—by themselves—weak predictors or “learners” where 

one would assume that a combination of strong predictors would have a better performance. At 

each particular iteration, a new weak, base-learner model is trained with respect to the error of 

the whole ensemble learnt so far, referred to as “boosting” [15]. As mentioned in section 2.1.1, a 

loss function is used as an indicator of how well a reconstructed functional relationship 

approximates the true relationship between input and output data. This algorithm employs an 
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iterative optimization process called “gradient descent” to find the local minimum of the 

specified loss function, explaining the “gradient” term in the name of this machine learning 

model. 

Decision tree models come as a solution to effectively capture the interactions between 

variables in Gradient Boosting Machine models. The purpose of using decision trees as weak 

base-learner is to partition the space of input variables into homogenous rectangle areas by a 

tree-based rule system. Each tree split corresponds to an if-then rule over some input variable. 

This structure of a decision tree naturally encodes and models the interactions between 

explanatory variables [15]. 

2.3 eXtreme Gradient Boosting Machine 

Building on top of Dr. Friedman’s work on the Gradient Boosting Machine, the eXtreme 

Gradient Boosting Machine, also known as XGBoost, was developed by Tianqi Chen [19] as an 

optimized alternative with better performance and faster computational time. The key differences 

in the XGBoost algorithm include its ability to build decision trees in a parallel process (as 

opposed to the traditional sequential) while making use of all the CPU cores during training, 

using clusters of computers to combine their resources for training, and the ability to 

automatically handle missing data values through a sparse aware implementation and continued 

training which allows further model improvement using newly introduced data [20]. 

2.4 Federated Learning 

All of the discussion on machine learning presented up to this point assumes a centralized 

approach, i.e., the training data is located in a server or machine and can be freely accessed by 

the model and users. However, there might be instances where parties involved in training a 

model may not want to or cannot, due to certain regulations or other obligations, share their 
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individual data. For example, a group of hospitals may be interested in training a model which 

can accurately predict the presence of a given disease (output variable) given a set of symptoms 

(input variable). Each hospital holds historical data that could be used in conjunction with data 

from the other hospitals to create an accurate and robust model. The limitation to the 

collaboration of these hospitals could come from the Health Insurance Portability and 

Accountability Act of 1996 (HIPAA) which prevents hospitals from sharing a patient’s sensitive 

information without the patient’s consent or knowledge [21]. 

By detaching the ability to train a machine learning model from the need to centralize the 

training data, a Federated Learning framework can circumvent this limitation. Federated learning 

works by creating a model for each party involved in the training process so that each party has a 

distinct model, also called a “local” model. Each party can be thought of as a member of a 

“federation”, thus explaining the name for this framework. The party accepts this local model 

and trains it utilizing their own data. The updates made to these individual models are then 

summarized and sent, using encrypted communication, to the federation “administrator” who 

may or may not have training data and is charged with connecting the individual parties to the 

federation. The administrator receives the model updates from each party and merges all these 

updates to modify a “global” model which will ultimately be the model that will benefit all the 

parties involved. Individual local updates do not directly disclose information on the actual data 

which, in conjunction with encrypted communication, ensures that training data remains safe and 

private in the data storage locations of each party [22]. 

For the purposes of this project, a Federated Learning framework was considered 

assuming that rail companies may be interested in collaborating with other stakeholders to obtain 
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robust predictive models and benefit from data they may not possess, all while preserving the 

privacy of their own data. 

2.4.1 Federated XGBoost 

Federated Learning software is widely available for use with Neural Networks given the 

nature of these models where each node in the individual layers of the network is automatically 

assigned a weight during training, with optimal weights giving the best results. These weights do 

not directly reveal the training data and are thus used as the updates to be sent from the local 

models to the global model. 

Gradient Boosting Machines do not make use of the same architecture as neural networks 

and, therefore, communicating and merging weights is not an option for this model. Thus, the 

options to use this algorithm in a federated framework are very limited. Two options were 

considered for this project: the “Federated XGBoost” library developed by the University of 

California Berkeley RISE Lab as part of their Multiparty Collaboration and Competition effort 

“𝑚𝑐2” [23] and “Federated Learning XGBoost” developed by IBM which comes as a service in 

their IBM Cloud Pak for Data platform which gives users access to the computational resources 

owned by IBM [24]. 

The Federated XGBoost framework developed by RISE Lab required a Linux operating 

system, which was not readily available at the workstation where this project was conducted. 

Therefore, IBM services were chosen to carry this federated learning task. It is worthwhile to 

note that the few available services for federated gradient boosting were based on eXtreme 

gradient boosting and not its traditional counterpart. This might be attributed to the efficiency in 

computation and ease of adaptability to different software environments characteristic of 

XGBoost.  
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2.5 Related Work 

An example of a predictive task performed by using a gradient boosting regressor can be 

found on the work by Barua et al. [25] where the target variable was the Pavement Condition 

Index (PCI) which was used to investigate the contributions of several factors on runway and 

taxiway pavement deterioration at the Chicago O’Hare International Airport. In their study, they 

show how their developed GBM models outperformed other methods which tend to have strong 

performances such as neural networks and random forests. An important aspect outlined in this 

study is their choice for loss function. The “Huber” loss function was chosen over the simpler 

and more common “square loss function”. The justification for this choice comes from the fact 

that the Huber loss function captures both the square loss and the mean absolute error. To 

employ both these functions, the Huber loss function uses a multiplier δ, to determine which loss 

function will be used following Equation (2). 

𝐿(𝑦, 𝐹)𝐻𝑢𝑏𝑒𝑟,δ = {

1

2
(𝑦 − 𝐹)2  𝑖𝑓 |𝑦 − 𝐹| ≤ δ

δ (|𝑦 − 𝐹| −
δ

2
)    𝑖𝑓 |𝑦 − 𝐹| > δ

 (2) 

In this study, a conventional 60-20-20 data split is used to create the training, cross-

validation, and testing data sets. While assessing model performance, it was noted that addition 

of features, in this case the traffic loading variable, proved to be beneficial for the model 

highlighting the importance of ensuring that relevant features are included in the predictive task 

of any machine learning model. 

An example of ensemble learning used for a prediction task that falls under the field of 

railway comes from the work performed by Bukhsh et al. [26]. Their work presents the use of 

tree-based models, namely decision-trees, random forest, and gradient boosted trees to predict 

the maintenance need, activity type, and trigger status of railway switches. It should be noted that 
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this works presents a classification task as opposed to a regression task, however, the feature 

processing techniques used provide useful guidelines which could be employed on the project 

presented as part of this thesis. Part of their feature processing included the elimination of 

redundant features that would not help the model with its classification task and may even 

negatively impact it. Removing these unnecessary features also reduces the computational 

resources needed by the model to perform its task and it comes as a reminder that having more 

features does not always benefit the model if they are not relevant to the task. Their work showed 

that out of the three models, gradient boosted trees had the highest accuracy at 86.2% and lowest 

misclassification rate at 13.7% [26]. 

Snider and McBean [27] present an eXtreme Gradient Boosting regressor geared towards 

predicting the time to failure of ductile iron pipes used for water distribution. The performance of 

the developed XGBoost regressor was compared to a Random Forest and an Artificial Neural 

Network, which are two machine learning techniques that have provided excellent results in 

different applications. The obtained root mean square error (RMSE) from the developed 

XGBoost regressor was of 5.81 which is 1.2% lower than that of the Random Forest model and a 

25.9% lower than the one from the Artificial Neural Network [27]. The lower RMSE indicates a 

stronger performance compared to the other two models as well as a suitable predictive 

performance for the task at hand.  

Li et al. [28] provide a project where machine learning was used to guide maintenance 

actions in rail operations. In their study, a Support Vector Machine (SVM) was used to analyze 

large volumes (in the order of Terabytes) of historical data collected from multiple detector 

systems such as HBDs (previously introduced in this thesis), Wheel Impact Load Detectors 

(WILDs), Wheel Profile Detectors (WPDs), Hot Wheel Detectors (HWDs), and Truck 
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Performance Detectors (TPDs). Given the large number of features available to them, they made 

use of a machine learning based dimensionality reduction technique called Principal Component 

Analysis (PCA) in order to reduce the number of features by keeping only the ones that provide 

the most information regarding the mapping function between the features and response variable. 

Through PCA they were able to reduce the number of features from 55 to 12, which provided a 

significant reduction in the computational resources needed to develop the model. 

The task in this study was to classify train components as either defect-free or defective. 

Model performance was assessed by determining the true-positive rates (TPR), meaning the 

percentage of correctly identified defective components, and the false-positive rate (FPR), 

meaning the percentage of defect-free components classified as defective. Several models were 

trained and the TPR and FPR was assessed for each one. The highest TPR achieved by any 

model was of 97.6% along with a FPR of 5.7%. This study assigned high value on achieving a 

low FPR and therefore the models with the lowest FPR were of interest. The lowest FPR 

achieved by any model was 0%, however the TPR was only of 7.5%. A satisfactory threshold for 

FPR was determined to be 0.014%. The model that achieved this FPR threshold had a TPR of 

38.5% which, for the purposes of this study, represented a satisfactory balance between the two 

metrics [28]. It is worth mentioning that although large amounts of data were used to train these 

models, it was obtained solely from stationary detection systems as opposed to onboard 

condition monitoring devices, thus, providing an area of opportunity which the work presented in 

this thesis can address.  
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EXPERIMENTAL SETUP AND PROCEDURES 

 

 

3.1 Laboratory Setup 

Freight operating conditions must be closely replicated in a laboratory setting to obtain 

relevant information on bearing condition monitoring that could later be leveraged for use in 

field operations. The team at the UTCRS has developed methods to test bearings and record their 

vibration and temperature information as response variables while controlling the load to which 

they are subjected, the speed at which they operate, and in special cases, the ambient temperature 

that surrounds them. To this end, specially designed dynamic bearing test rigs were built at the 

UTCRS that utilize the sensor technologies built into the bearing adapter and termed the Smart 

Adapter. 

3.2 Smart Adapter 

The Smart Adapter, shown in Figure 10, is a regular AdapterPlus™ that has been machined to 

accept four custom 70 g ADI ADXL accelerometers placed in the smart adapter (SA) and mote 

(M) locations at the inboard and outboard sides of the bearing. The Smart Adapter is also 

retrofitted with one 500 g PCB accelerometer placed in the outboard radial (R) location, and four 

K-type bayonet thermocouples. Additionally, seven K-type thermocouples are placed around the 

circumference of the bearing cup which are held tightly in place by a hose clamp [6]. 

CHAPTER III 
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Figure 10: Accelerometer and Thermocouple placement on Smart Adapter 

The wired accelerometers and thermocouples provide accurate readings of vibration and 

temperature, respectively, that can be used to validate the measurements obtained by the wireless 

module presented in Chapter I. Given that the readings from this wired Smart Adapter 

monitoring system are reliable and readily available at the UTCRS database, they were chosen as 

the data source to train and test the machine learning models to be developed. 

3.3 Dynamic Bearing Test Rigs 

There are two test configurations to run the bearings, the single-bearing tester (SBT) and 

the four-bearing tester (4BT). Figure 11 showcases the setup for the 4BT which consists of a 22 

kW (30 hp) variable speed motor, a pulley system to transfer the energy from the motor to the 

axle where four bearings are press-fit mounted, two Smart Adapters, a hydraulic cylinder to 

apply the desired load, and an I-beam used to evenly distribute the load between the two middle 

bearings. In this configuration, the load applied to all four bearings is equal, however, the two 

middle bearings are top-loaded exactly like field conditions, whereas the two outer bearings are 

bottom-loaded. Therefore, Smart Adapters equipped with all sensors are only placed on bearings 

2 and 3 (two middle bearings) given that these two bearings are loaded similar to rail service 
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conditions in this current configuration. The 4BT allows the team to collect data from two 

bearings simultaneously, which provides a more efficient allocation of resources. 

 

Figure 11: Four-Bearing Tester (4BT) 

 Note that, for this study, only data acquired from Association of American Railroads 

(AAR) Class F and K bearings were used, which are the most widely utilized bearings in North 

American freight rail system (~85% of all bearings in North America are Class F and K). Two 

main loading conditions were used, namely, fully loaded railcar condition (100% load) which 

corresponds to 153 kN (34.4 kips) per bearing and empty or unloaded railcar condition (17% 

load) which corresponds to 26 kN (5.85 kips) per bearing. In some experiments, to simulate an 
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overloaded railcar condition, bearings were loaded to 168 kN (37.8kips) per bearing, which 

represents. 110% load. 

The Single-Bearing Tester (SBT), depicted in Figure 12, was specifically designed to 

mimic the operating conditions that bearings experience in rail service. The SBT more closely 

resembles the cantilever beam configuration of a bearing mounted at the end of a wheel axle 

assembly. Like the 4BT, the SBT consists of a drive motor which can simulate different train 

traveling speed, a load cell to simulate the bearing load experienced in field operations, and the 

Smart Adapter which acquires the bearing’s vibration and temperature information. Unlike the 

4BT, which can only apply vertical loads that simulate the railcar cargo, the SBT can also 

provide impact and lateral loads which can replicate wheel and rail impacts and forces generated 

when railcars negotiate turns. 

 

Figure 12: Single-Bearing Tester (SBT) 
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To replicate field operating conditions more closely, the motors in both test rigs are 

controlled by variable frequency drives (VFD) that accurately maintain the desired angular 

speeds to within 0.5%. Furthermore, the bearings are air-cooled by two industrial-size fans that 

produce an air stream traveling at an average speed of 6 m/s (13.4 mph) simulating the forced 

convection which train bearings would experience during rail service due to the wind currents as 

the train makes its journey [6]. 

3.4 Experiments 

The dynamic test rigs were used to perform experiments where healthy or defective 

bearings had their vibration and temperature profiles monitored. Each experiment was identified 

by a number, e.g., experiment 150. If there was a need for bearing modifications, such as a 

component replacement, change of location on the axle, tear down for inspection, then the 

experiment was considered to have had an iteration. A letter was added to the experiment 

number to identify said iterations, e.g., experiment 150A, 150B etc. The specified speed and load 

conditions could vary throughout the duration of the experiment; for example, experiment 150A 

ran for 1 hour at 30 mph and 17% load (unloaded or empty railcar condition) followed by a 

segment of 3 hours at 80 mph and 100% load (fully loaded railcar) which gives a total 

experiment duration of 4 hours. 

3.5 Data Acquisition and Thresholds 

 The data used to train the algorithms came from historical records of bearing vibration 

levels. This data was collected from experiments performed at the UTCRS on both the single-

bearing and the four-bearing tester. The data acquisition equipment consisted of NI 9239, NI 

USB-6008, and a NI 9234 cards, which were used to record and collect the accelerometer data, 

measured using the universal gravity constant as a standard denoted as ‘g’, at a sampling rate of 
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5,120 Hz for four second periods, in ten-minute intervals [6]. Once these data points were 

collected, their root mean square (RMS) value was calculated, effectively providing a data point 

every ten minutes. The RMS value was chosen for analysis given the better insight it provides 

into the magnitude of the signal being monitored, especially one with positive and negative 

values such as vibration [29]. Equation (3) provides the formula to calculate the RMS value 

where “N” refers to the total number of data points and “𝑥𝑛” to the “n-th” data point. It should be 

noted that the RMS operation does not modify the units of the data introduced. 

𝑅𝑀𝑆 = √
𝑥0

2+𝑥1
2+ 𝑥2

2+⋯+𝑥𝑁−1
2

𝑁
=  √

1

𝑁
∑ 𝑥𝑛

2𝑁−1
𝑛=0       (3) 

Data acquisition is a critical step towards gaining insight on defective bearing behavior. 

However, once data is available it is also crucial to put it into context. To this end, preliminary 

and maximum thresholds were established by the team at the UTCRS to determine whether the 

vibration signature of a bearing indicated defective behavior. 

In 2015, Gonzalez [30] established these thresholds in her work aimed towards 

developing a bearing defect detection system. The preliminary threshold was established through 

a statistical analysis of potential thresholds based on correlations of speed and mean RMS values 

of defect-free bearing vibration signatures. Table 1 contains all possible thresholds and their 

corresponding percentages of misclassified bearings. The thresholds came from the μ, μ ± ½ σ, 

μ ± σ, and upper and lower bounds of the 90%, 95%, and 99% confidence intervals (CI) for the 

mean RMS, where the confidence intervals represent a proportion of the samples averaged which 

contain the true mean. The variables μ and σ represent, respectively, the mean and standard 

deviation of defect-free bearing RMS values for each speed [6]. The optimal preliminary 

threshold should minimize both the number of defective bearings below the threshold and the 

number of defect-free bearings above the threshold [6]. 
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Table 1: Percentages of defect-free and defective bearing RMS values that fall outside of 

possible threshold correlations [30] 

Possible threshold Defect-free bearing RMS 

values above possible 

threshold  

[%] 

Defective bearing RMS values 

below possible threshold  

[%] 

Upper Bound 99% CI 

(μ) 

13.8 33.2 

Upper Bound 95% CI 

(μ) 

19.3  27.4 

Upper Bound 90% CI 

(μ) 

21.8 26.6 

μ + σ 26.8 23.5 

μ + ½ σ 33.9 20.5 

μ 43.8 15.8 

μ -  ½ σ 52.1 11.6 

μ - σ 61.0 8.5 

Lower Bound 90% CI 

(μ) 

65.3 6.9 

Lower Bound 95% CI 

(μ) 

72.6 6.2 

Lower Bound 99% CI 

(μ) 

87.9 3.5 

 

From the results listed in Table 1, both percentages of misclassified bearings were added 

together for each potential threshold, with the lowest summation indicating the optimal 

threshold. Such was the case for the upper bound of the 95% confidence interval and it was thus 

selected as the preliminary threshold. Equation (4) shows this chosen threshold as a function of 

speed in different units. 
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  {

𝑇𝑝 = 7.331 ×  10−2 𝑉 − 9.059 × 10−2   𝑉 𝑖𝑛 𝑘𝑚/ℎ

𝑇𝑝 = 4.556 ×  10−2 𝑉 − 9.059 × 10−2 𝑉 𝑖𝑛 𝑚𝑝ℎ

𝑇𝑝 = 4.879 ×  10−3 𝑉 − 9.059 × 10−2 𝑉 𝑖𝑛 𝑟𝑝𝑚

                                 (4) 

The maximum threshold was established such that all bearings with a vibration signature 

exceeding it are flagged as defective. The maximum threshold was developed by obtaining a 

correlation between the maximum RMS value of defect-free bearings at different speeds. From 

this correlation, the upper bound of the 45% confidence interval, plotted in Figure 13, was 

selected as the maximum threshold given that none of the maximum RMS values of defect-free 

bearings at each speed value surpassed it, indicating that defect-free bearings would not be 

misclassified as defective. Equation (5) presents the maximum threshold as a function of speed 

in various units [6].

 

Figure 13: Maximum defect-free bearing RMS values versus velocity [6] 
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  {

𝑇𝑚𝑎𝑥 = 1.788 ×  10−1 𝑉 − 1.008   𝑉 𝑖𝑛 𝑘𝑚/ℎ

𝑇𝑚𝑎𝑥 = 1.111 ×  10−1 𝑉 − 1.008 𝑉 𝑖𝑛 𝑚𝑝ℎ

𝑇𝑚𝑎𝑥 = 1.119 ×  10−2 𝑉 − 1.008 𝑉 𝑖𝑛 𝑟𝑝𝑚

                               (5) 

 The development of these thresholds allows for bearings to be classified as potentially 

defective, defective, or healthy if their vibration levels surpass the preliminary threshold, the 

maximum threshold, or do not surpass any thresholds, respectively. 

3.6 Target Variable 

Although all experiments at the UTCRS include the bearing temperature and vibration 

profiles, it has been noted across multiple experiments that vibration levels usually signal the 

onset of defect formation before the temperature levels surpass established thresholds. One 

experiment that showcases this phenomenon is experiment 200, shown in Figure 14. It can be 

observed from these two plots that the bearing vibration levels reached values that markedly 

exceed the maximum threshold for healthy bearings while the temperature profiles recorded by 

the thermocouples remained below the threshold for defective bearings indicating a defect-free 

bearing. Upon teardown and inspection, the bearing in this experiment was found to have 

multiple defects, as pictured in Figure 15, that would not have been revealed by temperature 

measurements alone. Therefore, the vibration levels were established as a more reliable indicator 

of defect formation or growth, and thus the target variable for prediction was chosen to be the 

vibration RMS. 
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Figure 14: Bearing vibration and temperature profiles for experiment 200 

 

Figure 15: Picture of spall on B2 bearing cup from experiment 200
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METHODOLOGY 

 

 

4.1 Chosen Experiments 

 All experiments conducted at the UTCRS provide data on RMS vibration levels, 

however, the total mileage the bearing ran is available for only a select number of experiments. 

These experiments with full mileage records come from past Service-Life tests where specific 

bearings were chosen right after manufacturing to be run in a laboratory setting until their 

vibration levels surpassed the established threshold, indicating defect formation and end of 

service life. Table 2 contains the identification numbers of the bearings chosen for Service-Life 

tests along with their respective experiment numbers. The vibration data derived from these 

experiments was used to train the algorithms. 

Table 2: Bearing Identification Numbers and Experiment Numbers in which these bearings ran 

Identification Number Experiment Number 

C-10-23432 200A, 200B, 200C, 206, 207, 220 

C-10-23443 200A, 201A, 201B 

H-13-613028 175A, 175B, 175C, 175D, 175E 

H-13-613042 175F, 175G, 175H 

H-13-613079 175B, 175C, 175D, 175E, 175F, 

175G, 175H, 175I, 175J, 175K 

CHAPTER IV 
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 Data records from service life tests were obtained for 19 experiments where a total of five 

bearings were constantly monitored. The information readily available included the RMS 

histories for all bearings tested. The mileage, speed, and load data were then assigned to their 

corresponding RMS values by means of simple data processing. A more detailed description of 

the data preparation is presented in the following section. A total of 53,258 data points with no 

missing values were obtained and split in a 60-20-20 ratio for the training, cross-validation, and 

test sets respectively, following convention for data sets with less than 1,000,000 entries [31]. 

The 60-20-20 split aims at using 60% of the total data for training purposes, once the model is 

trained, another 20% of the data, the cross-validation data set, is used to assess how well the 

model is performing. Model improvement is based on the metrics obtained using the cross-

validation data set, meaning that the model is further refined until satisfactory metrics are 

obtained on this set. Once the model is deemed to have achieved its peak performance (i.e., 

further modifications do not improve metrics), then the final 20% percent of the data, the test 

data set, is used to assess model performance once again, which provides results that will more 

closely resemble those obtained when new unseen data is used to make predictions. 

 

Figure 16: Vibration Profile for Experiment 200A (4BT)  
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 Figure 16 depicts the total RMS history curve for experiment 200A, which is similar to 

all the available RMS curves for the rest of the experiments considered. It should be noted that 

this experiment was carried out utilizing the four-bearing tester, which explains why readings for 

two bearings, bearings B2 and B3, are plotted simultaneously. The legends SA and M denote the 

accelerometers in the Smart Adapter and Mote positions, respectively, as presented in Chapter 3. 

Accelerometer readings from the Smart Adapter (SA) position are always recorded in every 

experiment, while Mote (M) readings were not available for all experiments, therefore, the Smart 

Adapter vibration readings were chosen as the target variable over the Mote.  

4.2 Centralized Gradient Boosting Methodology 

 The centralized gradient boosting models were developed in Python [32]. The Gradient 

Boosting Machine comes as one of many available machine learning models in the open source 

framework for machine learning in Python named “Scikit-Learn” [33], while the eXtreme 

Gradient Boosting Machine model is part of a separate framework called “XGBoost” [34].   

 Although vast amounts of data were available at the UTCRS database, there was a need 

to “preprocess” it, i.e., organize it into a format that could later be used by the algorithm for 

training and testing purposes [35]. To make this process more manageable, given the large 

amounts of data to be handled, the data for each experiment was organized in separate excel 

spreadsheets. Once the data for each experiment was arranged in the appropriate format, it was 

merged into a single spreadsheet as a comma separated value (csv) file, which is compatible with 

both the Scikit-Learn and XGBoost frameworks. 

The coefficient of determination, 𝑅2, was chosen as the assessment metric for the models 

developed in this project. This metric is used to determine the ability of a model to predict or 

explain an outcome in a regression task [36]. The 𝑅2 value is calculated following Equation (6) 
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where 𝑦̂𝑖 represents the predicted value, 𝑦𝑖 the true value, and 𝑦̅𝑖 the mean of all predicted 

values. 

𝑅2 = 1 −  
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦̅𝑖)2       (6) 

 More specifically, 𝑅2 provides the proportion of the variance in the output variable that is 

explained by the input variable [36]. A good model for the data would have a 𝑅2 value closer to 

1. As previously mentioned, the data is split into the training, cross-validation, and test sets. To 

assess model performance, a 𝑅2 value is obtained for each of these three sets, with an optimal 

model yielding similar values across all sets. 

4.2.1 Data preprocessing 

 For the purposes of this project, both the features and the target variable had to be 

arranged as columns in a table. During this process, it was critical to correctly match each RMS 

value to its respective mileage, speed, and load.  

 The RMS curves include variations in speed and load all along the duration of each 

experiment and therefore must be segmented to account for each individual interval where speed 

and load conditions change. For example, for the first 2 hours of a given experiment (segment 1), 

the bearing ran at 60 mph and 17% load, then it ran another 2 hours (segment 2) at 85 mph and 

100% load. The first thing to consider is that the mileage for these two intervals must be 

calculated separately given the difference in speeds. Furthermore, separating those two segments 

allows for the load data to be assigned to the respective RMS values. 

To obtain accurate predictions, the total mileage of each bearing had to be considered, 

i.e., the mileage boundary conditions. The first step in obtaining the mileage boundary conditions 

was to look at the UTCRS database and identify all the experiments where the bearing of choice 
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was used. Once all experiments were identified, then the mileage for each experiment was either 

calculated using a MATLAB script or obtained from experiment reports that indicated the 

number of miles the bearing had operated for, and these values were added up. Once the 

cumulative mileage prior to the experiment of interest was determined, it was then added to the 

mileage of the selected interval. Referring to the ongoing example, the total mileage for segment 

1 was (60mph × 2hrs) 120 miles, and if the cumulative bearing mileage prior to this experiment 

was 500,000 miles, then after segment 1, the bearing of interest has run 500,120 miles. 

 However, having the cumulative mileage and segment mileage was not the final step. Just 

like speed and load, a value for mileage had to be assigned to each RMS reading. Given the data 

collection specifications, discussed in Chapter 3, a value for RMS was obtained every 10 

minutes, thus, the mileage for each RMS value reflected a change equivalent to the bearing 

operating for 10 minutes at the specified speed. Going back to the example with segment 1, 

suppose the bearing of interest had 500,000 miles of operation prior to the experiment, so the 

first RMS value recorded for the current experiment was assigned a mileage value of 500,010 

miles given that at a speed of 60 mph, a 10-minute interval represents 10 miles. This process was 

performed for all 19 experiments and all data points were merged into a table, which resulted in a 

total of 53,258 data points. A summary of the data and its organization is showcased in Table 3. 
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Table 3: Data Summary and Organization 

Row Index RMS Mileage Speed 

[mph] 

Percent 

Load 

0 4.66 351,038 89.7 100 

1 4.60 351,053 89.7 100 

2 4.76 351,068 89.7 100 

⋮ ⋮ ⋮ ⋮ ⋮ 

202 5.24 352,824 66.5 110 

203 5.09 352,835 66.5 110 

204 4.81 352,846 66.5 110 

⋮ ⋮ ⋮ ⋮ ⋮ 

7,609 16.65 457,806  66.5 17 

7,610 16.10 457,817  66.5 17 

7,611 15.90 457,828 66.5 17 

⋮ ⋮ ⋮ ⋮ ⋮ 

24,696 3.15 25,771 84.5 125 

24,697 3.21 25,785 84.5 125 

24,698 3.13 25,799 84.5 125 

⋮ ⋮ ⋮ ⋮ ⋮ 

53,257 21.75 195,837 86.5 100 

 

4.2.2 Data visualization and encoding 

 Once the data was consolidated and organized in a suitable format for the algorithm, then 

the model development process started. The first step was to visualize the data distribution to 

gain some insights into improving the results. For this purpose, scatter plots were used. 
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Figure 17: RMS vs Mileage visualization 

Figure 18: RMS vs Speed visualization 

Figure 17 and Figure 18 showcase the complex relation between RMS and mileage and 

RMS and speed. The complexity of the relation between input and output variables would be an 

obstacle if traditional statistical methods were being used for the purposes of this project. 

However, this same functional relation complexity supports the proposed solution of utilizing 
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machine learning algorithms to unravel an appropriate estimate function that can predict RMS 

values. 

Figure 19: RMS vs Percent load visualization 

From the scatter plot depicted in Figure 19, it can be appreciated that load only takes on 

four values: 17, 100, 110, and 125 percent. The values for load could be considered discrete or 

“categorical”. Certain machine learning models benefit from encoding categorical values in the 

feature space. Encoding refers to converting variables which contain categories or labels, which 

are finite in number, into numerical values such that the model extracts useful information from 

them [37]. 

“Baseline models” of both the Gradient Boosting Regressor and the XGBoost Regressor, 

further described in section 4.2.3, were trained with encoded and non-encoded “Percent Load” to 

determine whether encoding the values for load would influence model performance. Table 4 

shows the encoded version of the dataset summary while Table 3 was used for the non-encoded 

assessment. 
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Table 4. Data set with encoded values for load 

Row 

Index 

RMS Mileage Speed 

(mph) 

Percent 

Load 

17 100 110 125 

0 4.66 351,038 89.7 100 0 1 0 0 

1 4.6 351,053 89.7 100 0 1 0 0 

2 4.76 351,068 89.7 100 0 1 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

202 5.24 352,824 66.5 110 0 0 1 0 

203 5.09 352,835 66.5 110 0 0 1 0 

204 4.81 352,846 66.5 110 0 0 1 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

7,609 16.65 457,806  66.5 17 1 0 0 0 

7,610 16.10 457,817  66.5 17 1 0 0 0 

7,611 15.90 457,828 66.5 17 1 0 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

24,696 3.15 25,771 84.5 125 0 0 0 1 

24,697 3.21 25,785 84.5 125 0 0 0 1 

24,698 3.13 25,799 84.5 125 0 0 0 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

53,257 21.75 195,837 86.5 100 0 1 0 0 

 

The specific encoding method used for this project is known as “one-hot encoding” 

which does not assume any hierarchy among categorical values [37]. As shown in Table 4, one-

hot encoding makes use of binary variables to indicate the presence of a category, denoted by a 

1, and the absence of the other categories by assigning a value of 0 to them. It should be noted 

that the “Percent Load” column was included in Table 4 for clarity purposes only; in practice, 

this column is removed from the data set before the training phase to avoid feature redundancy. 
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Table 5. Effect of encoding in GBR and XGBR models 

 
Gradient Boosting Regressor 

(GBR) 

eXtreme Gradient Boosting Regressor 

(XGBR) 

Metric Encoded 

Percent Load 

Non-encoded 

Percent Load 

Encoded Percent 

Load 

Non-encoded 

Percent Load 

Train 𝑅2 0.54 0.54 0.86 0.86 

Validation 𝑅2 0.53 0.53 0.77 0.77 

Test 𝑅2 0.58 0.58 0.77 0.76 

 

From Table 5, it can be observed that the encoding of the load variable did not influence 

model performance, highlighting the ability of the Gradient Boosting Machine to aptly deal with 

categorical data. The model was therefore further trained and optimized with non-encoded values 

for load given that encoding increases the number of features which in turn increases model 

complexity and computational requirements, all while providing no improvement to model 

performance. 

4.2.3 Baseline Models 

 Machine learning algorithms come with pre-defined, or default values for 

hyperparameters which can be modified by the user as needed. The first step in assessing 

improvement in model performance was to establish a baseline. To this end, the Gradient 

Boosting Regressor (GBR) and the eXtreme Gradient Boosting Regressor (XGBR) models were 

trained using their default hyperparameters and their performance was tested. These initial 

models are referred to as baseline models. The only hyperparameter modified in these baseline 

models was the loss function in the GBR which was set to “Huber” as opposed to the default 

“squared loss”. Table 6 shows the default values for hyperparameters of both models and Table 7 

contains the coefficient of determination 𝑅2 values for the preliminary models which are 
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identical to the values from Table 5. From Table 7 it is observed that the GBR has a weak initial 

performance but 𝑅2 values remain relatively consistent across all three data sets. The XGBR had 

a much stronger initial performance, however, the score for the training data set is higher than 

that of the other two data sets. Although the difference may not be large, it could point to a 

possible, and undesired, overfit of the training data set which may reduce the model performance 

on unseen data. 

Table 6: Default hyperparameter values 

Hyperparameter GBR XGBR 

Learning Rate 0.1 0.3 

Maximum Depth 3 6 

Number of Estimators 100 600 

Minimum Sample of Leaf 1 N/A 

Regularization Lambda N/A 1 

Gamma N/A 0 

 

Table 7: Preliminary model performance 

Model Data Set 𝑹𝟐 value 

GBR 

Train 0.53 

Validation 0.54 

Test 0.58 

XGBR 

Train 0.86 

Validation 0.77 

Test 0.77 
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4.2.4 Hyperparameter Tuning  

 After establishing a baseline for the performance of each model, the next step was to 

optimize their hyperparameter values. The hyperparameters chosen for optimizing the Gradient 

Bosting Regressor were “Number of Estimators”, “Learning Rate”, “Maximum Depth” and 

“Minimum Sample of Leaf”.  The Number of Estimators in a Gradient Boosting Algorithm 

refers to the number of decision trees (weak learners) that will be used to reach a decision, or in 

this specific case, calculate a value. The Learning Rate lessens the contribution of each decision 

tree by a specified value, which is important given that Friedman determined empirically that 

reaching a prediction in smaller steps yielded better results [14]. The Maximum Depth limits the 

number of nodes in the tree, where the optimal value is dependent on the interaction between the 

input variables. Deeper trees will increase model complexity and may help the model gather 

more information on the training data but if the depth is excessive it may lead to overfitting. 

Lastly, the Minimum Sample of Leaf refers to the minimum number of samples required to be at 

a terminal or leaf node. A leaf node is the terminal (last) node in a decision tree and contains 

residual values which will be used to calculate the final predicted value [38]. 

Akin to the GBR tuning, the hyperparameters chosen for optimization of XGBR were 

“Learning Rate”, “Maximum Depth”, and “Number of Estimators”, while the “Minimum Sample 

of Leaf” was not a hyperparameter available for modification on this model. Due to its optimized 

framework, the XGBR can easily overfit training data making it important to look for optimal 

values for regularization hyperparameters to avoid overfitting, thus “gamma” and “regularization 

lambda” were also included in the tuning process. The higher the gamma and regularization 

lambda values, the more conservative the predictions will be, since these hyperparameters 

penalize model complexity. 
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“GridSearchCV”, a built-in function included in Scikit-learn, was used for this 

optimization task. GridSearchCV allows the user to create a “grid” which contains specified 

values for the hyperparameters targeted for optimization. The function then trains a model for 

each combination of hyperparameter values, assesses their performance using a specified metric, 

and outputs the model with the best performance i.e., the highest metric value along with its 

respective hyperparameter values. Figure 20 and Figure 21 provide sample grids used during this 

process for each model. 

 

Figure 20: Hyperparameter grid for GBR 

 

Figure 21: Hyperparameter grid for XGBR 

 Nine values were assigned for each hyperparameter with a custom step size (increase or 

decrease between values) at each grid to ensure a thorough exploration of possible combinations 

was achieved. The first grid consisted of values which included the default values along with 

higher and lower values, i.e., the default values were used as the median. Default values were 

chosen as the median to explore whether increases or decreases in hyperparameter values yielded 
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better results. If one of the optimal hyperparameter values resulted in the maximum or minimum 

value specified, then that value was taken to be the median in a subsequent grid search with a 

smaller step size. Six grids containing different values for all hyperparameters to be tuned were 

used to obtain optimal models and then compare their performances to ultimately choose the one 

with the best predictive performance. From these six grids, which yielded six different models, 

the two models with the highest 𝑅2 values were chosen and further assessed. Table 8 and Table 9 

show the scores for the two finalist GBR and XGBR models. 

Table 8: Finalist GBR model scores 

 
Value 

Metric GBR1 GBR2 

Train 𝑅2 0.80 0.81 

Validation 𝑅2 0.74 0.73 

Test 𝑅2 0.74 0.73 

Train RMSE 2.68 2.65 

Validation RMSE 3.02 3.08 

Test RMSE 2.91 2.98 
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Table 9: Finalist XGBR model scores 

 
Value 

Metric XGBR1 XGBR2 

Train 𝑅2 0.83 0.84 

Validation 𝑅2 0.82 0.82 

Test 𝑅2 0.81 0.81 

Train RMSE 2.48 2.41 

Validation RMSE 2.53 2.54 

Test RMSE 2.50 2.51 

  

 When comparing the 𝑅2 values from Table 7 to those from Table 8, it can be appreciated 

that the optimization process had a significant effect on model performance for the GBR. For the 

XGBR, Table 9 shows that the main impact of the tuning process was achieving uniform 𝑅2 

values across all data sets, indicating good generalization. 

 Given the similarity between 𝑅2 values for finalist models, the Root Mean Square Error 

(RMSE) was used as an additional metric to assess their performance. The RMSE can be 

calculated using Equation (7) where N is the number of data points, y(i) is the true value and 

𝑦̂(𝑖) is the predicted value. This metric provides a measure of how far predictions fall from 

measured values using Euclidean distance [39].  

𝑅𝑀𝑆𝐸 =  √
∑ ‖𝑦(𝑖)−𝑦̂(𝑖)‖2𝑁

𝑖=1

𝑁
         (7) 
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 The addition of RMSE, included in Table 8 and Table 9 as an evaluation metric did not 

prove helpful in distinguishing model performance given that the error values were also very 

similar. Therefore, a third metric was utilized to evaluate performance: computational time. 

 Once the models were deemed accurate and further optimization did not seem to improve 

metrics, another relevant aspect in judging their performance was the speed at which they 

produce results, i.e., the models requiring the least computational resources.  

Table 10 shows the computational times for the finalist GBR and XGBR models. Note that the 

specifications of the computer that was used to run these models were as follows: AMD Ryzen 

Threadripper 3970X 32-Core Processor 3.69 GHz, with 256GB RAM, using a 64-bit Windows 

operating system. 

Table 10: Computational time of finalist GBR and XGBR models 

 

 

 

 The XGBR models had a far lower computational time as compared to the GBR, which is 

expected given that one of the key objectives when developing the XGBoost machine was to 

significantly improve computation speed [20]. The significant difference in computational time 

between both finalist GBR and XGBR models, was ideal for the task of differentiating their 

performance. The lower computational time can be explained when comparing the 

hyperparameter values shown on Table 11 and Table 12. The fastest models were also the 

simpler ones, meaning, the number of estimators were lower and the learning rate slightly higher. 

The fastest GBR and XGBR were selected as the strongest candidates to be used for the 

predictive task. The predictive performance of both models was compared by using them to 

Metric GBR1 GBR2 XGBR1 XGBR2 

Computational Time 26.4 s 1 m 36 s 0.811 s 1.31 s 
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predict the RMS curve of specific experiments. These predictions can be found in chapter 5. 

Table 11: Hyperparameter values for two best GBR models 

Hyperparameter GBR1 GBR2 

Learning Rate 0.01 0.005 

Maximum Depth 8 10 

Number of Estimators 400 600 

Minimum Sample of 

Leaf 

3 1 

 

Table 12: Hyperparameter values for two best XGBR models 

Hyperparameter XGBR1 XGBR2 

Learning Rate 0.2 0.22 

Maximum Depth 3 3 

Number of Estimators 180 290 

Regularization Lambda 20 24 

Gamma 1 1 

 

4.3 Federated Gradient Boosting Methodology  

 The Federated Learning experiment built upon prior work performed for the centralized 

approach previously described with a few key differences, namely, the split of the data set to 

simulate multiple parties collaborating with one another, and the use of additional scripts to setup 

the model.  

 Given that the purpose of this framework is to preserve the privacy of the data, a simple 

hypothetical scenario was set up where two distinct clients had their own shares of data and 
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wished to join a federation to obtain a global model that could benefit them both. To this end, the 

data set presented in section 4.2.1 was split randomly and evenly into two data sets with each 

client possessing one of them. Each client or party hosted their data set in their own workstation 

and one of them served as the administrator for the federation. 

4.3.1 Administrator and Party Setup 

As stated in section 2.4.1, IBM’s services were used to develop this Federated Learning 

model. As part of their services, a tutorial on how to train a Federated XGBoost model for 

classification was provided. These sample scripts were modified to perform a regression task and 

then used to carry out the training process. The tutorial included two scripts, one for the 

administrator and one to be used by each of the parties in the federation which only consisted of 

two members for this project.  

 

Figure 22: Administrator Script for IBM Federated Learning XGBoost 
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Figure 22 shows a sample of the script for the administrator with the full code available in the 

Appendix. In this administrator script, a project identification number was assigned along with 

an access token which ensured that only parties in possession of this token would be able to join 

the federation. The administrator script also enables the “remote training system”, which allows 

parties to connect to the federation and send their local model updates to the administrator. The 

model task, which in this case was set to regression, is defined by the administrator, along with a 

few hyperparameters that could be customized, namely the “learning rate”, and the “number of 

rounds”. The number of rounds is a hyperparameter not previously introduced in the centralized 

approach, given that it is unique to the Federated Learning framework. The number of rounds 

refers to the number of times each party will train their respective local model and the number of 

updates sent to the administrator to modify the global model. The administrator script also 

provides the option to define a loss function, however, IBM’s services currently support only the 

squared loss function and not the Huber loss function which was used for the centralized GBR. 

The last portion of this script is geared towards saving the trained model in IBM’s platform, 

which allows the user to use the trained model to obtain predictions on new unseen data as 

shown in Figure 23. 
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Figure 23: IBM’s platform for online predictions. 

 

 

Figure 24: Party Script for IBM Federated Learning XGBoost 
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Figure 24 contains a sample of the script for the parties with the extended code made 

available in the Appendix. This script begins by taking inputs from the administrator script, 

specifically the identifier for the remote training system and the training task, which allows the 

party to connect with the administrator. Once all parties connect with the administrator the 

training begins. The following parts consist of commands to indicate where the data can be found 

in the workstation and the name and location of the “data handler” file which is of fundamental 

importance in this experiment. 

4.3.2 Data Handler 

 The inclusion of multiple parties in a training task poses unique challenges with one of 

the most important ones being the difference in data organization. Each party may follow 

different standards for data acquisition and recording, which presents an issue for the algorithm. 

Machine learning algorithms are usually programmed to find data in a certain format or location 

within a structure. For example, in the centralized approach for this project, the data was 

organized in a table where the RMS values were in the first column. From this table, the RMS 

column was then removed and assigned to a “y” vector, while the remaining columns were used 

for the feature space in an “X” array which the algorithm would use for training. If a data file 

were given to the algorithm where the RMS values existed in a different column other than the 

first one, then the algorithm would either fail to run or would use incorrect values for the feature 

space which would lead to a poor performance and inaccurate predictions. 

 To address this issue, IBM introduced the “data handler” file, which aims at formatting 

the data from different parties into a common structure to ensure that the correct values for input 

and output variables are being considered. In addition to providing homogeneity to the training 

data of each party, the data handler can also take care of feature engineering or data pre-
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processing tasks. For example, if one of the parties suggests an additional feature to be 

introduced to the dataset, such as combining two pre-existing features by multiplying their 

values, then the data handler can be coded to perform this operation for the data belonging to 

each party. Each party gets a copy of the data handler file, shown in Figure 25 which ideally will 

be identical, but can be customized for a specific party if there is a special need. The data handler 

is a Python Class which defines the needed functions. For the scope of this project, the only 

functions defined in the data handler were those used to identify the file containing the training 

data, and a few pre-processing steps that involved dividing the features and output variables into 

“X” and “y” arrays and splitting the data into training and test sets. 

Figure 25: Data handler file 
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RESULTS AND DISCUSSION 

 

 

5.1 Centralized Gradient Boosting 

 After the hyperparameter tuning process was completed, the performance of the finalist 

GBR and the XGBR models was assessed using the coefficient of determination 𝑅2 and the Root 

Mean Square Error (RMSE). Figure 26 to Figure 29 show scatter plots of the predicted versus 

actual RMS values for the training, validation, and testing data sets for all models along with 

their respective 𝑅2 and RMSE values. It should be noted that the red line on these plots is a 

“perfect fit” line and not a “best fit” line. A perfect fit is obtained when all predicted values are 

identical to their corresponding actual values, while a best fit line is obtained through simple 

linear regression and has the best fit between all plotted values. A higher concentration of values 

falling on the perfect fit line indicates the superior performance of a model over its counterpart. 

 

Figure 26: Predicted versus actual RMS values for the GBR1 model 

CHAPTER V 
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Figure 27: Predicted versus actual RMS values for the GBR2 model 

In the case of the finalist GBR models it is apparent that the scatter plots have a similar 

distribution. The plots for these two models show a cluster of points where actual values are in 

the range between 20 and 40 while their corresponding predicted values are in the range of 0 to 

10, indicating the model struggled to make reasonable predictions at that range. This cluster of 

points was not present in the XGBR models. 

 

Figure 28: Predicted versus actual RMS values for the XGBR1 model 
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Figure 29: Predicted versus actual RMS values for the XGBR2 model 

The plots for the finalist XGBR models showed very similar results where the points fall 

close to the best fit line, which indicates a strong performance. These plots did not show one 

XGBR model having an advantage over the other. 

Overall, the XGBR models had higher values for 𝑅2 as compared to the GBR models, but 

both had strong predictive performances. The better fit of the XGBR model compared to the 

GBR model can be attributed to its optimized framework. 

5.1.1 Comparison with traditional statistical methods 

As mentioned in section 2.1.2, when discussing overfitting issues, there are instances 

where the use of machine learning algorithms is not necessary. These cases can occur when 

datasets are simple and explanatory variables provide relevant and easily extractable information 

to predict the response variable. Traditional statistical methods, such as linear and polynomial 

regression have the advantage of using significantly less computational resources than machine 

learning algorithms. 

The performance of these two methods was tested on the dataset using 𝑅2 values as a 

metric to facilitate comparing their performance with that of the trained GBR and XGBR 

models. 
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Table 13: Coefficient of determination for linear and quadratic regression 

Model Data Set 𝑹𝟐 value 

Linear Regression 

Training 0.30 

Validation 0.29 

Test 0.29 

Quadratic Regression 

Training 0.37 

Validation 0.36 

Test 0.37 

 

As seen in Table 13, the 𝑅2 values for these models are significantly lower than those 

obtained by the gradient boosting models. The quadratic regression model showed an 

improvement in performance as compared to the simple linear regression model. Given that an 

increase in polynomial degree yielded an increase in performance, there may be a higher order 

polynomial regression that would adequately predict the bearing vibration curve and nullify the 

need for the established machine learning model. To verify this prospect, an optimization process 

was performed to find the polynomial order which would yield the highest 𝑅2 value, which was 

then compared against the machine learning models developed for this project. 
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Figure 30: Optimization of Polynomial Regression 

Figure 30 shows the optimization curve for polynomial regression. Polynomial degree 

values ranging from 2 to 40 were tested in the optimization process. An 𝑅2 value was obtained

for every value of polynomial degree and plotted for visualization. The optimization curve 

reveals an ideal value for a polynomial degree between 4 and 8. Given that a higher order 

polynomial regression is more computationally expensive, a degree of 4 was chosen as the 

optimal value since it was the lowest polynomial degree that yielded the highest 𝑅2 value. Table

14 shows the results for the quartic regression model. 

Table 14: Optimal Polynomial Regression Scores 

Model Data Set 𝑹𝟐 value

Polynomial Regression (4th order) 

Training 0.41 

Validation 0.41 

Test 0.41 
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The results for the optimization process show that even the polynomial regression model with the 

highest values for 𝑅2 performs significantly worse when compared to the machine learning 

models developed in this study (see Table 8 and Table 9) 

5.1.2 Individual experiment predictions 

 The next step was to assess the predictive performance of the developed models by 

visually comparing them to actual measured vibration curves. One experiment from the 4BT 

modality and another one from the SBT modality were chosen to verify if the models could 

account for the change in testing modality without a decline in performance. Experiment 200 

was chosen for the 4BT case while experiment 201B was selected for the SBT case. Both 

experiments showcase high RMS values which serve to test whether the model can account for 

high variance in the data and still yield accurate predictions. Figure 31 to Figure 38 show the 

actual RMS values obtained throughout the duration of the experiments plotted against the GBR 

and XGBR model predictions. 

  

Figure 31: GBR1 model predictions for experiment 200 
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Figure 32: GBR2 model predictions for experiment 200 

Figure 31 and Figure 32 allow for a visual comparison of the predictive performance of 

the two finalist GBR models on experiment 200. Both models had a strong performance with a 

slight deviation towards the end of the plot. As has been observed in previous comparisons, this 

visual assessment did not provide a clear answer as to which model was superior to the other. 

 Figure 33 and Figure 34 show the prediction plots of the XGBR models for experiment 

200, where a similar behavior to the GBR models is observed. Both models had a strong 

performance with a slight deviation towards the end. The XGBR2 showed slightly higher peak 

values as compared to the XGBR1 which can be attributed to its increased “number of 

estimators” (as discussed in section 4.2.4). These allow the model to obtain more information 

from the input variables and recreate a more detailed functional relation, causing the predicted 

values to be closer to actual values. 
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Figure 33: XGBR1 model predictions for experiment 200 

 

Figure 34: XGBR2 model predictions for experiment 200 
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 There is a key difference between the GBR and XGBR models which is worth noting. 

Compared to the GBR models, the XGBR had “flatter” predictions on the peaks of the actual 

RMS data. These plateaus are indicative of more “conservative” predictions which can be 

attributed to the regularization hyperparameters, gamma and lambda, which are part of the 

XGBR but not the GBR. Overall, both models had a strong performance, and succeeded in one 

very important aspect: both models predicted the maximum threshold violation at the same point 

in time where the actual RMS data surpassed said threshold. The prediction of threshold 

violation is a crucial criterion to be met by these models since it is an indicator of end of service 

life. 

 

Figure 35: GBR1 model predictions for experiment 201B 
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Figure 36: GBR2 model predictions for experiment 201B 

 Figure 35 and Figure 36 show the prediction plots of the finalist GBR models for 

experiment 201B. The GBR1 model failed to capture the sudden decrease in RMS at the 36-hour 

mark, but it effectively captured the sudden increase towards the end at the 62-hour mark. The 

opposite was true for the GBR2 model, which did capture the decrease in RMS at the 36-hour 

mark but had a more conservative prediction for the sudden increase at the 62-hour mark. The 

trade-off between predictive instances suggests that the GBR model only allows for some degree 

of certainty in predictions and that increasing model complexity will not result in better 

predictions given that the GBR2 is more complex than the GBR1. The GBR2 model still failed 

to make reasonable predictions for both sudden variations in RMS. 
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Figure 37: XGBR1 model predictions for experiment 201B 

 

Figure 38: XGBR2 model predictions for experiment 201B 
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Figure 37 and Figure 38 show that for experiment 201B, both finalist XGBR models 

predict values closer to actual values when compared to the GBR predictions. Compared to the 

XGBR1, the XGBR2 model had predicted higher-fidelity values shown by how closely the 

predicted RMS curve matches the actual RMS curve, which is especially apparent when 

considering the sudden increase in RMS at the 62-hour mark. Both XGBR models neglected the 

decrease in RMS at the 36-hour mark, which is partly attributed to the regularization 

hyperparameters which prevent the model from reconstructing a relational function complex 

enough to capture them. 

The plots reveal that the predictions for all models closely match the vibration curves. It 

is worthwhile to note that the XGBR models had flatter predictions when actual values showed 

peaks, which could be attributed to the regularization terms built into the algorithm. The key 

takeaway from these plots is that for all experiments, the models were able to accurately mark 

the point in time at which the vibration levels surpassed the established threshold. If a one-time 

violation of this established threshold is assumed to be the end of service life, then it can be 

concluded that both models can give a suitable estimate of the remaining service life of a 

bearing. Given that all models had similar performance, the final choice for the ideal model 

becomes that which has the lower computational time, which was the case for the GBR1 and 

XGBR1 models. 

5.1.3 Mileage plots 

The RMS curve was plotted against mileage, as opposed to time, to provide stakeholders 

a more concise and actionable value to reveal when the vibration levels for a given bearing will 

surpass the established threshold.   



66 

 

 Figure 39 and Figure 40 show these mileage plots for experiment 200 with predicted 

curves from the GBR1 and XGBR1 models since they were chosen as the optimal models. 

 

Figure 39: Experiment 200 RMS versus mileage plot for GBR1 

 

Figure 40: Experiment 200 RMS versus mileage plot for XGBR1 
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Figure 41 and Figure 42 show the GBR1 and XGBR1 predicted RMS curves versus 

mileage for experiment 201B. It should be noted that the mileage shown in these plots is only 

pertaining to the mileage for the given experiment and not the cumulative bearing mileage. The 

predicted curves indicate where the RMS levels surpass the established threshold, even on a per 

experiment basis, which is advantageous in displaying when the bearing reaches a critical state 

by way of milage in each trip, making it more communicable to stakeholders.  

Figure 41: Experiment 201B RMS versus mileage plot for GBR1 
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Figure 42: Experiment 201B RMS versus mileage plot for XGBR1 

To convey the value of these graphs, experiment 200 can be considered an estimated 

route with pre-defined speeds and loads at each section. If strictly adhering to the case where a 

one-time violation of the maximum threshold indicates end of service life, then the bearing used 

for experiment 200 could only be used for 1,000 miles since that is when the predicted RMS 

surpasses the maximum threshold as seen in Figure 39 and Figure 40. Alternatively, 15,000 

miles can be predicted as the remaining service life for that specific bearing given that RMS 

values dramatically increase above the threshold after that milestone. These prediction curves 

will help stakeholders make data-driven decisions, plan their maintenance schedules preventively 

and adjust the expected distance, speed, and load conditions of their trains. 
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5.1.4 Feature Importance 

Once the predicted and actual RMS values were compared and the models yielded a 

satisfactory performance, the next step was to assess which variables were the most crucial in the 

predictions performed by the algorithm. That is, which variables provided the most information 

for the algorithm to reconstruct a functional relation and predict the RMS of a given bearing. For 

this purpose, the relative feature importance was obtained, along with SHAP explanative plots. 

Developed in 1953 by Lloyd Shapley [40], Shapley or SHAP values help with the 

interpretation of machine learning predictions. The SHAP value is the average marginal 

contribution of a feature value across all possible feature combinations [41]. 

Figure 43: SHAP feature importance for GBR1 
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Figure 44: SHAP feature importance for XGBR1 

Figure 43 and Figure 44 show that for both the GBR1 and XGBR1, the feature which 

provided the most information for RMS prediction is the cumulative bearing mileage. The 

cumulative bearing mileage is the only feature of the three chosen for this project which has 

“age-related” information. The speed and load features are the instantaneous values the bearing 

is experiencing at the time when RMS values were recorded, and while they have a positive 

impact on predictions, their contributions are lesser than that of mileage. A lesser contribution in 

comparison to that of other features does not indicate a negative impact on predictions or that the 

feature has no correlation to the response variable. 

Figure 45: SHAP values for GBR1 
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Figure 46: SHAP values for XGBR1 

Figure 45 and Figure 46 showcase graphs for the SHAP values of each feature and a 

more detailed visualization of their contribution towards RMS prediction. An advantage of 

SHAP values is that they are measured in the same units as the response variable, which in this 

case means these SHAP values are measured in ‘g’. Each feature value is color coded where blue 

represents a low feature value, e.g., a mileage value of 10,000 miles, and magenta represents a 

high feature value, e.g., a mileage value of 500,000 miles. These feature values are then plotted 

according to their SHAP values which indicate their impact on the final prediction. A positive 

SHAP value indicates that the contribution of that specific feature value increased the value of 

the final prediction and a negative SHAP values indicates the feature value had a decreasing 

effect on the final predicted value. For example, in Figure 46 a point for mileage can have a 

SHAP value of close to 40; this point is colored in magenta which means that it was a high value 

for mileage and its contribution to the final prediction was near to 40 g. 

The GBR and XGBR SHAP value graphs show similar trends. High values for mileage 

resulted in high SHAP values suggesting that higher mileage translates to higher RMS values, 

which is in agreement with the observations made on the experiments conducted at the UTCRS. 

Low values for speed were associated with negative SHAP values, suggesting that bearings 

operating at low speeds yield low values for RMS. In the case for load, low load values resulted 
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in high SHAP values, this may be attributed to the fact that the majority of RMS readings were 

obtained at 17% load operating conditions as was shown in Figure 19 in section 4.2.2 which also 

reveals that peak RMS values also happen at 17% load conditions.   

5.2 Federated XGBoost 

 The performance of the XGBoost model developed in a federated learning framework 

was assessed in a similar way to that of the centralized approach. It should be noted that the 

environment provided by IBM for federated learning did not allow for a 60-20-20 data split since 

only a training and test set could be defined using their services, therefore, 80% of the data was 

allocated to the training set and the remaining 20% to the test set. Furthermore, the metrics were 

automatically provided once the training stage started and were based solely on the test set. As 

with the centralized models, the first step was to determine a baseline performance by training 

and testing the model with default hyperparameter values to then optimize the hyperparameters 

and compare the results. Table 15 contains the default and tuned hyperparameter values for this 

model while Table 16 shows their respective 𝑅2 and RMSE values on the testing data set. 

Table 15: Federated XGBoost default and tuned hyperparameter values 

Hyperparameter Baseline Model Tuned Model 

Learning Rate 0.1 0.05 

 Number of Rounds 100 35 
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Table 16: Federated XGBoost metric values 

Metric Baseline Model Tuned Model 

 Test 𝑅2 0.66 0.71 

 Test RMSE 12.54 10.54 

 

There was a slight increase in performance between the baseline and the tuned model 

which indicates the hyperparameter tuning process did influence the model, however, the change 

was not as significant as with the centralized models. 

The 𝑅2 value of the tuned model for the test dataset was not much lower than that which 

was obtained with the finalist GBR models developed in a centralized framework, suggesting 

that the federated framework would give similar results. The RMSE, however, was significantly 

higher than that of the centralized models which signaled a possible decrease in performance as 

compared to its centralized counterpart. It is worthwhile to note that this comparison of multiple 

metrics highlights the advantage of not relying on a single metric value to assess model 

performance. 

To further explore the federated XGBoost performance, scatter plots for the actual and 

predicted values for the whole data set were generated to see how closely the curves matched.  
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Figure 47: Federated XGBoost predictions on whole data set as compared to actual values 

 Figure 47 shows the scatter plot of actual and predicted values against mileage. This plot 

used for preliminary assessment suggested that the model had an acceptable performance, 

however, further analysis was required to determine whether the model was indeed able to 

generate satisfactory predictions. To this end, a similar scatter plot as those shown in section 5.1 

was generated where all predicted and actual values were graphed to see how accurately the 

cluster of points aligned to the perfect fit line.  

Figure 48 shows that the cluster of points has a significantly different distribution as 

compared to the scatter plots from the centralized models. The scatter plot for the federated 

XGBoost model shows a tendency for predicted values to spread along the x-axis which deviates 

from the perfect fit line. Furthermore, the plot shows that there are instances where the model 

predicted negative values, which is inconsistent with the RMS formula where part of the 
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equation indicates to square all the values to be considered, effectively eliminating all negative 

values. 

 

Figure 48: Predicted versus actual RMS values for the Federated XGBoost model 

 Figure 48 provided further signs that suggested the model was not successfully carrying 

out its predictive task. The last step needed to confirm that the model was indeed not providing 

satisfactory predictions was to generate predicted RMS curves for individual experiments as 

shown in section 5.1.2. Figure 49 and Figure 50 show the predicted RMS curves for experiments 

200 and 201B which provide a consistent point of comparison to the centralized GBR and 

XGBR models. The predicted curves differ significantly from the actual curves, confirming that 

the federated XGBoost model was highly biased. A biased model signifies that the reconstructed 

functional relation was not complex enough to effectively capture the relation between input and 

output variables. This decrease in performance between centralized and federated machine 

learning models highlights the trade-off between performance and privacy preservation. 
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Figure 49: Federated XGBoost model predictions for experiment 200 

 

Figure 50: Federated XGBoost model predictions for experiment 201B 
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 The bias in the Federated XGBoost model can be attributed to several factors. As 

discussed in section 4.3.1, the federated framework provided by IBM only allowed for 

customization of two hyperparameters which were the learning rate and the number of rounds. 

Optimization of other hyperparameters could have proven beneficial in improving model 

performance. Another aspect to be considered is the fact that the only available choice for loss 

function was the squared loss function. It is possible that the use of the Huber loss function could 

also have had a positive impact on model performance. Lastly, as discussed in section 2.4.1, 

federated learning models make use of summary information or “updates” from local models to 

train the global model. The use of these updates as training information could explain the 

negative predictions obtained with this model given that if the model had used the actual RMS 

data, no negative values would have been introduced in the training data set and thus no negative 

predictions would be possible.
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CHAPTER VI 

 

 

CONCLUSIONS AND FUTURE WORK 

 

Defective bearings in operation must be detected in a timely manner to avoid inefficient 

performance and even catastrophic failure. The wayside detection technologies currently in use 

in the majority of the North American Railroad, such as HBDs and TADS are unreliable and thus 

alternative detection systems have been in development by several groups. For over a decade, the 

UTCRS team at the University of Texas Rio Grande Valley has taken significant steps towards 

this objective through the development of onboard monitoring sensors and data collection. These 

onboard sensors continuously capture the temperature and vibration levels of bearings in 

operation and alert operators when readings exceed established thresholds for safe operation. The 

continuous monitoring of bearings provides a more reliable solution to flagging defective 

bearings in an accurate and timely manner. 

The work presented in this thesis aims at leveraging the data collected by the team at the 

UTCRS by using it to train machine learning algorithms that can predict future bearing vibration 

levels. Gradient Boosting and eXtreme Gradient Boosting Regression models in a centralized 

and federated framework were developed to predict the remaining service life of train bearings. 

 Both centralized models proved to be significantly more accurate in their prediction as 

compared to traditional statistical methods such as linear and polynomial regression. These 

models come as a practical option to predict the RMS vibration curve of bearings given that only 

three input variables are needed, namely cumulative bearing mileage, operating speed, and load.
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Operating speed and load are easy to obtain since they must be specified before a train is 

scheduled for operation. In contrast, cumulative bearing mileage may not be readily available 

given that in field operations individual bearing mileage is not usually recorded, however, simple 

mileage record keeping can be implemented in operations to obtain this information. 

 Analysis of the feature importance of the final models showed results that were consistent 

with trends previously observed at the UTCRS. More specifically, it was observed that the 

models had more difficulty using data points with low values for speed to predict RMS, which is 

consistent with observations at the center where RMS readings have significant variance at low 

speeds. Another observation from feature importance analysis which matched historical trends 

was the fact that bearings with higher mileage yielded higher RMS values regardless of speed 

and load, which comes as an expected result given that they have been subjected to more wear. 

 The federated model did not have a satisfactory performance. The trade-off between 

performance and privacy preservation is one of the main challenges facing the recently 

developed field of federated learning which is rapidly expanding. The decrease in model 

performance when using the federated framework may be attributed to the limitations associated 

with it. One critical limitation imposed by the chosen federated learning framework is the 

inability to modify and optimize hyperparameters other than the learning rate and number of 

rounds. Furthermore, using the squared loss function as opposed to the Huber loss function may 

have hindered model performance. 

 Further improvement of these models can be achieved through different methods. 

Namely, an increase in the amount of training data can prove beneficial, especially if coming 

from additional bearings not considered in this study. The addition of explanatory variables such 

as the cumulative speed and load the bearing has experienced through its service life (as opposed 
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to the instantaneous speed and load considered in this project) may also help create more robust 

models. Another explanatory variable worthy of consideration is the “maximum g” value which 

refers to the highest number included in the RMS calculation. 

 The mentioned options for model refinement are currently being considered in an iteration of 

this project also performed by the UTCRS team. This second-generation project aims at 

expanding the amount of data used to train the machine learning algorithms. This additional data 

will come from a wider scope of bearings for which data is available at the UTCRS records, 

which includes bearings for which full mileage records or other values may not be available. To 

address these missing values, data processing techniques will be implemented in order to make a 

more efficient use of the vast records at the UTCRS database. 

The developed models along with onboard sensors provide a data-driven tool that 

stakeholders in the rail industry can use to guide their decisions regarding maintenance of train 

bearings. These models will allow for the creation of predictive maintenance schedules which 

will make rail operations safer and markedly more cost-efficient.
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APPENDIX 

Full administrator script for Federated XGBoost 

# @hidden_cell 

# The project token is an authorization token that is used to access proje

ct resources like data sources, 

#connections, and used by platform APIs. 

from project_lib import Project 

project = Project(project_id='51864300-0251-4e7b-8c4e-c7f6e75f73d4', proje

ct_access_token='p-5dc55297565421704fbddf40089c6003ce9aa935') 

API_VERSION = "2019-10-25" 

WML_SERVICES_HOST = "us-south.ml.cloud.ibm.com" # or "eu-de.ml.cloud.ibm.c

om" 

WML_SERVICES_URL = "https://" + WML_SERVICES_HOST 

IAM_TOKEN_URL = "https://iam.cloud.ibm.com/oidc/token" 

# Name of your COS bucket 

COS_BUCKET = "bearingdata1-donotdelete-pr-4wsaodz5ooiqpk" 

IAM_APIKEY = "KjO_qP6r7I-s1cm3NUkRs2smTgjqsnUXn9rQF9tG2Ezs"  

# Get this from Manage < IAM < Users, and check the URL. Your user ID shou

ld be in the format IBMid-<xxx>. 

CLOUD_USERID = "IBMid-661003DZHG" 

PROJECT_ID = "51864300-0251-4e7b-8c4e-c7f6e75f73d4" # Get this by going in

to your WS project and checking the URL, or create a project token and cli

ck "Insert project token" 

import urllib3 

import requests 

import json 

from string import Template 

urllib3.disable_warnings() 
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payload = "grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey=" + IA

M_APIKEY 

token_resp = requests.post(IAM_TOKEN_URL , 

  headers={"Content-Type": "application/x-www-form

-urlencoded"},

  data = payload, 

  verify=True) 

print(token_resp) 

token = "Bearer " + json.loads(token_resp.content.decode("utf-8"))["access

_token"] 

print("WS token: %s " % token) 

wml_remote_training_system_asset_one_def = Template(""" 

{ 

  "name": "Bearing RTS", 

  "project_id": "$projectId", 

  "description": "Remote Training System for Bearing Data1", 

  "tags": [ "Federated Learning" ], 

  "organization": { 

 "name": "IBM", 

 "region": "US" 

  }, 

  "allowed_identities": [ 

 { 

 "id": "$userID", 

 "type": "user" 

 } 

  ], 

  "remote_admin": { 

 "id": "$userID", 

 "type": "user" 

  } 

} 

""").substitute(userID = CLOUD_USERID, 

 projectId = PROJECT_ID) 

wml_remote_training_system_one_resp = requests.post(WML_SERVICES_URL + "/m

l/v4/remote_training_systems", 

 headers={"Content-Type

": "application/json", 

 "Authorizatio

n": token}, 

 params={"version": API

_VERSION, 
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 "project_id": 

PROJECT_ID}, 

 data=wml_remote_traini

ng_system_asset_one_def, 

 verify=False) 

print(wml_remote_training_system_one_resp) 

status_json = json.loads(wml_remote_training_system_one_resp.content.decod

e("utf-8")) 

print("Create remote training system response : "+ json.dumps(status_json, 

indent=4)) 

wml_remote_training_system_one_asset_uid = json.loads(wml_remote_training_

system_one_resp.content.decode("utf-8"))["metadata"]["id"] 

print("Remote Training System id: %s" % wml_remote_training_system_one_ass

et_uid) 

training_payload = Template(""" 

{ 

  "name": "FL Aggregator", 

  "tags": [

 { 

 "value": "tags_jobs_fl", 

 "description": "Sample FL Aggregator" 

 } 

  ], 

  "federated_learning": { 

 "fusion_type": "xgb_regressor", 

 "learning_rate": 0.1, 

 "loss": "squared_error", 

 "max_bins": 255, 

 "rounds": 100, 

 "metrics": "loss", 

 "remote_training" : { 

 "quorum": 1.0, 

 "remote_training_systems": [ { "id" : "$rts_one", "required" : true 

} ] 

 }, 

 "software_spec": { 

 "name": "runtime-22.1-py3.9" 

 }, 

 "hardware_spec": { 

 "name": "XS" 

 } 

  }, 

  "training_data_references": [], 

  "results_reference": { 

 "type": "container", 

 "name": "outputData", 
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 "connection": {}, 

 "location": { 

 "path": "." 

 } 

  }, 

  "project_id": "$projectId"  

} 

""").substitute(projectId = PROJECT_ID, 

 rts_one = wml_remote_training_system_one_asset_uid) 

create_training_resp = requests.post(WML_SERVICES_URL + "/ml/v4/trainings"

, params={"version": API_VERSION}, 

 headers={"Content-Type": "application

/json", 

 "Authorization": token}, 

 data=training_payload, 

 verify=False) 

print(create_training_resp) 

status_json = json.loads(create_training_resp.content.decode("utf-8")) 

print("Create training response : "+ json.dumps(status_json, indent=4)) 

training_id = json.loads(create_training_resp.content.decode("utf-8"))["me

tadata"]["id"] 

print("Training id: %s" % training_id) 

get_training_resp = requests.get(WML_SERVICES_URL + "/ml/v4/trainings/" + 

training_id, 

 headers={"Content-Type": "application/jso

n", 

 "Authorization": token}, 

  params={"version": API_VERSION, 

 "project_id": PROJECT_ID}, 

  verify=False) 

print(get_training_resp) 

status_json = json.loads(get_training_resp.content.decode("utf-8")) 

print("Get training response : "+ json.dumps(status_json, indent=4)) 

print("WML_SERVICES_HOST = '%s'" % WML_SERVICES_HOST) 

print("PROJECT_ID = '%s'" % PROJECT_ID) 

print("IAM_APIKEY = '%s'" % IAM_APIKEY) 

print("RTS_ID = '%s'" % wml_remote_training_system_one_asset_uid) 

print("TRAINING_ID = '%s'" % (training_id)) 

############################### Run Bearing Party and then come back to th

is part ##################################### 
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COS_ENDPOINT_URL = "http://s3.us.cloud-object-storage.appdomain.cloud" # G

o to your bucket and check Configurations > Endpoints

# Go into your COS instance (found in https://cloud.ibm.com/resources) and 

click Credentials. 

# Enter your bucket used by this project ex. myproject-donotdelete-pr-XXX. 

# Expand to find the access key ID and secret access key. 

COS_ACCESS_KEY_ID = "1f2246fedefe4753b1808b7d43b901c7" 

COS_SECRET_ACCESS_KEY = "bf82cde58a82e4a848217245f50f59e3578492895838dee4" 

BUCKET = "bearingdata1-donotdelete-pr-4wsaodz5ooiqpk" # bucket used by pro

ject ex. myproject-donotdelete-pr-XXX. To find this, go to your project, c

lick Manage > General and find your associated COS bucket 

!pip install s3fs

import s3fs 

import json 

connection = { 

 "endpoint_url": COS_ENDPOINT_URL, 

 "access_key_id": COS_ACCESS_KEY_ID, 

 "secret_access_key": COS_SECRET_ACCESS_KEY 

} 

fs = s3fs.S3FileSystem( 

 anon=False, 

 key=connection["access_key_id"], 

 secret=connection["secret_access_key"], 

 client_kwargs={'endpoint_url': connection["endpoint_url"]} 

) 

f = fs.open(BUCKET + "/" + training_id + "/assets/" + training_id + "/reso

urces/wml_model/request.json") 

req = json.loads(f.read()) 

f.close()

req["name"] = "Trained Bearing Whole Data" 

model_save_payload = json.dumps(req) 

print ("Model save payload: %s" % model_save_payload) 

model_save_resp = requests.post(WML_SERVICES_URL + "/ml/v4/models", 

  params={"version": API_VERSION, 

  "project_id": PROJECT_ID, 

  "content_format": "native"}, 
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  headers={"Content-Type": "application/json

", 

 "Authorization": token}, 

  data=model_save_payload, 

  verify=False) 

print(model_save_resp) 

status_json = json.loads(model_save_resp.content.decode("utf-8")) 

print("Save model response : "+ json.dumps(status_json, indent=4)) 

model_id = json.loads(model_save_resp.content.decode("utf-8"))["metadata"]

["id"] 

print("Saved model id: %s" % model_id) 

Full party script for Federated XGBoost 

# @hidden_cell 

# The project token is an authorization token that is used to access proje

ct resources like data sources, 

#connections, and used by platform APIs. 

from project_lib import Project 

project = Project(project_id='51864300-0251-4e7b-8c4e-c7f6e75f73d4', proje

ct_access_token='p-5dc55297565421704fbddf40089c6003ce9aa935') 

############################# copy from bearing admin ####################

############## 

WML_SERVICES_HOST = 'us-south.ml.cloud.ibm.com' 

PROJECT_ID = '51864300-0251-4e7b-8c4e-c7f6e75f73d4' 

IAM_APIKEY = 'KjO_qP6r7I-s1cm3NUkRs2smTgjqsnUXn9rQF9tG2Ezs' 

RTS_ID = 'd74b89d6-0cd5-41a3-9579-59e4dfd29c89' 

TRAINING_ID = '69141a68-e665-41b9-9165-cd3b3d3fdff2' 

########################### download data ################################

#################### 

import requests 

dataset_resp = requests.get("https://raw.githubusercontent.com/leonelvc/be

aringFL/main/RMS%20local.csv", 

  allow_redirects=True) 

f = open('RMS local.csv', 'wb') 

f.write(dataset_resp.content)

f.close()



92 

!ls -lh

import sys 

!{sys.executable} -m pip install --upgrade 'ibm-watson-machine-learning[fl

-rt22.1]'

from ibm_watson_machine_learning import APIClient 

wml_credentials = { 

 "apikey": IAM_APIKEY, 

 "url": "https://" + WML_SERVICES_HOST 

} 

wml_client = APIClient(wml_credentials) 

wml_client.set.default_project(PROJECT_ID) 

################################################# DATA HANDLER ###########

############################## 

datahandler_resp = requests.get("https://raw.githubusercontent.com/leonelv

c/bearingFL/main/custom_data_handler3.py", 

  allow_redirects=True) 

f = open('custom_data_handler3.py', 'wb') 

f.write(datahandler_resp.content)

f.close()

!ls -lh

import json 

from pathlib import Path 

working_dir = !pwd 

pwd = working_dir[0] 

party_config = { 

 wml_client.remote_training_systems.ConfigurationMetaNames.DATA_HANDLER

: { 

 "info": { 

 "csv_file": "./RMS local.csv" 

 }, 

 "name": "CustomDataHandler", 

 "path": "./custom_data_handler3.py" 

  } 

} 
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print(json.dumps(party_config, indent=4)) 

party = wml_client.remote_training_systems.create_party(RTS_ID, party_conf

ig) 

party.monitor_logs() 

party.run(aggregator_id=TRAINING_ID, asynchronous=False) 
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