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ABSTRACT

Ray, Anirban, Thermal convection in a cylindrical annulus filled with porous material. Master 

of Science (MS), August, 2022, 41 pp., 5 tables, 23 figures, references, 31 titles.

Here a study on thermal convection in a porous vertical cylindrical annulus which is 

heated from below is carried out. The walls are considered to be impermeable that is the velocity 

is 0 at the boundary walls. The cylindrical annulus is radially insulated .The governing system 

consists of the continuity equation, Darcy-Boussinesq equation, heat equation and the equation 

of state. Employing weakly non-linear approach, the basic state system and the perturbed system 

are derived. After obtaining the solutions to the basic state system, the pressure term in perturbed 

system is eliminated by taking double curl, and then eliminating the velocity, a partial differential 

equation in the linearized perturbed temperature is obtained. This partial differential equation is 

solved in terms of Bessel and trigonometric functions using separation of variables method. For 

axisymmetric case, the solution contains the zeroth order Bessel functions of the first and second 

kind. Computational results for the temperature are presented in tabular and graphical forms.
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CHAPTER I

INTRODUCTION

A porous medium or a porous material is a material containing pores or voids. It is a

material consisting of a solid matrix with interconnected voids. The solid matrix is rigid in usual

situation, but it may undergo small deformation. The interconnectedness of the void (the pores)

allows the flow of one or more fluids through the material. In the simplest scenario, the void is

saturated by a single fluid which is called single phase flow. In two-phase flow a liquid and a gas

share the void space. The interconnectedness of the void (the pores) allows the flow of one or more

fluids through the material. In the simplest situation (“single-phase flow”) the void is saturated by

a single fluid. In “two-phase flow” a liquid and a gas share the void space .

In natural porous media the distribution of pores with respect to shape and size is irreg-

ular.Examples of natural porous media are beach sand, sandstone, limestone, rye bread, wood,

human tissue. On the pore scale(the microscopic scale) the flow quantities of interest are mea-

sured over areas that cross many pores, and such space averaged(macroscopic) quantities change

in regular manner with respect to space and time, and hence are applicable to theoretical treat-

ment. The usual way of deriving the laws governing the macroscopic variables is to begin with

the standard equation obeyed by the fluid and to obtain macroscopic equations by averaging over

volumes or areas containing any pores.In this approach a macroscopic variable is defined as an

appropriate mean over a representative elementary volume(r.e.v); this operation yields the value of

that variable at the centroid of the r.e.v. It is assumed that the result is independent of the size of
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the representative elementary volume. The length scale of the r. e. v. is much bigger that the pore

scale, but comparatively smaller that the length scale of the macroscopic flow domain.

Figure 1: The representative elementary volume (r.e.v.): the figure illustrates the intermediate size
relative to the sizes of the flow domain and the pores.

The representative elementary volume serves the purpose of macroscopic study of a

porous media. In general a porous media has microscopic pores and innumerable in a given area

of space. The idea of r.e.v is used to study a certain section of the porous media where the pores

are visible and numerically comprehensible to a certain extent.

Porosity: A porous medium is most often characterized by its porosity. The porosity 𝜙 of

a porous medium is defined as a fraction of the total volume of the medium that is occupied by the

void space. Thus 1− 𝜙 is the fraction that is occupied by solid. In defining 𝜙 in this way we are

assuming that all the void space is connected. If one has to deal with a medium in which some of

the pore space is disconnected from the remainder, then one has to introduce an effective porosity

defined as the ratio of connected void to the total volume. Effective porosity is concerned with the

pore space accessible to the flow.
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Permeability: The permeability of a porous medium is a measure of the ease with which a

fluid will flow through the medium; the higher the permeability, the higher the flow rate for a given

hydraulic gradient. The permeability is a statistical average of the fluid conductivities of the all the

flow channels in the solid body. Permeability is a property of the porous medium that measures the

capacity and ability of the formation to transit fluids. Foolowing is a table on properties of some

common porous media based on data compiled by Scheidegger (1974) and Bejan and Lage (1991

Table 1: Properties of common porous materials

Material Porosity 𝜑 Permeability 𝐾[cm2] Surface per unit volume [cm−1]
Agar Agra 2 × 10−10–4.4 × 10−9

Brick 0.12–0.34 4.8 × 10−11–2.2 × 10−9
Cigarette 1.1 × 10−5

Coal 0.02–0.12
Leather 0.56–0.59 9.5 × 10−10–1.2 × 10−9 1.2 × 104–1.6 × 104

Sand 0.37–0.50 2 × 10−7–1.8 × 10−6 150–220
Soil 0.43–0.54 2.9 × 10−9–1.4 × 10−7

Fibre Glass 0.88–0.93 560–770
Hair 0.95–0.99

Black slate powder 0.57–0.66 4.9 × 10−10–1.2 × 10−9 7 × 103–8.9 × 103

A porous medium or a porous material is a material containing pores(voids). The pores 

are typically filled with a fluid(fluid or gas); Convective heat and mass transport in porous media 

has a wide range of applications:

• Filtering Technology: Water Purification, Kidney/Renal filtration(removes waste from blood),

Sewage treatment;

• Casting, Molding, Solidification(Crystal growth), Mushy layer;

• Reservoirs: Water movements in geothermal reservoirs, Enhanced recovery of petroleum
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reservoirs, Aquifers;

• Heat Pipes, Heat exchangers,Thermal insulation, Coal combustor, Nuclear waste

reposito-ries;

• Biomedical applications: Tissue engineering, Porous materials for drug delivery, Orthope-

dics implants(providing biological fixation, scaffolds for tissue, ceramics for bone recon-

struction), Blood flow through aorta (aortic wall treated of porous layer);

• Underground spreading for chemical waste, Prevention of Coastal erosion, snow, Fuel cells,

carbon paper, catalytic reactors, Grain storage, Foams etc.

Some examples used in real life are mentioned below:

Figure 2: Heat exchanger

Porous Aluminum is very useful for heat transfer. In general Aluminum is for heat transfer 

due to its high thermal conductivity and porous Aluminum is more efficient due to its high internal 

surface area compared to its volume. The thermal conductivity of the porous aluminium has been

4



tested by Technical University of Freiberg though the thermal conductivity depends on the pore

size. The thermal conductivity lies in the range 30 – 50 W/(m*K). Thus porous aluminium is

very well suited for heat transfer purposes. Due to high volume porosity it is also very useful in

convective heat transfer as it absorbs heat due to its large internal surface as transfers it to solid

boby or fluid.

Figure 3: Artery walls

The walls of Artery are porous with very fine-pores and mostly made of muscle.The 

blood flow through arteries is Non-Newtonian wich means the flow does not obey Newton’s law of 

viscosity. Blood flow through arteries is urbulent in nature but under high conditions the blood flow 

becomes laminar. Blood flow through arteries i s acase of non-newtonian flow through a porous 

media. Artery walls have varying porosities in different regions. A detailed study of Newtonian 

blood flow through an artery has been carried out by K. R amakrishnan(2019). There he studied 

three cases. (i) Porous material in the upper wall have more permeability than in the lower wall (ii)
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Porous material in the upper and lower walls have the same permeability and (iii) Porous material

in the lower wall have more permeability than in the upper wall.

Figure 4: Aquifer

Petroleum reservoir and aquifer are other porous media examples.

Though transfer through a porous media is generally done at macrscopic level every anal-

ysis begins with study at microscopic level. Through nanaoparticel tracking the discrepancy be-

tween theoretical and experimental accuracy can be bridged to cerrtain extent. Detailed analysis

of nanoparticle tracking in porous media has been done by Daniel K. Schwartz and Charles M.
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Knobler(2020)

Darcy’s Law: Henry Darcy’s (1856) investigations into the hydrology of the water supply of Dijon 
and his experiments on steady-state unidirectional flow in a uniform medium revealed a 
proportionality between flow rate and the applied pressure difference. In modern notation this is 
expressed, in refined form, by

𝑣 = −𝐾
𝜇

𝜕𝑃

𝜕𝑥
(1)

Here represents 𝜕𝑃
𝜕𝑥

is the pressure gradient in the flow direction and 𝜇 represents the

dynamic viscosity of the fluid. The coefficient K is independent of the nature of the fluid but it

depends on the geometry of the medium. It has dimensions (length)2 and is called the specific

permeability or intrinsic permeability of the medium. It should be noted that in 1 . One needs

to take averages over the fluid phase before introducing a Darcy drag term.In three dimensions, 1

generalizes

∇𝑃 = − 𝜇
𝐾

−→𝑢 (2)

where now the permeability K is in general a second-order tensor. For the case of an isotropic

medium the permeability is a scalar and 2 simplifies to

𝑣 = −𝐾
𝜇

𝜕𝑃

𝜕𝑥

Values of K for natural materials vary widely. Typical values for soils, in terms of the unit

m2, are: clean gravel 10−7–10−9, stratified clay 10−13–10−16, and unweathered clay 10−16–10−20.

Workers concerned with geophysics often use as a unit of permeability the Darcy, which equals

0.987 × 1012 m2. Darcy’s law has been verified by the results of many experiments. Theoretical
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backing for it has been obtained in various ways, with the aid of either deterministic or statistical 

models. It is interesting that Darcy’s original data may have been affected by the variation of 

viscosity with temperature.If 𝐾 is dependent on geometrical factors of the medium then 𝐾 can be 

calculated for at least simple cases of geometry. A lot of work has been done on this which has 

been well compiled by Dullien(1992).

Many authors have used statistical concepts in the theoretical support for Darcy’s law. 

This theoretical work is not restricted to only homogeneous structures but also non-homogeneous 

structures however it is assumed that there are no sudden changes to the structure. If the medium 

has periodic structure, then the homogenization method can be used to obtain mathematically 

rigorous results. The method is explained in detail by Ene and Polisˇevski (1987), Mei et al. 

(1996), and Ene (2004). The first authors to derive Darcy’s law without assuming 

incompressibility, and they go on to prove that the permeability is a symmetric positive-definite 

tensor. For Newtonian fluids, the momentum and mass conservation are quantitatively expressed 

by the Navier-Stokes equations. Sometimes they come with a state equation linking pressure, 

temperature, and density. They result from applying Isaac Newton’s second law to fluid motion 

and from the premise that pressure and diffusing viscous terms which together describe viscous 

flow are added to the fluid’s stress. The Navier-Stokes equations differ from the closely 

related Euler equations in that they simulate viscous flow as well as viscosity, whereas the Euler 

equations solely model inviscid flow. Since the Navier-Stokes is a parabolic equation as a result, it 

has greater analytical properties but less mathematical structure. The equation is given by

𝜕−→𝑢
𝜕𝑡

+
(−→𝑢 · ∇

) −→𝑢 − 𝜈 𝜇
𝜌0

∇2−→𝑢 = −∇
(
𝑃

𝜌0

)
+−→𝑔

where 𝜈 = 𝜇

𝜌0

Brinkman Equation:: An aternative version to Darcy’s law is Brinkman’s equation. In this equation the 
inertial

8



term are removed. The equation is

∇𝑃 = − 𝜇
𝐾

−→𝑢 + 𝜇̂∇2−→𝑢

where 𝜇̂ is the effective viscosity. This equation is modelled in analogy with the Navier-Stokes

equation. Now the equation has two terms for viscosity.

Wooding(1957) and many others working on convection in porous media extended equa-

tion (2) to involve a convective difference term.

𝜌 𝑓

[
𝜕
−→
𝑉

𝜕𝑡
+
(−→
𝑉 · ∇

) −→
𝑉

]
= −∇𝑃− 𝜇

𝐾

−→𝑣

This equation was obtained in analogy with with Navier-Stokes Equation.

Non-Newtonian and Newtonian fluids:

A Newtonian fluid is one in which satisfies Newton’s law of viscosity. The local strain

rate is linearly dependent on the viscous stresses resulting from its flow at every place. The rate at

which the fluid’s velocity vector changes determines how much stress is there.

Only when the tensors describing the viscous stress and strain rate are coupled by a con-

stant viscosity tensor that is independent of the stress state and flow velocity can a fluid be said to

be Newtonian. The viscosity tensor is reduced to two real coefficients, which describe the fluid’s

resistance to continuous shear deformation and continuous compression or expansion, respectively,

if the fluid is also isotropic (mechanical properties are the same in any direction).Water, air, alco-

hol, glycerol, and thin motor oil are all examples of Newtonian fluids.

A Non-Newtonian fluid does not obey Newton’s law of viscosity that the rate of change of

local strain is not linearly dependent on the shear stress tensor. Some examples of Non-Newtonian

fluids are Soap solutions, cosmetics, and toothpaste Food such as butter, cheese, jam, mayonnaise,

soup, taffy, and yogurt Natural substances such as magma, lava, gums, honey, and extracts such

as vanilla extract Biological fluids such as blood, saliva, semen, mucus, and synovial fluid Slurries
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such as cement slurry and paper pulp, emulsions such as mayonnaise, and some kinds of disper-

sions.

Figure 5: This chart shows how viscosity changes with respect to the amount of shear or stress

applied to the fluid.

The principle problem in heat transfer engineering is to determine the relationship be-

tween the heat transfer rate and the driving temperature difference. In nature, many saturated 

porous media interact thermally with one another and with solid surfaces that confine them or are 

embedded in them. Here we analyze the basic heat transfer question by looking only at forced 

convection situations, in which the fluid fl ow is  ca used (f orced) by  an  ex ternal ag ent unrelated 

to the heating effect. Some fundamental aspects of the subject have been discussed by Lage and 

Narasimhan (2000) and the topic has been reviewed by Lauriat and Ghafir (2000).Forced convec-

tion in cylinder has been worked by Kimura (1988).

Rayleigh's Number: Rayleigh’s number is a dimensionless number in fluid dynamics that 

characterizes the flow-regime of the flow. In a certain range of this number the flow is 

turbulent and in a certain lower range the flow is laminar and under a even lower value there is no 

fluid flow and heat transfer takes place by conduction instead of convection. Rayleigh number 

in flow in a porous media is also known as Rayleigh-Darcy number and is given by the 

expression

𝑅𝑎 =
𝜌0𝑔𝛽△𝑇𝐾ℎ (𝜌𝑐𝑃) 𝑓

𝜇𝜅𝑚
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Rayleigh number is named after the prominent late physicist Lord Rayleigh. He made

a lot of contributions to other fields of Physics as well. Some of his his contributions include

Rayleigh’s scattering and formulating the mathematics of Taylor-coulette flow. Another important

quantity that appears in study of convective heat transfer is called Nusselt number denoted as 𝑁𝑢. It

is also dimmensionless number closely related to the Rayleigh’s number. It is defined as the ratio of

convective heat transfer to the conductive heat transfer at the boundary of the fluid. A zero Nusselt

number represents a purely conductive heat transfer, a low range of Nusselt number between 0

to 10 represents a laminar flow whereas a large range of typically between 10 to 100 represents

a turbulent flow. It was named after the physicist Wilhelm Nusselt. A detailed comparison of

Nusselt number against Rayleigh’s number was done by Yasuyuki Iwase and Satoru Honda(1996)

for a spherical shell. following is a graph showing a comparison between 𝑅𝑎 and 𝑁𝑢 in a spherical

shell.

Figure 6: Relationship between Nusselt (Nu) and Rayleigh (Ra) numbers for the 3-D spherical
shell convection

11



CHAPTER II

MATHEMATICAL FORMULATION

In this section, we mathematically formulate the problem and introduce the necessary

equations and set the background for the solution.

Our problem is to analyze thermal convection in a porous vertical cylindrical annulus of

height ℎ with inner radius 𝑅𝑖 and outer radius 𝑅𝑜. The annulus is heated from below and curved

surfaces are insulated and all the sides are impermeable. We introduce the governing equations

which are continuity equation, Darcy-Boussinesq equation and the heat equation that govern the

heat flow filled with the porous medium. The cylindrical coordinates (𝑟, 𝜙, 𝑧) is presented in figure

below.

y

z

x

o

r

z

P (r, ,z)

Figure 7: Cylindrical co-ordinate system
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The geometry of the problem we are dealing with is shown below.

x

y

z

Ro

Rih

 Figure 8: Geometrical sketch of the problem

This the geometrical representation of the problem at hand. The solid cylinder represents 

the outer cylinder of radius 𝑅0 and the dotted line represents the inner cylinder of radius 𝑅𝑖. The 

region between the two cylinders is filled with a porous media.
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Governing system consists of the following equations:

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ∇ ·−→𝑢 = 0 (3)

𝐷𝑎𝑟𝑐𝑦−𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ∇𝑃 = − 𝜇
𝐾

−→𝑢 + 𝜌 𝑓−→𝑔 (4)

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝜌𝑐𝑃) 𝑓 −→𝑢 · ∇𝑇 = 𝜅𝑚∇2𝑇 (5)

𝑆𝑡𝑎𝑡𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝜌 𝑓 = 𝜌0 {1− 𝛽 (𝑇 −𝑇0)} (6)

where −→𝑢 , 𝑃 and 𝑇 represent the velocity, pressure and temperature, respectively. Here 𝑐𝑃 denotes

the specific heat at a constant pressure, 𝛽 represents thermal expansion coefficient, 𝜇 represents

the dynamic viscosity of the fluid, 𝐾 denotes permeability, −→𝑔 is acceleration due to gravity. Also,

𝜌 𝑓 is the density of the fluid phase and 𝜅𝑚 = 𝜑𝜅 𝑓 + (1−𝜑) 𝜅𝑠 where 𝜅𝑚 denotes the thermal con-

ductivity of the melt, 𝜅𝑠, 𝜅 𝑓 denote the thermal conductivity of the solid part and the fluid part,

respectively. 𝜑 represents the porosity. 𝑇0 and 𝜌0 denote the reference temperature and reference

density, respectively.

Boundary conditions are

𝑇 = 𝑇0 𝑎𝑡 𝑧 = ℎ (7)

𝑇 = 𝑇0 +△𝑇 𝑎𝑡 𝑧 = 0 (8)

𝜕𝑇

𝜕𝑟
= 0 𝑎𝑡 𝑟 = 𝑅0, 𝑅𝑖 (9)

𝑢𝑧 = 0 𝑎𝑡 𝑧 = 0, ℎ (10)

𝑢𝑟 = 0 𝑎𝑡 𝑟 = 𝑅0, 𝑅𝑖 (11)

where −→𝑢 =< 𝑢𝑟 , 𝑢𝜙,𝑢𝑧 >.
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Nondimensionalization of the system is done in the following steps 

To nondimensionalize, we use the following:

𝑇 =
𝑇 −𝑇0
△𝑇

𝑟 =
𝑟

ℎ
, 𝑧 =

𝑧

ℎ

−̂→𝑢 =

−→𝑢 (𝜌𝑐𝑃) 𝑓
𝜅𝑚

𝑃̂ = (𝑃−𝑃0 + 𝜌0𝑔𝑧)
𝐾 (𝜌𝑐𝑃) 𝑓
𝜇𝜅𝑚

The corresponding governing equations (3),(4),(5),(6) the nondimmensionalised form is

obtained as

∇ · −̂→𝑢 = 0

∇𝑃̂+ −̂→𝑢 −𝑅𝑎𝑇 𝑘̂ = 0

−̂→𝑢 · ∇𝑇 = ∇2𝑇

where 𝑅𝑎 =
𝜌0𝑔𝛽(△𝑇)𝐾ℎ(𝜌𝑐𝑃) 𝑓

𝜇𝜅𝑚
is the Rayleigh number.

Dropping the hats, the system becomes

∇ ·−→𝑢 = 0 (12)

∇𝑃+−→𝑢 −𝑅𝑎𝑇 𝑘̂ = 0 (13)

−→𝑢 · ∇𝑇 = ∇2𝑇 (14)

The boundary conditions (7), (8) are transformed as

𝑇 = 0 𝑎𝑡 𝑧 = 1 (15)
𝑇 = 1 𝑎𝑡 𝑧 = 0 (16)

15



Now, we use weakly non linear approach to seperate the basic state and the perturbed

state systems. Separating the original variables into basic state (no flow) and perturbed state, we

can express

−→𝑢 (𝑟, 𝜙, 𝑧) = −→
𝑈 + 𝜖−→𝑞 (𝑟, 𝜙, 𝑧) (17)

𝑃 (𝑟, 𝜙, 𝑧) = 𝑃𝑏 (𝑧) + 𝜖𝑃 (𝑟, 𝜙, 𝑧) (18)

𝑇 (𝑟, 𝜙, 𝑧) = 𝑇𝑏 (𝑧) + 𝜖𝜃 (𝑟, 𝜙, 𝑧) (19)

where
−→
𝑈,𝑃𝑏 (𝑧) ,𝑇𝑏 (𝑧) are basic state variables, −→𝑞 , 𝑃 (𝑟, 𝜙, 𝑧) , 𝜃 (𝑟, 𝜙, 𝑧) are the perturbation vari-

ables and 𝜖 is a small parmeter.

Using equations (30), (18), (19) in equations (12), (13), (14) and (6), we get

∇ ·
(−→
𝑈 + 𝜖−→𝑞

)
= 0 (20)

∇ (𝑃𝑏 + 𝜖𝑃) +
(−→
𝑈 +−→𝜖𝑞

)
−𝑅𝑎 (𝑇𝑏 (𝑧) + 𝜖𝜃 (𝑟, 𝜙, 𝑧)) 𝑘̂ =

−→
0 .(−→

𝑈 + 𝜖−→𝑞
)
· ∇ (𝑇𝑏 (𝑧) + 𝜖𝜃 (𝑟, 𝜙, 𝑧)) = ∇2 (𝑇𝑏 (𝑧) + 𝜖𝜃 (𝑟, 𝜙, 𝑧))

𝜌 𝑓 = 𝜌0 (1− 𝛽 (𝑇𝑏 (𝑧) + 𝜖𝜃 (𝑟, 𝜙, 𝑧) −𝑇0)) (21)

Separating the terms with 𝜖 and without 𝜖 we obtain the basic state and the perturbed state 

systems respectively.

The basic state system equations are given as follows:

As the basic state has no flow, we have

−→
𝑈 =

−→
0 (22)

∇ (𝑃𝑏) −𝑅𝑎𝑇𝑏 𝑘̂ = 0 (23)

∇2 (𝑇𝑏 (𝑧)) = 0 (24)
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The solutions to the basic state equations (22), (23), (24) are

−→
𝑈 =

−→
0

𝑇𝑏 = 1− 𝑧

𝑃𝑏 (𝑧) = 𝑅𝑎
(
𝑧− 𝑧

2

2

)
The perturbed  system equations are given below:

∇ · −→𝑞 = 0 (25)

∇𝑃+−→𝑞 −𝑅𝑎 𝜃 𝑘̂ = 0 (26)

−→𝑞 · ∇𝑇𝑏 +−→𝑞 · ∇𝜃 = ∇2𝜃 (27)
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CHAPTER III

SOLUTION PROCEDURE

Here we present the solution procedure to obtain the temperature variable for the follow-

ing perturbed system

∇ ·−→𝑞 = 0 (28)

∇𝑃+−→𝑞 −𝑅𝑎 𝜃 𝑘̂ = 0 (29)

−→𝑞 · ∇𝑇𝑏 +−→𝑞 · ∇𝜃 = ∇2𝜃 (30)

The equation (30) can be obtained as

−𝑞𝑧 +−→𝑞 · ∇𝜃 = ∇2𝜃 (31)

where 𝑞𝑧 is the vertical 𝑧−component of −→𝑞 .

The boundary conditions for perturbed system are

𝜃 = 0 at 𝑧 = 0 and 𝑧 = 1 (32)

and

𝜕𝜃
𝜕𝑟

= 0 𝑟 = 𝑟0 (33)

𝜕𝜃
𝜕𝑟

= 0 𝑟 = 𝑟𝑖 (34)
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Since a constant heat flux is maintained in azimuthal direction, we have

𝜕𝜃
𝜕𝜙

= 0 (35)

First, we eliminate the pressure variable form the Darcy law (29). We take double curl of

Equation (26) and by use of the vector identity

∇×
(
∇×−→𝑎

)
= ∇

(
∇ ·−→𝑎

)
−∇2−→𝑎

and collecting the third component, we obtain

∇2𝑞𝑧 = 𝑅𝑎∇2
1𝜃 (36)

where ∇2
1 is the 2-D Laplacian.

By linearising Equation (31), we obtain

∇2𝜃 + 𝑞𝑧 = 0 (37)

From the Equation (36) and the Equation (37), we have the following equation

∇4𝜃 +𝑅𝑎∇2
1𝜃 = 0 . (38)

Also, we have the relation ∇2
1 = ∇2 +𝑛2𝜋2 , we get

∇4𝜃 +𝑅𝑎∇2𝜃 +𝑅𝑎
(
𝑛2𝜋2𝜃

)
= 0
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which is [
∇4 +𝑅𝑎∇2 +𝑅𝑎

(
𝑛2𝜋2

)]
𝜃 = 0 (39)

This can be expressed as

(
∇4 + (𝛼+𝛾) ∇2 +𝛼𝛽

)
𝜃 = 0, where 𝛼+𝛾 = 𝑅𝑎, 𝛼𝛾 = 𝑅𝑎

(
𝑛2𝜋2

)
. (40)

Solving for 𝛼 and 𝛾, respectively, we obtain

𝛼 =
𝑅𝑎 +

√︁
𝑅2
𝑎 −4𝑅𝑎 (𝑛𝜋)2

2
, 𝛾 =

𝑅𝑎 −
√︁
𝑅2
𝑎 −4𝑅𝑎 (𝑛𝜋)2

2
.

From equation (40), we have

(
∇2 +𝛼

) (
∇2 +𝛾

)
𝜃 = 0

which implies either (
∇2 +𝛼

)
𝜃 = 0, (41)

or, (
∇2 +𝛾

)
𝜃 = 0 (42)

First let us solve equation (41) and denote its solution as 𝜃1. Twhe solution for equation

(42) will follow the same process. We employ separation of variables to solve equation (41).

Let

𝜃1 = 𝑅(𝑟)Φ(𝜙)𝑍 (𝑧) (43)
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Using (43) in equation (41), we get

1
𝑅

𝜕2𝑅

𝜕𝑟2 + 1
𝑅𝑟

𝜕𝑅

𝜕𝑟
+ 1
𝑟2Φ

𝜕2Φ

𝜕𝜙2 + 𝜕2𝑍

𝑍 𝜕𝑧2
= −𝛼 (44)

where ∇2 = 𝜕2

𝜕𝑟2 + 1
𝑟
𝜕𝑅
𝜕𝑟

+ 1
𝑟2
𝜕2Φ
𝜕𝜙2 + 𝜕2𝑍

𝜕𝑧2
in cylindrical co-ordinates. Separating, we write

1
𝑅

𝜕2𝑅

𝜕𝑟2 + 1
𝑅𝑟

𝜕𝑅

𝜕𝑟
+ 1
𝑟2

𝜕2Φ

Φ𝜕𝜙2 +𝛼 = − 𝜕2𝑍

𝑍 𝜕𝑧2

Now considering 𝑘2 and 𝑚2 as the constants of separation, we have

𝜕2𝑍

𝜕𝑧2
+ 𝑘2𝑍 = 0 (45)

and
𝜕2Φ

𝜕2𝜙
+𝑚2Φ = 0 (46)

Now, solving (45) and using the boundary conditions (32), we obtain

𝑍 (𝑧) = sin (𝑛𝜋𝑧) . (47)

Similarly solving Equation (46), only non-trivial solution is obtained when 𝑚2 > 0 and implement-

ing the condition 𝜕Φ
𝜕𝜙

= 0, we obtain the solution

Φ = cos (𝑚𝜙) . (48)

Now in order to solve for 𝑅 we use Equation (45) and (46) in (44) and obtain

1
𝑅

𝜕2𝑅

𝜕𝑟2 + 1
𝑅𝑟

𝜕𝑅

𝜕𝑟
− 𝑚

2

𝑟2 +𝛼 = 𝑛2𝜋2 (49)

𝑟2 𝜕
2𝑅

𝜕𝑟2 + 𝑟 𝜕𝑅
𝜕𝑟

+
((
𝛼−𝑛2𝜋2

)
𝑟2 −𝑚2

)
𝑅 = 0 (50)
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Introducing a new variable 𝑠 = 𝑝𝑛𝑟, where 𝑝2
𝑛 = 𝛼− 𝑛2𝜋2 so after change of variable Equation50

becomes

𝑠2
𝜕2𝑅

𝜕𝑠2
+ 𝑠 𝜕𝑅

𝜕𝑠
+
(
𝑠2 −𝑚2

)
𝑅 = 0 (51)

which is Bessel’s equation in 𝑠, so the solution to (51) is

𝑅𝑛 = 𝐴𝑛𝐽𝑚 (𝑝𝑛𝑟) +𝐵𝑛𝑌𝑚 (𝑝𝑛𝑟) (52)

where 𝐽𝑚 and 𝑌𝑚 are Bessel’s function of first and second kind of 𝑚𝑡ℎ order, respectively.

Bessel functions of first kind of various orders are displayed in figure below.
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Figure 9: Bessel functions of the first kind of various orders
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Figure 10: Bessel functions of the second kind of various orders

For axisymmetric case, we have 𝑚 = 0. So, (52) yields

𝑅𝑛 = 𝐴𝑛𝐽0 (𝑝𝑛𝑟) +𝐵𝑛𝑌0 (𝑝𝑛𝑟) (53)

where 𝐽0 and 𝑌0 are the Bessel’s function of first kind and second kind of zeroth order.

Now combing the solutions (47), (48) and (53), we express the solution as

𝜃1𝑛 = (𝐴𝑛𝐽0 (𝑝𝑛𝑟) +𝐵𝑛𝑌0 (𝑝𝑛𝑟)) sin (𝑛𝜋𝑧)

and thus principle of superposition yields

𝜃1 = Σ𝜃1𝑛

𝜃1 = 𝛴𝑛=1 (𝐴𝑛𝐽0 (𝑝𝑛𝑟) +𝐵𝑛𝑌0 (𝑝𝑛𝑟)) sin (𝑛𝜋𝑧) (54)
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Implementing the boundary conditions from (33) and (34), we have

0 = 𝛴𝑛=1
(
𝐴𝑛𝐽

′
0 (𝑝𝑛𝑟0) +𝐵𝑛𝑌 ′

0 (𝑝𝑛𝑟0)
)
sin (𝑛𝜋𝑧) (55)

0 = 𝛴𝑛=1
(
𝐴𝑛𝐽

′
0 (𝑝𝑛𝑟𝑖) +𝐵𝑛𝑌

′
0 (𝑝𝑛𝑟𝑖)

)
sin (𝑛𝜋𝑧) (56)

Since 𝐽′0 (𝑝𝑛𝑟) = −𝑝𝑛𝐽1 (𝑝𝑛𝑟) and 𝑌 ′
0 (𝑝𝑛𝑟) = −𝑝𝑛𝑌1 (𝑝𝑛𝑟), we have

𝐴𝑛𝐽1 (𝑝𝑛𝑟0) +𝐵𝑛𝑌1 (𝑝𝑛𝑟0) = 0

𝐴𝑛𝐽1 (𝑝𝑛𝑟𝑖) +𝐵𝑛𝑌1 (𝑝𝑛𝑟𝑖) = 0

which gives

©­­«
𝐽1 (𝑝𝑛𝑟0) 𝑌1 (𝑝𝑛𝑟0)

𝐽1 (𝑝𝑛𝑟𝑖) 𝑌1 (𝑝𝑛𝑟𝑖)

ª®®¬
©­­«
𝐴𝑛

𝐵𝑛

ª®®¬ =
©­­«

0

0

ª®®¬
which yields 2 linear equations in 𝐴𝑛 and 𝐵𝑛 and from these two equations we can see that a

non-trivial solution for 𝐴𝑛 and 𝐵𝑛 is obtained only when the determinant of����������
𝐽1 (𝑝𝑛𝑟0) 𝑌1 (𝑝𝑛𝑟0)

𝐽1 (𝑝𝑛𝑟𝑖) 𝑌1 (𝑝𝑛𝑟𝑖)

���������� = 0

which gives us

𝐽1 (𝑝𝑛𝑟0)𝑌1 (𝑝𝑛𝑟𝑖) −𝑌1 (𝑝𝑛𝑟0) 𝐽1 (𝑝𝑛𝑟𝑖) = 0. (57)

We will find 𝑝𝑛 from this equation using finding zeros of a function.

Solution 𝜃2 of (42) can be obtained similar way as follows

(𝐶𝑛𝐽0 (𝑞𝑛𝑟) +𝐷𝑛𝑌0 (𝑞𝑛𝑟)) sin (𝑛𝜋𝑧) .
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Here 𝑝𝑛 and 𝑞𝑛 satisfy

𝑝2
𝑛 + 𝑞2

𝑛 +2𝑛2𝜋2 = 𝑅𝑎

𝑝𝑛𝑞𝑛 = 𝑛
2𝜋2

From these two relations, 𝑅𝑎 can be obtained in terms of 𝑝𝑛 only as

𝑅𝑎 = 𝑝
2
𝑛 +

𝑛4𝜋4

𝑝2
𝑛

+2𝑛2𝜋2.

The final solution for temperature is obtained as a linear combination of two solution, 𝜃1 and 𝜃2.
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CHAPTER IV

RESULTS AND DISCUSSIONS

In the previous section we obtained a solution for the system by use of seperation of

variables. Several interesting mathematical relations were observed. In this section graphical

analysis of these results will be carried out to figure out a physical understanding of the solution we

obtained. the realtion between the wave number and the Rayleigh number provides an interseting

insight into the physical aspect of the problem and this relation will be further extended to other

aspects of fluid dynamics to generate a better understanding. Following figure, Figure 11 shows

the Bessel functions against the x values in the domain (1, 14).

2 4 6 8 10 12 14

x-values --->

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

B
e
s
s
e
l 
F

u
n
c
ti
o

n
s

 J0

 Y0

 J1

 Y1

Figure 11: Few Bessel functions

Following table shows the first four zeroes of 𝐽0, 𝐽1, 𝑌0, 𝑌1 in the interval (1, 14). It is
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seen that the Bessel functions have four zeros in the chosen interval and are recorded in the table 

2.

Table 2: Zeroes of Bessel’s function in the interval (1, 14).

1 2 3 4

𝐽0 2.404826 5.520078 8.653728 11.791534

𝑌0 3.957678 7.086051 10.222345 13.361097

𝐽1 3.831706 7.015587 10.173468 13.323692

𝑌1 2.197141 5.429681 8.596006 11.749155

Since 𝑛 = 1 is the doinating mode, from now on we use 𝑛 = 1 and we write 𝑝1 = 𝑝. Figure

12 displays the graph of the expression involving Bessel’s funsctions of the first and second kind

used to obtain a non triovial solution to our system which is the left hand side of the equation

𝐽1 (𝑝𝑟0)𝑌1 (𝑝𝑟𝑖) −𝑌1 (𝑝𝑟0) 𝐽1 (𝑝𝑟𝑖) = 0. (58)

As expected, the LHS of (58) is oscillating in nature as the value of p progresses with dampening
amplitude as 𝑝 increases.
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Figure 12: LHS of the equation (57) as a function of 𝑝.
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Rayleigh numbers are calculated using the following expresseion

𝑅𝑎 = 𝑝
2 + 𝜋

4

𝑝2 +22𝜋2

and then the minimum of these Rayleigh numbers is taken as the critical Raylieg number and the

correspinding p is called the critical wave number. For the left figure above, we use 𝑟𝑖 = 1 and

𝑟0 = 4, and obtain the critical Rayliegh number as critical wave number as

(𝑅𝑎)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 39.481559, 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 3.169740

For the left figure above, we use 𝑟𝑖 = 1 and 𝑟0 = 9, and obtain the critical Rayliegh number as

critical wave number as

(𝑅𝑎)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 39.479056, 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 3.154250

Table 3 presents the Rayleigh numbers corresponding to the different wave numbers. It

is observed that the critical Rayleigh number and the corresponding minimum wave number are

39.480449 and 3.164208 respectively.
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Table 3: 𝑝− 𝑣𝑎𝑙𝑢𝑒𝑠 for given 𝑟𝑖 = 1 and 𝑟0 = 9 and the corresponding 𝑅𝑎 − 𝑣𝑎𝑙𝑢𝑒𝑠

𝑝− 𝑣𝑎𝑙𝑢𝑒𝑠 𝑅𝑎 − 𝑣𝑎𝑙𝑢𝑒𝑠

1.206353 88.129113

1.593686 60.631569

1.982623 48.451030

2.372570 42.672895

2.763182 40.132324

3.154250 39.479056

3.545643 40.059148

3.937275 41.524934

4.329086 43.677845

4.721036 46.397827

5.113095 49.608853

5.505241 53.260891

5.897457 57.319931

6.289732 61.762201

6.682054 66.570682

7.074418 71.732932

7.466815 77.239685

7.859242 83.083924

8.251695 89.260260

8.644169 95.764496

.

It is observed that the critical Rayleigh number value is close to 4𝜋2 and the minimum wave
number value is close to 𝜋.
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Figure 13 shows the graphical representation of 𝑅𝑎 against wave number 𝑝values and as

it can be observed that the critical Rayleigh number, the minima of the graph is approximately

4𝜋2 and the minima is obtained at the corresponding minimum wave number which approximately

appears to be 𝜋.
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Figure 13: Rayleigh Number 𝑅𝑎 against varying values of wave number 𝑝 for 𝑟0 = 9

Figure 14 represents the temperature profile against axial coordinate z values for distinct

𝑟 values (𝑟 = 1.1,1.3,2.0,3.5,4.0) when 𝑟𝑖 = 1 and 𝑟𝑜 = 4 . The temperature values are positive for

𝑟 = 1.1,1.3, and 3.5 while negative temperature values are observed for 𝑟 = 2.0 and 4. Further, as

the value of r approaches to 1.5, the temperature profile flattens out. It can also be observed from

the graph that the with increase in values of fixed 𝑟the temperature values tend to become negative

as we can see for 𝑟 = 4.0 the temperature values are mostly negative. However larger the value of

𝑟for which the temperature values are negative the absolute value is less hence less negative.
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Figure 14: First graph of 𝜃 against 𝑧− 𝑣𝑎𝑙𝑢𝑒𝑠 for varying values of fixed 𝑟for 𝑟𝑖 = 1 , 𝑟0 = 4

Figure 15 shows the temperature profile with respect to the axial coordinate 𝑧 values for

distinct 𝑟 values (𝑟 = 1.1 . . .1.5) when 𝑟𝑖 = 1 and 𝑟𝑜 = 4. It is parabolic in nature and all the values

are positive for the selected 𝑟 values and was found to be highest in the middle of the annular

region. Further, as the value of r approaches to 1.5, the temperature profile flattens out.
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Figure 15: Second graph of 𝜃 against 𝑧− 𝑣𝑎𝑙𝑢𝑒𝑠 for varying values of fixed 𝑟for 𝑟𝑖 = 1 , 𝑟0 = 4

Fig. 16 displays the temperature profile against axial coordinate z values for distinct r

values (r=1.6. . . 2.0) when 𝑟𝑖 = 1 and 𝑟𝑜 = 4. The temperature profile is parabolic in nature and

the values become negative for the selected 𝑟 values (𝑟 ∈ [1.6,2.0]) and found to be lower in the

middle of the annulus region. Further, as the value of 𝑟 tends to 2 from 1.6, the temperature profile
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becomes smaller.
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Figure 16: Third graph of 𝜃 against 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 for varying values of fixed 𝑟for 𝑟 𝑖 = 1 , 𝑟 0 = 4

Figure 17 describes the temperature profile against radial coordinate 𝑟 values for distinct 𝑧

values (𝑧 = 0.05,0.15,0.3,0.5) when 𝑟𝑖 = 1 and 𝑟0 = 4. The temperature results of this figure agree

with our previous results, that is, the temperature values are positive in the interval 𝑟 ∈ [1,1.5] while

they are negative for 𝑟 ∈ [1.6,2] . Furthermore, the local maxima and minima of the temperature

field occur in the middle of annulus. In the selected range 𝑟 ∈ [1,4], the temperature becomes

negative twice. The curvature of the temperature increases with the increase in 𝑧− 𝑣𝑎𝑙𝑢𝑒𝑠.
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Figure A7: Araph Af 𝜃 against 𝑟 − values Aor varying values Af Aixed 𝑧for 𝑟 𝑖 = 1 , 𝑟 0 = 4

Figure 18 displays similar behavior as Figure 14 , both being parabolic however the 

graph in Figure 14 is a bit more bulging.
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Figure 18: First graph of 𝜃 against 𝑧− 𝑣𝑎𝑙𝑢𝑒𝑠 for varying values of fixed 𝑟for 𝑟𝑖 = 1 , 𝑟0 = 9

Figures 19 and 20 show similar behavior of the temperature profile observed in Figures

15 and 16 for 𝑟𝑖 = 1 and 𝑟0 = 9. However, a slight variation in the amplitudes may be noted.
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Figure 19: Second graph of 𝜃 against 𝑧− 𝑣𝑎𝑙𝑢𝑒𝑠 for varying values of fixed 𝑟for 𝑟𝑖 = 1 , 𝑟0 = 9
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Figure 20: Third graph of 𝜃 against 𝑧− 𝑣𝑎𝑙𝑢𝑒𝑠 for varying values of fixed 𝑟for 𝑟𝑖 = 1 , 𝑟0 = 9

Similarly, Figure 21 is plotted to depict the temperature profile against radial coordinate

𝑟 values for distinct 𝑧 values (𝑧 = 0.05,0.15,0.3,0.5) when 𝑟𝑖 = 1 and 𝑟0 = 9. . A similar behaviour
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is noticed compared to Fig. 17,
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Figure 21: Araph Af 𝜃 against 𝑟 − 𝑣𝑎𝑙𝑢𝑒𝑠 Aor varying values Af Aixed 𝑧 Aor 𝑟 𝑖 = 1 , 𝑟 0 = 9

Following As a table 𝜃 against varying values Aor 𝑟for Aixed 𝑧 = 0 .5 at 𝑟 0 = 4 and 9 . It 

is Abserved that the local maxima and minima Abtained have higher magnitude Aor 𝑟0 = 4 

compared to 𝑟0 = 9, Ahich As also Aonfirmed Arom the Araphs.

Table 4: 𝜃 against varying values for 𝑟  for fixed 𝑧 = 0.5.

𝑟 = 1 𝑟 = 2 𝑟 = 2.75 𝑟 = 3 𝑟 = 3.75

𝑟0 = 4 3.974617 -2.828478 1.486347 2.310688 -1.278081

𝑟0 = 9 3.969267 -2.825478 1.484504 2.310350 -1.277693

Figures 22 and 23 portray the average Nusselt number against radial coordinate 𝑟 values when 4

and 𝑟0 = 9 respectively. As expected, the magnitude of average Nusselt number is greater when

𝑟0 = 9 than when 𝑟0 = 4 after a certain point.
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Figure 22: Average Nusselt number against 𝑟 − 𝑣𝑎𝑙𝑢𝑒𝑠 for 𝑟0 = 4
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Figure 23: Average Nusselt number against 𝑟 − 𝑣𝑎𝑙𝑢𝑒𝑠 for 𝑟0 = 9

Following is a table of Nusselt numbers against varying values of 𝑟 for 𝑟𝑜 = 4 and 9. 
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𝑟 = 1.15 𝑟 = 2.05 𝑟 = 2.35 𝑟 = 3.0

𝑟0 = 4 1.687051 -0.284085 −2.275396 0.543032

𝑟0 = 9 1.684596 -0.282646 −2.272955 0.541232
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Table 5: Table of Nusselt numbers against varying values of r for  ro = 4, 9 and ri = 1.



CHAPTER V

CONCLUSION

In this thesis, we did computational analysis of vertical cylindrical annuli filled

with porous media confined within a region of 𝑧 = 0 and 𝑧 = ℎ with the bottom being heated

from below. The convective heat transfer is governed by four partial differential equations the

continuity equation, Darcy-Boussenisq equation, Heat Equation and Equation of state. A solution

was obtained through seperation of variables in terms of an expression in Bessel’s functions of first

and second kind. The axisymmetric case and the dominant 𝑛 = 1 mode was picked up as the focus

of study. Computational analysis of the problem gave a relation between the wave number and the

Rayleigh number which was studies graphically and by tabulating data for th wave number. This

led to the obsrvation that the critical wave numberr and the critical Rayleigh number tend to 4𝜋2

and 𝜋respectively. A graphical analysis for the temperature profile for varying values of 𝑟and 𝑧 by

fixing the other was carried out for two different outer radius 𝑟𝑜 = 4 and 9 . A further study of the

Average Nusselt for the same set of outer radius was carried out.
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