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ABSTRACT

Gregory, Jena M., Iterated Rascal Triangles. Master of Science (MS), May, 2022, 27 pp., 3 figures,

references, 6 titles.

We introduce a sequence of number triangles, tRiu
8
i“0, such that the entries of each share a

common generalized recurrence relation. R1 is the Rascal triangle and as i grows large, Ri becomes

Pascal’s triangle. For all i, we provide a combinatorial interpretation and find closed-term formulas

for the entries of Ri, denoted by
ˆ

n ` d
d

˙

i
. Our proofs rely on generating functions and other

combinatorial arguments.
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CHAPTER I

INTRODUCTION

Mathematicians are very familiar with Pascal’s triangle and have studied it extensively. It

can be generated with generating functions and has a great many other properties and identities.

Each entry of Pascal’s triangle is calculated from previous entries using the recurrence relation
`n`d

d

˘

“
`n´1`d

d

˘

`
`n`d´1

d´1

˘

. This relation is often described as South = East + West. But what

happens when non-mathematicians encounter Pascal’s triangle? In 2010, middle school students

Alif Anggoro, Eddy Liu, and Angus Tulloch [1] were challenged with determining the next row of

numbers in an incomplete Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

Instead of writing the next row of Pascal’s Triangle as expected, 1 4 6 4 1, they presented a new

row, 1 4 5 4 1. They came up with this new row using what they called the “diamond formula"

South “
pWest ˆ Eastq ` 1

North
(1.1)

where North, South, East, and West represent the locations on the number triangle as follows:

North

West East

South

1



With this formula, Anggoro, Liu, and Tulloch were able to construct a number triangle different

than Pascal’s triangle. They called it “the Rascal triangle".

The Rascal Triangle pR1q

1

1 1

1 2 1

1 3 3 1

1 4 5 4 1

1 5 7 7 5 1

1 6 9 10 9 6 1

1 7 11 13 13 11 7 1

1 8 13 16 17 16 13 8 1

1 9 15 19 21 21 19 15 9 1

1 10 17 22 25 26 25 22 17 10 1

1 11 19 25 29 31 31 29 25 19 11 1
...

We see the first two diagonals of the Rascal triangle are the same as Pascal’s triangle. The

students realized they needed to prove all the entries in their triangle were integers. This was done

with a short proof using basic algebra.

The Rascal triangle turns out to be sequence A077028 in the Online Encyclopedia of Integer

Sequences [5].

A mathematics for liberal arts class, taught by Julian Fleron at Westfield State University,

discovered a diamond pattern of their own while studying the Rascal triangle in 2015 [2].

They found that

South “ East ` West ´ North ` 1. (1.2)

2



Later we will show the diamond formula (1.1) equals Fleron’s recurrence relation (1.2).

Our motivation for this thesis was the question, "is the Rascal Triangle part of a larger family

of triangles?" Phil Hotckiss of Westfield State University and Fleron have presented one such family,

Generalized Rascal Triangles [4], as discussed at the end of this thesis in “Continuing Research:

Generalized Rascal Triangles". We offer a second answer and introduce a sequence of number

triangles tR0,R1,R2, . . .u in which the Rascal triangle, denoted R1, is the second in the sequence.

We denote the entries of Ri by
`n`d

d

˘

i, where n is the nth entry, d is the dth diagonal, and i is the ith

iteration of triangles. We say this as “n ` d, i, choose d".

3



CHAPTER II

GENERATING FUNCTIONS

Since we wondered if the Rascal triangle could be part of a larger family of number triangles,

we experimented, just as Anggoro, Liu, and Tulloch did, and came up with a generating function in

order to create such a family. Our result is as follows:

Definition 2.0.1. Let d, i,n be non-negative integers. We define the generating function for the nth

entry of the dth diagonal of the ith number triangle Ri to be

8
ÿ

n“0

ˆ

n ` d
d

˙

i
qn

“

ři
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi`1 . (2.1)

Utilizing Definition 2.0.1 we present the next iteration of triangle, R2.

Triangle R2

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 16 19 16 6 1

1 7 21 31 31 21 7 1

4



Note, the first three diagonals of R2 are the same as Pascal’s triangle, however, the rest of the

diagonals are new sequences different than the Rascal triangle.

It is staight forward to see that the diagonals of the Rascal triangle are given by the following

generating functions, For example,

For R1 and d “ 1

8
ÿ

n“0

ˆ

n ` 1
1

˙

1
qn

“ 1 ` 2q ` 3q2
` 4q3

¨ ¨ ¨ “
1

p1 ´ qq2 . (2.2)

For d “ 2
8
ÿ

n“0

ˆ

n ` 2
2

˙

1
qn

“ 1 ` 3q ` 5q2
` 7q3

¨ ¨ ¨ “
1 ` q

p1 ´ qq2 (2.3)

For d “ 3
8
ÿ

n“0

ˆ

n ` 3
3

˙

1
qn

“ 1 ` 4q ` 7q2
` 10q3

¨ ¨ ¨ “
1 ` 2q

p1 ´ qq2 (2.4)

In this manner, we can generalize the generating function for any diagonal d in R1 as

8
ÿ

n“0

ˆ

n ` d
d

˙

1
qn

“

`d´2
d´2

˘

`
`d´1

d´2

˘

q
p1 ´ qq2 “

1 ` pd ´ 1qq
p1 ´ qq2 . (2.5)

In R2 and for d “ 3,

8
ÿ

n“0

ˆ

n ` 3
3

˙

2
qn

“ 1 ` 4q ` 10q2
` 19q3

` 31q4
¨ ¨ ¨ “

1 ` q ` q2

p1 ´ qq3 (2.6)

where the coefficients of the numerator are the first three entries of the 0th diagonal of Pascal’s

Triangle 1,1,1.

For d “ 4,
8
ÿ

n“0

ˆ

n ` 4
4

˙

2
qn

“ 1 ` 5q ` 31q2
` 53q3

` 81q4
¨ ¨ ¨ “

1 ` 2q ` 3q2

p1 ´ qq3 (2.7)

where the coefficients of the numerator are the first three entries of the 1st diagonal of Pascal’s

Triangle 1, 2, 3. Hence, in R2, the dth coefficients of the numerator are the first three entries of the

pd ´ 3qth diagonal of Pascal’s triangle. We see the generating function of the dth diagonal in R2 is:

5



8
ÿ

n“0

ˆ

n ` d
d

˙

2
qn

“

`d´3
d´3

˘

`
`d´2

d´3

˘

q `
`d´1

d´3

˘

q2

p1 ´ qq3 (2.8)

Motivated by lines (2.2) through (2.8), we established Definition 2.0.1,

6



CHAPTER III

RECURRENCE RELATION

We have found a recurrence relation similar to Fleron’s Rascal triangle recurrence relation

(1.2) for all
`n`d

d

˘

i.

For any number triangle Ri in this sequence, each entry
`n`d

d

˘

i, this rule established as

follows: Set

Southi “

ˆ

n ` d
d

˙

i

so that

Easti “

ˆ

n ´ 1 ` d
d

˙

i

Westi “

ˆ

n ` d ´ 1
d ´ 1

˙

i

Northi “

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i

and

Northi´1 “

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i´1
.

Theorem 3.0.1. For integers n, d, and, i,

ˆ

n ` d
d

˙

i
“

ˆ

n ´ 1 ` d
d

˙

i
`

ˆ

n ` d ´ 1
d ´ 1

˙

i
´

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i
`

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i´1
. (3.1)

If n,d, or i “ 0, then
`n`d

d

˘

i “ 1.

This has the appearance of Fleron’s recurrence relation with the integer 1 replaced by
`n´1`d´1

d´1

˘

i´1.

7



Proof. We consider the associated generating functions and apply Definition 2.0.1.

8
ÿ

n“0

ˆ

n ` d
d

˙

i
qn

“

8
ÿ

n“0

ˆ

n ´ 1 ` d
d

˙

i
qn

`

8
ÿ

n“0

ˆ

n ` d ´ 1
d ´ 1

˙

i
qn

´

8
ÿ

n“0

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i
qn

`

8
ÿ

n“0

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i´1
qn (3.2)

“ q
8
ÿ

n“0

ˆ

n ` d
d

˙

i
qn

`

8
ÿ

n“0

ˆ

n ` d ´ 1
d ´ 1

˙

i
qn

´ q
8
ÿ

n“0

ˆ

n ` d ´ 1
d ´ 1

˙

i
qn

` q
8
ÿ

n“0

ˆ

n ` d ´ 1
d ´ 1

˙

i´1
qn.

(3.3)

“
q

ři
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi`1 `

ři
j“0

` j`d´pi`2q

d´pi`2q

˘

q j

p1 ´ qqi`1

´
q

ři
j“0

` j`d´pi`2q

d´pi`2q

˘

q j

p1 ´ qqi`1 `
q

ři´1
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi (3.4)

where
q

ři´1
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi “

ři
j“0

` j`d´pi`2q

d´pi`1q

˘

q j

p1 ´ qqi . (3.5)

Continuing from (3.4) and finding a common denominator of p1 ´ qqi`1, we have

“
q

ři
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi`1 `

ři
j“0

` j`d´pi`2q

d´pi`2q

˘

q j

p1 ´ qqi`1 ´
q

ři
j“0

` j`d´pi`2q

d´pi`2q

˘

q j

p1 ´ qqi`1

`

ři
j“0

` j`d´pi`2q

d´pi`1q

˘

q j

p1 ´ qqi`1 ´
q

ři
j“0

` j`d´pi`2q

d´pi`1q

˘

q j

p1 ´ qqi`1 . (3.6)

8



Collecting like terms in (3.6) to make use of the binomial identity
`n

m

˘

“
`n´1

m

˘

`
`n´1

m´1

˘

, we have

q
ři

j“0

´

` j`d´pi`1q

d´pi`1q

˘

´
` j`d´pi`2q

d´pi`2q

˘

´
` j`d´pi`2q

d´pi`1q

˘

¯

q j

p1 ´ qqi`1

`

ři
j“0

´

` j`d´pi`2q

d´pi`2q

˘

`
` j`d´pi`2q

d´pi`1q

˘

¯

q j

p1 ´ qqi`1 “

ři
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi`1 . (3.7)

Thus,

ˆ

n ` d
d

˙

i
“

ˆ

n ´ 1 ` d
d

˙

i
`

ˆ

n ` d ´ 1
d ´ 1

˙

i
´

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i
`

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i´1
. (3.8)

9



CHAPTER IV

A POLYNOMIAL FORMULA

As the entries of the Rascal triangle are not binomial coefficients, we wanted a method using

only binomial coefficients in which to calculate all
`n`d

d

˘

i. The result is as follows:

Proposition 4.0.1. For n, d, and i ą 0 each rascal coefficient

ˆ

n ` d
d

˙

i
“

i
ÿ

m“0

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

n ` i ´ m
i

˙

. (4.1)

Proof.

8
ÿ

n“0

ˆ

n ` d
d

˙

i
qn

“

ři
j“0

` j`d´pi`1q

d´pi`1q

˘

q j

p1 ´ qqi`1 “

i
ÿ

j“0

ˆ

j ` d ´ pi ` 1q

d ´ pi ` 1q

˙

q j
ˆ

8
ÿ

k“0

ˆ

k ` i
i

˙

qi (4.2)

After distributing,

“

8
ÿ

k“0

ˆ

k ` i
i

˙

qk
`

8
ÿ

k“0

ˆ

1 ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

k ` i
i

˙

qk`1

`

8
ÿ

k“0

ˆ

2 ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

k ` i
i

˙

qk`2
`

¨¨ ¨ `

8
ÿ

k“0

ˆ

d ´ 1
d ´ pi ` 1q

˙ˆ

k ` i
i

˙

qk`i (4.3)

10



Re-indexing (4.3) gives us the following,

“

8
ÿ

k“0

ˆ

k ` i
i

˙

qk
`

8
ÿ

k“0

ˆ

1 ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

k ` i ´ 1
i

˙

qk

`

8
ÿ

k“0

ˆ

2 ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

k ` i ´ 2
i

˙

qk
`

8
ÿ

k“0

¨ ¨ ¨ `

ˆ

d ´ 1q

d ´ pi ` 1q

˙ˆ

k
i

˙

qk (4.4)

“

8
ÿ

k“0

i
ÿ

m“0

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

k ` i ´ m
i

˙

qn. (4.5)

Then we have,

8
ÿ

k“0

ˆ

n ` d
d

˙

i
qn

“

8
ÿ

k“0

i
ÿ

m“0

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

k ` i ´ m
i

˙

qn. (4.6)

Thus,
ˆ

n ` d
d

˙

i
“

i
ÿ

m“0

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

n ` i ´ m
i

˙

. (4.7)
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CHAPTER V

DIAMOND PATTERN AND FLERON’S RECURRENCE RELATION

Proposition 5.0.1. The triangles generated by the diamond formula (1.1) and Fleron’s recurrence

relation are equal (1.2).

Utilizing Proposition (4.7) we consider following example. For i “ 1, the formula for a

Rascal triangle coefficient is
ˆ

n ` d
d

˙

1
“ 1 ` dn (5.1)

Proof. From the formula in (4.7) we re-write the diamond formula (1.1) as

´

`n`d´1
d´1

˘

1 ˆ
`n´1`d

d

˘

1

¯

` 1
`n´1`d´1

d´1

˘

1

“
p1 ` dn ´ nq ˆ pdn ´ d ` 1q ` 1

´n ` dn ´ d ` 2
“ 1 ` dn “

ˆ

n ` d
d

˙

1
(5.2)

We rewrite Fleron’s recurrence relation (1.2) as

ˆ

n ´ 1 ` d
d

˙

1
`

ˆ

n ` d ´ 1
d ´ 1

˙

1
´

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

1
` 1

“ rdn ´ d ` 1s ` r1 ` dns ` r´n ` dn ´ d ` 2sq ` r1s “ 1 ` dn “

ˆ

n ` d
d

˙

1
(5.3)

Thus, the triangles generated by the diamond formula (1.1) and Fleron’s recurrence relation

are equal (1.2).

12



CHAPTER VI

LIMIT TO PASCAL’S TRIANGLE

We will show that as i grows large, the limiting number triangle in the sequence tRiu
8
i“0 is

Pascal’s triangle.

We want to show that for any diagonal d,n ď i, each entry of tRiu
8
i“0 is a binomial coefficient.

This will make each diagonal d ď i a “Pascal diagonal" and as i Ñ 8, tRiu
8
i“0 will limit to Pascal’s

triangle. First we show the following,

Proposition 6.0.1. For d ď i or n ď i then
`n`d

d

˘

i “
`n`d

d

˘

.

We require the following result.

Proposition 6.0.2. [6] For negative n and integer k, we have

ˆ

n
k

˙

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p´1qk
`

´n`k´1
k

˘

if k ě 0

p´1qn´k
`

´k´1
n´k

˘

if k ď n

0 otherwise

(6.1)

We will prove Proposition 6.0.1 using Proposition 6.0.2 and the following identities:

ˆ

a
b

˙ˆ

a ´ b
c

˙

“

ˆ

a
c

˙ˆ

a ´ c
b

˙

. (6.2)

Chu-Vandermonde Identity

ˆ

a ` b
c

˙

“

c
ÿ

k“0

ˆ

a
k

˙ˆ

b
c ´ k

˙

. (6.3)
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Principle of Inclusion-Exclusion
n

ÿ

k“0

p´1q
k
ˆ

n
k

˙

“ δi, j. (6.4)

Where δi, j “ 1 if i “ j, and 0 otherwise.

Proof. Consider d ď i. Then by (4.7) and Proposition (6.0.1)

ˆ

n ` d
d

˙

i
“

i
ÿ

m“0

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

n ` i ´ m
i

˙

“

i
ÿ

m“0

p´1q
m

ˆ

i ´ d
m

˙ˆ

n ` i ´ m
i

˙

“

i´d
ÿ

m“0

p´1q
m

ˆ

i ´ d
m

˙ˆ

n ` i ´ m
i

˙

(6.5)

We compute:

i´d
ÿ

m“0

p´1q
m

ˆ

i ´ d
m

˙ˆ

n ` i ´ m
i

˙

“

i´d
ÿ

m“0

p´1q
m

ˆ

i ´ d
m

˙ i
ÿ

k“0

ˆ

i ´ d ´ m
k

˙ˆ

n ` d
i ´ k

˙

(6.6)

“

i´d
ÿ

m“0

i
ÿ

k“0

ˆ

n ` d
i ´ k

˙

p´1q
m

ˆ

i ´ d
m

˙ˆ

i ´ d ´ m
k

˙

(6.7)

“

i
ÿ

k“0

i´d
ÿ

m“0

ˆ

n ` d
i ´ k

˙

p´1q
m

ˆ

i ´ d
k

˙ˆ

i ´ d ´ k
m

˙

(6.8)

“

i
ÿ

k“0

ˆ

n ` d
i ´ k

˙ˆ

i ´ d
k

˙ i´d
ÿ

m“0

p´1q
m

ˆ

i ´ d ´ k
m

˙

(6.9)

“

i
ÿ

k“0

ˆ

n ` d
i ´ k

˙ˆ

i ´ d
k

˙

δk,i´d (6.10)

(6.11)

“

ˆ

n ` d
i

˙ˆ

i ´ d
0

˙

δ0,i´d ` ¨¨ ¨ `

ˆ

n ` d
d

˙ˆ

i ´ d
i ´ d

˙

δi´d,i´d ` . . .

`

ˆ

n ` d
0

˙ˆ

i ´ d
i

˙

δi,0 “

ˆ

n ` d
d

˙

(6.12)

Line (6.6) uses the Chu-Vandermonde identity. Line (6.7) uses identity (6.2) to swap the
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roles of m and k, which also swaps the summations. Line (6.8) moves the left summation back to

the middle, and line (6.9) uses the Principle of Inclusion-Exclusion. We see in (6.12) there is only

one non-zero term in the sum, and it is
`n`d

d

˘

. Thus, for d ď i

ˆ

n ` d
d

˙

i
“

ˆ

n ` d
d

˙

. (6.13)

Remark: We observe from (6.13) as each rascal coefficient in a diagonal d ď i is a binomial

coefficient, then the entire diagonal is a Pascal diagonal. In this manner, as i Ñ 8, every diagonal

becomes a Pascal diagonal. Therefore, as i grows arbitrarily large, then the limit of tRiu
8
i“0 becomes

Pascal’s triangle.
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CHAPTER VII

COMBINATORIAL INTERPRETATION

The standard combinatorial interpretation of the binomial coefficient
`n`d

d

˘

is that it counts

the number of ways to choose an unordered subset of d elements from a set of n ` d elements. In

this section we explore one possibility of what the Rascal coefficient
`n`d

d

˘

i counts.

We require a familiar definition.

Definition 7.0.1. A partition λ of a positive number k is a finite non-increasing sequence of positive

integers λ1,λ2, . . .λr such that
řr

i“1 λi “ k.

Another interpretation of
`n`d

d

˘

is the size of the collection of partitions of all non-negative

integers not larger than n ˆ d into at most d parts with each part not larger than n.

Definition 7.0.2. Let Parpn,kq be the set of integer partitions of at most n and parts of size at most

k.

We note the fact |Parpn,kq| is a binomial coefficient. Our combinatorial interpretation of
`n`d

d

˘

i when i ă d is as follows.

Definition 7.0.3. For non-negative integers d, i,n with i ă d, a rascal partition is any partition λ

that satisfies the following:

λ1 ď n and λd´i ě n ´ i, (7.1)

where the number of parts is at most d and the largest part has size of at most n.

Proposition 7.0.4. The rascal coefficients count the number of rascal partitions.

We will give a combinatorial proof of this result, but first require the following definitions.
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Definition 7.0.5. Let Ri,d,n be the set of rascal partitions with λ1 ď n and at most d parts.

For integer m, with 0 ď m ď i, let

Ri,d,n,m “ tλ : λ P Ri,d,n,λd´i “ n ´ mu. (7.2)

Then

Ri,d,n “

i
ď

m“0

Ri,d,n,m (7.3)

and the sets Ri,d,n,m appearing in the union are pairwise disjoint.

Definition 7.0.6. Given a rascal partition λ P Ri,d,n,m, define

f pλ q “ pµ1, . . . ,µd´i´1q by the equation µ j “ λ j ´ pn ´ mq for all j.

We see that f pλ q is obtained by deleting n ´ m from the first d ´ i ´ 1 parts of λ , and that

f pλ q has largest part at most m.

Definition 7.0.7. Define gpλ q “ pν1, . . . ,νiq by ν j “ λd´i` j for all j. Thus, we are removing the

first d ´ i parts from λ , and gpλ q has largest part at most n ´ m.

Proof. Consider the function F : Ri,d,n,m Ñ Parpm,d ´ i ´ 1q ˆ Parpn ´ m, iq given by Fpλ q “

p f pλ q,gpλ qq. We show here that this function is a bijection.

We need to describe the inverse function F´1 : Parpm,d ´ i ` 1q ˆ Parpn ´ m, iq Ñ Ri,d,n,m.

Given µ P Parpm,d ´ i ` 1q and ν P Parpn ´ m, iq, let λ “ F´1pµ,νq be given by:

λ j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

µ j ` n ´ m j ă d ´ i

n ´ m j “ d ´ i

ν j´d´i j ą d ´ i.

(7.4)
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Since Fmpλ q “ pµ,νq is a bijection and since |Parpn,kq| “
`n`k

k

˘

, we conclude

|Ri,d,n,m| “ |Parpm,d ´ i ´ 1q||Parpn ´ m, iq|

“

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

n ` i ´ m
i

˙

. (7.5)

Putting it all together, and making use of (4.7), we obtain

|Ri,d,n| “

i
ÿ

m“0

|Ri,d,n,m| “

i
ÿ

m“0

ˆ

m ` d ´ pi ` 1q

d ´ pi ` 1q

˙ˆ

n ` i ´ m
i

˙

“

ˆ

n ` d
d

˙

i
. (7.6)

Thus, the rascal coefficients count the number of rascal partitions.

Example 7.0.8. Consider rascal partition (6,5,5,3,1) with i “ 2,d “ 5, and n “ 6. The resulting

Fererrs diagram is:

Figure 7.1: The Ferrers diagram of rascal partition (6,5,5,3,1)

To find m, we use the calculation,

λd´i “ λ5´2 “ λ3 “ 5

5 “ n ´ m “ 6 ´ m

m “ 1.
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Since d ´ i “ 3, we will look at the 3rd row and remove the rectangle generated by that row. As

m “ 1, the shaded rectangle will be 1 box from the right.

Figure 7.2: Rectangle generated by the 3rd row in partition (6,5,5,3,1)

After removing the rectangle generated by the 3rd row, we are left with two partitions, µ

and ν .

µ

ν

Figure 7.3: The two remaining partitions, µ and ν in partition (6,5,5,3,1)

Notice that µ1 ď n ´ pn ´ mq “ m “ 1, so that µ1 has size of at most m “ 1, where the entire

Ferrers diagram is part of the larger d x n, or 5 x 6 grid.

Example 7.0.9. Consider the rascal coefficient
`4`3

3

˘

1 “ 13 where n “ 4, d “ 3 and i “ 1. We are

looking at partitions of at most d “ 3 parts; pλ1,λ2,λ3q, or pλ1,λ2q, or pλ1q. Since λd´i ě n ´ i,
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this means we will have λ2 ě 3, which means λ1 ě 3

As λ1 ď n “ 4 then 3 ď λ1 ď 4.

The corresponding set of rascal partitions is

tp3,3q,p3,3,1q,p3,3,2q,p3,3,3q,p4,3q,p4,3,1q,p4,3,2q,

p4,3,3q,p4,4q,p4,4,1q,p4,4,2q,p4,4,3q,p4,4,4qu. (7.7)

Hence, there are 13 rascal partitions satisfying Definition (7.0.3) where the corresponding rascal

coefficient
`4`3

3

˘

1 “ 13.

Example 7.0.10. Consider the rascal coefficient
`4`3

3

˘

2 “ 31 where n “ 4, d “ 3, and i “ 2. We are

looking at the partitions of at most d “ 3 parts; pλ1,λ2,λ3q, or pλ1,λ2q, or pλ1q. Since λd´i ě n ´ i,

this means we will have λ1 ě 2, As λ1 ď n “ 4, then 2 ď λ1 ď 4.

The corresponding set of rascal partitions is

tp2q,p2,1q,p2,1,1q,p2,2q,p2,2,1q,p2,2,2q,p3q,p3,1q,p3,1,1q,p3,2q,

p3,2,1q,p3,2,2q,p3,3q,p3,3,1q,p3,3,2q,p3,3,3q,p4q,p4,1q,

p4,1,1q,p4,2q,p4,2,1q,p4,2,2q,p4,3q,p4,3,1q,p4,3,2q,p4,3,3q,

p4,4q,p4,4,1q,p4,4,2q,p4,4,3q,p4,4,4qu. (7.8)

Hence, there are 31 rascal partitions satisfying Definition (7.0.3) where the corresponding rascal

coefficient
`4`3

3

˘

2 “ 31.

Example 7.0.11. Let i “ 3, d “ 3, and n “ 4, with d ď i and k ď d. Then the corresponding rascal

partitions are required to have largest part at most n, and to satisfy

tλ1 ě ¨¨ ¨ ě λk ą 0 : λ1 ď nu. (7.9)
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The following 35 corresponding rascal partitions are:

tp0q,p1q,p1,1q,p1,1,1q,p2q,p2,1q,p2,1,1q,p2,2q,p2,2,1q,

p2,2,2q,p3q,p3,1q,p3,1,1q,p3,2q,p3,2,1q,p3,2,2q,p3,3q,p3,3,1q,

p3,3,2q,p3,3,3q,p4q,p4,1q,p4,1,1q,p4,2q,p4,2,1q,p4,2,2q,p4,3q,

p4,3,1q,p4,3,2q,p4,3,3q,p4,4q,p4,4,1q,p4,4,2q,

p4,4,3q,p4,4,4qu. (7.10)

Hence, when d ď i, the rascal coefficient
`4`3

3

˘

3 “
`4`3

3

˘

“ 35.
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CHAPTER VIII

CONTINUING RESEARCH: GENERALIZED RASCAL TRIANGLES

Phil Hotchkiss of Westfield State University, defines a Generalized Rascal Triangle (GRT)

[4] as any number triangle whose diagonals are arithmetic sequences.

...

3 10 15 18 19 18 15 10 3

3 9 13 15 15 13 9 3

3 8 11 12 11 8 3

3 7 9 9 7 3

3 6 7 6 3

3 5 5 3

3 4 3

3 3

3

We have extended our research into GRT’s and found a similar infinite family of triangles

for which we have a generating function, a recurrence relation, and a limiting triangle.

Definition 8.0.1. The generating function for the dth diagonal of any Generalized Rascal Triangle

is
8
ÿ

n“0

ˆ

n ` d
d

˙

i,pk,cq

qn
“

c
ři´1

j“0
` j`d´pi`1q

d´pi`1q

˘

q j ´ c
`d´1

d´i

˘

qi ` k
` d

d´i

˘

qi

p1 ´ qqi`1 . (8.1)

The recurrence relation for GRT’s is identical to the Rascal triangle recurrence relation.

When k “ c “ 1, we have the Rascal triangle. For any symmetric Generalized Rascal Triangle we
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have

ˆ

n ` d
d

˙

i,pk,cq

“

ˆ

n ´ 1 ` d
d

˙

i,pk,cq

`

ˆ

n ` d ´ 1
d ´ 1

˙

i,pk,cq

´

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i,pk,cq

`

ˆ

n ´ 1 ` d ´ 1
d ´ 1

˙

i´1,pk,cq

(8.2)

We can also show the limiting number triangle for any GRT Ri,pk,cq is as follows:

Theorem 8.0.2.

lim
iÑ8

ˆ

n ` d
d

˙

i,pk,cq

“ c ˆ

ˆ

n ` d
d

˙

In other words, for any symmetric Generalized Rascal Triangle Ri,pk,cq, the limiting number triangle

is a “constant multiple of Pascal’s triangle", where each entry is c ˆ
`n`d

d

˘

.

lim
iÑ8

Ri,pk,cq “ “c ˆ Pascal’s triangle".

The limiting triangle is “3ˆPascal’s triangle", where each Pascal’s triangle entry is multiplied

by c “ 3.

R5,p1,3q

...

3 27 108 252 378 378 252 108 27 3

3 24 84 168 210 168 84 24 3

3 21 63 105 105 63 21 3

3 18 45 60 45 18 3

3 15 30 30 15 3

3 12 18 12 3

3 9 9 3

3 6 3

3 3

3
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CHAPTER IX

CONCLUSION

The Rascal triangle was discovered when three middle school students were given an in-

complete number triangle and asked to figure out the next row and unexpectedly discovered a new

number triangle. They were expected to find Pascal’s triangle, but instead created something brand

new and previously not considered.

As mathematicians, we often get comfortable with mathematics, especially with results

that we are familiar with. These students showed that with new perspective and some creativity,

mathematics can still have unexpected results. Hotchkiss’ and Fleron’s students have also studied

the Rascal triangle and come up with interesting and strange patterns and formulas.

One such pattern is the “T-Meg" rule [3]

...

1 8 13 16 17 16 13 8 1

1 7 11 13 13 11 7 1

1 6 9 10 9 6 1

1 5 7 7 5 1

1 4 5 4 1

1 3 3 1

1 2 1

1 1

1

where
`n`d

d

˘

1 “
`n´1`d´1

d´1

˘

1 `
`n`1`d´3

1

˘

1 `
`n`2`d´3

0

˘

1. For example
`4`4

4

˘

1 “
`3`3

3

˘

1 `
`5`1

1

˘

1 `

24



`6`1
0

˘

1 “ 10 ` 6 ` 1 “ 17.

The “T-Meg" rule only works in R1 or R1,pk,cq. Is there a “T-Meg" rule lurking in R2, R3

or beyond ? As i grows large, does “T-Meg" turn into a familiar Pascal identity? Is there another

unknown pattern in the Rascal triangle? As we can see, iterated Rascal triangles have considerable

possibility for future research.
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