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CONSTRAINED QUANTIZATION FOR PROBABILITY DISTRIBUTIONS

1MEGHA PANDEY AND 2MRINAL K. ROYCHOWDHURY

Abstract. In this paper, for a Borel probability measure P on a Euclidean space R
k, we extend the

definitions of nth unconstrained quantization error, unconstrained quantization dimension, and uncon-
strained quantization coefficient, which traditionally in the literature known as nth quantization error,
quantization dimension, and quantization coefficient, to the definitions of nth constrained quantization
error, constrained quantization dimension, and constrained quantization coefficient. The work in this pa-
per extends the theory of quantization and opens a new area of research. In unconstrained quantization,
the elements in an optimal set are the conditional expectations in their own Voronoi regions, and it is not
true in constrained quantization. In unconstrained quantization, if the support of P contains infinitely
many elements, then an optimal set of n-means always contains exactly n elements, and it is not true in
constrained quantization. It is known that the unconstrained quantization dimension for an absolutely
continuous probability measure equals the Euclidean dimension of the underlying space. In this paper,
we show that this fact is not true as well for the constrained quantization dimension. It is known that
the unconstrained quantization coefficient for an absolutely continuous probability measure exists as a
unique finite positive number. From work in this paper, it can be seen that the constrained quantization
coefficient for an absolutely continuous probability measure can be any nonnegative number depending
on the constraint that occurs in the definition of nth constrained quantization error.

1. Introduction

The most common form of quantization is rounding-off. Its purpose is to reduce the cardinality of
the representation space, in particular, when the input data is real-valued. It has broad applications in
communications, information theory, signal processing, and data compression (see [GG, GL, GL1, GN,
P, Z1, Z2]).

For k ∈ N, where N is the set of natural numbers, let Rk be a Euclidean space equipped with a metric
d. Let P be a Borel probability measure on R

k and r ∈ (0,+∞). Let S ⊆ R
k be such that S is closed.

Then, the distortion error for P , of order r, with respect to a set α ⊆ S, denoted by Vr(P ;α), is defined
as

Vr(P ;α) =

∫

min
a∈α

d(x, a)rdP (x).

Then, for n ∈ N, the nth constrained quantization error for P , of order r, is defined as

Vn,r := Vn,r(P ) = inf
{

Vr(P ;α) : α ⊆ S, 1 ≤ card(α) ≤ n
}

, (1)

where card(A) represents the cardinality of a set A. If in the definition of nth constrained quantization
error, the set S, known as constraint, is chosen as the set Rk itself, then the nth constrained quantization
error is referred to as the nth unconstrained quantization error, which traditionally in the literature is
referred to as the nth quantization error. For the details of the mathematical treatment of unconstrained
quantization, one is referred to [GL]. For the probability measure P , we make the standard assumption
that

∫

d(x, 0)rdP (x) < ∞. This ensures us that there is a set α ⊆ S for which the infimum in (1) exists.
For a finite set α ⊂ R

k, and a ∈ α, by M(a|α) we denote the set of all elements in R
k which are nearest

to a among all the elements in α, i.e., M(a|α) = {x ∈ R
k : d(x, a) = min

b∈α
d(x, b)}. M(a|α) is called the

Voronoi region in R
k generated by a ∈ α. On the other hand, the set {M(a|α) : a ∈ α} is called the

Voronoi diagram or Voronoi tessellation of Rk with respect to the set α. In the case of unconstrained
quantization as described in [GL], the elements in an optimal set are the conditional expectations in
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their own Voronoi regions. This fact is not true in the case of constrained quantization. Because of
that, in the case of constrained quantization, a set α for which the infimum in (1) exists and contains
no more than n elements is called an optimal set of n-points instead of calling it as an optimal set of
n-means. Elements of an optimal set are called optimal elements. In unconstrained quantization, as
described in [GL], if the support of P contains infinitely many elements, then an optimal set of n-means
always contains exactly n elements. It is not true in constrained quantization. In the case of constrained
quantization, an optimal set of one-point always exists; on the other hand, if the support of P contains
infinitely many elements, then an optimal set of n-points for any n ≥ 2 does not necessarily contain
exactly n elements. Notice that unconstrained quantization, as described in [GL], is a special case of
constrained quantization. There are some properties in unconstrained quantization that are not true in
constrained quantization. This paper deals with r = 2 and the metric on R

k as the Euclidean metric
denoted by ‖ · ‖. Thus, instead of writing Vr(P ;α) and Vn,r := Vn,r(P ) we will write them as V (P ;α)
and Vn := Vn(P ).

1.1. Delineation. In this paper, we have determined the optimal sets of n-points and the nth con-
strained quantization errors for all n ∈ N for different uniform distributions: in Section 3, the uniform
distribution has support a closed interval [a, b] and the optimal elements lie on another line segment; in
Section 4, the uniform distribution has support a circle, and the optimal elements lie on another circle;
in Section 5, the uniform distribution has support a chord of a circle, and the optimal elements lie on
that circle; and in Section 6 the uniform distribution has support a closed interval on a line outside
of a circle and the optimal elements lie on that circle. Finally, in Section 7, we give the definitions of
the constrained quantization dimension and the constrained quantization coefficient and, with different
examples, show the differences between the constrained and the unconstrained quantization dimensions,
and the constrained and the unconstrained quantization coefficients.

2. Preliminaries

In this section, we give some basic notations and definitions which we have used throughout this paper.
For any two elements ã := (a1, a2) and b̃ := (b1, b2) in R

2, we write ρ(ã, b̃) := ‖(a1, a2) − (b1, b2)‖2 =
(a1− b1)

2+(a2− b2)
2, which gives the squared Euclidean distance between the two elements (a1, a2) and

(b1, b2). Let p and q be two elements that belong to an optimal set of n-points for some positive integer
n, and let e be an element on the boundary of the Voronoi regions of the elements p and q. Since the
boundary of the Voronoi regions of any two elements is the perpendicular bisector of the line segment
joining the elements, we have

‖p− e‖ = ‖q − e‖ yielding ‖p− e‖2 = ‖q − e‖2, i.e., ρ(p, e)− ρ(q, e) = 0.

We call such an equation a canonical equation. Let P be a Borel probability measure on R
2. Then, by

dP (x, y) it is meant that

dP (x, y) =







P (dxdy) = f(x, y) dxdy if x and y are variables,
dP (x) = P (dx) = f(x, y) dx if x is a variable and y is a constant,
dP (y) = P (dy) = f(x, y) dy if y is a variable and x is a constant,

where f(x, y) is the probability density function for the probability measure P , i.e., f(x, y) is a real-
valued function on R

2 with the following properties: f(x, y) ≥ 0 for all (x, y) ∈ R
2, and







∫

R2 f(x, y) dxdy = 1 if x and y are variables,
∫

R
f(x, y) dx = 1 if x is a variable and y is a constant,

∫

R
f(x, y) dy = 1 if y is a variable and x is a constant.

Let P be a Borel probability measure on R
2 with probability density function f(x, y). Suppose P has

support a line segment Lx which is parallel to the x-axis, i.e., y is constant on Lx. Then, notice that
P (R2 \ Lx) = 0, and dP (x, y) = dP (x) on Lx. Hence, for any (a, b) ∈ R

2,
∫

R2

ρ((x, y), (a, b)) dP (x, y) =

∫

Lx

ρ((x, y), (a, b)) dP (x) =

∫

Lx

ρ((x, y), (a, b))f(x, y) dx.
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Similarly, if P has support a line segment Ly which is parallel to the y-axis, i.e., x is constant on Ly,
then

∫

R2

ρ((x, y), (a, b)) dP (x, y) =

∫

Ly

ρ((x, y), (a, b)) dP (y) =

∫

Ly

ρ((x, y), (a, b))f(x, y) dy.

3. Constrained quantization when the support lies on a line segment and the
optimal elements lie on another line segment

Let a, b ∈ R with a < b, and c,m ∈ R. Let L be a line given by y = mx + c, the parametric
representation of which is

L := {(x,mx+ c) : x ∈ R}.
Let P be a Borel probability measure on R

2 such that P is uniform on its support {(x, y) ∈ R
2 : a ≤

x ≤ b and y = 0}. Then, the probability density function f for P is given by

f(x, y) =

{

1
b−a

if a ≤ x ≤ b and y = 0,
0 otherwise.

Notice that dP (x, y) = dP (x) = P (dx) = f(x, 0)dx. In this section, we determine the optimal sets
of n-points and the nth constrained quantization errors for the probability measure P for all positive
integers n so that the elements in the optimal sets lie on the line L between the two elements (d,md+c)
and (e,me+ c), where d, e ∈ R with d < e.

Let us now give the following Theorem.

Theorem 3.1. Let P be a Borel probability measure on R
2 such that P is uniform on its support

{(x, y) ∈ R
2 : a ≤ x ≤ b and y = 0}. For n ∈ N with n ≥ 2, let αn := {(ai, mai + c) : 1 ≤ i ≤ n} be an

optimal set of n-points for P so that the elements in the optimal sets lie on the line L between the two
elements (d,md+ c) and (e,me+ c), where d, e ∈ R with d < e. Assume that

max{a, (m2 + 1)d+mc} = a and min{b, (m2 + 1)e+mc} = b.

Then, ai =
2i−1

2n(1+m2)
(b− a) + a−cm

1+m2 for 1 ≤ i ≤ n with quantization error

Vn =
1

12 (m2 + 1)n3

(

− 48(a− b)2m2 + (a− b)(a− b+ 72cm+ 8(11a− 2b)m2)n

− 12(a− b)m(5c+ (4a+ b)m)n2 + 12(c+ am)2n3
)

.

Proof. For n ≥ 2, let αn := {(ai, mai + c) : 1 ≤ i ≤ n} be an optimal set of n-points on L such that
d ≤ a1 < a2 < · · · < an−1 < an ≤ e. Notice that the boundary of the Voronoi region of the element

(a1, ma1+c) intersects the support of P at the elements (a, 0) and ((m2+1) (a1+a2)
2

+mc, 0), the boundary

of the Voronoi region of (an, man+c) intersects the support of P at the elements ((m2+1) (an−1+an)
2

+mc, 0)
and (b, 0). On the other hand, the boundaries of the Voronoi regions of (ai, mai + c) for 2 ≤ i ≤ n− 1

intersect the support of P at the elements ((m2 + 1) (ai−1+ai)
2

+mc, 0) and ((m2 + 1) (ai+ai+1)
2

+ mc, 0).
Since the Voronoi regions of the elements in an optimal set must have positive probability, we have

max{a, (m2 + 1)d+mc} ≤ a1 < a2 < · · · < an ≤ min{b, (m2 + 1)e +mc}.
Let us consider the following two cases:

Case 1 : n = 2.
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In this case, the distortion error due to the set α2 is given by

V (P ;α2) =

∫

R

min
a∈α2

‖(x, 0)− a‖2dP (x)

=
1

b− a

(

∫ (m2+1)
(a1+a2)

2
+mc

a

ρ((x, 0), (a1, ma1 + c)) dx

+

∫ b

(m2+1)
(a1+a2)

2
+mc

ρ((x, 0), (a2, ma2 + c)) dx
)

.

Notice that V (P ;α2) is not always differentiable with respect to a1 and a2. By the hypothesis, we have

max{a, (m2 + 1)d+mc} = a and min{b, (m2 + 1)e+mc} = b.

This guarantees that V (P ;α2) is differentiable with respect to a1 and a2. Since ∂
∂a1

V (P ;α2) = 0 and
∂

∂an
V (P ;α2) = 0, we deduce that

−3a1m
2 + a2m

2 + 2a− 3a1 + a2 − 2cm = 0 and a1m
2 − 3a2m

2 + a1 − 3a2 + 2b− 2cm = 0

implying

a1 =
1

4(1 +m2)
(b− a) +

a− cm

1 +m2
and a2 =

3

4(1 +m2)
(b− a) +

a− cm

1 +m2

with quantization error

V2 =
a2 (16m2 + 1) + 2ab (8m2 − 1) + 48acm+ b2 (16m2 + 1) + 48bcm+ 48c2

48 (m2 + 1)
.

Case 2: n ≥ 3.
In this case, the distortion error due to the set αn is given by

V (P ;αn) =

∫

R

min
a∈αn

‖(x, 0)− a‖2dP (x)

=
1

b− a

(

∫ (m2+1)
(a1+a2)

2
+mc

a

ρ((x, 0), (a1, ma1 + c)) dx

+

n−1
∑

i=2

∫ (m2+1)
(ai+ai+1)

2
+mc

(m2+1)
(ai−1+ai)

2
+mc

ρ((x, 0), (ai, mai + c)) dx

+

∫ b

(m2+1)
(an−1+an)

2
+mc

ρ((x, 0), (an, man + c)) dx
)

.

Since V (P ;αn) gives the optimal error and is always differentiable with respect to ai for 2 ≤ i ≤ n− 1,
we have ∂

∂ai
V (P ;αn) = 0 yielding

ai+1 − ai = ai − ai−1 for 2 ≤ i ≤ n− 1

implying
a2 − a1 = a3 − a2 = · · · = an − an−1 = k (2)

for some real k. Due to the same reasoning as given in Case 1 , we have ∂
∂a1

V (P ;αn) = 0 and
∂

∂an
V (P ;αn) = 0, i.e.,

2(a− cm)− 3a1
(

m2 + 1
)

+ a2
(

m2 + 1
)

= 0 and an−1

(

m2 + 1
)

− 3an
(

m2 + 1
)

+ 2(b− cm) = 0

implying

a1 =
a− cm

1 +m2
+

k

2
and an =

b− cm

m2 + 1
− k

2
. (3)

Now we have

b− a =(a1 − a) +
n−1
∑

i=2

(ai − ai−1) + (b− an) =

(

a− cm

1 +m2
+

k

2
− a

)

+ (n− 1)k +

(

b− b− cm

1 +m2
+

k

2

)

,
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which implies k = b−a
n(1+m2)

. Putting k = b−a
n(1+m2)

, by the expressions given in (2) and (3), we deduce that

ai =
2i− 1

2n(1 +m2)
(b− a) +

a− cm

1 +m2
for 1 ≤ i ≤ n.

To obtain the quantization error Vn, we proceed as follows:
Since the probability distribution P is uniform on its support, Equation (2) helps us to deduce that

the distortion errors contributed by a2, a3, · · · , an−1 in their own Voronoi regions are equal, i.e., each
term in the sum

n−1
∑

i=2

∫ (m2+1)
(ai+ai+1)

2
+mc

(m2+1)
(ai−1+ai)

2
+mc

ρ((x, 0), (ai, mai + c)) dx

have the same value. Now, putting the values of ai for 2 ≤ i ≤ n in terms of a1 and k, we have

V (P ;αn) =

∫

R

min
a∈αn

‖(x, 0)− a‖2dP (x) =
1

b− a

(

∫ (m2+1)
(2a1+k)

2
+mc

a

ρ
(

(x, 0), (a1, ma1 + c)
)

dx

+ (n− 2)

∫ (m2+1)
(2a1+3k)

2
+mc

(m2+1)
(2a1+k)

2
+mc

ρ
(

(x, 0), (a1 + k,m(a1 + k) + c)
)

dx

+

∫ b

(m2+1)
(2a1+k(2n−3))

2
+mc

ρ
(

(x, 0), (a1 + k(n− 1), m(a1 + k(n− 1)) + c)
)

dx
)

.

Upon simplification, and putting a1 =
b−a

2(m2+1)n
+ a−cm

m2+1
and k = b−a

(m2+1)n
in the above expression, we have

the quantization error as

Vn =
1

12 (m2 + 1)n3

(

− 48(a− b)2m2 + (a− b)(a− b+ 72cm+ 8(11a− 2b)m2)n

− 12(a− b)m(5c + (4a+ b)m)n2 + 12(c+ am)2n3
)

.

Thus, the proof of the theorem is complete. �

Let us now give the following corollary.

Corollary 3.2. Let P be a Borel probability measure on R
2 such that P is uniform on its support

{(x, y) ∈ R
2 : 0 ≤ x ≤ 2 and y = 0}. For n ∈ N with n ≥ 2, let αn be an optimal set of n-points for

P such that the elements in the optimal set lie on the line y =
√
3x between the elements (0, 0) and

(2, 2
√
3). Then,

αn =
{(2i− 1

4n
,
2i− 1

4n

√
3
)

: 1 ≤ i ≤ n
}

and Vn =
144n2 + 196n− 576

48n3
.

Proof. Putting a = 0, b = 2, m =
√
3, c = 0, d = 0, and e = 2 in Theorem 3.1, we see that

max{a, (m2 + 1)d+mc} = 0 = a and min{b, (m2 + 1)e+mc} = 2 = b.

Hence, by Theorem 3.1, we obtain the optimal sets αn and the corresponding quantization errors Vn as
follows:

αn =
{(2i− 1

4n
,
2i− 1

4n

√
3
)

: 1 ≤ i ≤ n
}

and Vn =
144n2 + 196n− 576

48n3
.

Thus, the proof of the corollary is complete. �

Remark 3.3. If m = 0, c = 0, d = a and e = b, then by Theorem 3.1, the optimal set n-points is given

by αn := {a+ 2i−1
2n

(b−a) : 1 ≤ i ≤ n}, and the corresponding quantization error is Vn := Vn(P ) = (a−b)2

12n2 ,

which is Theorem 2.1.1 in [RR]. Thus, Theorem 3.1 generalizes Theorem 2.1.1 in [RR].

The following proposition plays an important role in finding the optimal sets of n-points.
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Proposition 3.4. Let P be a Borel probability measure on R
2 such that P is uniform on its support

{(x, y) ∈ R
2 : a ≤ x ≤ b and y = 0}. For n ∈ N with n ≥ 2, let αn := {(ai, mai + c) : 1 ≤ i ≤ n} be

an optimal set of n-points for P so that the elements in the optimal sets lie on the line L between the
two elements (d,md + c) and (e,me + c), where d, e ∈ R with d < e. Assume that one or both of the
following two conditions are not true:

max{a, (m2 + 1)d+mc} = a and min{b, (m2 + 1)e+mc} = b,

If (m2 + 1)d + mc > a, (or (m2 + 1)e + mc < b), then there exists a positive integer N such that for
all n ≥ N + 1, the optimal sets αn always contain the end element (d,md + c), (or (e,me + c)). If
(m2 + 1)d + mc > a and (m2 + 1)e + mc < b, then there exists a positive integer N such that for all
n ≥ N + 1, the optimal sets αn always contain the end elements (d,md+ c) and (e,me + c).

Proof. Let αn := {(ai, mai + c) : 1 ≤ i ≤ n} be an optimal set of n-points for P so that the elements in
the optimal sets lie on the line L between the two elements (d,md+ c) and (e,me+ c), where d, e ∈ R

with d < e. By Theorem 3.1, we know that

ai =
2i− 1

2n(1 +m2)
(b− a) +

a− cm

1 +m2
for 1 ≤ i ≤ n.

Suppose that (m2 + 1)d+mc > a. Let n = N be the largest positive integer such that

(m2 + 1)d+mc < a1, i.e., (m2 + 1)d+mc <
1

2N(1 +m2)
(b− a) +

a− cm

1 +m2
. (4)

Notice that the sequence { 1
2n(1+m2)

(b − a) + a−cm
1+m2} is strictly decreasing, and hence for all n ≥ N + 1,

the optimal sets αn always contain the end element (d,md+ c). Suppose that (m2 + 1)e+mc < b. Let
n = N be the largest positive integer such that

aN < (m2 + 1)e+mc, i.e.,
2N − 1

2N(1 +m2)
(b− a) +

a− cm

1 +m2
< (m2 + 1)e+mc. (5)

Notice that the sequence { 2n−1
2n(1+m2)

(b − a) + a−cm
1+m2} is strictly increasing, and hence for all n ≥ N + 1,

the optimal sets αn always contain the end element (e,me+ c). Next, suppose that (m2+1)d+mc > a

and (m2 + 1)e + mc < b. Choose N1 and N2 same as N described in (4) and (5), respectively. Let
N = max{N1, N2}. Then, for all n ≥ N + 1, the optimal sets αn always contain the end elements
(d,md+ c) and (e,me+ c). �

Note 3.5. In the following, we state and prove two theorems, Theorem 3.6 and Theorem 3.8. To
facilitate the proofs in both the theorems, Proposition 3.4 can be used. However, in the proof of
Theorem 3.6, we have not used Proposition 3.4; on the other hand, in the proof of Theorem 3.8, we
have used Proposition 3.4.

Theorem 3.6. Let P be a Borel probability measure on R
2 such that P is uniform on its support

{(x, y) ∈ R
2 : 0 ≤ x ≤ 2 and y = 0}. For n ∈ N, let αn := {(ai, 1) : 1 ≤ i ≤ n} be an optimal set of

n-points for P so that the elements in the optimal sets lie on the line y = 1 between the two elements
(1
2
, 1) and (3

2
, 1). Then, α1 = {(1, 1)}, α2 = {(1

2
, 1), (3

2
, 1)}, and for n ≥ 3, we have

ai =







1
2

if i = 1,
1
2
+ (i−1)

(n−1)
if 2 ≤ i ≤ n− 1,

3
2

if i = n,

and the quantization error for n-points is given by Vn = 25n2−50n+26
24(n−1)2

.

Proof. The proofs of α1 = {(1, 1)}, α2 = {(1
2
, 1), (3

2
, 1)} are routine. We just give the proof for n ≥ 3. Let

αn := {(t, 1) : t = ai for 1 ≤ i ≤ n} be an optimal set of n-points such that 1
2
≤ a1 < a2 < · · · < an−1 <

an ≤ 3
2
. Notice that the boundary of the Voronoi region of the element (a1, 1) intersects the support

of P at the elements (0, 0) and (1
2
(a1 + a2), 0), the boundary of the Voronoi region of (an, 1) intersects

the support of P at the elements (1
2
(an−1 + an), 0) and (2, 0). On the other hand, the boundaries of the
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Voronoi regions of (ai, 1) for 2 ≤ i ≤ n − 1 intersect the support of P at the elements (1
2
(ai−1 + ai), 0)

and (1
2
(ai + ai+1), 0). Thus, the distortion error due to the set αn is given by

V (P ;αn) =

∫

R

min
a∈αn

‖(x, 0)− a‖2dP (x)

=

∫ 1
2
(a1+a2)

0

1

2

(

(x− a1)
2 + 1

)

dx+
n−1
∑

i=2

∫ 1
2
(ai+1+ai)

1
2
(ai−1+ai)

1

2

(

(x− ai)
2 + 1

)

dx

+

∫ 2

1
2
(an−1+an)

1

2

(

(x− an)
2 + 1

)

dx.

Since V (P ;αn) gives the optimal error and is differentiable with respect to ai for 2 ≤ i ≤ n−1, we have
∂
∂ai

V (P ;αn) = 0 implying
ai+1 − ai = ai − ai−1 for 2 ≤ i ≤ n− 1.

This yields the fact that
a2 − a1 = a3 − a2 = · · · = an − an−1 = k (6)

for some real number 0 < k < 1. By the equations in (6), we see that each term in the sum
∑n−1

i=2

∫
1
2
(ai+1+ai)

1
2
(ai−1+ai)

1
2
((x− ai)

2 + 1) dx have the same value. Again, by the equations in (6) we have

a2 = k + a1, a3 = 2k + a1, · · · , an = (n− 1)k + a1.

Hence,

V (P ;αn) =

∫ 1
2
(2a1+k)

0

1

2

(

(x− a1)
2 + 1

)

dx+ (n− 2)

∫ 1
2
(2a1+3k)

1
2
(2a1+k)

1

2

(

(x− (a1 + k)) 2 + 1
)

dx

+

∫ 2

1
2
(2a1+k(2n−3))

1

2

(

(x− (a1 + k(n− 1))) 2 + 1
)

dx,

which upon simplification yields

V (P ;αn) =
1

24

(

− 12a1(k(n− 1)− 2) (a1 + k(n− 1)− 2)

− k(n− 1)
(

4k2n2 − 8k(k + 3)n+ 3(k + 4)2
)

+ 56
)

,

which is minimum if a1 = 1
2
and k = 1

n−1
, and the minimum value is 25n2−50n+26

24(n−1)2
. As k = 1

n−1
and

a1 =
1
2
, using the expression (6), we obtain

ai =







1
2

if i = 1,
1
2
+ (i−1)

(n−1)
if 2 ≤ i ≤ n− 1,

3
2

if i = n,

with quantization error Vn = 25n2−50n+26
24(n−1)2

. Thus, the proof of the theorem is complete. �

Remark 3.7. Comparing Theorem 3.6 with Proposition 3.4, we have a = 0, b = 2, m = 0, c = 1, d =
1
2
, and e = 3

2
, and so

(m2 + 1)d+mc =
1

2
> a and (m2 + 1)e+mc =

3

2
< b.

n = N1 be the largest positive integer such that

(m2 + 1)d+mc <
1

2N1(1 +m2)
(b− a) +

a− cm

1 +m2
,

which is true if N1 < 2, i.e., N1 = 1. Let n = N2 be the largest positive integer such that

2N − 1

2N(1 +m2)
(b− a) +

a− cm

1 +m2
< (m2 + 1)e+mc,
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which is true if N2 < 2, i.e., N2 = 1. Take N = max{N1, N2}. Then, N = 1. By Proposition 3.4, we can
conclude that for all n ≥ 2, the optimal sets αn will contain the end elements (1

2
, 1) and (3

2
, 1), which is

clearly true by Theorem 3.6.

Theorem 3.8. Let P be a Borel probability measure on R
2 such that P is uniform on its support

{(x, y) ∈ R
2 : 0 ≤ x ≤ 2 and y = 0}. For n ∈ N, let αn := {(ai, 1) : 1 ≤ i ≤ n} be an optimal set of

n-points for P so that the elements in the optimal sets lie on the line y = 1 between the two elements
(0, 1) and (28

15
, 1), i.e., 0 ≤ a1 < a2 < · · · < an ≤ 28

15
. Then, α1 = {(1, 1)}, and for 1 ≤ n ≤ 7,

αn =
{(2i− 1

n
, 1
)

: 1 ≤ i ≤ n
}

.

On the other hand, for n ≥ 8, we obtain

ai =

{ 28(2i−1)
15(2n−1)

if 1 ≤ i ≤ n− 1,
28
15

if i = n,

and the quantization error for n-points is given by Vn = 7(5788(n−1)n+3015)
10125(1−2n)2

.

Proof. Let αn := {(t, 1) : t = ai for 1 ≤ i ≤ n} be an optimal set of n-points such that 0 ≤ a1 < a2 <

· · · < an−1 < an ≤ 28
15

for all n ∈ N. Using Proposition 3.4, it can be proved that for all n ≥ 8, the

optimal sets always contain the end element 28
15
, i.e., an = 28

15
for all n ≥ 8. The proofs of α1 = {(1, 1)},

and for 1 ≤ n ≤ 7,

αn =
{(2i− 1

n
, 1
)

: 1 ≤ i ≤ n
}

,

are routine. Here we prove the optimal sets of n-points for all n ≥ 8. Proceeding in the similar lines as
given in the proof of Theorem 3.6, we have

a2 − a1 = a3 − a2 = · · · = an − an−1 = k

for some real k, which implies

a1 = an − (n− 1)k, a2 = an − (n− 2)k, · · · , an−1 = an − k.

Also, by using ∂
∂a1

V (P ;αn) = 0, we get 3a1 − a2 = 0, which implies that a1 =
k
2
. Now we have

k

2
= a1 = an − (n− 1)k =

28

15
− (n− 1)k,

this yields k = 56
15(2n−1)

. Using an = 28
15

and k = 56
15(2n−1)

, we get ai =
28(2i−1)
15(2n−1)

for 1 ≤ i ≤ n − 1 with

quantization error

V (P ;αn) =
1

2

(

∫ 1
2
(2an−k(2n−3))

0

(

(x− (an − k(n− 1)))2 + 1
)

dx

+ (n− 2)

∫ 1
2
(2an−k)

1
2
(2an−3k)

(

(x− (an − k))2 + 1
)

dx+

∫ 2

1
2
(2an−k)

(

(x− an)
2 + 1

)

dx

)

=
1

24

(

12k2n2an − 24k2nan + 12k2an − 12kna2n + 12ka2n + 24a2n − 48an − 4k3n3

+ 12k3n2 − 11k3n+ 3k3 + 56
)

=
7(5788(n− 1)n+ 3015)

10125(1− 2n)2
.

This completes the proof. �
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4. Constrained quantization when the support lies on a circle and the optimal
elements lie on another circle

Let O(0, 0) be the center of the Cartesian plane. Let C be the unit circle given by the parametric
equations:

C := {(x, y) : x = cos θ, y = sin θ for 0 ≤ θ ≤ 2π}.
Let the positive direction of the x-axis cut the circle at the element A0, i.e., A0 is represented by the
parametric value θ = 0. Let s be the distance of an element on C along the arc starting from the
element A0 in the counterclockwise direction. Then,

ds =

√

(dx

dθ

)2

+
(dy

dθ

)2

dθ = dθ.

Let P be a uniform distribution with support to the unit circle C. Then, the probability density function
f(x, y) for P is given by

f(x, y) =

{

1
2π

if (x, y) ∈ C,

0 otherwise.

Thus, we have dP (s) = P (ds) = f(x, y)ds = 1
2π
dθ. Moreover, we know that if θ̂ radians is the central

angle subtended by an arc of length S of the unit circle, then S = θ̂, and

P (S) =

∫

S

dP (s) =
1

2π

∫

S

dθ =
θ̂

2π
.

Let L be a concentric circle with C, and L has radius a, i.e., the parametric representation of the circle
L is given by

L := {(x, y) : x = a cos θ, y = a sin θ for 0 ≤ θ ≤ 2π}.
In this section, we determine the optimal sets of n-points and the nth constrained quantization errors
for the uniform distribution P on C under the condition that the elements in an optimal set lie on the
circle L. Let the line OA0 cut the circle L at the element B0, i.e., B0 is represented on the circle L by
the parameter θ = 0.

Proposition 4.1. Any element on the circle L forms an optimal set of one-point with quantization
error V1 = 1 + a2.

Proof. Let α := {(a cos θ, a sin θ)}, where 0 ≤ θ ≤ 2π, forms an optimal set of one-point. Then, the
distortion error V (P ;α) is given by

V (P ;α) =

∫

C

1

2π
ρ((cos θ, sin θ), (a cos θ, a sin θ)) dθ = 1 + a2,

which does not depend on θ for any 0 ≤ θ ≤ 2π. Hence, any element on the circle L forms an optimal
set of one-point, and the quantization error for one-point is given by V1 = 1 + a2. �

Proposition 4.2. A set of the form {(a cos θ, a sin θ), (−a cos θ,−a sin θ)}, where 0 ≤ θ ≤ 2π, forms an
optimal set of two-points with quantization error V2 = 1 + a2 − 4a

π
.

Proof. Let α := {(a cos θ1, a sin θ1), (a cos θ2, a sin θ2)}, where 0 ≤ θ1 < θ2 ≤ 2π, form an optimal set of
two-points. Notice that the boundary of the Voronoi regions of the two elements in the optimal set is
the line joining the two points given by the parameters θ = θ1+θ2

2
and θ = π+ θ1+θ2

2
. Then, the distortion
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error is given by

V (P ;α) =
1

2π

(

∫

θ1+θ2
2

−π+
θ1+θ2

2

ρ
(

(cos θ, sin θ), (a cos θ1, a sin θ1)
)

dθ

+

∫ π+
θ1+θ2

2

θ1+θ2
2

ρ
(

(cos θ, sin θ), (a cos θ2, a sin θ2)
)

dθ
)

=
1

2π

(

∫
θ1+θ2

2

−π+
θ1+θ2

2

(

1 + a2 − 2a cos(θ − θ1)
)

dθ

+

∫ π+
θ1+θ2

2

θ1+θ2
2

(

1 + a2 − 2a cos(θ − θ2)
)

dθ
)

,

which upon simplification yields that

V (P ;α) =
1

2π

(

(1 + a2)2π − 8a sin
θ2 − θ1

2

)

.

Since 0 < θ2−θ1
2

< π, we can say that V (P ;α) is minimum if θ2 − θ1 = π. Thus, an optimal set of
two-points is given by {(a cos θ, a sin θ), (−a cos θ,−a sin θ)} for 0 ≤ θ ≤ 2π with quantization error
V2 = 1 + a2 − 4a

π
, which yields the proposition. �

Theorem 4.3. Let αn be an optimal set of n-points for the uniform distribution P on the unit circle C

for n ∈ N with n ≥ 3. Then,

αn =
{(

a cos
(2i− 1)π

n
, a sin

(2i− 1)π

n

)

: i = 1, 2, · · · , n
}

and the corresponding quantization error is given by Vn = a2 + 1− 2an
π

sin π
n
.

Proof. Let αn := {a1, a2, · · · , an}, where ai = (a cos θi, a sin θi), be an optimal set of n-points for P with
n ≥ 3 such that the elements in the optimal set lie on the circle L. Let the boundary of the Voronoi
regions of ai cut the circle L, in fact also the circle C, at the elements given by the parameters θi−1 and
θi, where 1 ≤ i ≤ n. Since the circles have rotational symmetry, without any loss of generality, we can
assume that θ0 = 0, and θn = 2π. Then, each ai on L has the parametric representation 1

2
(θi−1 + θi) for

1 ≤ i ≤ n. Then, the quantization error for n-points is given by

V (P ;α) =

∫

C

min
u∈α

ρ((cos θ, sin θ)− u) dP (s)

=

n
∑

i=1

∫ θi

θi−1

1

2π
ρ
(

((cos θ, sin θ), (
1

2
cos

θi−1 + θi

2
,
1

2
sin

θi−1 + θi

2
))
)

dθ

=

n
∑

i=1

∫ θi

θi−1

1

2π

(

a2 − 2a cos(−θi−1

2
− θi

2
+ θ) + 1

)

dθ

=
n
∑

i=1

1

2π

(

(a2 + 1)(θi − θi−1)− 4a sin
θi − θi−1

2

)

,

upon simplification, which yields

V (P ;α) = a2 + 1− 2a

π

n
∑

i=1

sin
θi − θi−1

2
. (7)

Since V (P ;α) gives the optimal error and is differentiable with respect to θi for all 1 ≤ i ≤ n − 1, we
have ∂

∂θi
V (P ;α) = 0. For 1 ≤ i ≤ n− 1, the equations ∂

∂θi
V (P ;α) = 0 implies that

cos
θi − θi−1

2
= cos

θi+1 − θi

2
yielding

θi − θi−1

2
=

θi+1 − θi

2
, or

θi − θi−1

2
= 2π − θi+1 − θi

2
.
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Without any loss of generality, for 1 ≤ i ≤ n− 1 we can take θi−θi−1

2
= θi+1−θi

2
. This yields the fact that

θ1 − θ0 = θ2 − θ1 = θ3 − θ2 = · · · = θn − θn−1 =
2π

n
.

Thus, we have θi =
2πi
n

for i = 1, 2, · · · , n. Hence, if αn := {a1, a2, · · · , an} is an optimal set of n-points,
then

ai =
(

a cos
(2i− 1)π

n
, a sin

(2i− 1)π

n

)

for i = 1, 2, · · · , n,
and the quantization error for n-points, by (7), is given by

Vn = V (P ;α) = a2 + 1− 2an

π
sin

π

n
.

Thus, the proof of the theorem is complete. �

5. Constrained quantization when the support lies on a chord of a circle and the
optimal elements lie on the circle

Let C be a circle with center (0, 0) and radius 1, i.e, the equation of the circle is x2 + y2 = 1, whose
parametric representation is x = cos θ and y = sin θ, where 0 ≤ θ ≤ 2π. Thus, if (cos θ, sin θ) is an
element on the circle, we will represent it by θ. Let P be a Borel probability measure on R

2 such that
P has support a chord of the circle, and P is uniform on its support. We now investigate the optimal
sets of n-points and the nth constrained quantization errors for all n ∈ N so that the optimal elements
lie on the circle. The two cases can happen as described in the following two subsections.

5.1. Chord is a diameter of the circle. Without any loss of generality, let us consider the horizontal
diameter as the support of P , i.e., the support of P is the closed interval [−1, 1]. Then, the probability
density function is given by

f(x, y) =

{

1
2

if − 1 ≤ x ≤ 1 and y = 0,
0 otherwise.

Notice that d(P (x, y) = dP (x) = f(x, 0)dx. We know that an optimal set of one-point always exists.
Let αn be an optimal set of n-points for any n ≥ 2. Since the boundary of the Voronoi regions of any
two optimal elements, in this case, passes through the center of the circle, from the geometry, we see
that among n Voronoi regions, only two Voronoi regions contain elements from the support of P . Hence,
an optimal set of n-points for any n ≥ 2 contains exactly two elements. We now calculate the optimal
sets of one-point and two-points in the following propositions:

Proposition 5.1.1. Any element on the circle forms an optimal set of one-point with quantization error
V1 =

4
3
.

Proof. Let (cos θ, sin θ) be an element on the circle. Then, the distortion error for P with respect to
this element is given by

V (P ; {(cos θ, sin θ)}) =
∫ 1

−1

ρ((x, 0), (cos θ, sin θ)) dP (x) =
1

2

∫ 1

−1

ρ((x, 0), (cos θ, sin θ)) dx =
4

3
,

which does not depend on θ. Hence, any element on the circle forms an optimal set of one-point with
quantization error V1 =

4
3
. �

Proposition 5.1.2. The set {(−1, 0), (1, 0)} forms an optimal set of two-points with quantization error
V2 =

1
3
.

Proof. From the geometry, we see that the boundary of any two elements on the circle passes through
the center of the circle. Thus, in an optimal set of two-points, one Voronoi region will contain the left
half, and the other Voronoi region will contain the right half of the support of P . Hence, by the routine
calculation, we can show that {(−1, 0), (1, 0)} forms an optimal set of two-points with quantization error

V2 =
1

2

(

∫ 0

−1

ρ((x, 0), (−1, 0))dx+

∫ 1

0

ρ((x, 0), (1, 0))dx
)

=
1

3
.



Constrained quantization for probability distributions 12

Figure 1. Optimal configuration of n elements for 1 ≤ n ≤ 9.

Thus, the proof of the proposition is complete. �

5.2. Chord is not a diameter of the circle. In this case, for definiteness sake, we investigate the
optimal sets of n-points and the nth constrained quantization errors for a Borel probability measure P

on R
2 such that P has support the chord y = −1

2
for −

√
3
2

≤ x ≤
√
3
2
, and P is uniform there. Then,

the probability density function for P is given by

f(x, y) =

{

1√
3

if −
√
3
2

≤ x ≤
√
3
2

and y = −1
2
,

0 otherwise.

Recall that the circle has rotational symmetry. Thus, for any other chord, the technique of finding
the optimal sets of n-points and the nth constrained quantization errors will be similar. Notice that
dP (x, y) = dP (x) = P (dx) = f(x,−1

2
)dx, where x varies over the line y = −1

2
. The arc of the circle

subtended by the chord is represented by θ for 7π
6

≤ θ ≤ 11π
6
. Moreover, the circle is geometrically

symmetric with respect to the line y = 0, and also the probability measure is symmetric with respect to
the line y = 0, i.e., if two intervals of the same length lie on the support of P and are equidistant from
the line y = 0, then they have the same probability. In proving the results, we can use this symmetry
of the circle.

Proposition 5.2.1. The set {(0,−1)} forms an optimal set of one-point with quantization error V1 =
1
2
.
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Proof. Let us consider an element (cos θ, sin θ) on the circle. The distortion error for P with respect to
the set {(cos θ, sin θ)} is given by

V (P ; {(cos θ, sin θ)}) =
∫

√
3

2

−
√

3
2

1√
3
ρ((x,−1

2
), (cos θ, sin θ)) dx = sin θ +

3

2
,

the minimum value of which is 1
2
and it occurs when θ = 3π

2
(see Figure 1). Thus, the proof of the

proposition is yielded. �

Proposition 5.2.2. The optimal set of two-points is given by
{

2π − 2 tan−1
(

√
3

2
+

√
7

2

)

, π + 2 tan−1
(

√
3

2
+

√
7

2

)}

with quantization error V2 =
1
2

(

3−
√
7
)

.

Proof. Since the probability measure is symmetric with respect to the line y = 0, we can assume that
in an optimal set of two-points, the Voronoi region of one element will contain the left half of the chord,
and the Voronoi region of the other element will contain the right half of the chord, i.e., the boundary
of the two Voronoi regions is the y-axis. Let the left element is (cos θ, sin θ). Then, due to symmetry,
the distortion error for the two elements is given by

2

∫ 0

−
√
3
2

1√
3
ρ((x,−1

2
), (cos θ, sin θ)) dx = sin θ +

1

2

√
3 cos θ +

3

2
,

which is minimum if θ = 2π − 2 tan−1(
√
3
2

+
√
7
2
), and the minimum value is 1

2

(

3−
√
7
)

. Thus, the

one element is represented by θ = 2π − 2 tan−1(
√
3
2

+
√
7
2
), and due to symmetry the other element is

represented by θ = π + 2 tan−1(
√
3
2
+

√
7
2
) with quantization error for two-points V2 = 1

2

(

3−
√
7
)

(see
Figure 1). Thus, the proof of the proposition is complete. �

Remark 5.2.3. Due to the symmetry of the probability measure P and the geometrical symmetry of
the circle, we can assume that in an optimal set of n-points, where n ≥ 3, if n is even, then there are
n
2
elements to the left of the y-axis and n

2
elements to the right of the y-axis. if n is odd, then there

are n−1
2

elements to the left of the y-axis and n−1
2

elements to the right of the y-axis, and the remaining
one element will be the element (−1, 0). Moreover, whether n is even or odd, the set of elements on
the left side and the set of elements on the right side are reflections of each other with respect to the
y-axis. Due to this fact, in the sequel of this section, we calculate the optimal sets of n-points for n = 8
and n = 9. Following a similar technique, whether n is even or odd, one can calculate the locations of
elements for any positive integer n ≥ 3.

Proposition 5.2.4. The optimal set of eight-points is given by

{(−0.821938,−0.569577), (−0.680768,−0.732499), (−0.4608,−0.887504),

(−0.164598,−0.986361), (0.821938,−0.569577), (0.680768,−0.732499),

(0.4608,−0.887504), (0.164598,−0.986361)}
with quantization error V8 = 0.12327.

Proof. Let α8 := {θ1, θ2, · · · θ8} be an optimal set of eight-points. Without any loss of generality, we can
assume that θ1 < θ2 < · · · < θ8. Due to symmetry as mentioned in Remark 5.2.3, the boundary of the
Voronoi regions of θ4 and θ5 is the y-axis, and the elements on the right side of y-axis are the reflections
of the elements in the left side of y-axis with respect to the y-axis. Thus, it is enough to calculate the
first four elements θ1, θ2, θ3, θ4. Let the boundaries of the Voronoi regions of θi and θi+1 intersects the
support of P at the element (ai,−1

2
), where 1 ≤ i ≤ 3. Because of the symmetry, the distortion error
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is given by

V (P ;α8) =2
(

∫ a1

−
√
3
2

ρ((x, 0), (cos θ1, sin θ1)) dP (x)

+

2
∑

i=1

∫ ai+1

ai

ρ((x, 0), (cos θi+1, sin θi+1)) dP (x) (8)

+

∫ 0

a3

ρ((x, 0), (cos θ4, sin θ4)) dP (x)
)

.

The canonical equations are

ρ((ai,−
1

2
), (cos θi, sin θi))− ρ((ai,−

1

2
), (cos θi+1, sin θi+1)) = 0 for i = 1, 2, 3.

Solving the canonical equations, we have

a1 =
sin θ1 − sin θ2

2 (cos θ1 − cos θ2)
, a2 =

sin θ2 − sin θ3
2 (cos θ2 − cos θ3)

, a3 =
sin θ3 − sin θ4

2 (cos θ3 − cos θ4)
.

Putting the values of a1, a2, a3 in (8), we see that V (P ;α8) is a function of θi for i = 1, 2, 3, 4. Since
V (P ;α8) is optimal we have

∂

∂θi
V (P ;α8) = 0 for i = 1, 2, 3, 4.

Solving the above four equations, we obtain the values of θi for which V (P ;α8) is minimum as

θ1 = 3.74758, θ2 = 3.96358, θ3 = 4.23349, θ4 = 4.54704.

Due to symmetry θ5, θ6, θ7, θ8 can also be obtained. Recall that θi represents the element (cos θi, sin θi).
Thus, we obtain the optimal set of eight-points as mentioned in the proposition with quantization error
V8 = 0.12327 (see Figure 1). Thus, the proof of the proposition is complete. �

Proposition 5.2.5. The optimal set of nine-points is given by

{(−0.827126,−0.562016), (−0.708531,−0.70568), (−0.529525,−0.848294), (−0.286494,−0.958082),

(0.,−1), (0.827126,−0.562016), (0.708531,−0.70568), (0.529525,−0.848294), (0.286494,−0.958082)}
with quantization error V9 = 0.122546.

Proof. Recall Remark 5.2.3. We can assume that the optimal set of nine-points is α9 = {θi : 1 ≤ i ≤ 9}
such that θi < θi+1 for 1 ≤ i ≤ 8, where θ5 = 3π

2
. Because of the same reasoning as given in the proof

of Proposition 5.2.4, we have the distortion error as

V (P ;α9) = 2
(

∫ a1

−
√

3
2

ρ((x, 0), (cos θ1, sin θ1)) dP (x) +
3
∑

i=1

∫ ai+1

ai

ρ((x, 0), (cos θi+1, sin θi+1)) dP (x) (9)

+

∫ 0

a4

ρ((x, 0), (0,−1)) dP (x)
)

.

The canonical equations are

ρ((ai,−
1

2
), (cos θi, sin θi))− ρ((ai,−

1

2
), (cos θi+1, sin θi+1)) = 0 for i = 1, 2, 3, 4.

Solving the canonical equations, we obtain the values of ai for 1 ≤ i ≤ 4. Putting the values of ai in
(9), we see that V (P ;α9) is a function of θi for i = 1, 2, 3, 4. Since V (P ;α9) is optimal we have

∂

∂θi
V (P ;α9) = 0 for i = 1, 2, 3, 4.

Solving the above four equations, we obtain the values of θi for which V (P ;α9) is minimum as

θ1 = 3.73841, θ2 = 3.92497, θ3 = 4.15435, θ4 = 4.42182,
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Due to symmetry θ6, θ7, θ8, θ9 can also be obtained. Recall that θi represents the element (cos θi, sin θi).
Hence, we obtain the optimal set of nine-points as mentioned in the proposition with quantization error
V9 = 0.122546 (see Figure 1). Thus, the proof of the proposition is complete. �

6. Constrained quantization when the support lies on a line segment outside of a
circle and the optimal elements lie on the circle

In this section, our goal is to investigate the optimal sets of n-points and the nth constrained quanti-
zation errors for a Borel probability measure P on R

2 such that P is uniform on its support which is a
closed interval [a, b] on a line y = mx+c, and the optimal elements lie on a circle (x−h)2+(y−k)2 = r2

which does not have any point of intersection with the line. Notice that the circle has rotational sym-
metry, so instead of considering the line y = mx + c, we can take the line as y = c. Then, by giving
some affine transformations, we can reduce the system so that the equation of the circle becomes of
the form x2 + y2 = r2 and the equation of the line is y = k for some real k ∈ R. For simplicity and
definiteness sake, in this section, we investigate the optimal sets of n-points and the nth constrained
quantization errors for a Borel probability measure P on R

2 such that P is uniform on its support
which is the closed interval {(x, y) ∈ R

2 : 0 ≤ x ≤ 1 and y = −2}, and the elements in the optimal
sets lie on the circle C := x2 + y2 = 1. Notice that the parametric representation of the unit circle is
C := {(x, y) : x = cos θ, y = sin θ for 0 ≤ θ ≤ 2π}, and P is a Borel probability measure on R

2 with
probability density function f such that

f(x, y) =

{

1 if 0 ≤ x ≤ 1 and y = −2,
0 otherwise.

Thus, on the line y = −2, we have dP (x, y) = dP (x) = P (dx) = f(x,−2)dx. If (cos θ, sin θ) is an
element on the circle, we will identify the element by its parameter θ. The lines joining the elements
(cos θ, sin θ) on the circle and the center (0, 0) intersect the line segment L at the elements (−2 cot θ,−2)
for 0 ≤ −2 cot θ ≤ 1, i.e., if 3π

2
≤ θ ≤ 2π − cot−1 1

2
.

Proposition 6.1. The set {(0.242536,−0.970143)} forms an optimal set of one-point with quantization
error V1 = 1.21023.

Proof. Let α := {(cos θ, sin θ)} be an optimal set of one-point. The distortion error due to the set α is
given by

V (P ;α) =

∫

R

min
a∈α

ρ((x,−2), (cos θ, sin θ)) dP (x)

=

∫ 1

0

ρ((x,−2), (cos θ, sin θ)) dx = 4 sin θ − cos θ +
16

3
,

the minimum value of which is 1.21023 and it occurs at θ = 4.95737. Hence, the optimal set of one-
point is {(0.242536,−0.970143)} with quantization error V1 = 1.21023 (see Figure 2), which is the
proposition. �

Proposition 6.2. The set {(0.120535,−0.992709), (0.348179,−0.937428)} forms an optimal set of two-
points with quantization error V2 = 1.18174.

Proof. Let α := {θ1, θ2} be an optimal set of two-points such that 3π
2
≤ θ1 < θ2 ≤ 2π− cot−1 1

2
. Let the

boundary of their Voronoi regions intersects the support of P at the element (a,−2). The distortion
error is given by

V (P ;α) =

∫ a

0

ρ((x,−2), (cos θ1, sin θ1)) dP (x) +

∫ 1

a

ρ((x, 0), (cos θ2, sin θ2)) dP (x). (10)

The canonical equation is

ρ((a,−2), (cos θ1, sin θ1))− ρ((a,−2), (cos θ2, sin θ2)) = 0.
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Figure 2. Optimal configuration of n elements for 1 ≤ n ≤ 6.

Solving the canonical equation, we have

a = −2 cot
1

2
(θ1 + θ2).

Putting the values of a in (10), we see that V (P ;α) is a function of θi for i = 1, 2. Since V (P ;α) is
optimal, we have

∂

∂θi
V (P ;α) = 0 for i = 1, 2.

Solving the above two equations, we obtain the values of θi for which V (P ;α) is minimum as

θ1 = 4.83322 and θ2 = 5.06802.

Thus, we obtain the optimal set of two-points as mentioned in the proposition with quantization error
V2 = 1.18174 (see Figure 2). Thus, the proof of the proposition is complete. �

Remark 6.2.1. The above two propositions give the optimal sets of one-point and two-points. In the
following, we calculate the optimal set of six-points. Following a similar technique, we can calculate all
the optimal sets of n-points and the nth quantization errors for all n ∈ N.

Proposition 6.2.2. The optimal set of six-points is given by

{(0.0401095,−0.999195), (0.119815,−0.992796), (0.198005,−0.980201), (0.273754,−0.9618),

(0.346252,−0.938142), (0.414838,−0.909895)}
with quantization error V6 = 1.17345.
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Proof. Let α := {θ1, θ2, · · · θ6} be an optimal set of six-points such that 3π
2
≤ θ1 < θ2 < θ3 < θ4 < θ5 <

θ6 ≤ 2π − cot−1 1
2
. Let the boundaries of the Voronoi regions of θi and θi+1 intersect the support of P

at the elements (ai,−2), where 1 ≤ i ≤ 5. The distortion error is given by

V (P ;α) =
(

∫ a1

0

ρ((x, 0), (cos θ1, sin θ1)) dP (x) +
4
∑

i=1

∫ ai+1

ai

ρ((x, 0), (cos θi+1, sin θi+1)) dP (x) (11)

+

∫ 1

a5

ρ((x, 0), (cos θ6, sin θ6)) dP (x)
)

.

The canonical equations are

ρ((ai,−2), (cos θi, sin θi))− ρ((ai,−2), (cos θi+1, sin θi+1)) = 0 for 1 ≤ i ≤ 5.

Solving the canonical equations, we have

ai = −2 cot
θi + θi+1

2
for 1 ≤ i ≤ 5.

Putting the values of ai in (11), we see that V (P ;α) is a function of θi for 1 ≤ i ≤ 6. Since V (P ;α) is
optimal we have

∂

∂θi
V (P ;α) = 0 for 1 ≤ i ≤ 6.

Solving the above six equations, we obtain the values of θi for which V (P ;α) is minimum as

θ1 = 4.75251, θ2 = 4.83249, θ3 = 4.91171, θ4 = 4.98968, θ5 = 5.06596, θ6 = 5.14015.

Recall that θi represents the element (cos θi, sin θi). Thus, we obtain the optimal set of six-points as
mentioned in the proposition with quantization error V6 = 1.17345 (see Figure 2). Hence, the proof of
the proposition is complete. �

7. Quantization dimensions and quantization coefficients

Let P be a Borel probability measure on R
k equipped with a metric, and let r ∈ (0,+∞). In

unconstrained quantization (see [GL]), the numbers

Dr(P ) := lim inf
n→∞

r log n

− log Vn,r(P )
and Dr(P ) := lim sup

n→∞

r log n

− log Vn,r(P )
, (12)

are called the lower and the upper quantization dimensions of the probability measure P of order r,
respectively. If Dr(P ) = Dr(P ), the common value is called the quantization dimension of P of order
r and is denoted by Dr(P ). In unconstrained quantization (see [GL]) for any κ > 0, the two numbers
lim infn n

r
κVn,r(P ) and lim supn n

r
κVn,r(P ) are, respectively, called the κ-dimensional lower and upper

quantization coefficients for P . The quantization coefficients provide us with more accurate information
about the asymptotics of the quantization error than the quantization dimension. In unconstrained case,
it is known that for an absolutely continuous probability measure, the quantization dimension always
exists and equals the Euclidean dimension of the underlying object, and the quantization coefficient
exists as a finite positive number (see [BW]). If the κ-dimensional quantization coefficient for P exists
as a finite positive number, then κ equals the quantization dimension of P (see [GL]).

Unconstrained quantization error Vn,r(P ) goes to zero as n tends to infinity (see [GL]). This is not
true in the case of constrained quantization. Constrained quantization error Vn,r(P ) can approach to
any nonnegative number as n tends to infinity, and it depends on the constraint S that occurs in
the definition of constrained quantization error as given in (1). In this regard, we give the following
examples:

Let P be a Borel probability measure on R
2 such that P is uniform on its support {(x, y) ∈ R

2 : 0 ≤
x ≤ 2 and y = 0}. Let Vn(P ) := Vn,2(P ) be its constrained quantization error. If the elements in the
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optimal sets lie on the line y = 1 between the two elements (1
2
, 1) and (3

2
, 1), then by Theorem 3.6, for

n ≥ 3,

Vn(P ) =
25n2 − 50n+ 26

24(n− 1)2
implying lim

n→∞
Vn(P ) =

25

24
. (13)

If the elements in the optimal sets lie on the line y = 1 between the two elements (0, 1) and (28
15
, 1), then

by Theorem 3.8, for n ≥ 8,

Vn(P ) =
7(5788(n− 1)n+ 3015)

10125(1− 2n)2
implying lim

n→∞
Vn(P ) =

10129

10125
. (14)

On the other hand, if the elements in the optimal sets lie on the line y =
√
3x between the two elements

(0, 0) and (2, 2
√
3), then by Corollary 3.2, for n ≥ 2,

Vn(P ) =
144n2 + 196n− 576

48n3
implying lim

n→∞
Vn(P ) = 0. (15)

Moreover, notice that if P is a uniform distribution on a unit circle, and if the elements in an optimal
set of n-points lie on a concentric circle with radius a, then by Theorem 4.3, for n ≥ 3,

Vn(P ) = a2 + 1− 2an

π
sin

π

n
implying lim

n→∞
Vn(P ) = (a− 1)2, (16)

which is a nonnegative constant depending on the values of a.
Let us now give the following definition.

Definition 7.1. Let P be a Borel probability measure on R
k equipped with a metric d, and let r ∈

(0,+∞). Let Vn,r(P ) be the nth constrained quantization error of order r for a given S that occurs in
(1). Then, the nth constrained quantization error Vn,r(P ) is a decreasing sequence and converges to its
exact lower bound, which is a nonnegative constant. Set

V∞,r(P ) := lim
n→∞

Vn,r(P ).

Then, (Vn,r(P )− V∞,r(P )) is a decreasing sequence of nonnegative real numbers such that

lim
n→∞

(Vn,r(P )− V∞,r(P )) = 0.

Write






Dr(P ) := lim inf
n→∞

r logn
− log(Vn,r(P )−V∞,r(P ))

, and

Dr(P ) := lim sup
n→∞

r logn
− log(Vn,r(P )−V∞,r(P ))

.
(17)

Dr(P ) and Dr(P ) are called the lower and the upper constrained quantization dimensions of the proba-
bility measure P of order r, respectively. If Dr(P ) = Dr(P ), the common value is called the constrained
quantization dimension of P of order r and is denoted by Dr(P ). The constrained quantization dimen-
sion measures the speed at which the specified measure of the constrained quantization error converges
as n tends to infinity. For any κ > 0, the two numbers

lim inf
n

n
r
κ (Vn,r(P )− V∞,r(P )) and lim sup

n

n
r
κ (Vn,r(P )− V∞,r(P ))

are, respectively, called the κ-dimensional lower and upper constrained quantization coefficients for
P . If the κ-dimensional lower and upper constrained quantization coefficients for P exists, and are
equal, then we call it the κ-dimensional constrained quantization coefficient for P . If the κ-dimensional
constrained quantization coefficient for P exists as a finite positive number, then κ equals the constrained
quantization dimension of P .

Let Vn,2(P ) be the nth constrained quantization error of order 2. Then,
(13) implies that

lim
n→∞

2 logn

− log(Vn,2(P )− V∞,2(P ))
= 1 and lim

n→∞
n2(Vn,2(P )− V∞,2(P )) =

1

24
, (18)



Constrained quantization for probability distributions 19

(14) implies that

lim
n→∞

2 logn

− log(Vn,2(P )− V∞,2(P ))
= 1 and lim

n→∞
n2(Vn,2(P )− V∞,2(P )) =

2744

10125
, (19)

(15) implies that

lim
n→∞

2 logn

− log(Vn,2(P )− V∞,2(P ))
= 2 and lim

n→∞
n(Vn,2(P )− V∞,2(P )) = 3, (20)

and (16) implies that

lim
n→∞

2 logn

− log(Vn,2(P )− V∞,2(P ))
= 1 and lim

n→∞
n2(Vn,2(P )− V∞,2(P )) =

π2a

3
. (21)

7.2. Observations and Conclusions.

(1) In unconstrained quantization, the elements in an optimal set are the conditional expecta-
tions in their own Voronoi regions. It is not true in constrained quantization, for example,
for the probability measure P , defined in Corollary 3.2, the optimal set of two-points is ob-
tained as {(1

8
, 1
8

√
3), (3

8
, 3
8

√
3)}, and the set of conditional expectations of the Voronoi regions is

{(1
2
, 0), (3

2
, 0)}, i.e., the two sets are different.

(2) In unconstrained quantization if the support of P contains infinitely many elements, then an
optimal set of n-points contains exactly n elements. This is not true in constrained quantization.
For example, from Subsection 5.1, we see that if a Borel probability measure P on R

2 has support
the diameter of a circle and the constraint S is the circle, then the optimal sets of n-points for all
n ≥ 2 always contain exactly two-elements although the support has infinitely many elements.

(3) In unconstrained quantization, the quantization dimension for an absolutely continuous proba-
bility measure exists and equals the Euclidean dimension of the support of P . This fact is not
true in constrained quantization, as can be seen from the expressions (18), (19), and (20). Each
of the probability measures has support the closed interval [0, 2] on a line, but the quantization
dimensions are different, i.e., the quantization dimension in constrained quantization depends
on the constraint S that occurs in the definition of constrained quantization. The quantization
dimension, in the case of unconstrained quantization, if it exists, measures the speed at which
the specified measure of the error goes to zero as n tends to infinity, on the other hand, in the
case of constrained quantization, if it exists, measures the speed at which the specified measure
of the error converges as n tends to infinity.

(4) In unconstrained quantization, the quantization coefficient for an absolutely continuous probabil-
ity measure exists as a unique finite positive number. In constrained quantization, the quantiza-
tion coefficient for an absolutely continuous probability measure also exists, but it is not unique,
and can be any nonnegative number as can be seen from the expressions of quantization coeffi-
cients in (18), (19), (20), and (21), i.e., the quantization coefficient in constrained quantization
depends on the constraint S that occurs in the definition of constrained quantization.
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