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ABSTRACT

Rahman, Md Salman, Could Cultures Determine the Course of Epidemics and Explain Waves

of COVID-19?. Master of Science (MS), August, 2022, 85 pp., 6 tables, 54 figures, references,

55 titles.

Coronavirus Disease (COVID-19), caused by the SARS-CoV-2 virus, is an infectious disease

that quickly became a pandemic spreading with different patterns in each country. Travel bans,

lockdowns, social distancing, and non-essential business closures caused significant economic

disruptions and stalled growth worldwide in the pandemic’s first year. In almost every country,

public health officials forced and/or encouraged Nonpharmaceutical Interventions (NPIs) such

as contact tracing, social distancing, masks, and quarantine. Human behavioral decision-making

regarding social isolation significantly impedes global success in containing the pandemic. This

thesis focuses on human behaviors and cultures related to the decision-making of social isolation

during the pandemic. Within a COVID-19 disease transmission model, we created a conceptual

and deterministic model of human behavior and cultures. This study emphasizes the importance

of human behavior in successful disease control strategies. Additionally, we introduce a back

engineering approach to determine whether cultures are explained by the courses of COVID-19

epidemics. We used a deep learning technique based on a convolutional neural network (CNN) to

predict cultures from COVID-19 courses. In this system, CNN is used for deep feature extraction

with ordinary convolution and with residual blocks. Also, a novel concept is introduced that

converts tabular data into an image using matrix transformation and image processing validated by

identifying some well-known function. Despite having a small and novel data set, we have achieved

an 80-95% accuracy, depending on the cultural measures.
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CHAPTER I

INTRODUCTION

1.1 Compartmental Models of Infectious Disease

Disease models play an essential role in understanding and managing pathogen transmission

dynamics. They can describe spatial and temporal patterns of disease prevalence and investigate or

better understand the factors that influence disease incidence. Modeling is crucial in determining

which treatments and interventions are most effective, how cost-effective these approaches are, and

what specific factors must be considered when attempting to eradicate the disease. The findings of

those models can help policymakers implement practical, real-world solutions.

Compartmental modeling is very effective and popular for infectious disease modeling, where the

population is assigned into compartments. Epidemiologists frequently use a set of models known

as compartmental models to understand the complex dynamics underlying disease transmission.

These models, which were developed in the early twentieth century, divide a population into groups

based on their risk or infection status. Compartmental modeling is very effective and popular for

infectious disease modeling, where the population is assigned into compartments. A system of

differential equations governs compartmental models, which track the population as a function of

time, stratifying it into different groups based on risk or infection status [6, 5].

Compartmental models are deterministic (could also be stochastic), which means they produce the

same results every time given the same inputs. They can predict the various properties of pathogen

spread, estimate the duration of epidemics, and be used to understand how different situations or

interventions affect pathogen spread outcomes.

1



Figure 1.1: Susceptible-Infectious-Recovered (SIR) model [2].

1.1.1 Susceptible-Infectious-Recovered (SIR) Model

In 1927, W. O. Kermack and A. G. McKendrick developed the SIR (Susceptible, Infectious,

and Removed) model; the total population was three compartment. Each variable (S(t), I(t), R(t))

indicates the number of people in each compartment at a particular time t. Susceptible (S) generally

indicate the number of people who are vulnerable to the disease. Infectious (I) shows the number

of infected individuals who have the capability of infecting other people in the S compartment.

Removed (R) indicates the number of people who have recovered or died. When people from the S

and I compartments come into infectious contact, then the people from the S compartment become

infected and move into the I compartment.

Commonly the model consists of deterministic ordinary differential equations, but in some cases, it

may be stochastic, which is complicated to analyze. The compartmental model generally attempts

to predict quantities related to the disease.

The SIR/SIRS diagram in Figure 1.1 depicts how individuals move through the model’s compart-

ments. The dashed line represents how the SIR model transforms into the SIRS (Susceptible -

Infectious - Recovered - Susceptible) model, in which recovery does not confer lifelong immunity

and individuals can become susceptible again. The transmission rate β is the rate of a successful

contact in transmitting the disease. The average duration of infection, D, determines the recovery

rate, γ = 1
D . The SIR model can be written as the following ordinary differential equation (ODE)
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when births and deaths are included [2]:

dS
dt

= µN− βSI
N
− vS (1.1)

dI
dt

=
βSI
N
− γI− vI (1.2)

dR
dt

= γI− vR (1.3)

with total population N = S+ I +R and µ is the birth rate and v is the death rate.

Because of the nonlinear dynamics, it is challenging to derive exact analytical solutions to the

previous equations. The key metrics that control the spread, on the other hand, can be numerically

calculated. For a disease to spread, the following conditions must be met at the time of infection

seeding:

dI
dt

=
βSI
N
− γI− vI > 0 (1.4)

If the number of infections is low at the start, S will be automatically equal to N, and the condition

becomes:

β

γ + v
> 1 (1.5)

where β

γ+v is named as the reproduction number R0. In a fully susceptible population, R0 is

the average number of secondary cases generated by an index case in a completely susceptible

population. When R0 > 1, the disease spreads in the population and dies out when R0 < 1. This

applies to all types of compartmental models.

• SIR Without Vital Dynamics: If the infection’s course is short (emergent outbreak) in

comparison to an individual’s lifetime and the disease is not fatal, vital dynamics (birth and

death) can be ignored. The SIR model can be written as the following ordinary differential
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equation (ODE) in deterministic form:

dS
dt

=−βSI
N

(1.6)

dI
dt

=
βSI
N
− γI (1.7)

dR
dt

= γI (1.8)

An epidemic will eventually die out in a closed population with no vital dynamics due to a

lack of susceptible individuals to sustain the disease. Because of the existing population’s

lifelong immunity, infected individuals who are added later will not start another epidemic.

• SIR With Vital Dynamics: On the other hand, new births in a population with vital dynamics

can provide more susceptible individuals to the population, sustaining an epidemic or allowing

new introductions to spread throughout the population. Disease dynamics will reach a steady-

state in a realistic population like this. This is the case when a disease is endemic to a particular

region. Considering µ and v represent the model’s birth and death rates, respectively. Assume

µ = v the population constant. In a stable state dI
dt = 0.

1.1.2 Susceptible-Exposed-Infectious-Recovered (SEIR) Model

SEIR model consists of four compartments similar to the SIR model with an additional

exposed compartment which indicates the fraction of exposed individuals. Many diseases have a

dormant phase in which the person is infected but not infectious. This time lag between infection

and infectious state can be incorporated into the SIR model by including a latent/exposed population,

E, and allowing infected (but not yet infectious) individuals to move from S to E and then from E

to I.

The differential equations that govern the classic deterministic SEIR compartmental models are

discussed in this topic. The SEIR/SEIRS diagram in Figure 1.2 depicts how individuals move

through the model’s compartments. The dashed line describes how the SEIR model evolves

into the SEIRS (Susceptible - Exposed - Infectious - Recovered - Susceptible) model, in which
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Figure 1.2: Susceptible-Exposed-Infectious-Recovered (SEIR) model [1].

recovered individuals may become susceptible again (recovery does not confer lifelong immunity).

Rotavirus and malaria, for example, are diseases with long incubation periods and where recovery

only provides temporary immunity. The transmission rate, β , determines the rate of spread. The

incubation rate σ is the rate of latent individuals becoming infectious (the average duration of

incubation is 1
σ
). The average duration of infection, D, determines the recovery rate, (γ = 1

D).

In SEIRS model ξ is the rate at which recovered individuals revert to a susceptible state due to

immunity loss.

• SEIR without Vital Dynamics: In a closed population with no births or deaths, the SEIR

model takes the following form [1]:

dS
dt

=−βSI
N

(1.9)

dE
dt

=
βSI
N
− γE (1.10)

dI
dt

= σE− γI (1.11)

dR
dt

= γI (1.12)

After a period of rapid expansion, the epidemic depletes the susceptible population. The virus

eventually runs out of new susceptible people and dies. The introduction of the incubation

period does not affect the total number of infected people.

• SEIR with Vital Dynamics: As with the SIR model, enabling vital dynamics (births and

deaths) can either sustain an epidemic or allow new introductions to spread because new
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deliveries provide more vulnerable individuals. Disease dynamics will reach a steady-state in

a realistic population like this. Where and represent the birth and death rates, respectively,

and are assumed to be equal to keep the population constant, the ODE becomes:

dS
dt

= µN− vS− βSI
N

(1.13)

dE
dt

=
βSI
N
− vE−σE (1.14)

dI
dt

= σE− γI− vI (1.15)

dR
dt

= γI− vR (1.16)

1.2 Bayesian Method

1.2.1 Bayes Theorem

Definition 1 Consider a sample space S and an associated sigma algebra B, and a probability

measure P with domain B. If A and B are events in B, and P(B)> 0 then the conditional probability

of A given B is defined by,

P(A|B) = P(A∪B)
P(B)

(1.17)

Law of total probability: If {An}∞
n=1 ∈B is a partition of sample space S, B ∈B, then

P(B) =
∞

∑
n=1

P(B|An)P(An) (1.18)

Theorem 2 Let {An}∞
n=1 ∈B is a partition of sample space S, and let B be any set such that

P(B)> 0. Them, for each i = 1,2, . . .

P(Ai|B) =
P(Ai)P(B|Ai)

P(B)
(1.19)

where P(B) = ∑
∞
j=1 P(B|A j)P(A j), it is not required to begin with the knowledge of P(B) [17]. The
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normalization constant P(B) is independent of the model parameters and ensures the fraction will

be between 0 and 1.

Bayesian analysis is quantifying and updating the uncertainty/degree of belief by probability. In

Bayesian analysis, the observed data are used to update the prior information or beliefs resulting in

posterior belief. Bayesian methods generally follow the following steps:

• Specify prior distribution parameters θ ; the uncertainty needs to be expressed as a probability

distribution called prior distribution P(θ).

• After observing the data D, the updated knowledge about the parameter θ is called posterior

distribution, denoted by P(θ |D). The posterior distribution quantifies the relative uncertainty

that each potential value is the actual value, expressing the uncertainty regarding the value of

θ .

P(θ |D)∝ P(D|θ)P(θ)

1.2.2 Selection of Prior Distribution

One crucial question in Bayesian statistics is: what criteria do we use to select a prior

distribution? Prior selection reflect on our viewpoints, opinions, and uncertainties. Theoretically,

we’re defining the parameter’s cumulative distribution function. If one gets enough data, the

information included in the data will outnumber the earlier belief. Any appropriate prior distribution

will yield a posterior distribution that is close to the exact value of the parameter. There are, however,

a few things that can go wrong. Calibration is a valuable idea for prior selection—predictive intervals

calibration. So, if we design an interval in which we estimate that 95% of new data points will

occur, we may declare that this interval will contain 95% of new data points. It would be ideal

if 95 percent of new data points truly fell inside that range. How can we adjust our expectations

to reality? Although this is increasingly common as a notion, the results must mirror reality for

practical purposes. In general, prior to the model parameters over the predictor features are based

on expert knowledge, naive, non-informative priors, Jeffrey’s priors.

• Jeffrey’s Priors: Jeffrey’s argued that a non-informative prior should be invariant to the
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parameterization used. Jeffrey’s prior is the prior distribution that satisfies P(θ) ∝ J(θ)
1
2 ,

where J(θ) is the Fisher information for θ . Its essential characteristic is that it is invariant

for the parameter vector θ when the coordinates are changed. That is, regardless of the

parameterization used to define the Jeffrey’s prior, the relative probability assigned to a

volume of a probability space using a Jeffrey’s prior will be the same. As a result, it is

particularly interesting to be used for scale parameters.

• Non-informative Priors: With "really no information," there is no such thing as a prior. The

term "uninformative" prior is a misnomer. Any previous distribution comprises a specification

corresponding to a certain amount of data.

1.2.3 Likelihood Function

Conditional distribution of the response and predictor featues given the model will be data-

driven and the number of sample data increases the likelihood overwhelms the prior distribution. A

statistical analysis aims to estimate the proposed model’s unknown parameter(s). The likelihood

function is essential to estimate the unknown parameters. For count data, older and less sophisticated

methods include the method of moments and the method of minimum chi-square. These estimators

are not always efficient, and their sampling distributions are frequently intractable mathematically.

Let X1,X2, . . .Xn have a joint density function f (X1,X2, . . .Xn|θ). Given X1 = x1,X2 = x2, . . .Xn = xn

is the observed data and the function θ is defined by:

L (θ) = L (θ |x1,x2, . . .xn) = f (x1,x2, . . .xn|θ)

is the likelihood function. It assesses the data’s support for each possible value of the parameter. If

we compare the likelihood function at two parameter points and discover that L(θ1|x)> L(θ2|x),

the sample we observed is more likely to have occurred if θ = θ1 than if θ = θ2. This can be

interpreted as θ1 being a more likely value than θ2.
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1.2.4 Bayesian Statistical Inference

Bayesian inference is a statistical inference method that uses Bayes’ theorem to update the

probability of a hypothesis as new evidence or information becomes available. Bayesian inference is

a crucial technique in statistics, particularly mathematical statistics. Bayesian updating is significant

in the dynamic analysis of a data sequence. Bayesian inference has been used in various fields,

including science, engineering, philosophy, medicine, sports, and law. Bayesian inference is closely

related to subjective probability, which is often referred to as "Bayesian probability" in decision

theory.

• Credible Intervals: Credible intervals are an important concept in Bayesian statistics. Its

primary goal is to describe and summarize the uncertainty associated with the unknown

parameters that we are attempting to estimate. In this regard, it may appear to be very

similar to the frequentist Confidence Intervals. While their goals are similar, their statistical

definitions and meanings are very different. Indeed, while the latter is obtained through a

complex algorithm full of rarely-tested assumptions and approximations, the credible intervals

are fairly simple to compute. Because Bayesian inference yields a distribution of possible

effect values (the posterior), the credible interval is simply a range containing a specific

percentage of probable values. The 95 percent credible interval, for example, is simply the

central portion of the posterior distribution that contains 95 percent of the values.

• Highest Density Interval (HDI): The highest density interval, abbreviated HDI, is another

way of summarizing a distribution that we frequently use. The HDI indicates which points of

a distribution are the most credible and cover most of the distribution. As a result, the HDI

summarizes the distribution by specifying an interval that spans the majority of it, say 95

percent, such that every point inside the interval has greater credibility than any point outside

the interval.

• Bayes Factor: Bayes factors are an essential component of the Bayesian approach to hy-

pothesis testing. Hypothesis testing in frequentist statistics is as simple as selecting a test
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statistic and calculating the p-value. The p-value assesses the strength of evidence in favor of

(or against) a null hypothesis. The smaller its value, the more substantial the evidence against

the null hypothesis, but the more precise interpretation of p-values is a matter of convention.

For example, p < 0.05 is widely regarded as a yardstick: any higher value of p is regarded

as insufficiently strong evidence against the null hypothesis to reject it. When interpreting

p-values and communicating their meaning to others, researchers frequently fall into the trap

of saying that p < 0.05 means the null hypothesis has a less than 5% chance of being true.

This is incorrect. Unfortunately, p-values do not have a direct interpretation as evidence

measures.

We can only discuss the likelihood that a hypothesis is correct within the Bayesian framework.

The essence of a Bayesian hypothesis test is to compute and report on this probability. Given

data x and a hypothesis H, we need the posterior probability P(H|x) that H is true, which can

be calculated using Bayes’ theorem as follows:

P(H|x) = P(H)P(x|H)

P(H)P(x|H)+P(Hc)P(x|Hc)

Consider the posterior odds in favor of H, we define [39],

P(H|x)
P(Hc|x)

=
P(H)

1−P(H|x)
=

P(H)

P(Hc)
× P(x|H)

P(x|Hc)

The final factor on the right is the Bayes factor, BH(x).

• Bayesian Information Criterion (BIC): BIC is a popular model assessment approach that

can be used in situations where the fitting is done by maximization of a log-likelihood. The

generic form of BIC [22],

BIC =−2. log lik+(logN).d
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1.2.5 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) methods are widely used in various disciplines to fit

complex models. A Google search for "Markov chain Monte Carlo" yields over 11.5 million results.

MCMC’s popularity stems primarily from its use in computational physics and Bayesian statistics,

though it is also used in frequentist inference. Because of its flexibility, ease of use, and generality,

Markov chain Monte Carlo (MCMC) is one of the most practical approaches to scientific computing.

In fact, MCMC is required for performing Bayesian analysis. The basic idea behind MCMC is that

if simulating from a target density π is difficult enough that the conventional Monte Carlo method

based on independent and identically distributed (iid) samples cannot be used to make inference on

π , it may be possible to build a Markov chain Xn ≥ 0 with stationary density π for forming Monte

Carlo estimators. Here is the basic summary of the Markov chain Monte Carlo:

• Class of algorithms for sampling from probability distributions

• Markov chain of samples equilibrium distribution is the target distribution

• Each Markov step is sampling the target distribution, more steps, more samples, more accurate

• Markov screening: state at t +1 is only dependent on state at t

• Given we do not know about the distribution. Can we construct a set of samples that search

over the range of possible outcomes and spend an amount of time in each interval proportional

to the actual density of that distribution?

1.2.6 MCMC Convergence Diagnostics

Two critical questions for MCMC practitioners are where to begin and when to stop the

simulation. These two tasks are concerned with determining the convergence of the underlying

Markov chain to stationarity and, respectively, the convergence of Monte Carlo estimators to

population quantities. It is known that for any initial value on the Markov chain, the distribution of

Xn converges to the stationary distribution as n→ ∞ under standard conditions. Despite extensive
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research into developing convergence criteria and stopping rules with solid theoretical foundations,

MCMC users frequently decide on convergence by using practical diagnostic tools. This section

attempts to discuss the most commonly used MCMC convergence diagnostic tools.

• Effective Sample Size: In the context of MCMC, the Effective Sample Size (ESS) measures

a sample chain’s information content or effectiveness. For example, one thousand samples

with an ESS of 200 have more information than 2,000 samples with an ESS of 100.

• Auto-correlation.MCMC samples are dependent, and this has no effect on the validity of

inference on the posterior if the sampler has enough time to explore the posterior distribution.

Still, it does affect the sampler’s efficiency. In other words, highly correlated MCMC samplers

necessitate a more significant number of samples to produce the same level of Monte Carlo

error for an estimate.

• Gelman-Rubin Statistic Another method for monitoring an MCMC sampler’s convergence

is to consider what we might expect when a chain has "converged." The theory claims that if

we start multiple parallel chains with different starting values, they will eventually converge

to the stationary distribution. So, it should be impossible to distinguish between the various

chains after a while. They should all "appear" to be a stationary distribution. One way to

evaluate this is to compare chains to variations within chains. If all chains are "the same," the

divergence between chains should be close to zero.

Let us consider samples x j
1, x j

2, . . . from the jth Markov chain and there are J chains which

run in parallel with varying starting values.

– First Discard D values as burn-in and keep the remaining L values for each chain such

as x j
D,x

j
D+1, . . . ,x

j
D+L−1.
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– Calculate

Chain mean, x̄ j =
1
L

L

∑
t=1

x j
t (1.20)

Grand mean, x̄ =
1
J

J

∑
j=1

x̄ j (1.21)

Between chain variance,B =
L

J−1

J

∑
j=1

(x̄ j− x̄)2 (1.22)

Within chain variance,s2
j =

1
L−1

L

∑
t=1

(x j
t − x̄ j)

2
(1.23)

W =
1
J

J

∑
j=1

s2
j (1.24)

– Finally, the Gelman-Rubin statistics

R =
L−1

L W + 1
LB

W

Because the Gelman-Rubin statistic is a ratio and thus unit free, it is a straightforward

summary for an MCMC sampler. Furthermore, unlike Monte Carlo standard errors, it can

be implemented without first specifying a parameter to be estimated. As a result, it can be a

valuable tool for monitoring a chain prior to making any specific decisions about the types of

inferences to be drawn from the model.

1.3 Step by Step Implementation of Bayesian Inference with R

Differential equation (DE) models in R (software) are simple to implement, with readable

code and access to R’s many high-level functions [9]. We use "deBInfer" as an R-based inference

package for the Bayesian inference. However, numerically solving DE models specified as R

functions takes a long time. The "deSolve" package also supports evaluating DE models written in

lower-level languages like C and FORTRAN. These compiled models have the advantage of faster

simulation. Because the DE model is considered numerous times during the MCMC procedure,

even minor speedups from compiled models can result in significant absolute time savings.
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1.3.1 Specifying the Ordinary Differential Equation (ODE) Model

The first step of implementing Bayesian inference in R with the package "deBinfer" is

specifying the ODE model, which is done in section III.

1.3.2 ODE Model Implementation

After specifying the ODE equation model, the ODE is solved numerically in R using the

"deSolve" package. To speed up the parameter inference, we try C programming also by creating

complied models.

1.3.3 Parameter Declaration and Markov chain Monte Carlo (MCMC) Inference

After implementing the ODE model, we define the parameters of dynamical system for

inference. After that for MCMC inference the declared parameters are collated using setup_debinfer

function of the package in R. "de_mcmc" in the package runs the MCMC estimation. The MCMC

procedure’s progress can be tracked using the cnt, plot, and verbose options: The function will

print out information about the current state every cnt iteration, and if plot=TRUE, trace plots of

the chains will be plotted. It was setting verbose=TRUE causes more information to be printed. It

should be noted that frequent plotting will significantly slow down the MCMC sampler and should

only be used on short runs when tuning the sampler.

1.3.4 MCMC Diagnostics and Simulating Posterior Trajectories

After the MCMC inference, we plot and summarize the MCMC chains. In R, "post_prior_densplot"

can be obtained by plotting the parameters one at a time with the param option. The x and y limits

of the plots can then be adjusted to show more of the prior support, and fancy labels can be added.

For the deterministic part of the model, we simulate 100 differential equation model trajectories

from the posterior and calculate the 95 percent highest posterior density interval. After that, we

visualize the median posterior trajectory and the highest posterior density interval. Finally, we make

customized plots by accessing the simulated trajectories within the post_traj object.
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1.4 Unsupervised Learning and Clustering

Unsupervised learning is an algorithm that uses untagged data to learn patterns. The hope

is that the machine will be forced to build a compact internal representation of its world through

mimicry, a basic mode of human learning, and then generate imaginative content from it. The

most common unsupervised learning algorithms are density estimation, clustering (discrete), and

dimensionality reduction (continuous).

Clustering is the task of grouping a set of items so that those in the same group (called a cluster) are

more similar to those in other groups (clusters). Mixture models can be used to cluster data and

provide a framework for building more complex probability distributions. As a result, we begin

our discussion of mixture distributions with the problem of finding clusters in a set of data points,

which we approach first with a non-probabilistic technique known as the K-means algorithm.

1.4.1 K-means Clustering

To begin, consider the problem of identifying groups of data points, or clusters, in a

multidimensional space. Assume we have a data set x1, . . . ,xN with N observations of a random D-

dimensional Euclidean variable x. Our goal is to divide the data set into some number K of clusters,

with the value K assumed for the time being. Intuitively, we might think of a cluster as a group of

data points with small inter-point distances compared to distances to points outside the cluster. This

concept can be formalized by introducing a set of D-dimensional vectors k, where k = 1, . . . ,K, and

k is a prototype associated with the kth cluster. We can think of the k as representing the cluster

centers, as we will see shortly. The goal is then to find an assignment of data points to clusters as

well as a set of vectors k such that the sum of the squares of each data point’s distances to its closest

vector k is a minimum.

It is convenient to define some notation to describe the assignment of data points to clusters at

this point. We introduce a corresponding set of binary indicator variables rnk ∈ {0,1}, where

k = 1, . . . ,K describing which of the K clusters the data point xn is assigned to, so that if data point

xn is assigned to cluster k, rnk = 1, and rn j = 0 for j ̸= k. This is referred to as the 1− o f −K
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coding scheme. Equation 1.4, which represents the sum of the squares of the distances of each data

point to its assigned vector k, can then be used to define an objective function known as a distortion

measure.

J =
N

∑
n=1

K

∑
k=1

rnk||xn−µk||2 (1.25)

We aim to find values for the rnk and k that minimize J. We can accomplish this through an iterative

procedure in which each iteration consists of two successive steps corresponding to successive

optimizations of the rnk and the k. First, we choose some initial k values. Then, in the first phase,

we minimize J with respect to rnk while keeping k constant. In the second phase, we minimize

J with k while keeping rnk constant. This two-stage optimization process is then repeated until

convergence is reached.

1.5 Deep Learning

Scientists have long cherished creating a machine that can think and make decisions like

humans. We human can do some task effortlessly like recognizing digits, images, but the same task

become becomes extremely difficult if we try to make an attempt to write a computer program to

recognize digit like human. This adores humans to invent neural networks and deep learning, which

allow computers to learn from experience and understand the world in terms of the hierarchy of

concepts. The concept accomplished some fantastic tasks, like IBM’s Deep Blue chess-playing

system defeating the world champion of chess Garry Kasparov in 1997 (citation). One pioneer of

deep learning is called multilayer perceptron (MLP), also called feedforward deep learning. MLP is

nothing but a mathematical mapping of some set of inputs values to output values. Deep learning

dates back to the 1940s, and it calls cybernetics(1940-1960s) on that time and connectionism in

1980-1990s, and people started telling it deep learning from the beginning of 2006. The current

wave of deep learning starts with this paper (citation). Deep learning is an engineering system

inspired by biological neurons.

Deep learning is a broad class of machine learning techniques in which hypotheses are represented

as complex algebraic circuits with tunable connection strengths. The term "deep" refers to the
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Figure 1.3: A shallow model (left); decision list network (middle); deep learning network (right)
[43].

fact that circuits are typically organized into many layers, implying that computation paths from

inputs to outputs are lengthy. Deep learning enables computational models of multiple processing

layers to learn data representations with varying degrees of abstraction. These methods have

significantly advanced the state-of-the-art in speech recognition, visual object recognition, object

detection, and various other fields such as drug discovery and genomics. Deep learning discovers

intricate structures in large data sets by using the backpropagation algorithm to indicate how a

machine’s internal parameters used to compute each layer’s representation from the previous layer’s

representation should be changed. Deep convolutional nets have significantly advanced in image,

video, speech, and audio processing, whereas recurrent nets have shed light on sequential data such

as text and address [29].

Deep learning has its roots in early work that attempted to model neural networks in the brain

with computational circuits (McCulloch and Pitts, 1943). As a result, deep learning networks are

frequently referred to as neural networks, despite their superficial resemblance to actual neural

cells and structures [43]. While the exact reasons for deep learning’s success have yet to be fully

explained, it has advantages over some traditional machine learning methods, particularly for
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high-dimensional data such as images or texts. Although linear and logistic regression methods can

handle many input variables, the computation path from each input to the output is short: multiply

by a single weight, then add to the aggregate output. Furthermore, the various input variables

contribute to the output independently Figure 1.3(left). This severely restricts the expressive power

of such models. They can only represent linear functions and boundaries in the input space, whereas

most real-world concepts are far more complex.

Long computation paths that depend on many input variables are possible with decision lists and

decision trees, but only for a small fraction of the possible input vectors (Figure 1.3(middle)). If

a decision tree has long computation paths for a significant fraction of the possible inputs, the

number of input variables must be exponentially large. Deep learning’s basic idea is to train circuits

so that the computation paths are long, allowing all of the input variables to interact in complex

ways (Figure 1.3(right)). These circuit models are found to be sufficiently expressive to capture the

complexity of real-world data for many significant learning problems.

Today deep learning reaches a level for surpassing humans in medical, vision, natural language, and

robotics. The key reasons are the increase of the dataset and model size and the high-performance

GPU computing system.

1.5.1 Feedforward Networks

This section focuses on simple feedforward and recurrent networks, their components, and

the learning fundamentals in such networks. As the name implies, a feedforward network has

connections only in one direction, forming a directed acyclic graph with designated input and output

nodes. Each node in the network computes a function from its inputs and passes the result to its

successors. The network has no loops as information flows from the input to the output nodes. On

the other hand, a recurrent network feeds its intermediate or final outputs back into its own inputs.

The network’s signal values form a dynamic system with an internal state or memory.

Feedforward networks are illustrated by Boolean circuits, which implement Boolean functions. The

inputs in a Boolean circuit are limited to 0 and 1, and each node implements a simple Boolean

function of its inputs, yielding a 0 or a 1. The input values in neural networks are typically
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continuous, and nodes take continuous inputs and produce continuous outputs. Some of the inputs

to nodes are network parameters; the network learns by adjusting the values of these parameters to

fit the training data as a whole.

1.5.2 The Architecture of Neural Networks

Two most important artifcial neurons are perceptrons and sigmoid neurons. Perceptrons

were developed by Frank Rosenblatt in 1950s and 1960s inspired by the work of Warren McCulloch

and Walter Pitts. Generally, a perceptron takes binary inputs x1,x2, . . . , and produces a single binary

output. Rosenblatt proposed initalization of weights w1,w2, . . . , real numbers expressing the relative

importance of the inputs to the output. The output of the neuron’s is determined by whether the

weighted sum ∑i wixi is less than or greater than some threshold value. In perceptron’s bias is a

measure of how easy it is to get the perceptron to output a 1. In biological point of view, we can

define bias as how easy it is for perceptron to fire. Considering the output is defined by the following

equation below (citation):

output =


0 if ∑i wixi +bias≤ 0

1 if ∑i wixi +bias > 0

It is obvious that perceptron is not a complete model of human brain decision making but perceptron

can weight up different kinds of evidence and many layers of perceptrons can make complex and

subtle decisions. We can able to devise the learning algorithms which can automatically adjust the

weight and bias of artificial neurons.

1.5.3 Learning with Gradient Descent

Any machine/deep learning model’s ultimate objective is minimizing the loss function to a

local minimum, as shown in Figure 1.4. The univariate linear model has the excellent property of

being simple to find an optimal solution with zero partial derivatives. However, this is not always

the case, so we present here a method for minimizing loss that does not rely on solving to find

zeroes of derivatives and can be applied to any loss function, no matter how complex. Modifying

the parameters incrementally allows us to search through a continuous weight space. We called the
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Figure 1.4: Objective function of deep learning model [43].

algorithm hill climbing there, but since we’re minimizing loss rather than maximizing gain, we’ll

call it gradient descent. When we try to minimize the loss in a learning problem, the parameter α

we call the step size in Algorithm 1 is the learning rate. It can be a constant or decay over time as

the learning process progresses.

Let us define a univariate linear function with parameter w to be the vector < w0,w1 >,

hw(x) = w1x+w0 (1.26)

Here, the partial derivatives - the slopes -in the simplified case of only one training example, (x,y):

∂

∂wi
Loss(w) = 2(y−hw(x))

∂

∂wi
(y− (w1x+w0)) (1.27)

20



For N training example, we want to minimize the sum of the individual losses for each training

example. Because the derivative of a sum is the sum of its derivatives, we get:

w0← w0 +α ∑
j
(y j−hw(x j)) w1← w1 +α ∑

j
(y j−hw(x j))× x j (1.28)

The batch gradient descent learning rule for univariate linear regression is comprised of these

updates (also called deterministic gradient descent). Because the loss surface is convex, there are no

local minima to get stuck in. Convergence to the global minimum is guaranteed (as long as we don’t

choose a that is so large that it overshoots), but it may be prolonged: we must sum over all N training

examples for each step, and there may be many steps. The problem is exacerbated if N is larger than

the processor’s memory size. An epoch is a step that covers all of the training examples. Stochastic

Algorithm 1 Gradient descent algorithm
1: procedure GRADIENT DESCENT(wi)
2: w← any point in the parameter space
3: while not converged do
4: for each wi in w do
5: wi← wi−α

∂

∂wi
Loss(w)

gradient descent (SGD) is a faster variant that randomly selects a small number of training examples

at each step and updates according to Equation 1.27. The original version of SGD only used one

training example for each step, but using a minibatch of m out of N examples is now more common.

Assume we have N = 1000 examples and select a size m = 100 minibatch. Then, on each step, we

reduced the amount of computation by a factor of 100; however, because the standard error of the

estimated mean gradient is proportional to the square root of the number of examples, the expected

error increases by only a factor of 10. Even if we have to take ten more steps before convergence,

minibatch SGD is still ten times faster than full batch SGD in this case.

We can use parallel vector operations with some CPU or GPU architectures, making a step with

m examples almost as fast as a step with only a single sample. With these constraints m would be

treated as a hyperparameter that should be tuned for each learning problem.

SGD can be helpful in an online setting where new data is arriving all at once, and the stationarity
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assumption may not be valid. (In fact, SGD is another name for online gradient descent.) A good

model with perfect α will gradually evolve, remembering what it learned in the past while also

adapting to the changes represented by new data. SGD is widely used in models other than linear

regression, most notably neural networks. Even when the loss surface is not convex, the method is

effective in locating good local minima near the global minimum.

The same gradient descent approach can be used to learn the weights in computation graphs. The

gradient calculation is essentially the same for the weights leading into units in the output layer that

generate network output. The process is slightly more complicated for weights leading into units in

the hidden layers that are not directly connected to the outputs.

1.5.4 Activation Function

Each node in a network is referred to as a unit. According to McCulloch and Pitts’ design, a

unit computes the weighted sum of the inputs from predecessor nodes and then applies a nonlinear

function to produce its output. Let a j denote the unit’s output j and wi, j be the weight attached to

the unit i to unit j link; then, we have

a j = g j(∑
i

wi, jai) = g j(wT x) (1.29)

where g j is a nonlinear activation function associated with unit j; w is the vector of weights leading

into unit j; x is the vector of inputs to unit j.

The fact that the activation function is nonlinear is critical because any composition of units would

still represent a linear function if it were not. Because of the nonlinearity, sufficiently large networks

of units can express arbitrary functions. According to the universal approximation theorem, a

network with only two layers of computational units, one nonlinear and one linear, can approximate

any continuous function to an arbitrary degree of accuracy. The proof shows that an exponentially

large network can represent an exponentially large number of "bumps" of varying heights at various

locations in the input space, approximating the desired function. In other words, large enough

networks can implement a lookup table for continuous functions, just as large enough decision trees
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Figure 1.5: Commonly used activation functions in deep learning systems: (a) sigmoid function; (b)
ReLU and softplus function; (c) tanh function. [43].

can implement a lookup table for Boolean functions. The most common activation function (Figure

1.5 are listed below:

• Sigmoid Function: The logistic function, also known as the sigmoid function, is used in

logistic regression.

σ(x) =
1

1+ e−x (1.30)

• Softplus Function: The softplus function is a smoother version of the ReLU function. The

sigmoid function is the softplus function’s derivative.

softplus(x) = log(1+ ex) (1.31)

• ReLU Function: The ReLU function, an abbreviation for a rectified linear unit,

ReLU(x) = max(0,x) (1.32)

• tanh Function: The tanh function,

tanhx =
e2x−1
e2x +1

(1.33)
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1.5.5 Convolutions Neural Networks (CNN)

A convolutional neural network (CNN) has spatially local connections, at least in the early

layers, and weight pattern replication across units in each layer. A kernel is a pattern of weights

replicated across multiple local regions. Convolution is applying the kernel to the pixels of an image

(or to spatially organized units in a subsequent layer).

• Convolution: A mathematical operation used to extract features from an image is convolution.

An image kernel defines the convolution. The image kernel is essentially a small matrix. A

3×3 kernel matrix is very common most of the time. Some standard filters, such as the Sobel

filter, have values 1, 2, 1, 0, 0, -1, -2, -1. This advantage is that it gives a little bit more weight

to the central row, the central pixel, possibly making it a little bit more robust. Another filter

used by computer vision researchers is the Scharr filter, which is 3, 10, 3, and then -3, -10,

and -3. Furthermore, this has slightly different properties and can be used for vertical edge

detection. If it is rotated 90 degrees, it will behave similarly to horizontal edge detection.

• Padding: Convolution raises two new concerns. After each convolution operation, the

original image size shrinks; after multiple convolution operations, our original image becomes

extremely small; however, we do not want the image to shrink every time. The second issue

is that when the kernel moves over original images, it touches the edge less frequently and

the middle more regularly and overlaps in the middle. As a result, the image’s corner or edge

features are rarely used in the output. Padding is a new concept introduced to address these

two issues. Padding keeps the original image size.

• Strides: The number of pixels shifted across the input matrix is referred to as the stride.

Padding p, filter size f × f , input image size n×n, and stride’s’ then final image dimension

will be:

[(n+2p f +1)/s+1]× [(n+2p f +1)/s+1]

.
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• Pooling: A pooling layer is another component of a CNN. Pooling Its purpose is to gradually

reduce the spatial size of the representation to reduce network complexity and computational

cost. In the CNN layer, two pooling types are commonly used: Average Pooling, Maximum

Pooling. Max pooling is a rule that takes the maximum of a region and aids in moving on to

the image’s most important features. Max pooling selects the image’s brighter pixels. It is

useful when the image’s background is dark, and we are only interested in its lighter pixels.

Average Pooling differs from Max Pooling in that it retains much information about the "less

important" elements of a block or pool. Whereas Max Pooling discards them by selecting the

highest value, Average Pooling blends them in. This can be useful in various situations where

such information would be beneficial.
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CHAPTER II

CLUSTERING: REPRESENTATIVE COUNTRY IDENTIFICATION

Clustering is one of the most common exploratory data analysis approaches. A cluster is a

collection of data points that have been grouped due to commonalities. Here, the clustering aims

to identify the representative country where we can show the Bayesian analysis and deep learning

simulation result of the representative country. We develop the k means clustering based on the six

cultural dimensions: Power Distance, Individualism, Masculinity, Uncertainty Avoidance, Long

Term Orientation, and Indulgence.

2.1 Hofstede’s Culture Dimensions

Culture dimensions data of 115 countries was obtained from Hofstede’s cultural dimensions.

Geert Hofstede established Hofstede’s cultural aspects theory as a foundation for cross-cultural

communication. It uses a structure drawn from component analysis to highlight the influence

of a society’s culture on its members’ values and how these values connect to behavior. The

original idea proposed four dimensions to examine cultural values along masculinity-femininity,

individualism-collectivism, uncertainty avoidance, power distance (social hierarchy strength), and

masculinity-femininity (task orientation versus person-orientation). The country’s scores on the

dimensions are relative, in the sense that we are all human while yet being distinct. To put it another

way, culture can only be meaningfully employed through comparison. The following is a list of the

model’s dimensions:

• Power distance index (PDI): This dimension expresses the extent to which society’s less

powerful individuals tolerate and expect unequal power distribution. The primary problem

here is how a society deals with social inequality. People in civilizations with a high level of
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Power Distance accept a hierarchical structure in which everyone has a place, and no more

reason is required. People in societies with a low Power Distance attempt to equalize power

distribution and demand reason for power imbalances.

• Individualism vs. collectivism (IDV): On the high end of this scale, individualism is

characterized as a preference for a loosely woven social structure in which people are expected

to look for just themselves and their immediate family. On the other hand, collectivism is

a preference for a close-knit social structure in which people may expect their relatives or

members of a certain ingroup to look after them in exchange for unquestioned allegiance.

Whether people’s self-image is defined as "I" or "us" reflects a society’s perspective on this

dimension.

• Uncertainty avoidance (UAI): The Uncertainty Avoidance dimension expresses how un-

comfortable members of a society are with uncertainty and ambiguity. The central issue here

is how a society deals with the fact that the future can never be predicted: should we try to

control it or just let it happen? Countries with strong UAI adhere to rigid codes of belief and

behavior and are intolerant of unconventional behavior and ideas. Weak UAI societies have a

more relaxed attitude in which practice takes precedence over principles.

• Masculinity vs. femininity (MAS): The Masculinity aspect of this dimension denotes a

societal desire for achievement, heroism, assertiveness, and material rewards for success. The

general public is more competitive. On the other hand, Femininity represents a preference for

cooperation, modesty, compassion for the vulnerable, and high quality of life. The general

public is more consensus-oriented. In the corporate world, masculinity against Femininity is

sometimes referred to as "tough versus delicate" cultures.

• Long-term orientation vs. short-term orientation (LTO): Every society must maintain

ties to its past while dealing with present and future challenges. These two existential goals

are prioritized differently by societies. Low-scoring societies, for example, prefer to uphold

time-honored traditions and norms while viewing societal change with suspicion. Those with
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a high-scoring culture, on the other hand, take a more pragmatic approach: they encourage

thrift and investment in modern education as a means of preparing for the future. This

dimension is known in the business world as "(short-term) normative versus (long-term)

pragmatic" (PRA). Monumentalism versus Flexhumility is a term that is sometimes used in

academic circles.

• Indulgence vs. restraint (IND): Indulgence represents a society that allows for the relatively

free gratification of basic and natural human drives related to having fun and enjoying life.

Restraint means a society suppresses the need for gratification and regulates it through strict

social norms.

2.2 Elbow Method for Optimal Number of Clusters

The optimal number of clusters into which the data can be grouped is a crucial stage in any

clustering technique (unsupervised learning). The Elbow Method is one of the most prominent

approaches for determining the ideal value of k. When it comes to determining the k value, there is

no simple solution. The elbow method is one of the methods. To begin, calculate the sum of squared

errors (SSE) for a given value of k. SSE is the sum of the squared distances between the cluster’s

centroid and each member. Then, against the SSE graph, plot a k. We will notice that as k increases,

SSE drops, and distortion diminishes. This approach aims to find the value of k at which the graph

drastically decreases. Using the Python Sklearn module, we implement the suggested strategy using

the K-Means clustering methodology. To find the optimal number of clusters, we must find the

value of k at the "elbow," the point at which the distortion begins to decrease linearly. As a result,

we find that the best number of clusters for the given data is vary between four to five (Figure 2.1).

2.3 Clustering and Representative Countries

After defining the optimal number of clusters (k = 4 or 5), k means clustering is adopted

to find the cluster. Table 2.1 and 2.2 indicate the country with four and five clusters respectively.

Also, Armenia, Malawi, Luxembourg, and Jordan are the four representative countries from each

cluster nearest to the cluster center for k=4. Table ?? and ?? describe the cluster center with respect
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Figure 2.1: Using distortion for an elbow method.

to six cultural dimensions. Jordan, Czechia, Malawi, Armenia, and Canada are five representative

countries from each cluster close to the center for k=5. From the expert judgment, we proceed with

k=5 clustering as it represents the best cluster compared to k=4. We also verified our clustering

result with K-Means++( which is helpful when initializing the cluster centroids), and K-Means++

gives a similar outcome.

Table 2.2 shows the country belongs to five clusters and the six culture plot of the cluster’s

center. Also, the first cluster contains the maximum number of countries, whereas the minimum

country is available under cluster 5. Culture dimension, power distance is minimum for cluster

5 and maximum for cluster 2. Individualism is maximum for cluster 5 and minimum for cluster

2. Masculinity is maximum for cluster 3 and minimum for cluster 5. Uncertainty avoidance is

maximum for cluster 3 and minimum for cluster 5. Long-term orientation is maximum for cluster 2,

minimum for cluster 4, and indulgence is maximum for cluster 5 and minimum for cluster 3. Thus,

the table 2.2 shows a brief picture of the culture of 115 countries.
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Table 2.1: Culture dimension for each center of clusters (k=4)

Albania, Armenia, Azerbaijan, Bangladesh, Be-
larus, Bosnia and Herzegovina, Bulgaria, China,
Croatia, Czechia, Hong Kong, India, Indone-
sia, Japan, Kazakhstan, Moldova, Montenegro,
North Macedonia, Pakistan, Poland, Romania,
Russia, Serbia, Singapore, Slovakia, South Ko-
rea, Ukraine, Vietnam

Bhutan, Burkina Faso, Costa Rica, Ecuador,
Egypt, Fiji, Guatemala, Honduras, Iraq, Ja-
maica, Kenya, Kuwait, Lebanon, Malawi, Mo-
rocco, Namibia, Nepal, Panama, Qatar, Sene-
gal, Sierra Leone, Sri Lanka, Suriname, Tunisia,
United Arab Emirates

Australia, Austria, Belgium, Canada, Denmark,
Estonia, Finland, France, Germany, Hungary,
Iceland, Ireland, Israel, Italy, Latvia Lithuania,
Luxembourg, Malta, Netherlands, New Zealand,
Norway, South Africa, Spain, Sweden, Switzer-
land, United Kingdom, United States

Algeria, Angola, Argentina, Bolivia, Brazil,
Cape Verde, Chile, Colombia, Dominican Re-
public, El Salvador, Ethiopia, Georgia, Ghana,
Greece, Iran, Jordan, Libya, Malaysia, Mexico,
Mozambique, Nigeria, Paraguay, Peru, Philip-
pines, Portugal, Sao Tome and Principe, Saudi,
Arabia, Slovenia, Tanzania, Thailand, Trinidad
and Tobago, Turkey, Uruguay, Venezuela, Zam-
bia
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Table 2.2: Culture dimension for each center of clusters (k=5)

Cluster 1: Algeria, Angola, Argentina, Bo-
livia, Brazil, Cape Verde, Chile, Colombia,
Dominican Republic, El Salvador, Ethiopia,
Georgia, Ghana, Greece, Iran, Jordan, Libya,
Malaysia, Mexico, Mozambique, Nigeria,
Paraguay, Peru, Philippines, Portugal, Sao Tome
and Principe, Saudi Arabia, Slovenia, Tanza-
nia, Thailand, Trinidad and Tobago, Turkey,
Uruguay, Venezuela, Zambia
Cluster 2: Albania, Armenia, Azerbaijan,
Bangladesh, Belarus, Bosnia and Herzegov-
ina, Bulgaria, China, Croatia, Hong Kong, In-
dia, Indonesia, Kazakhstan, Moldova, Montene-
gro, North Macedonia, Pakistan, Romania, Rus-
sia, Serbia, Singapore, Slovakia, South Korea,
Ukraine, Vietnam

Cluster 3: Austria, Belgium, Czechia, Estonia,
France, Germany, Hungary, Israel, Italy, Japan,
Latvia, Lithuania, Luxembourg, Malta, Poland,
Spain, Switzerland

Cluster 4: Bhutan, Burkina Faso, Costa
Rica, Ecuador, Egypt, Fiji, Guatemala, Hon-
duras, Iraq, Jamaica, Kenya, Kuwait, Lebanon,
Malawi, Morocco, Namibia, Nepal, Panama,
Qatar, Senegal, Sierra Leone, Sri Lanka, Suri-
name, Tunisia, United Arab Emirates

Cluster 5: Australia, Canada, Denmark,
Finland, Iceland, Ireland, Netherlands, New
Zealand, Norway, South Africa, Sweden, United
Kingdom, United States
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Table 2.3: Centers of the cluster (k=4)

Cluster Center

Cluster Power Distance Individualism Masculinity
Uncertainty
Avoidance

Long Term
Orientation Indulgence

1 71.57 26.57 46.46 70.54 24.63 57.69

2 79.5 28.61 52.18 72.68 67.32 25.39

3 38.26 69.89 45.30 60.30 51.56 52.63

4 75.92 27.16 45.24 62.24 7.68 3.56

Table 2.4: Centers of the cluster (k=5)

Cluster Center

Cluster Power Distance Individualism Masculinity Uncertainty Avoidance
Long
Term Orientation Indulgence

1 71.57 26.57 46.46 70.54 24.63 57.68

2 81.88 25.48 49.8 71.04 67.56 24.44

3 45.88 62.94 54.71 77.06 65.11 38

4 75.92 27.16 45.24 62.24 7.68 3.56

5 33.23 75.46 39.15 44.38 37 67.31
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CHAPTER III

BAYESIAN PREDICTIVE MODELING OF COVID-19 USING CULTURE AND

ECONOMICAL BEHAVIOURAL FEATURES

Bayesian predictive modeling is one of the most common and practical approaches for

compartmental disease modeling see e.g. [33]. The goal of this part is to determine the courses of

the epidemic and explain waves of COVID-19 from cultures using the Bayesian predictive modeling

approach.

3.1 Literature Review for COVID

The SARS-CoV-2 virus causes Coronavirus Disease (COVID-19), an infectious disease that

infects almost all of the world. Most of those infected with the virus will have mild to moderate

respiratory symptoms and recover without needing medical attention. On the other hand, some will

become highly unwell and require medical assistance. Severe sickness is more likely to strike the

elderly and those with underlying medical disorders such as cardiovascular disease, diabetes, chronic

respiratory disease, or cancer. COVID-19 can make anyone sick and cause them to get very ill or

die at any age. As a result, the COVID-19 pandemic has emerged as one of the most challenging

public health emergencies to which international attention has been drawn. This literature review

provides a summary of previous and continuing research on COVID-19.

3.1.1 Modeling COVID-19

From the beginning of the pandemic, researchers tried to figure out scenarios and several

parameters that directly or indirectly affect COVID-19 using various disease modeling, machine

learning, and deep learning approach [28]. The IHMR COVID-19 forecasting team used COVID-19

case and mortality data from 1 February 2020 to 21 September 2020, as well as a deterministic
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SEIR (susceptible, exposed, infectious, and recovered) disease compartmental framework, to model

possible trajectories of the severe acute respiratory syndrome of coronavirus 2 infections and the

effects of non-pharmaceutical interventions in the United States from 22 September 2020 to 28

February 2021 at the state level[3]. They visualize the social distancing mandates and levels of

mask use scenario using SEIR model and find that achieving universal mask use (95%) in public

could be sufficient to ameliorate the worst effects of epidemic resurgence in many states. They

utilize the SEIR model to illustrate the social distancing mandates and levels of mask wear and

conclude that obtaining universal mask use (95 percent) in public could be enough to mitigate the

worst consequences of epidemic revival in many states. The Traditional SEIR epidemic model

with specific dynamic compartments and epidemic parameters of COVID-19 shows that COVID-

19 spreads in an age-heterogeneous community, and closures, mobility restrictions, and social

distancing improve the pandemic control, especially in a sustainability context[44].

In the wake of the COVID-19 pandemic, governments worldwide are faced with the task of devising

personalized epidemic control methods that provide reliable health protection while allowing for

societal and economic activities. In, [18] the authors propose an extension of the epiidemiological

SEIR model to enable a detailed analysis of commonly discussed tailored measure of epidemic

control. Along with that they introduce groups into the SEIR model that may differ both in their

underlying parameters as well as in their behavioral response to public health interventions.

3.1.2 Culture, Behavior and Economy in COVID-19

After the World Health Organization declared the COVID-19 outbreak a public health

emergency of international concern (PHEIC), almost all countries began implementing a variety of

Nonpharmaceutical Interventions (NPIs) such as contact tracing, social distancing, mask-wearing,

self-isolation, school closures, business closures, and countrywide lockdowns at various levels of

rigor to halt the disease’s spread. Several NPIs can be used by public health professionals at the start

of a pandemic to reduce disease transmission until a viable vaccine or antiviral treatment becomes

available. Individuals are subjected to constraints as a result of public health measures, therefore it’s

critical to understand how they react and if they’re likely to follow or breach new laws. Measures
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might possibly have a significant impact on the transmission of the pathogen. However, a variety

of issues, including human choice and self-interest over charity, can stymie Non-pharmaceutical

Interventions(NPI) effectiveness and disease control efforts.

Lockdowns and self-isolation (self-quarantine), for example, can be quite efficient in reducing trans-

mission, but they might have socioeconomic and emotional consequences for the entire population

[10]. Extensive isolation has been linked to adverse outcomes in a variety of people, including

children and adolescents, immigrant workers, and adults [14, 11]. Changes in food patterns, sleep

disruptions, depression, and anxiety symptoms were also reported by children [20]. Mental health

concerns, anxiety, stigma, despair, alcohol-related injury, and domestic violence were all reported

by adults [11, 31].

Engagement with quarantine, lockdown, and compliance with public health directives about per-

sonal protective practices is influenced by various demographic, social, and psychological factors.

Perceptions of vulnerability to infection, the severity of infection, the effectiveness of ongoing

public health efforts, and the ability to do the activity safely (self-efficacy) are among the factors

[8]. The belief of a lesser risk of disease or having fewer risk factors is one of the fundamental

causes of non-adherence to quarantine and self-isolation documented in the research literature [53].

Psychological exhaustion has also been considered a cause of NPI non-compliance [46]. While

fear may challenge cultural and social influences, economic hardship suffered by some groups,

particularly minorities in some places, plays a role in the human decision [15]. This could explain

why minorities in the United States, Australia, Canada, and the United Kingdom have dispropor-

tionately high COVID-19 incidence and mortality [7]. Migrant workers in low-income nations are

an economically vulnerable demographic[50]. As a result, cultural factors can significantly impact

NPI uptake and adherence, as well as disease transmission and mortality.

Individual compliance is aided by infrastructure, resources, stockpiles, inter-pandemic planning,

authoritative source communication, and the country’s capacity. People fearful of developing a viral

infection will employ the best hygiene precautions, wear masks, avoid crowded places, and exercise

social distance. While such efforts can help slow the spread of viral infections like COVID-19, they
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cannot protect the public. Public health directives aimed at reducing population-level risk factors

and disease transmission are strongly associated with the idea of everyone doing their part to achieve

high compliance by implementing the most nuanced hygiene measures. Indeed, GDP gives a gauge

of the pre-existing infrastructure for maintaining and enforcing law and order, regulating economic

activity, and providing public goods during a protracted pandemic wave [4]. Many countries in less

developed parts of the world lack this capability, making them more sensitive to system shocks such

as pandemics, which can halt economic growth and cut GDP [34].

3.2 Game Theory and the Swiss Cheese Model

The Swiss Cheese Model was created by British psychologist James Reason two decades

ago to understand how breakdowns in complex systems emerge [41]. Multiple defenses can be

in place, according to his model, to protect persons against threats, but these defenses also have

intrinsic flaws. Multiple protections or obstacles are like Swiss cheese slices with a lot of transitory

holes in them. In most cases, having holes in any one ’slice’ does not result in a terrible consequence.

If the gaps in several layers line up so that an accident opportunity can travel across the layers, it

provides for hazard exposure and casualties. Active failures and latent conditions both contribute to

the weaknesses in in-built defenses. Almost of adverse outcomes are caused by a combination of

these two causes.

Regarding pandemic defenses or safeguards, the Swiss Cheese Model demonstrates that there are

two degrees of protection: personal and interpersonal precautions. When applying the Swiss Cheese

Model to COVID-19, the early NPIs such as social distancing, self-isolation, and lock-downs are

the pandemic barriers that can collapse. We refer to these NPIs as "social isolation" barriers in the

model. The topic of this chapter is the human behavior of social isolation decision-making during

the pandemic and its impact on socio-economic growth. Using a Swiss Cheese Model method, we

build a conceptual framework to examine the problem by combining evolutionary game theory, an

economic growth model, and a deterministic disease transmission model.
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3.3 COVID-19 Disease Model

We develop a vector values compartmental model of the type SEAIHRD to model country-

wise COVID-19 compartment are Susceptible-Exposed-Asymptomatic-Infected-Hospitalized-Recovered-

Dead 3.1. Arrows are labeled by the rates of transmission of individuals in each compartment. SD

in model is social distance strategy with proportion x and NSD is no-social distance strategy with

proportion 1− x. Rational agents compare the difference between benefits of the other strategy to

their and if positive they switch strategy. In the model the parameter is defined as: disease transimis-

sion rate (β ), rate of leaving exposed state (α), probability of becoming symptomatic (p), recovery

rate of asymptomatic (µA), recovery rate of infectious (µI), recovery rate of hospitalized (µr), rate

of hospitalization (µH), death rate from disease (µD), imitation rate (r), cost of infection (c1), fear of

death (c2), cost of government strict policy (c3), sensitivity to relative economic loss (c4), pandemic

fatigue rate (c5), cost of hospitalization (ch), investment rate (σ ), elasticity (γ), deprecitation rate

(δ ), inital per-capita GDP (K0), and fraction of labor working with social isolation (q). The system

of the ODE represent the continuous time in-flow and out-flow of those compartment. We use

imitation dynamical equation from behavioral game theory to model rational decision making and

include a pandemic fatigue rate.

The disease model depends on solving deterministic model of ordinary differential equation

as specified below [40]. There are seven compartments (Figure 3.1), E = exposed but not infectious,

A = infected but asymptomatic, I = infected and symptomatic, H= isolated or hospitalized, D =

dead, and R = recovered. Also, x and k represent proportion of those who maintain social isolation
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Figure 3.1: Schematic illustration of the COVID-19 SEAIHRD model.

and k is the per-capita GDP (k = GDP/N).

dS
dt

=−β (1− x)(A+ I)S (3.1)

dE
dt

= β (1− x)(A+ I)S−αE (3.2)

dA
dt

= α(1− p)E−µAA (3.3)

dI
dt

= α pE−µII−µH p50I−µDI (3.4)

dH
dt

= µH p50I−µRH−µDH (3.5)

dD
dt

= µDI +µDH (3.6)

dR
dt

= µAA+µII +µRH (3.7)

dx
dt

= rx(1− x)(c1I + c2D+ c3si− c4(K0− k)/K0))− c5x (3.8)

dk
dt

= σ((S+A+R)((1− x)+qx))γk1−γ −δk− chH (3.9)
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where

log(c j) = α0 j +
6

∑
i=1

αi jXi

for j = 1,2,3,4,5, α0 j,αi j is the log linear coefficient of c j, and (X1k,X2k, . . . ,X6k) is the input

vector of six culture dimension for each country k for k = 1,2, . . . ,115. Here, the initial condition

is the number of cases and their values from populations and Runge-Kutta method is used to

solve the ODE. S=Susceptible, E=Exposed but not infectious, A=Asymptomatic, I=Infected and

Symptomatic, H=Isolated or Hospitalized, D=Dead, and p50 is the proportion of those 50 years

or older in the population, and R=Recovered. β (1− x) is effective transmission rate which is

dependent on x (proportion of the people who maintain social isolation).

In the ODE model, we use the dynamical population equation as specified by the Equation 3.8 to

model the dynamic changes of x where people choose social isolation comparing the economic loss

and risk of infection and fear of death. But people who choose social isolation may break it after an

average of 1/c5 days due to fatigue raise from social isolation. We assume that c5 (pandemic fatigue

rate) is dependent on the six cultural dimension specified by Hofstede more especially long term

orientation, individualism, and uncertainty avoidance. On the other side, we think the economic

loss is more related to long-term orientation, masculinity, and socioeconomic status. Equation 3.9

(economic growth and decline) is modeled using the Solow economic model of per capita GDP

combining with per-capita GDP combining with Cobb-Douglas functional form of production.

3.4 Data Description

3.4.1 COVID Cases

We use daily data from 115 countries from the beginning of January 2020 to the end of

January 2021 (360 days for each country), depending upon the land and availability of data. We

use the daily numbers reported on ourworldindata web page for new cases and death [42]. The

number of hospitalization data was also obtained from ourworldindata, but these data appear to be

available for only 28 countries. Lockdown stringency index data was collected for 115 countries

from www.statistica.com
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Table 3.1: Data sources

Types of Data Sources

COVID cases, mortality, hospitalization https://ourworldindata.org/

Lockdown strigency index https://www.statista.com/

Hofstede’s cultural dimension https://www.hofstede-insights.com/

Per-capita GDP https://data.un.org/
Population Size https://data.worldbank.org/

3.4.2 GDP and Population

The GDP and population data was obtained from the UN and Worldbank GDP and population

database, respectively, from 2007 to 2017.

3.4.3 Lockdown Stringency Index

The Stringency Index is calculated using nine metrics:

• School closures

• Workplace closures

• Public event cancellations

• Restrictions on public gatherings

• Public transportation closures

• Stay-at-home requirements

• Public information campaigns

• Internal movement restrictions

• International travel controls

On any given day, the index is calculated as the mean of the nine metrics, each of which

has a value between 0 and 100. A higher score indicates a more stringent response (i.e., 100 =
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most stringent). If policies differ at the subnational level, the index is displayed as the strictest

sub-response region’s level. Because government policies vary depending on vaccination status,

a stringency index is calculated for three categories: those who are vaccinated, those who are not

vaccinated, and a national average weighted by the proportion of vaccinated people.

3.5 Statistical Data Model

• Likelihood Function: The likelihood function describes the joint probability of observed data

as a function of the statistical model’s parameters. Here, likelihood indicates the probability

of observing infected, death, and total number of hospitalization case data given the proposed

model. In this study, we adopt the Gaussian distribution as the likelihood for infected, dead,

and hospitalization cases.

– Gaussian likelihood function

L j(Θ,σobs, j|{ỹt,i, j}) =
115

∏
i=1

T

∏
t=1

(
1√

2πσobs, j
exp

(
−

(ỹt,i, j− yt,i, j(Θ))2)

2σ2
obs, j

))
of the parameters Θ = (β ,α, p, . . . ,α6,5),σobs, j, for j = 1,2,3 given the observed pro-

portions ỹt,i, j of infected ( j = 1), dead ( j = 2), and hospitalized ( j = 3) people in country

i.

– where ỹt,i, j are the observations and yt,i, j(Θ) are the solutions of the differential equation

model representing the mean values.

– That is yt,i,1(Θ) = Ii(t), yt,i,2(Θ) = Di(t), and yt,i,3(Θ) = Hi(t) for i = 1, . . . ,115, and

t = 1, . . . ,T .

• Bayesian Approach: We adopt Bayesian inference which calculate the posterior inference of

parameters by updating the prior beliefs given by a data-driven likelihood.

• Priors Selection: Prior subject matter knowledge is encoded in parameter estimation using

parameter prior distributions. The differential equation model parameters, as well as their
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Table 3.2: Priors and ranges of parameters

Parameters Fixed value/Prior Range Reference

Disease transmission rate (β ) 0.78 0.2-4 [38][49][21][45]
Rate of leaving exposed state (α) 1

7
1
7 -1

5 [26][52]
Probability of becoming symptomatic (p) 0.75 0.5-0.85 [35][48][24]
Recovery rate of asymptomatic (µA) 1

14
1

14 -1
7 [54][48]

Recovery rate of infectious (µI) 1
14

1
14 -1

7 [54][48]
Recovery rate of hospitalized (µR) 0.78 0.7-0.88 [30][19][32]
Rate of hospitalized (µH) 4.6

105 [16]
Death rate from disease (µD) 2.3

100 [25]
Imitation rate (r) Lognormal(0,1) [55]
Fraction of labor working with social isolation (q) 0.279 0.2-0.35 [36][13]

associated priors and MCMC parameters, are declared. The prior settings for the model

parameter are listed in Table 1. In this study, we consider uniform prior for β and p and

lognormal distribution for α,µA,µI,µR,µH ,µD,r,q.

Choosing αi j ∼ Laplace(0,τ2) results in a weighted-L1 regularization that seeks to minimize

∑
i, j,t

(
(ỹt,i, j− yt,i, j({αi j}))2

2σ2
obs, j

+λ ∑
i, j
|αi j|

The parameter λ = 21.5/τ . The maximum a posteriori probability (MAP) estimate is a least

absolute shrink and selected.

Predictive Posterior: Posterior predictive distribution at a test point x follows Gaussian

distribution [37]:

p(y|x,D ,σ2) =
∫

N (y|xT w,σ2)∗priorsdw (3.10)

• Monte-Carlo Cross-validation: The model evaluation is one of the most critical steps in

the machine/statistical learning approach. There is a dilemma regarding which data should

be used for training and testing, and the solution is to select data for training and testing

in an unbiased way called cross-validation. Cross-validation uses all points for both in an
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iterative method in training or testing, and it solves the potential over-fitting and data leakage

problem. We randomly split the entire data set into 70% training and 30% testing set. While

splitting the data set, we ensure the country with hospitalization data remains on the training

data set. After separating, training data contain 80 countries, and testing data includes 35

countries. And we use the mean square loss function as our error function to evaluate the

model performance.

3.6 Model Simulation

We simulated the model using the ordinary differential equation function ode using Runge-

Kutta hybrid 4 and 5 methods in R. A total number of 360 days is considered to simulate the

model. We assume that the epidemic started with 100 exposed, 50 asymptomatic, and 30 infected

individuals in a population size of 11,000,000.

3.7 Results

The main goal is to parameter inference for a SEAIHRD (Susceptible-Exposed-Asymptomatic-

Infected-Hospitalized-Recovered- Dead) model described in section 3.3. This model has also further

understood the infulence of culture on COVID-19 courses of the epidemic. The analysis results

from an R package called deBInfer: Bayesian inference for dynamical models of biological systems

in R.

3.7.1 MCMC Inference

We use the setup_debinfer function of deBInfer to collate the declared parameters and run

the MCMC estimation using de_mcmc. We run the MCMC for several 1000 iterations as it takes

too long. But for better convergence, we will run it for more iteration and possibly put the system

into parallel computing GPU. For complex dynamical systems with a large number of data, running

the system’s parallel will be a good option as MCMC takes longer. In the section 3.7.2 and 3.7.4

we will discuss about MCMC model diagnostic and final posterior distribution of 1000 iteration

respectively.

43



Figure 3.2: MCMC trace and density plot of parameter r.

3.7.2 Trace Plots to Check MCMC Mixing

Trace plots depict the chain’s progression over time. The ideal trace plot has little "stickiness"

and a lot of movement around the mode from iteration to iteration. Trace plots with a clear trend

indicate that the MCMC sampler has not yet converged and should be run for a longer period of time.

Extreme stickiness in trace plots indicates that the chain has not yet explored the entire parameter

space and needs to run longer.

In this dynamical system, there are 39 parameters in total which we try to estimate using Bayesian

inference. And, Figure 3.2, 3.3, and 3.4 shows the MCMC traces of some sample parameter r, α01,

and α02 and the MCMC chain progress over time. But for better convergence, it needs to run for a

longer iteration, which will be the study’s next step.

3.7.3 Autocorrelation and Effective Sample Size to Check Correlation Diagnostics

Independent (Monte Carlo) draws have no autocorrelations. Dependent draws (MCMC)

have non-zero, usually positive autocorrelations. Large autocorrelations indicate that the chain is not
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Figure 3.3: MCMC trace and density plot of parameter α01.

Figure 3.4: MCMC trace and density plot of parameter α02.
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Figure 3.5: Auto-correlation plot of parameter α02.

mixing well, implying that the chain has not explored the entire space of the posterior distribution

(has not converged). When the parameters are highly correlated, large autocorrelations occur

frequently in multi-parameter MCMC algorithms.

Figure 3.5 shows the autocorrelation plot of only one parameters α02 and there exists autocorrelation.

To solve the problem, it is required to run the MCMC for a long iteration and thining so that MCMC

mix properly and there will be minimum autocorrelation among the parameter. We also perform the

effective sample size test, which varies from 86-150 depending on the parameter, which also directs

us to run MCMC for longer iterations for better convergence.

3.7.4 Posterior Distributions

The Bayes theorem is used to calculate the conditional distribution for unobserved quantities

given data, also known as the posterior distribution. After seeing the data, the posterior distribution

expresses our uncertainty about the parameter.

Understanding the mechanisms underlying the COVID disease model and ultimately predicting
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their behaviors in a changing environment requires overcoming the gap between mathematical

models and experimental or observational data. We believe Bayesian inference provides a powerful

tool for fitting dynamical models and selecting between competing models. Posterior distribution

of all the parameter is shown in Figure 3.6. It indicates that the culture parameter does not have

high influence on the courses on epidemics except for some. But to come to the final decision,

checking the MCMC convergence with better mixing and putting the system into parallel computing

is required.
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Figure 3.7: Simulation of the disease prevalence.

3.7.5 Simulation and Discussion

Simulations were performed for 360 days with the mean parameter obtained from the

posterior distribution of the first cluster described in Section II and shown in Figure 3.7. According

to the figure, the prevalence of the infected and hospitalization fraction of individuals shows waves

with varying times. The fraction of people’s death increased as the time increased, and after

200 days, it became constant. Preliminary estimation shows that the culture dimensions are not

predictive of courses of COVID-19 epidemics. For a better result, it is required to run the MCMC for

a longer iteration so that the parameter value converges. Upon checking the MCMC diagnostic, we

may decide upon the convergence of the parameter and need to use appropriate Bayesian inference

methods like Bayes Factor. Section 3.7.6 discuss the computational tools’ disadvantage for solving

dynamic systems. The next step will be running the MCMC for a longer iteration in parallel

computing GPU to get better convergence.
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3.7.6 Drawback of R for Complex Dynamical System

The MCMC sampler is written in R package deBinfer, which makes it significantly slower

than samplers written in compiled languages, such as those found in underlying packages like Stan.

The computational bottleneck for purely R-based inference is numerically solving the DE model.

However, even for relatively simple models, using compiled DE models can result in a 5- to 10-fold

speedup of the inference procedure. Furthermore, the debinferMCMC algorithm is not adaptive

and must be tuned manually. Finally, sampling with the Metropolis-Hastings MCMC algorithm

can be inefficient in strong parameter correlations. In these cases, alternative approaches such

as Hamiltonian MC or particle-filtering methods may provide more efficient means of parameter

estimation in ODEs. Nonetheless, the package can solve real-world problems in minutes to hours on

current desktop hardware, which is sufficient for many applications and provides flexible inference

for ODE and DDE models.
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CHAPTER IV

CONVOLUTIONAL NEURAL NETWORK TO DETERMINE CULTURE FROM COVID-19

The chapter aims to develop a Convolutional Neural Network(CNN) that can identify the

culture of 115 countries from COVID -19 cases (input). One of the key challenges is that the input

data on COVID-19 cases and mortality are tabular times series data. So, we proposed a new method

to transform the times series COVID-19 data into an m×m matrix and finally transform the matrix

into the figure. The transformation matrix reflects the changes (increase/decrease) of COVID -19

new cases and mortality. This method of altering the tabular times series data into a figure is a

novel contribution that can be applied to any tabular data concerned with identifying the changes.

Transforming the data into a matrix and ultimately into a figure has several advantages, especially

when talking about deep learning algorithms like convolutional neural networks. After the invention

of AlexNet in 2012, convolutional neural networks have changed the field of image recognition and

computer vision [27]. Different convolutional neural networks(ResNet, VGG, GoogLeNet, and

Inception-v4) show a state of performance (human level) in image recognition [47, 23, 51]. Figure

4.1 shows top-1 single-crop validation accuracy’s for top-scoring single-model architectures, as

well as top-1 one-crop accuracy versus the number of operations required for a single forward pass.

There are currently a few research studies showing that tabular data can transform into images and

fed into convolutional neural networks to extract the underlying pattern in the data.

4.1 Tabular Data to Image Transformation

The raw data for COVID-19 is collected in time series format, and we consider only the

first 300 days because vaccines and other measures may add to the system after that. As we aim to

predict the culture effect on the COVID-19 pandemic, the COVID new cases data of more than 300
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Figure 4.1: State of art CNN performance analysis: Top1 accuracy vs. network. (left) and Top1
accuracy vs. operations, size (right) [12].

days is excluded from the analysis. Figure 4.2 represent the distribution of new cases for first 300

days.

Figure 4.2: COVID-19 new cases for the first 300 days in the United States

Figure 4.3 shows the transform images from the data shown in Figure 4.2 for the United
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States. To produce the image, initially, we make a transformation matrix of input size. The

transformation matrix tries to reflect the changes(rise or fall) of COVID-19 new cases as time

proceeds. Algorithm 2 shows the working procedure to calculate the distance matrix from tabular

data. After that with the help of matplotlib colormap the converted 300×300 matrix is transform

Algorithm 2 Tabular to image transformation
1: procedure DISTANCE MATRIX(dmn)
2: d← empty matrix of input data size
3: for each i in m do
4: for each j in n do
5: di j← X(i)−X( j)

into image show in Figure 4.3.

Figure 4.3: Transformed Image into 300×300 Pixel for the United States
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4.2 Development of Convolutional Neural Network (CNN)

This section introduces an image classification problem, which is the task of assigning a

specific category to an input image. An image is a numerical representation of a pixel value in a

three-dimensional array (for RGB). Images in three-dimensional arrays of integers ranging from 0

to 255, with width × height × 3. The 3 represent the three color channels in the last dimension:

red, green, and blue. For example, Figure 4.3 is an image of COVID-19 new cases from the United

States with labels representing different cultural dimensions. Image classification is not a trivial

task because of viewpoint variation, scale variation, deformation, occlusion, lighting conditions,

and background clutter.

Figure 4.4 and 4.5 represents CNN architecture with and without residual block respectively. CNN

with convolution only (Figure 4.4) start with a 2D convolution which is fairly a simple operation

starting with a kernel (small weights matrix). This kernel (in our case 3×3 slides over the input

data, performing element-wise multiplication with the portion of the input it is currently on, and

then adding the results to form a single output pixel. When working with image data, there are

several advantages to using convolutional layers, including a small number of convolutional layer

parameters, sparsity connection, parameter sharing, and spatial invariance. After that we use a

maxpooling layer after two 2D convolution layers to gradually reduce the height and width of the

output tensors from each convolutional layer. The Convolution 2D layer transform a 3- layer image

to a 16 channel feature map and the MaxPool2d layer halves the height and width. The pattern

of convolution and pooling continues. We flatten the final process image and pass it into a neural

network with the ReLU activation function at the end of the process in the last layer of CNN, giving

the output of the image class.

We also use a different CNN architecture which can be powerful in capturing the relationship

between the images and the labels more accurately called CNN with residual block shown in Figure

4.5. One of the fundamental changes to the previous CNN model is that here, in addition to the

convolution and pooling layer, we add a residual block that adds the original input back to the

output feature map obtained by passing the input through one or more convolution layer. And this

54



Figure 4.4: Convolutional Neural Network Architecture without Residual Block.

CNN architecture is deeper than the previous one. Also, in the second CNN model, we add a batch

normalization layer which normalizes the outputs of the previous layer.

4.3 Experimental Setup

The dataset was divided into 80%, 10%, and 10% for training, validation, and testing,

respectively, in the experiment. The dataset contains 115 images from 115 countries, with 91, 12,

and 12 images used for training, validation, and testing respectively. The data set is divided into

training, validation, and testing avoiding data leakage and undersampling. A 5-fold cross-validation

technique was used to obtain the results. Also, the 115 countries are divided into two classes based

on high (> 50) and low culture (< 50) dimension defined by Hofstede. The proposed network is

made up of 12 convolutional layers; as shown in the Figure, the learning rate is vary with batch size,

and the maximum epoch number is 8 to 10, which was determined experimentally. Python and

the PyTorch package were used to implement the CNN with and without residual blocks using the

graphical processing unit (GPU).
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Figure 4.5: Convolutional Neural Network Architecture wit Residual Block.
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Figure 4.6: Confusion matrix of culture (power distance) prediction based on CNN architecture.

4.4 Performance Evaluation Metrics

4.4.1 Results Analysis for Power Distance

The Figure 4.6 depicts the confusion matrix of the best CNN architecture for culture

classification during the testing phase. Two images from class 2 were misclassified by the CNN

architecture among the 12 images from testing data. The proposed system can efficiently identify

the class 2 groups of power distance. Figure 4.7 shows the performance evaluation of the CNN

classifier in terms of accuracy with varying number of epochs. At the training image size is small

and we didn’t run it for large number of epoch as there is a chance for over-fitting. At epoch 1,

the training accuracy decreases slightly but continues to increase further. The CNN architecture

has a training accuracy of 0.83 for identifying the power distance. The training and validation loss

decreases with the increasing number of epochs (Figure 4.8). After six epochs, the training and

validation loss became almost constant at 0.6 and 0.51, respectively. The addition of the residual

block, which adds the original input back to the output feature map obtained by passing the input

through one or more convolutional layers, is one of the most significant changes to our CNN model

this time. Figure 4.9 shows the performance evaluation of the CNN classifier with residual block in
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Figure 4.7: Accuracy of culture (power distance) prediction with varying epoch based on CNN
architecture.

Figure 4.8: Loss of culture (power distance) prediction with varying epoch based on CNN architec-
ture.
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Figure 4.9: Accuracy of culture (power distance) prediction with varying epoch based on CNN with
residual block.

terms of accuracy with varying number of epochs. At epoch 8, the CNN architecture with residual

block has a training accuracy of 0.81 for identifying the power distance.

The training and validation loss decreases with the increasing number of epochs for CNN

model with residual block (Figure 4.10). After five epochs, the training and validation loss became

almost constant. Figure 4.11 shows how we change the learning rate with the varying number of

batches on CNN architecture with residual block. The variation of the learning rate is completely

based on how the model works (accuracy) with validation images. The overall accuracy, specificity,

and sensitivity for the best CNN model to predict the power distance are 0.83, 0.67, and 1 respec-

tively. The convolutional neural network can identify power distance from COVID-19, meaning the

cultural dimension (power distance) has some impact on the courses of the epidemic.

4.4.2 Results Analysis for Individualism

During the testing phase, the confusion matrix of the best CNN architecture for culture

(individualism) classification is depicted in Figure 4.12. Among the 12 images from testing data, the

CNN architecture misclassified two images from class 2 and one from class 1. The proposed system

can efficiently identify individualism’s category two groups. Figure 4.13 depicts the CNN classifier’s
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Figure 4.10: Loss of culture (power distance) prediction with varying epoch based on CNN with
residual block.

Figure 4.11: Learning rate of culture (power distance) prediction with varying batch based on CNN
with residual block.
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Figure 4.12: Confusion matrix of culture (individualism) prediction based on CNN architecture.

performance evaluation in terms of accuracy with varying epochs. The training image size is small,

and we did not run it for a large number of epochs to avoid over-fitting. The training accuracy

was initially low but has since increased. For identifying individualism, the CNN architecture has

a training accuracy of 0.72. The training and validation loss decreases as the number of epochs

increases (Figure 4.14). The training and validation losses were nearly constant after three epochs,

at 0.5 and 0.59, respectively. The performance evaluation of the CNN classifier with the residual

block in terms of accuracy with varying epochs is shown in Figure 4.15. The CNN architecture

with residual block has a training accuracy of 0.79 for identifying individualism at epoch 8. For

CNN models with residual blocks, the training and validation loss decreases as the number of

epochs increases (Figure 4.16). The training and validation losses became nearly constant after

seven epochs. Figure 4.17 shows how we change the learning rate on CNN architecture with the

residual block by varying the number of batches. The learning rate varies entirely depending on

how the model works (accuracy) with validation images. A batch size of 10 to 12 achieves the

highest learning rate. The best CNN model for predicting individualism has an overall accuracy,

specificity, and sensitivity of 0.75, 0.67, and 0.83, respectively. From the analysis, it is evident that

CNN is not too good or bad at identifying individualism from the COVID-19 epidemic. One of the
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Figure 4.13: Accuracy of culture (individualism) prediction with varying epoch based on CNN
architecture.

Figure 4.14: Loss of culture (individualism) prediction with varying epoch based on CNN architec-
ture.
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Figure 4.15: Accuracy of culture (individualism) prediction with varying epoch based on CNN with
residual block.

Figure 4.16: Loss of culture (individualism) prediction with varying epoch based on CNN with
residual block.

63



Figure 4.17: Learning rate of culture (individualism) prediction with varying batch based on CNN
with residual block.

reasons may be individualism has minimal impact on the courses of the epidemic.

4.4.3 Results Analysis for Masculinity

During the testing phase, the confusion matrix of the best CNN architecture for culture

(masculinity) classification is depicted in the Figure 4.18. Among the 12 images from testing data,

the CNN architecture misclassified five images from class 1 and four from class 2. The proposed

system is ineffective for identifying masculinity classes 1 and 2. The performance evaluation of the

CNN classifier in terms of accuracy with varying epochs is shown in Figure 4.19. CNN architecture

has not been shown to be particularly effective at identifying culture class masculinity. The training

and validation loss do not show any specific decreasing pattern as the number of epochs increases

(Figure 4.20). There could be two reasons for this: masculinity has little effect on explaining

COVID-19 courses of the epidemic, or CNN architecture is unsuitable for identifying masculinity.

To test the effectiveness of CNN on masculinity, we change the CNN architecture with a residual

block. The performance evaluation of the CNN classifier with the residual block in terms of accuracy

with varying epochs is shown in Figure 4.21. For identifying masculinity, the CNN architecture with

residual block has a training accuracy of 0.5. For CNN models with residual blocks, the training
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Figure 4.18: Confusion matrix of culture (masculinity) prediction based on CNN architecture.

Figure 4.19: Accuracy of culture (masculinity) prediction with varying epoch based on CNN
architecture.
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Figure 4.20: Loss of culture (masculinity) prediction with varying epoch based on CNN architecture.

Figure 4.21: Accuracy of culture (masculinity) prediction with varying epoch based on CNN with
residual block.
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Figure 4.22: Loss of culture (masculinity) prediction with varying epoch based on CNN with
residual block.

and validation loss decreases as the number of epochs increases (Figure 4.22). The training and

validation losses were nearly constant after four epochs. The architecture demonstrated superior

performance when compared to the previous CNN model. Figure 4.23 shows how we change

the learning rate on CNN architecture with the residual block by varying the number of batches.

The learning rate varies entirely depending on how the model works (accuracy) with validation

images—a batch size of 12 results in the highest learning rate. Overall accuracy, specificity, and

sensitivity of the best CNN model for predicting masculinity are 0.55, 0.33, and 0.16, respectively.

We can conclude that masculinity is not a good feature to identify from COVID-19, implying that it

may have no influence on the epidemic’s course.

4.4.4 Results Analysis for Uncertainty Avoidance

During the testing phase, the confusion matrix of the best CNN architecture for culture

classification is depicted in the Figure 4.24. Among the 12 images from testing data, the CNN

architecture misclassified one image from class 1 and one from class 2. The proposed system is

efficient at identifying the uncertainty avoidance class 1 and 2 groups. The performance evaluation

of the CNN classifier in terms of accuracy with varying epochs is shown in Figure 4.25. This CNN
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Figure 4.23: Learning rate of culture (masculinity) prediction with varying batch based on CNN
with residual block.

Figure 4.24: Confusion matrix of culture (uncertainty avoidance) prediction based on CNN archi-
tecture.
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Figure 4.25: Accuracy of culture (uncertainty avoidance) prediction with varying epoch based on
CNN architecture.

architecture is highly effective for classifying uncertainty avoidance and may significantly impact

on epidemics. The training and validation loss decreases as the number of epochs increases (Figure

4.26). The training and validation losses became nearly constant after six epochs, at 0.40 and 0.91

respectively. One of the most significant changes to our CNN model this time is the addition of the

residual block, which adds the original input back to the output feature map obtained by passing the

input through one or more convolutional layers. The performance evaluation of the CNN classifier

with the residual block in terms of accuracy with the varying number of epochs is shown in Figure

4.27. The CNN architecture with residual block has a training accuracy of 0.9 for identifying

uncertainty avoidance at epoch 8. For CNN models with residual blocks, the training and validation

loss decreases as the number of epochs increases (Figure 4.28). The training and validation losses

were nearly constant after six epochs. Figure 4.29 shows how we change the learning rate on CNN

architecture with residual blocks with varying batches. The learning rate varies entirely depending

on how the model works (accuracy) with validation images. The best CNN model’s overall accuracy,

specificity, and sensitivity for predicting uncertainty avoidance are 0.9, 0.83, and 0.83, respectively.

That is, uncertainty avoidance has a significant influence in explaining epidemic courses, which
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Figure 4.26: Loss of culture (uncertainty avoidance) prediction with varying epoch based on CNN
architecture.

Figure 4.27: Accuracy of culture (uncertainty avoidance) prediction with varying epoch based on
CNN with residual block.
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Figure 4.28: Loss of culture (uncertainty avoidance) prediction with varying epoch based on CNN
with residual block.

Figure 4.29: Learning rate of culture (uncertainty avoidance) prediction with varying batch based
on CNN with residual block.
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Figure 4.30: Confusion matrix of culture (long term orientation) prediction based on CNN architec-
ture.

is understandable given that the uncertainty avoidance dimension expresses the degree to which

members of a society are uncomfortable with uncertainty and ambiguity.

4.4.5 Results Analysis for Long Term Orientation

During the testing phase, the confusion matrix of the best CNN architecture for culture

classification is depicted in Figure 4.30. Among the 12 images from testing data, the CNN

architecture misclassified two images from class 1 and three from class 2. The proposed system is

incapable of identifying class 2 long-term orientation groups efficiently. Figure 4.31 depicts the

CNN classifier’s performance in terms of accuracy with varying number of epochs. The training

image size is small, and we did not run it for a large number of epochs to avoid over-fitting. The

training accuracy decreases slightly at epoch 4, but continues to rise. For identifying long-term

orientation, the CNN architecture has a training accuracy of 0.6. The training and validation loss

decreases as the number of epochs increases (Figure 4.32). The training and validation losses

became nearly constant after four epochs, at 0.6 and 0.71 respectively. The performance evaluation

of the CNN classifier with residual block in terms of accuracy with varying number of epochs is

shown in Figure 4.33. The CNN architecture with residual block has a training accuracy of 0.59 for
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Figure 4.31: Accuracy of culture (long term orientation) prediction with varying epoch based on
CNN architecture.

Figure 4.32: Loss of culture (long term orientation) prediction with varying epoch based on CNN
architecture.
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Figure 4.33: Accuracy of culture (long term orientation) prediction with varying epoch based on
CNN with residual block.

identifying long term orientation at epoch 7. For CNN models with residual blocks, the training and

validation loss decreases as the number of epochs increases (Figure 4.34). Figure 4.35 depicts how

we change the learning rate with varying batch sizes on a CNN architecture with residual block.

The learning rate varies entirely depending on how the model works (accuracy) with validation

images. The best CNN model’s overall accuracy, specificity, and sensitivity for predicting long-term

orientation are 0.61, 0.5, and 0.67, respectively. This suggests that long-term thinking has an impact

on the epidemic course.

4.4.6 Results Analysis for Indulgence

During the testing phase, the confusion matrix of the best CNN architecture for indulgence

culture classification is depicted in the Figure 4.36. Among the 12 images from testing data, the

CNN architecture misclassified three images from classes 1 and 2. The performance evaluation

of the CNN classifier in terms of accuracy with varying epochs is shown in Figure 4.37. The

training and validation loss decreases as the number of epochs increases (Figure 4.38). The training

and validation losses were nearly constant after four epochs, at 0.5 and 0.54, respectively. The

performance evaluation of the CNN classifier with a residual block in terms of accuracy with varying
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Figure 4.34: Loss of culture (long term orientation) prediction with varying epoch based on CNN
with residual block.

Figure 4.35: Learning rate of culture (long term orientation) prediction with varying batch based on
CNN with residual block.
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Figure 4.36: Confusion matrix of culture (indulgence) prediction based on CNN architecture.

Figure 4.37: Accuracy of culture (indulgence) prediction with varying epoch based on CNN
architecture.
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Figure 4.38: Loss of culture (indulgence) prediction with varying epoch based on CNN architecture.

epochs is shown in Figure 4.39. For CNN models with residual blocks, the training and validation

loss decreases as the number of epochs increases (Figure 4.40). Figure 4.41 shows how we change

the learning rate on CNN architecture with the residual block by varying the number of batches.

The learning rate varies entirely depending on how the model works (accuracy) with validation

images. The best CNN model for predicting indulgence has an overall accuracy, specificity, and

sensitivity of 0.5, 0.5, and 0.5, respectively. It implies that the cultural dimension of indulgence has

a lower impact on explaining the epidemic course, and CNN architecture is ineffective at predicting

indulgence from COVID-19.

4.5 Discussion and Conclusion

After analyzing the CNN model results, it is clear that not all cultures have the same effect

on COVID-19 epidemic courses. Specific cultural dimensions, such as uncertainty avoidance,

power distance, and individualism, significantly affect the COVID-19 pandemic, while others are

less effective. In Section III with 1000 MCMC iterations, we find that culture dimensions are not

predictive of the COVID-19 epidemic course, which contradicts the CNN result. As a result, it

is necessary to allow the MCMC mixing for longer iterations to achieve better convergence and
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Figure 4.39: Accuracy of culture (indulgence) prediction with varying epoch based on CNN with
residual block.

Figure 4.40: Loss of culture (indulgence) prediction with varying epoch based on CNN with residual
block.
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Figure 4.41: Learning rate of culture (indulgence) prediction with varying batch based on CNN
with residual block.

estimate the true parameter, which is the next step in the study. Furthermore, the findings of this and

future studies will aid in accessing and evaluating Nonpharmaceutical Interventions (NPIs) such as

contact tracing, social distancing, masks, and quarantine as potential pandemic control strategies.

Furthermore, we want to establish the CNN method and Algorithm 2 by allowing CNN to recognize

a well-defined function as the two classes to identify, such as convex vs. concave, increasing vs.

decreasing, Legendre vs. Chebychev, and oscillation vs. stable functions.
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