
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

5-2022

Computational Complexity in Tile Self-Assembly Computational Complexity in Tile Self-Assembly

Timothy Gomez
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gomez, Timothy, "Computational Complexity in Tile Self-Assembly" (2022). Theses and Dissertations.
1044.
https://scholarworks.utrgv.edu/etd/1044

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1044?utm_source=scholarworks.utrgv.edu%2Fetd%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

COMPUTATIONAL COMPLEXITY OF VERIFICATION

IN TILE SELF-ASSEMBLY

A Thesis

by

TIMOTHY GOMEZ

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: Computer Science

The University of Texas Rio Grande Valley

May 2022

COMPUTATIONAL COMPLEXITY OF VERIFICATION

IN TILE SELF-ASSEMBLY

A Thesis
by

TIMOTHY GOMEZ

COMMITTEE MEMBERS

Dr. Robert Schweller
Chair of Committee

Dr. Tim Wylie
Committee Member

Dr. Andres Figueroa
Committee Member

Dr. Bin Fu
Committee Member

May 2022

Copyright 2022 Timothy Gomez

All Rights Reserved

ABSTRACT

Gomez, Timothy, Computational Complexity of Verification in Tile Self-Assembly. Master of

Science (MS), May, 2022, 44 pp., 4 tables, 13 figures, 54 references.

One of the most fundamental and well-studied problems in Tile Self-Assembly is the Unique

Assembly Verification (UAV) problem. This algorithmic problem asks whether a given tile system

uniquely assembles a specific assembly. The complexity of this problem in the 2-Handed Assembly

Model (2HAM) at a constant temperature is a long-standing open problem since the model was

introduced. Previously, only membership in the class coNP was known and that the problem is in P

if the temperature is one (τ = 1). The problem is known to be hard for many generalizations of the

model, such as allowing one step into the third dimension or allowing the temperature of the system

to be a variable, but the most fundamental version has remained open.

In this Thesis I will cover verification problems in different models of self-assembly leading

to the proof that the UAV problem in the 2HAM is hard even with a small constant temperature

(τ = 2), and finally answer the complexity of this problem (open since 2013). Further, this result

proves that UAV in the staged self-assembly model is coNP-complete with a single bin and stage

(open since 2007), and that UAV in the q-tile model is also coNP-complete (open since 2004). We

reduce from Monotone Planar 3-SAT with Neighboring Variable Pairs, a special case of 3SAT

recently proven to be NP-hard.

iii

DEDICATION

To Uncle Charlie, thank you for inspiring me.

“If you love what you do you’ll never work a day in your life”

iv

ACKNOWLEDGMENTS

I first and most importantly want to thank my parents for all their love and support. You

both along with the rest of our family gave me everything I needed and more.

None of this would have been possible without my two advisors Robert Schweller and Tim

Wylie. Schweller, thank you for introducing me to the world of research and self-assembly, and

your consistent guidance. Wylie, thank you for helping me develop the tools I needed to excel.

Thank you both for molding me into a proficient computer scientist.

I was not alone at alone at any part of this journey as I was surrounded by many other

brilliant students at every step. David, we were a team for all of this and I can never thank

you enough. Austin, thank you helping me while I was an undergraduate and showing me the

template to be a great leader in the lab. I am so grateful for every member of the Algorithmic

Self-Assembly Research group and Computer Science department for creating a supportive and

friendly environment.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER I. INTRODUCTION . 1

1.1 Models . 1

1.1.1 Abstract Tile Assembly Model . 2

1.1.2 2-Handed Assembly Model . 2

1.1.3 Staged Assembly Model . 3

1.1.4 Tile Automata . 3

1.2 Problems . 3

1.2.1 Producibility . 4

1.2.2 Unique Assembly Verification . 4

1.2.3 Unique Shape Verification . 4

1.2.4 Tile Assembly Computers and Covert Computation 5

1.3 Experimental Motivation . 5

CHAPTER II. ABSTRACT TILE ASSEMBLY MODEL . 6

2.1 Producibility . 6

2.1.1 Non-Cooperative Binding . 7

2.2 Unique Assembly Verification . 8

2.3 Unique Shape Verification . 8

2.4 Tile Assembly Computers . 9

2.5 Covert Computation . 10

2.6 Negative Glues . 11

2.7 3D . 11

vi

2.7.1 Wire . 12

2.7.2 Input Assemblies . 12

2.7.3 NAND gate . 13

2.7.4 Back Filling and Target Assemblies . 13

2.7.5 P-Completeness . 14

2.8 Beyond Tiles . 14

CHAPTER III. 2 HANDED ASSEMBLY MODEL . 16

3.1 Definitions . 16

3.2 Producibility . 19

3.2.1 Temperature-1 . 19

3.3 Unique Assembly Verification . 19

3.3.1 Rogue Assemblies . 20

3.3.2 UAV is coNP-hard . 20

3.3.3 Tree Shaped Assemblies . 22

3.4 Unique Shape Verification . 23

3.5 Generalizations . 24

3.5.1 High Temperature . 24

3.5.2 Multiple Tile Model . 25

3.5.3 Prebuilt Assemblies . 25

3.5.4 Multiple hands . 25

CHAPTER IV. STAGED ASSEMBLY MODEL . 27

4.1 Covert Circuits . 28

4.2 Unique Assembly Verification Problem . 31

4.2.1 Membership . 33

CHAPTER V. TILE AUTOMATA . 34

5.1 General . 34

5.1.1 Affinity Strengthening . 35

5.2 Freezing Affinity Strengthening . 36

5.2.1 One Dimensional . 37

BIBLIOGRAPHY . 39

BIOGRAPHICAL SKETCH . 44

vii

LIST OF TABLES

Page

Table 2.1: Known Results for verification problem in the aTAM. |A| is the size of the target
assembly, τ is the constant temperature of the system, and |T | is the number of tile
types in the system. 7

Table 3.1: Known Results for verification problem in the 2HAM 2D. 18

Table 4.1: Complexities of Unique Assembly Verification in the Staged Assembly Model
with respect to the number of stages n. Our results are in bold. 31

Table 5.1: Results for the Unique Assembly Verification in Tile Automata. Transition
Rules describes the types of transition rules allowed in the system. In Affinity
Strengthening Systems all transition rules increase affinity so no detachment may
occur. Freezing indicates whether the system is freezing where tiles cannot repeat
states. Result 1D is the complexity of UAV in one dimension and Result 2D is the
complexity of UAV in two dimensions. Theorem is where these results can be found. 35

viii

LIST OF FIGURES

Page

Figure 2.3: Full NAND gates . 13

Figure 2.4: Possible partially build NAND gates. 13

Figure 3.1: (a) Example of an attachment that takes places using cooperative binding at
τ = 2. (b) The bond graph of the assembly showing that it is τ-stable. (c) These two
assemblies are not τ-combinable since this would place two tiles at the same location. 17

Figure 3.2: (a) Example instance of Monotone Rectilinear 3SAT with Neighboring Variable
Pairs. (b) A circuit view of our example instance with gates divided into the clauses
they compute. (c) Target assembly constructed from instance on left. 22

Figure 3.3: Overview of 2HAM USV Reduction. Top right the frame builds with an
assignment to the variables. Top left test assemblies build for all assignments to
X . Bottom left assemblies that don’t satisfy the formula go to the target shape.
Bottom right assignments that do satisfy the formula encode their assignment to the
X variables in their geometry. Test assemblies may attach to matching computation
assemblies. 24

Figure 3.4: (a) Possible Macroblocks that make up Mi, j. (b) Once two macroblocks
attach, the green filler tiles are able to cooperatively attach using one glue on
the macroblock, and the other glue from the red tiles of the arms from the other
macroblock. 26

Figure 4.1: (a) A 2HAM example that uniquely builds a 2× 3 rectangle. The top 4 tiles
in the tile set all combine with strength-2 glues building the ‘L’ shape. The tile
with blue and purple glues needs two tiles to cooperatively bind to the assembly
with strength 2. All possible producibles are shown with the terminal assembly
highlighted. (b) A simple staged self-assembly example. The system has 3 bins and
3 stages, as shown in the mixgraph. There are three tile types in our system that we
assign to bins as desired. From each stage only the terminal assemblies are added to
the next stage. The result of this system is the assembly shown in the bin in stage 3. 28

ix

Figure 4.2: (a) Simple 3-input logic circuit using 2 NAND gates, and the high-level abstrac-
tion of the circuit assembly showing the input variables and gates highlighted as
blocks. Blue blocks are the sections of the assemblies we call Arms that function
as wires in the systems. (b) (1) Our input assembly and gate assemblies are con-
structed in separate bins. (2) Gate assemblies attach to the input assembly forming a
circuit assembly. (3) Unused gates are terminal in the second stage. (4) This circuit
evaluates to true, so the test tile will be able to attach. (5) Gate assemblies in this
stage grow into a circuit using single tiles. (6) Single tiles fill in open spots in the
circuit assembly to hide the history. The additional assemblies are used to reach the
output template. 30

Figure 4.3: (a) Information being passed along a wire is represented by the position of a
domino called an arm. (b) Information is passed by attachment. (c) In the final
stage we add additional tiles to hide the information that was passed along a wire. 31

Figure 5.1: Example of ∀∃SAT over 4 variables with k = 2. (a) Transition rules pass a
signal to the left that transitions the tile next to the state representing x1, allowing a
tile to attach. This allows more transitions that allow a tile to attach over the state
representing x2 (since it is = 1). Finally, the leftmost T is transitioned to state A.
(b) Four test assemblies are built, each representing an assignment to x1,x2. A test
assembly can attach to an assignment assembly with the A state if they encode the
same assignment to x1,x2. 36

Figure 5.2: An overview of how all assignment assemblies transition to the target assembly.
Assignment assemblies marked true can grow to the target assembly by attaching to
a test assembly. Those flagged false can attach to “blank” test assemblies, and the
filler tile fills in the spots missing relative to the target assembly. 37

x

CHAPTER I

INTRODUCTION

Molecular Computing is a frontier of research where the natural properties and behaviors

of molecules are studied as systems that perform computation. We see processes that we can

algorithmically define, such as the patterns on the fur of animals, ants arranging themselves to larger

structures, and even our cells performing actions based on their environment. It is of great interest

for us to study these processes as models of computation to learn more about the natural world and

it’s relation to the theory of computing.

In my thesis I focus on Tile Self-Assembly models such as the 2-Handed Assembly Model,

Staged Assembly Model, and Tile Automata. Most results involve either the computational com-

plexity of verifying the behavior of systems in these models, or designing systems which implement

algorithms. This is not meant to cover all topics in this area instead I focus on results leading to and

around the main result of coNP-hardness of the Unique Assembly Verification in the 2HAM model

in 2D with τ = 2 along with some directions for future work in this area.

Shared Work Certain sections such were written with other coauthors. Many of the

results covered here were joint work with coauthors David Caballero, Robert Schweller, and Tim

Wylie [8–12] with some results stemming from initial ideas from Robert Schweller, Tim Wylie and

Andrew Winslow [9, 10].

1.1 Models

Here I quickly review the main models explored and briefly review key related results. Other

tile assembly models are viewed as generalizations are covered in the relevant section.

1

1.1.1 Abstract Tile Assembly Model

The first model of Tile Self-Assembly introduced was the aTAM in Erik Winfree’s disserta-

tion [50]. This models DNA structures as Wang Tiles which have already been studied. The first

result in this model was showing that it is capable of Turing Computation.

Many of the problems I review were first explored in [1] such as the producibility and

unique assembly verification problems. These problems were solvable in polynomial time in this

model. Many generalizations of the problems and model have been studied such as what became

known as the Unique Shape Verification problem which was introduced in [4]. This paper also

introduced other generalizations such as the flexible glue model, multiple-tile model, and multiple

temperature. This model is also the first place where Tile Assembly Computers [6, 35] and Covert

Computation [17] are introduced.

1.1.2 2-Handed Assembly Model

When removing the restriction that growth starts from the seed we get the 2HAM where we

define our producible assemblies recursively as any stable assembly we can build by combining

two already producible assemblies. This model usually assumes starting with only single tiles (or

size 1 assemblies). This model was introduced in [14] (although early versions had been proposed

earlier [4, 24]) where many problems such as simulating the aTAM were studied. The main result

for verification in this paper was coNP membership of UAV and coNP-Completeness when allowed

one step into the 3rd dimension. This is the model generalized to three dimensions but tiles only

place in z = 0 and z = 1. A notable technique used in this reduction were cheat detection assemblies

which utilized both cooperative binding and geometric blocking to only allow attachment of two

assemblies which represented the same variable assignments. This technique is used again many

times in test gadgets a term used in [47] to show Π
p
2-Completeness of Unique Shape Verification

After many generalizations of UAV being shown to be hard [9, 11, 14, 46] it remained open

for many years the complexity of UAV in the 2HAM in 2D with τ = O(1). In [12] we prove that

2

this version of the problem is coNP-Complete via reduction from Monotone Planar 3SAT with

Neighboring variable pairs [2]. This is an additional restriction that each clause with 3 variables has

two that are adjacent.

1.1.3 Staged Assembly Model

Staged assembly uses a mix graph where each node or “bin" is a 2HAM system where the

output of one pin are used as the input to another bin [24]. This model is much more powerful than

the normal 2HAM only terminal assemblies are passed to the next bin. Verification was first studied

in [47] showing up to Π
p
2-Completeness of UAV with 7 stages. Membership was shown to be in

PSPACE with a conjectured PSPACE-Completeness.

The Unique Assembly verification problem in this model was shown to be PSPACE-

Complete in [10, 47]. This reduction utilized covert computation which is possible using only

3 stages.

1.1.4 Tile Automata

The first models considered “passive" because tile only attach to each other and nothing

is controlling process. The staged model can be considered active since the assembly process

is being controlled the mix graph. Current developments in technology such as DNA Strand

Displacement Circuits have inspired models of active self assembly. These models have tiles that

can carry out slightly complex behavior such as in the Signal Tile model [42, 43]. The model we

study is called Tile Automata [19]. This model adds the concept of state changes from Cellular

Automata [?, 29, 31, 54] to the 2HAM. This model is very powerful as a computational model even

at 1D in a lot of cases [8]. However many times it is of interest to limit this model in order to get

closer modeling experiments.

1.2 Problems

One way to measure the power of a model is to study the problem of verifying the behavior

of system. This can be viewed as a decision problem version of computing the output of a system.

3

Another way to think of this is debugging a designed system, we want to be sure that the desired

assembly is actually produced by the system.

1.2.1 Producibility

The first problem we study is the producibility Problem. This just checks if there exists a

build sequence to reach the target.

Definition 1.2.1 (Producibility Problem). Input. Tile Assembly system Γ, Assembly A.

Output. Yes/No: is A producible in Γ.

1.2.2 Unique Assembly Verification

Verifying the output of an assembly system is very important. The unique assembly

verification problem (UAV) asks whether an assembly is the unique terminal output. That is

for every build sequence is the target produced. This can be seen as a computationally defined

problem of debugging a self-assembly system when we know the output before hand. The definition

of unique assembly varies slightly between models different cases need to be taken into account.

We cover the definition of each model in the relevant chapters.

Definition 1.2.2 (Unique Assembly Verification Problem). Input. Tile Assembly system Γ, Assembly

A.

Output. Yes/No: is A uniquely produced in Γ.

1.2.3 Unique Shape Verification

Unique Shape Verification can be seen as a non-deterministic variant of UAV such as in [7]

where we only care about the shape of the assembly.

Definition 1.2.3 (Unique Assembly Verification Problem). 1 Input. Tile Assembly system Γ, Shape

S.

Output. Yes/No: is S uniquely produced in Γ.
1Unique Shape is defined differently in [1].

4

1.2.4 Tile Assembly Computers and Covert Computation

Another type of problem in Tile Self-Assembly is constructing Tile Assembly Computers

[6, 10, 17, 35]. Tile Assembly Computers are a non-uniform model of computation that consists of a

tile set, and a way to encode the input and decode the output, with some bound on the power of

the encoding methods. Initial work focused on the computing of specific functions rather than the

powers of the computers as a whole. However it is a very nice frame work with which to study the

power of self assembly systems.

Covert computation was introduced in [17] to address a feature many self assembling

systems that compute functions have, they reveal the history. Usually the tile type that is placed at a

location marks some step of the computation. However this tile can then be read revealing the input

and entire computation history.

1.3 Experimental Motivation

Tile self assembly was motivated initially by [48] where plus shaped molecules of DNA are

constructed that are stable and expose a sequence of base pairs on each side. This was taken further

in [53] where the aTAM was used as one step in a chain from implementing circuits in the lab.

More recently [21] designed and implemented DNA strand displacement circuits that are anchored

on DNA origami to increase the speed of computation. This can give a sort of disconnected seed

assembly which inspired the work of [23].

5

CHAPTER II

ABSTRACT TILE ASSEMBLY MODEL

The first model of self assembly introduced was the Abstract Tile Assembly Model (aTAM)

[50]. In this Erik Winfree models the branch junction molecules of [48] using Wang Tiles and to

describe the kinetic process of molecules attaching to a seed structure. This model served as the

base for many other tile assembly models that generalize the model to have additional features or

different kinds of growth.

Essentially, we have non-rotating square tiles that have a glue label on each edge. The tile

with its labels is a tile type and a tile set is all the tile types. A glue function determines the strength

of matching glue labels. An assembly is a single tile or a finite set of tiles that have combined via the

glues. If the combined strength of the glue labels of a single attaching tile to an assembly is greater

than or equal to the temperature τ , the tile may attach. A producible assembly is any assembly that

might be achieved by beginning with the seed, the specified starting assembly, and attaching tiles. A

producible assembly is further said to be terminal if no further tile attachment is possible. A tile

system is said to uniquely produce an assembly A if all producible assemblies will eventually grow

into A and A is terminal. A tile system is formally represented as an ordered triplet γ = (T,s,τ)

representing the tile set, seed assembly, and temperature parameter of the system respectively.

2.1 Producibility

The first problem studied is the producibility problem with [1] which shows P membership

in the aTAM. The Greedy Grow algorithm is a solution to the maximum produced subassembly

problem which greedily attaches tiles to the assembly that match the target.

6

Problem Temperature Complexity Reference Theorem
Producibility τ ≥ 2 O(|A|) [1] 2.1.2

UAV τ ≥ 2 O(|A|2 + |A||T |) [1] 2.2.1
USV τ ≥ 2 coNP-complete [4] 2.3.1

Table 2.1: Known Results for verification problem in the aTAM. |A| is the size of the target assembly,
τ is the constant temperature of the system, and |T | is the number of tile types in the system.

Definition 2.1.1 (maximum produced subassembly problem). Input aTAM system Γ, assembly A

Output Largest assembly B such that B is a subassembly of A and B is producible in Γ.

Since A is a subassembly of itself when A is producible the Greedy Grow Algorithm returns

A. The algorithm runs in linear time by keeping a list of places where tiles may attach. However the

run time presented in [1] does not take into account run time of calculating the binding strength

but this is a very small factor (still takes polynomial time in the bits needed to store temp) increase

especially since most system of interest have a constant temperature.

Theorem 2.1.2. [1] The Producibility problem in the aTAM is in P with a O(|A|) time algorithm.

The linear time greedy grow algorithm shows that simulating the growth of an aTAM system

can be done on a computer quickly leading to multiple simulators having been developed.

2.1.1 Non-Cooperative Binding

A very well studied restriction of the aTAM is non-cooperative binding or τ = 1. Cooperative

binding is when a tile uses more than one strength < τ glue to bind. When τ = 1 if a tile matches

one glue it will attach. This limits the abilities of the model with much work being done to separate

the restricted case from the general model [38–41] where most recently it was shown directed

non-cooperative aTAM systems are not capable of Turing computation.

An interesting note though is that in this case Producibility is an easier problem to solve.

Since determining if a tile t can be placed is just asking for a path in the assembly graph from the

seed to t in the bond graph of the assembly. This might mean we have hope to solve Producibility

and UAV for Non-Cooperative systems in a sub P complexity class such as NL. This also motivates

7

the question of whether both problems or maybe just UAV is P-Complete which I will cover more

in depth in a later section.

2.2 Unique Assembly Verification

A polynomial time algorithm was shown in [1] using Greedy Grow from above as a

subroutine. The intuition behind this algorithm is to check each location to make sure that only the

desired tile can be placed in that location. If we want to check that the tile type t is the only tile type

that can be placed at location l, we call greedy grow on A− l to build the maximal subassembly that

does not contain at tile at l. Once we do check can that only t can be placed there. Assume there

exists a build sequence that builds an assembly B that is not A which differs at location l. Let t ′ be

the tile at location l in B, assume t ′ is the first incorrect tile to appear as well. Since t ′ is the first

correct tile to appear the assembly t ′ attaches to is a subassembly of A. This assembly will be built

by greedy grow with no tile at l, then we will be able to see that t ′ attaches and the instance of UAV

is false. If all locations only can place the target tile we know A is uniquely produced.

Theorem 2.2.1. [1] The Unique Assembly Verification problem in the aTAM is in P.

2.3 Unique Shape Verification

The previous problem takes in as input the system and a description of the assembly with

all it’s tile types. However what if we only care about the shape of an assembly. This problem is

called the Unique Shape Verification problem and has been defined in two variants. Both are given

a system Γ and a shape S. The first shown to be solvable in polynomial time [1] asks whether the

system uniquely produces a single assembly that has the shape S. This problem asks a question

for what is called Deterministic or Directed systems. In these systems only a single assembly is

produced. However a generalization allows for multiple terminal assemblies as long as they have

the same shape. This variant is called Non-Deterministic [7] or Unique-Shape Model [4]. In [7]

the authors showed that finding the minimum tile set to build a shape in this model is ΣP
2-complete

compared to NP-Complete when only a single terminal assembly is allowed [1].

8

The first reduction I will cover also provides the base for many of the further reductions

developed in Tile Self-Assembly [4]. This reduction works by encoding a m clause n variable SAT

formula in a set of tiles as proposed first in [37]. Each column represent a variable and reach row a

clause. Each row places tile to “evaluate” the clause to see if it’s satisfied. The top left corner of this

rectangle can only place if and only if there exists a satisfying assignment. This means that if there

does exist a satisfying assignment the only thing that will be produced will be the rectangle missing

a single tile.

Theorem 2.3.1. [4] The Unique Shape Verification problem in the aTAM is coNP-Complete.

This reduction fails in the case of UAV since the produced assembly encodes the satisfying

assignment. This idea forms part of the inspiration of covert computation.

2.4 Tile Assembly Computers

A way to define how a tile assembly system can compute is by defining Tile Assembly

Computers [6, 35].

Informally, a Tile Assembly Computer (TAC) for a function f consists of a set of tiles, along

with a format for both input and output. The input format is a specification for how to build an input

seed to the system that encodes the desired input bit-string for function f . We require that each bit

of the input be mapped to one of two assemblies for the respective bit position: a sub-assembly

representing “0”, or a sub-assembly representing “1”. The input seed for the entire string is the

union of all these sub-assemblies. This seed, along with the tile set of the TAC, forms a tile system.

The output of the computation is the final terminal assembly this system builds. To interpret what

bit-string is represented by the output, a second output format specifies a pair of sub-assemblies

for each bit. The bitstring represented by the union of these subassemblies within the constructed

assembly is the output of the system.

Input/Output Templates. An n-bit input/output template over tile set T is a sequence of

ordered pairs of assemblies over T : A = (A0,0,A0,1), . . . ,(An−1,0, An−1,1). For a given n-bit string

9

b = b0, . . . ,bn−1 and n-bit input/output template A, the representation of b with respect to A is

the assembly A(b) =
⋃

i Ai,bi . A template is valid for a temperature τ if this union never contains

overlaps for any choice of b, and is always τ-stable. An assembly B⊇ A(b), which contains A(b)

as a subassembly, is said to represent b as long as A(d)* B for any d 6= b. We refer to the size of a

template as the size of the largest assembly defined by the template.

Function Computing Problem. A tile assembly computer (TAC) is an ordered quadruple

ℑ = (T, I,O,τ) where T is a tile set, I is an n-bit input template, and O is a k-bit output template. A

TAC is said to compute function f : Zn
2→ Zk

2 if for any b ∈ Zn
2 and c ∈ Zk

2 such that f (b) = c, then

the tile system Γℑ,b = (T, I(b),τ) uniquely assembles a set of assemblies which all represent c with

respect to template O.

2.5 Covert Computation

The function computing problem for TACs was originally introduced as a way to measure

the ability of the model to compute specific functions such as addition, but we can view even

the first Turing machine construction from [50] as a universal TAC for all computable functions.

This construction however results in an output assembly which encodes the computation history.

This property may be undesirable for computing functions where want the inputs to be secure, or

irretrievable. To counter this [15] introduced the idea of Covert Computation which requires that

the computation history is hidden. This is defined by required that if two inputs x and y that result

in the same output, the seeds for each input must grow into the same assembly.

Covert Computation. A TAC covertly computes a function f (b) = c if 1) it computes f ,

and 2) for each c, there exists a unique assembly Ac such that for all b, where f (b) = c, the system

Γℑ,b = (T, I(b),τ) uniquely produces Ac. In other words, Ac is determined by c, and every b where

f (b) = c has the exact same final assembly.

Outside of secure computing covert circuits were instrumental in the UAV reductions for the

negative growth only aTAM [15] and the staged assembly model [10]. This shows a computational

10

0

1

(a) Dual Rail Wire

0

1

(b) Not Gate

complexity interest in the problem as well.

2.6 Negative Glues

When negative glues are allowed even the producibility problem becomes undecidable due

to being able to detach tiles [28]. However we can still ask questions for what is called growth only

systems [15]. Here the UAV problem is coNP-Complete with by introducing the idea of covert

computation. This construction implemented NAND gates that “backfills” to hide it’s inputs. The

tile set can be constructed in polynomial time given a circuit serving as the reduction.

Theorem 2.6.1. [15] The Unique Assembly Verification problem in the negative growth only aTAM

is coNP-Complete.

Theorem 2.6.2. [15] The negative growth only aTAM is capable of covert computation.

2.7 3D

The 3D aTAM generalizes our tiles to cubes with glues on up to 6 sides. Many papers focus

on Just-Barely 3D constructions where tiles are placed at z = 0 and z = 1. The 3D aTAM with τ = 1

has been show to be capable of simulating cooperative binding in [39].

A yet to be published result is the just barely 3D aTAM is capable of covert computation.

The results works very similar to the construction in the negative aTAM by building a NAND gate

with Dual Rail Logic. One difference though is the back filling occurs for all tiles at the end of the

computation rather each gadget doing this individually. This result uses a polynomial assembly size.

11

0

(a) Input Assembly for 0

1

(b) Input Assembly for 1

0

1

(c) Backfilled Assembly

2.7.1 Wire

We will represent information being transferred using a wire. We construct a wire using two

rows of tiles each representing a binary value of 0 or 1 as seen in Figure. During the computation

only one row of each will be constructed. Once the computation is finished in order to hide the

value the second row of tiles will be constructed.

Wires will be connected to gates which will perform steps of the computation. A simple

example of a NOT gate can be seen in Figure 2.1b. This gate swaps the position of the rows of tiles.

A row that represents a 0 will now be in the upper row and represent a 1. At the end of each gate is

a diode gadget that was used in previous work. This prevents unwanted backfilling.

2.7.2 Input Assemblies

Our input assembly will consist of n 1×6 columns with two of four tiles attached on the

right (Figures 2.2a and 2.2b). If the input bit is a 1 the top two tiles will be included and if 0

the bottom tiles. These tiles have enough attachment strength to be stable when both are present

however since only tile may attach at a tile the other input is unable to grow.

Since we must have 1 final assembly regardless of the input or output once the computation

is complete a bar will be assembled above in the second plane that will extend a tile above both sets

of tiles and allow the unused inputs to construct.

12

0

1

0

1

0

1

Figure 2.3: Full NAND gates

0

0

1

0

1

1 1

0

1

1

1

0

Figure 2.4: Possible partially build NAND gates.

2.7.3 NAND gate

We construct a NAND gate using the third dimension and cooperative binding. The full

NAND gate can be seen in Figure 2.3. The tiles in black represent tiles that will be built from a 1

input and red represent 0. If either input to a NAND gate is 0 the output is always 1. If any red tile

is placed the 1 output of the gate will be built. If both inputs are 1 the 0 output can be constructed

using cooperative binding. This can be seen in Figure 2.4.

One thing to note in the case of one output being 0 and the other 1 is that the red tiles will

be placed along the other wire. However this will not cause any issues since it can only build back

up to the output of the previous gate due to the diode gadget.

2.7.4 Back Filling and Target Assemblies

In order to perform covert computation there must exist a unique assembly for each output.

The grey tile at the end of the circuit will be one of two flag tiles that will denote the output of the

circuit. Once this tile is placed a row of tiles will be built back towards the inpu. Once the input

assembly is reached the tiles above the input will be placed allowing for the input assemblies to be

filled in. This will cause the whole circuit to be filled out hiding the orginal input and computation

13

history. It is still open whether covert is possible in the 2D aTAM however it has been conjectured

it is not possible in 2D with only positive glues and a polynomial assembly side.

Theorem 2.7.1. The 3D aTAM is capable of covert computation.

2.7.5 P-Completeness

We note the covert construction in 3D does not serve as a NP-hard reduction like the negative

aTAM. This is because the seed assemblies to encode the input are not producible at τ = 2 (the seed

is stable however it not producible by attaching a single tile). While this does not give NP-hard

we can use it for a P-hard reduction. Given a Boolean circuit we can construct the tile set of the

covert TAC using logarithmic in the input length space. This means we can perform a logspace

reduction from the Circuit Value Problem which is P-Complete to both the Producibility and the

UAV problem. Since the Produciblity algorithm from [1] also works in 3D this means that both

problems are P-Complete.

Theorem 2.7.2. Producibility in the 3D aTAM is P-Complete with τ = 2.

This motivates further investigation into covert computation and it’s affect on the complexity

of verification problems in the 2D aTAM. While the aTAM can carry out computation it leaves the

history, which was the motivation for covert. This causes issues when trying to perform reductions

lower than P as we are not able to compute the target assembly. If we cannot perform covert

computation perhaps it is because these problems are solvable in easier than P. It is of note that

while Monotone CVP and Planar CVP are both P-Complete, Monotone Planar CVP is in NC3.

Monotonicity and Planar are two problems that arise often when constructing circuits in the aTAM

so perhaps a similar upper bound can be shown for verification? Or maybe the aTAM has other

properties which can overcome these issues.

2.8 Beyond Tiles

Many models have been explored with larger or different shaped pieces instead of tiles.

In [30] these larger pieces are defined as arbitrary shaped tiles or polyominoes. That we still only

14

attach one tile at a time, but a tile occupies multiple positions. This model allows for universal

computation with non-cooperative binding, by utilizing geometric blocking. A polyomino tile cannot

attach if it overlaps with an already placed tile.The dupleTAM uses size 1 and 2 polyominoes [34]

and shows that it is capable of universal computation. The aTAM has also been generalized with

arbitrary polygon tiles [25] where it was shown a single tile type is can simulate a Turing machine

encoded in the seed.

The producibility problem becomes NP-Complete with constant sized prebuilt assemblies

as the result from [11] extends to this model. However this model is better defined as a restricted

version of the 2HAM so I cover it in the next chapter.

15

CHAPTER III

2 HANDED ASSEMBLY MODEL

The 2-handed assembly model (2HAM) has been shown to be more powerful than the

aTAM in its program-size efficiency for finite shapes [13], and its running-time efficiency for the

self-assembly of finite shapes [22]. Here I cover an overview of verification results in the 2-handed

assembly model and closely related generalization.

3.1 Definitions

In this section we overview the basic definitions related to the two-handed self-assembly

model and the verification problems under consideration.

Tiles. A tile is a non-rotating unit square with each edge labeled with a glue from a set Σ.

Each pair of glues g1,g2 ∈ Σ has a non-negative integer strength str(g1,g2).

Configurations. A configuration is a partial function Ã : Z2 → T for some set of tiles

T , i.e. an arrangement of tiles on a square grid. For a configuration Ã and vector ~u = 〈ux,uy〉

with ux,uy ∈ Z2, Ã+~u denotes the configuration Ã ◦ f , where f (x,y) = (x+ ux,y+ uy). For two

configurations Ã and B̃, B̃ is a translation of Ã, written B̃' Ã, provided that B̃ = Ã+~u for some

vector~u.

Bond graphs, and stability. For a given configuration Ã, define the bond graph GÃ to be

the weighted grid graph in which each element of dom(Ã) is a vertex, and the weight of the edge

between a pair of tiles is equal to the strength of the coincident glue pair. A configuration is said to

be τ-stable for a positive integer τ if GÃ is connected and if every edge cut of GÃ has a weight of at

16

(a) Cooperative Binding (b) Bond Graph (c) Geometric Blocking

Figure 3.1: (a) Example of an attachment that takes places using cooperative binding at τ = 2. We
denote a glue strength of 1 with a rectangle and a glue of strength 2 with a solid line through the
two tiles. Dotted lines between glues indicate that these tiles may attach to each other with the
respective strength. Assume assemblies shown are τ-stable unless stated otherwise. (b) The bond
graph of the assembly showing that it is τ-stable. (c) These two assemblies are not τ-combinable
since this would place two tiles at the same location. We say this is due to geometric blocking.

least τ . This means that the sum of the glue strengths along each cut is greater or equal to τ . An

example bond graph for a small assembly is shown in Figure 3.1b.

Assemblies. For a configuration Ã, the assembly of Ã is the set A = {B̃ : B̃' Ã}. Informally

an assembly A is a set containing all translations of a configuration Ã. An assembly A is a

subassembly of an assembly B, denoted Av B, provided that there exists an Ã ∈ A and B̃ ∈ B such

that Ã⊆ B̃. We define |A| to be the number of tiles in a configuration of A.

An assembly is τ-stable if the configurations it contains are τ-stable. Assemblies A and B

are τ-combinable into an assembly C if there exist Ã ∈ A, B̃ ∈ B, and C̃ ∈C such that 1) Ã∪ B̃ = C̃,

2) Ã∩ B̃ =∅, and 3) C̃ is τ-stable. Informally, two assemblies are τ-combinable if there exists two

configurations of the assemblies that may be combined resulting in a τ-stable assembly without

placing two tiles in the same location.

Two assemblies combining or binding together is called an attachment. An attachment takes

place using cooperative binding if the two assemblies do not share a τ-strength glue and instead

use multiple weaker glues summing to τ . An example of an attachment that takes place using

cooperative binding can be seen in Figure 3.1a. If an attachment cannot take place because the

two tiles would be placed in the same position, it is geometrically blocked. Two assemblies whose

attachment is geometrically blocked is shown in Figure 3.1c.

17

Problem Temperature Complexity Reference Theorem

Producibility 1 O(|A||T |) [27] Thm. 3.2.2

Producibility τ ≥ 2 O(|A| log2 |A|) [27] Thm. 3.2.1

UAV 1 O(|A||T | log |T |) [27] Thm. 3.2.2

UAV τ ≥ 2 coNP-complete [12] Thm. 3.3.4

USV τ ≥ 2 coNPNP-Complete [47] Thm. 3.4.2

Table 3.1: Known Results for verification problem in the 2HAM 2D. |A| is the size of the target
assembly, τ is the constant temperature of the system, and |T | is the number of tile types in the
system.

Two-handed Assembly. A two-handed assembly system (2HAM) is an ordered tuple

Γ = (T,τ) where T is a set of single tile assemblies and τ is a positive integer parameter called the

temperature. For a system Γ, the set of producible assemblies P′
Γ

is defined recursively as follows:

1) T ⊆ P′
Γ
, and 2) If A,B ∈ P′

Γ
are τ-combinable into C, then C ∈ P′

Γ
.

A producible assembly is terminal provided it is not τ-combinable with any other producible

assembly. Denote the set of all terminal assemblies of a system Γ as PΓ. Intuitively, P′
Γ

represents

the set of all possible assemblies that can self-assemble from the initial set T , whereas PΓ represents

only the set of assemblies that cannot grow any further.

An Assembly Tree for a 2HAM system Γ = (T,τ) is any rooted binary tree whose nodes are

elements of P′
Γ
, the leaves are single-tile assemblies from the set T , and the two children of any

non-leaf node are τ-combinable into their parent. An assembly tree with root A is said to be an

assembly tree for assembly A.

Unique Assembly. Intuitively, the unique assembly of A means that any produced assembly

can continue to grow until it becomes A, thus making A the uniquely produced assembly if the

process is provided sufficient time to assemble. This means A is the unique terminal assembly and

all produced assemblies are subassemblies of A. Formally we say a system Γ uniquely produces an

assembly A if the following are true: 1) PΓ = {A}, and 2) For all B ∈ P′
Γ
, |B| ≤ |A|.

18

3.2 Producibility

The problem of determining whether or not a given assembly is producible in a given system

is solvable in polynomial time [27]. At a high level this algorithm works by starting with a graph of

single tile assemblies that are connected to neighboring tiles in the target assembly then repeatedly

making possible attachments. The key ideas behind them algorithm are that attaching a tile can

never prevent the attachment of a later tile in the build sequence, so the build sequence doesn’t

matter. This means we can again greedily combine assemblies. [27] goes beyond this method to

show how the choice of data structure can increase the run time.

Theorem 3.2.1. [27] The Producibility problem in the 2HAM is in O(|A| log2 |A|).

3.2.1 Temperature-1

At temperature-1, where we only have non-cooperative binding, [27] a faster algorithm is

shown based on a fast algorithm for aTAM. Without cooperative binding the 2HAM and aTAM are

much more similar. It is shown that this method can also be used to solve UAV as we just need to

treat each tile as the possible seed.

Theorem 3.2.2. [27] The Producibility and UAV problem in the 2HAM is in O(|A|2|T |+ |A||T |2)

and O(|A|2|T |2 + |A||T |3).

3.3 Unique Assembly Verification

Membership in coNP for the UAV problem was shown in [14] relying on the produciblity

proof from [27]. They also showed the problem was coNP-Complete in 3D by using a reduction that

utilized geometric blocking and one of the first use of what would later be called test assemblies, an

important technique for proving hardness. The techniques of geometric blocking were also used

and developed in the staged assembly model as well.

19

3.3.1 Rogue Assemblies

Definition 3.3.1 (Rogue Assembly). Given an instance of UAV (Γ,A), an assembly R v P′
Γ

is a

rogue assembly if R 6= A and R is not a subassembly of A.

We prove the following Lemma in [12], about what we call rogue assemblies which helps

with proof of reduction This lemma states that if the instance of UAV is false and all the tiles in Γ

are used to build A, then we may find a rogue assembly by only checking combinable subassemblies

of A.

Lemma 3.3.2. For an instance of UAV (Γ,A) that is false, either there exist two assemblies B,C

such that B,C v A and B and C are τ-combinable into a rogue assembly R, or there exists a single

tile assembly t ∈ P′
Γ

that is not a subassembly of A.

3.3.2 UAV is coNP-hard

While the aTAM has a polynomial time solution to the UAV problem [1], allowing for the

production of efficient simulators [32, 44, 51], the complexity of UAV in the 2HAM has remained

a long-standing open problem in the field. The 2HAM appeared formally in 2013 [14], but was

essentially defined in staged self-assembly [24] (2007), and a seeded version of the 2HAM appears

as the multiple tile model in [4] (2004). UAV has been open for all of these models (which I cover

more in depth later in this chapter), and our coNP-complete result for UAV in the 2HAM proves

that UAV with a single bin and single stage in the staged model is coNP-complete, and that UAV

in the multiple tile model is also coNP-complete with polynomial-sized pieces, thus answering

both of these long-standing open questions. See [26, 45, 52, 53] for surveys and applications of

self-assembly theory. Here I summarize the proof of NP-hardness of the canonical form of the

UAV problem, in 2 Dimensions and with τ = 2. A full version of this result can be found in [12].

Monotone Planar 3-SAT with Neighboring Variable Pairs was recently shown to be NP-hard in [2].

We assume the instance of the problem is a rectilinear planar embedding where each variable is

20

represented by a unit height rectangle arranged in the variable row. Any planar 3SAT formula has a

rectilinear encoding [36]. We also assume that every clause is a unit-height rectangle with edges

connecting the clauses and the contained variables. The monotone property ensures that each clause

contains either only positive or only negative literals. Thus, the clauses may be separated with all

positive clauses above the variable row, and all the negative clauses below. The final restriction is

neighboring variable pairs, which states that for the three variables in each clause, at least two of

the variables are neighbors in the variable row. An example instance is shown in Figure 3.2a.

Problem 3.3.3 (Monotone Planar 3-SAT with Neighboring Variable Pairs (MP-3SAT-NVP)). Input:

Boolean formula φ = C1∧ ·· · ∧Cm in 3-CNF form where each clause only contains positive or

negated literals from X = {x1, . . . ,xn}. Further, any clause of φ with 3 variables is of the form

(xi,xi+1,x j) or (¬xi∨¬xi+1∨¬x j), i.e., at least two of the literals are neighbors. Output: Does

there exist a satisfying assignment to φ?

Given an instance of MP-3SAT-NVP φ , we build an assembly A and a 2HAM system Γ that

uniquely assembles A if and only if φ does not have a satisfying assignment. An example instance

is shown in Fig. 3.2a and 3.2c. Alternatively, Γ produces a rogue assembly if and only if there exists

a satisfying assignment to φ .

The ability to place all positive clauses above the variables and negative clauses below, along

with the neighboring variable pairs, allows the clauses to be built hierarchically from the variables

up. These properties allow us to require all nested clauses be evaluated and built before the outer

clause is built. Thus, we define parent and child clauses as well as root clauses. In Figure 3.2a,

dotted lines connect child clauses c1 and c2 with their parent c3. The root clauses are c3 and c5.1

Theorem 3.3.4. [12] The Unique Assembly Verification problem in the 2HAM is in coNP-Complete

at τ ≥ 2.
1While a formula may have multiple clauses without a parent, the authors of [3] show that by adding additional

variables, an instance may be constructed with only a single root clause. For MP-3SAT-NVP, we need at least two
clauses (one for the positive and negative sides).

21

(a) MP-3SAT-NVP Instance (b) Target Assembly Circuit
(c) 2HAM UAV Target Assem-
bly

Figure 3.2: (a) Example instance of Monotone Rectilinear 3SAT with Neighboring Variable Pairs.
Dotted lines are drawn between parent and child clauses. In this example c3 and c5 are the positive
and negative root clauses respectively. (b) A circuit view of our example instance with gates divided
into the clauses they compute. We add AND gates (shown in grey) between child clauses that have
the same variables. (c) Target assembly constructed from instance on left. Each tile in the assembly
is a unique tile type. Each glue is unique except for the strength 1 glues connecting the horizontal
bar and the arms of each circuit. The parts of the assembly that represent each clause are boxed in.

3.3.3 Tree Shaped Assemblies

If the bond graph of the target assembly is a tree then UAV is solvable in polynomial time

even when the temperature can be specified in the input [12]. While this is not a very natural case of

the UAV problem as the only time rogue assemblies may form is when there are exposed glues that

are never used on the target assembly. However this algorithms serves as an interesting separation

between cooperative and non-cooperative binding not solely based on the temperature of the system.

In order for there to be cooperative binding a loop must be including in the bond graph. Our

algorithm takes advantage of this by using the polynomial time algorithm to verify that the tile

was the unique assembly producible using non-cooperative attachments. Then we show a dynamic

programming method the first cooperative binding that can take place.

22

3.4 Unique Shape Verification

A key result in the 2HAM was that the unique shape verification problem is coNPNP-

Complete [47]. Using the idea of geometric blocking utilized previously in [14] this format was

followed in many further reductions. The reduction from ∀∃SAT utilizes a technique of non-

deterministically constructing computation assemblies and test assemblies. These two types of

assemblies can combine if they represent the same assignments. We can view these assemblies as

each evaluating a quantifier. An overview of the reduction can be seen in Figure 3.3.

Definition 3.4.1 (∀∃SAT). Given an n-bit boolean formula φ(x1,x2...xn) with the inputs divided

into two sets X and Y , for every assignment to X, does there exist an assignment to Y such that

φ(X ,Y) = 1?

Computation Assembly A computation assembly is built for every assignment to both sets

of variables as in [4, 37] and exposes a glue that marks whether the formula was satisfied. The

reduction adds an additional geometric encoding of the assignment to variables in X that is also

exposed. This can be thought of as the there exists part of the reduction as there exists an assembly

with a satisfied glue encoding an assignment to X if there exists a Y where the formula is true.

Test Assembly Test assemblies are built for all assignments to X which encode the assign-

ment . A test assembly may attach to a computation assembly that outputs true and has matching

variables assignments. The variables are encoded in the geometry of the shape. A test assembly

is terminal if for that assignment to X there does not exist a computation assembly that satisfies

the assignment. The test assemblies work as the for all part of the reduction as the target shape is

uniquely produced only if for all assignments to X there exists some Y that allowed a matching

computation assembly to build.

Theorem 3.4.2. [47] The Unique Shape Verification problem in the 2HAM is in coNPNP-Complete

at τ ≥ 2.

23

N

0

1

0

1

0

1

0

1

0

1

0 01 1 0
1 0 1 0 0

variable 1 variable 2 ... variable k variable k+1 ... variable n

(a) (b)

(c) (d)

3-SAT Tiles. Non-deterministic growth of "test" assemblies.

"Accept" assemblies."Reject" assemblies.

U1

U2

U3

U4

U5 01

11

02

12

03

13

04

14

05

15

Uj Uj
0i/1i

Uj SjSU Sj SjS

U U U U U U U U U U U U U U U U U U U

0i/1i

0i/1i

0i/1i

0i/1i

0i/1i

S S S S S S S
S S S S S S SS S S S

S S S S
S S S

S S S

Y
N

N

Y

U U U U U U U U U U U U

U U U U U U U U U U U U
U U U U U U U U

SS S SSS S SSS S S
U U U U

Y
Y

Y
Y

Y

S S S
S S S

S S S
S S S

S S SS S S S

S S S S

S S S SS S S SS S S S
U U U U

U U U U

U U U U
U U U U

U U U U

U U U U

U U U U
U U U U

U U U U

U U U U

U U U U
U U U U

U U U U
U U U U

U U U U

Select one

Figure 3.3: Overview of 2HAM USV Reduction. Top right the frame builds with an assignment
to the variables. Top left test assemblies build for all assignments to X . Bottom left assemblies
that don’t satisfy the formula go to the target shape. Bottom right assignments that do satisfy the
formula encode their assignment to the X variables in their geometry. Test assemblies may attach to
matching computation assemblies.

3.5 Generalizations

2HAM has been generalized in many ways providing a wide range of models. Here are

some notable results that do not have enough for another section but still have results of note for

verification problems.

3.5.1 High Temperature

If the temperature is allowed to be specified in the input [46] shows coNP-Completeness of

UAV via a reduction from Hamiltonian Path. The temperature used in the reductions is equal to the

number of nodes in the graph. The construction works by creating a frame that represents the outline

of the graph. Then possible walks through the graph are encoded in the producible assemblies. An

assembly has a number of glues exposed equal to the number of nodes in the path. If each vertex

was visited then this assembly can fit into the frame forming a rogue assembly. This is a simple

generalization as it doesn’t change any definitions of the model, however encoding information in

the temperature has assisted in more efficient construction of general shapes [20].

24

3.5.2 Multiple Tile Model

A middle ground between the aTAM and the 2HAM is the Multiple Tile or q-tile model

where assemblies up to size q are allowed to grow in a fashion to 2HAM to form a set of supertiles.

Growth starts from a seed and any assembly from our set of super tiles may attach. Under this

definition UAV in the Multiple Tile Model is hard with a polynomial q using the reduction from

above. Since q = 1 is the aTAM this problem is solvable in polynomial time. Is UAV with a constant

q always solvable in polynomial time?

3.5.3 Prebuilt Assemblies

When larger than single tiles are allowed Producibility and UAV increases in hardness to

NP-Complete and coNPNP-Complete respectively. The Producibility reduction works by evaluating

a 3SAT formula in a rectangle similar to [4, 37] using macroblocks where the “edge labels” are

encoded in geometry as well rather than glues. The main challenge for designing this reduction is

there must exist a single assembly that is produced regardless of the satisfying assignment. We do

this by including a certain subset of the tiles which will fill any spaces left between macroblocks as

shown in Figure 3.4. We use the same method of geometry encoding to build test assemblies to

implement a similar reduction for UAV as the reduction in [47] for USV.

3.5.4 Multiple hands

When allowing more than 2 assemblies to come together in a single step we get the multiple

hand model. One proven strengthen of this model is its ability to build infinite fractal patterns [18,33].

We study verification problems in [9] with UAV being coNEXP-Complete when the number of

hands can be exponential in the input size. Produciblity stays in P regards of the encoding of the

hands.

25

cj:S

Xi = 1

cj:S

Xi = 1

cj:S

Xi = 0

cj:S

Xi = 0

cj:U

Xi = 0

Xi = 0

cj:U

Xi = 1

Xi = 1

mi,j(0,S,S)

U
S

U
S

Mi,j

mi,j(1,S,S) mi,j(0,U,?) mi,j(1,U,?)

(a) (b)

Figure 3.4: (a) Possible Macroblocks that make up Mi, j. Arm positions represent the value assigned
to xi and whether or not c j has been satisfied. There will always be 4 macroblocks in each set. The
left pair of macroblocks are always included and will attach if a clause is already satisfied. The
remaining macroblocks attach if the clause is not yet satisfied, and their arm positions depend on φ .
If the positive literal xi is in c j, mi, j(1,U,S) ∈Mi, j, otherwise mi, j(1,U,U) ∈Mi, j. If the negative
literal x̄i is in c j, mi, j(0,U,S) ∈Mi, j, otherwise mi, j(0,U,U) ∈Mi, j. (b) Once two macroblocks
attach, the green filler tiles are able to cooperatively attach using one glue on the macroblock, and
the other glue from the red tiles of the arms from the other macroblock. The filling process hides
the information that was passed.

26

CHAPTER IV

STAGED ASSEMBLY MODEL

Staged Assembly Model generalizes the 2HAM to have multiple bins, connected in a mixed

graph. A mix graph is a directed graph divided into s stages. Each bin in stage 1 starts with a subset

of the tiles and acts a 2HAM system. The terminals then mixed according the edges of the mix

graph into bins in stage 2 which functions as a 2HAM system with prebuilt assemblies. The process

is then repeated.

Staged assembly systems. An r-stage b-bin mix graph Mr,b is an acyclic r-partite digraph

consisting of rb vertices mi, j for 1≤ i≤ r and 1≤ j ≤ b, and edges of the form (mi, j,mi+1, j′) for

some i, j, j′. A staged assembly system is a 3-tuple 〈Mr,b,{T1,T2, . . . ,Tb},τ〉 where Mr,b is an r-stage

b-bin mix graph, Ti is a set of tile types, and τ is an integer temperature parameter.

Given a staged assembly system, for each 1≤ i≤ r, 1≤ j ≤ b, we define a corresponding

bin (Ri, j,τ) where Ri, j is defined as follows:

1. R1, j = Tj (this is a bin in the first stage);

2. For i≥ 2, Ri, j =
(⋃

k: (mi−1,k,mi, j)∈Mr,b

P(R(i−1,k),τ)

)
.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj, and each bin in any subse-

quent stage receives an initial set of assemblies consisting of the terminally produced assemblies

from a subset of the bins in the previous stage as indicated by the edges of the mix graph.1 The

output of the staged system is the union of all terminal assemblies from each of the bins in the final

1The original staged model [24] only considered O(1) distinct tile types, and thus for simplicity allowed tiles to be
added at any stage. Since our systems may have super-constant tile complexity, we restrict tiles to only be added at the
initial stage.

27

G(g) = 2
G(o) = 2
G(r) = 2
G(b) = 1
G(p) = 1

GluesTile Set

Temperature

Producible Assemblies

(a) 2HAM Example

G(o) = 1
G(r) = 1
G(b) = 1

Glues Tile Sets

Temperature

Mixgraph

3
 B

in
s

3
 S

tag
es

1

3 Tile Types

(b) Staged Self-Assembly Example

Figure 4.1: (a) A 2HAM example that uniquely builds a 2×3 rectangle. The top 4 tiles in the tile
set all combine with strength-2 glues building the ‘L’ shape. The tile with blue and purple glues
needs two tiles to cooperatively bind to the assembly with strength 2. All possible producibles are
shown with the terminal assembly highlighted. (b) A simple staged self-assembly example. The
system has 3 bins and 3 stages, as shown in the mixgraph. There are three tile types in our system
that we assign to bins as desired. From each stage only the terminal assemblies are added to the
next stage. The result of this system is the assembly shown in the bin in stage 3.

stage.2 We say this set of output assemblies is uniquely produced if each bin in the staged system

uniquely produces its respective set of terminal assemblies.

4.1 Covert Circuits

Tile assembly computers were defined in [15, 35] with respect to the aTAM. We provide

formal definitions of both Tile Assembly Computers and Covert Computation with respect to the

Staged Self-Assembly model.

A Staged Tile Assembly Computer (STAC) for a function f consists of a staged self-

assembly system, and a format for encoding the input into tiles sets and a format for reading the

output from the terminal assembly. The input format is a specification for what set of tiles to add to

a specific bin in the first stage. Each bit of the input must be mapped to one of two sets of tiles for

the respective bit position: a tile set representing “0”, or tile set representing “1”. The input set for

the entire string is the union of all these tile sets. Our staged self assembly system, with the set of

tiles needed to build the input seed added in a designated bin, is our final system which performs

the computation. The output of the computation is the terminal assembly the system assembles. To
2This is a slight modification of the original staged model [24] in that the final stage may have multiple bins.

However, all of our results apply to both variants of the model.

28

interpret what bit-string is represented by the assembly, a second output format specifies a pair of

sub-assemblies and locations for each bit. An assembly that represents a bitstring is created by the

union of each sub-assembly represented by each bit.

For a STAC to covertly compute f , the STAC must compute f and produce a unique

assembly for each possible output of f . Thus, for all x such that f (x) = y, a covert STAC that

computes f produces the same output assembly representing output y for each possible input x,

making it impossible to determine which input value x was provided to the system.

Staged assembly is able to perform covert computation with 3 stages [10]. Figure 4.2b

shows a basic overview of the mixgraph used for the covert computation implementation. The

method requires three stages with a polynomial number of mixing bins.

• In the first stage, we assemble the components needed to perform the computation. These

include an Input Assembly, which encodes the input to the function, Gate Assemblies, which

act as individual gates and perform the computation via their attachment rules and geometry,

and additional assemblies which are used to help “clean up” our circuit and covertly get the

output.

• In stage two, the input assembly and gate assemblies are added to a single bin along with a

test tile. The gate assemblies will begin to attach to the input assembly creating a Circuit

Assembly. Once the computation is complete, the test tile can attach to the circuit assembly if

and only if the output is true. The circuit assembly is terminal in this bin and will be passed

to the final stage.

• The final stage adds additional assemblies to the bin along with most of the tile set as single

tiles (not shown in figure). The additional assemblies read the output of the circuit and it grows

into one of the output templates. The Output Frame searches for the test tile representing the

output of the circuit. The single tiles fill in any spaces left in the circuit assembly that would

show the computation history, thereby turning the assembly into the output template. This

29

(a)

Gate Assemblies

Stage 1: Assembly Construction Stage 2: Computation Stage 3: Clean Up

Input Assembly

1

0

0

All
other
Tiles ...

Test Tile

Blocking Tile

Test Domino
Output Frame

Circuit Assembly

Output
Template

Circuit
Assembly

(a)

(b)

(c)

(d)

(e)

(f)

(b)

Figure 4.2: (a) Simple 3-input logic circuit using 2 NAND gates, and the high-level abstraction of
the circuit assembly showing the input variables and gates highlighted as blocks. Blue blocks are
the sections of the assemblies we call Arms that function as wires in the systems. (b) (1) Our input
assembly and gate assemblies are constructed in separate bins. (2) Gate assemblies attach to the
input assembly forming a circuit assembly. (3) Unused gates are terminal in the second stage. (4)
This circuit evaluates to true, so the test tile will be able to attach. (5) Gate assemblies in this stage
grow into a circuit using single tiles. (6) Single tiles fill in open spots in the circuit assembly to hide
the history. The additional assemblies are used to reach the output template.

requires a linear number of additional bins in the first and second stage to store these single

tiles while mixing takes place in other bins.

For our circuit assembly we implement Planar Logic Circuits with only NAND gates. An

example circuit and an assembly showing how the gates are laid out are shown in Figure 4.2a. Wires

are represented by 2× 3 blocks of tiles shown in blue in the image. Input and Gate assemblies

contain a subset of the tiles in each block we call arms which represent the values being passed

along the wires as in Figure 4.3a. The input assembly is a comb-like structure that is designed

so that each input bit reaches the gate it is used at. For each NAND gate in the circuit we have 4

different assemblies, one for each possible input to the gate. A gate assembly can cooperatively

bind to the input assembly if the variable values match. The gate assembly has a third arm that

represents the output. This allows the next gate assembly to attach, which continues propagating

until the computation is done and the circuit assembly is complete. Again as in the 2HAM with

prebuilt assemblies there exists a gap that still displays the bit that was passed. We solve this in the

same way by filling it in with single tiles Figure 4.3c, but it must be done in the third stage.

30

Input Arm

Output Arm 0

0

1

1

(a)

0 1

(b)

X

(c)

Figure 4.3: (a) Information being passed along a wire is represented by the position of a domino
called an arm. Output arms represent a signal of “1” of “0” by being in the left or right position,
respectively. Input arms read bit values and have complimentary arm placement to allow for
attachment. (b) Information is passed by attachment. Another assembly may attach if the arms have
matching glues (they represent the same wire) and they have complementary arms (represent the
same bit value). (c) In the final stage we add additional tiles to hide the information that was passed
along a wire.

Stages Membership Hardness
1 (2HAM) coNP In [14] coNP-complete In [12]

2 Π
p
3 Thm. 4.2.4 coNP-hard In [12]

3 Π
p
4 Thm. 4.2.4 Π

p
2 -hard Thm. 4.2.1

n > 3 Π
p
n+1 Thm. 4.2.4 Π

p
n−1-hard Thm. 4.2.3

General PSPACE In. [47] PSPACE-complete Thm. 4.2.2

Table 4.1: Complexities of Unique Assembly Verification in the Staged Assembly Model with
respect to the number of stages n. Our results are in bold.

4.2 Unique Assembly Verification Problem

In the staged assembly model, initial investigation in [47] showed coNP-hardness using

four stages and Π
p
2-hardness for seven stages. They also showed membership in PSPACE with a

conjecture of PSPACE-completeness.

In this [10], we use the covert construction from above to show UAV is PSPACE-complete

in staged self-assembly, resolving the open problem from [47]. Along the way, we improve on some

results from [47]: we show that UAV is Π
p
2-hard with just three stages, improving on the previous

hardness result requiring seven stages. We then generalize this result to show that for n stages, UAV

is Π
p
n−1-hard, but yields a Π

p
n+1 algorithm, leaving only a gap of two in levels between membership

and hardness for this problem. An overview of our results and known results related to UAV is

shown in Table 4.1.

31

Three Stages Given an instance of ∀∃SAT, we create a 3-stage temperature-2 staged system

that uniquely produces a target assembly iff the given instance of ∀∃SAT is true. The reduction uses

the same high-level idea as [47] and [8]. The process begins with the construction of an assembly

for every input to the ∀∃SAT formula. Circuit assemblies build from these inputs and are flagged as

true or false, while encoding a partial assignment through their geometry. Separate “test” assemblies

are constructed that also encode a partial assignment to the same variables, which attach to true

circuit assemblies with matching assignments. The systems uniquely assembles a target assembly if

for all test assemblies there exists a compatible true circuit assembly for it to attach to.

Theorem 4.2.1. [10] UAV in the Staged Assembly Model with three stages is Π
p
2-hard with τ = 2.

General UAV We utilize the same technique used in above which reduced from ∀∃SAT, a

special case of T QBF limited to only 2 quantifiers, but adapt the technique to work with a QBF

with n quantifiers ∀x1∃x2 . . .∀xn(φ(x1, . . . ,xn) = 1). In the 3rd stage, instead of adding in single

tiles to “clean up”, we add in a second set of test assemblies that represent an assignment with one

less variable in the next stage and are complementary in their geometry. These new test assemblies

then attach to previous test assemblies that were terminal in the previous stage with matching partial

assignments. This process computes an additional quantifier. We can then repeat this process of

adding in complementary sets of test assemblies for the number of quantifiers required. In the final

stage, if a test assembly from the final set couldn’t find a complementary test assembly to attach

to, the instance of TQBF is false, and that test assembly is prevented from growing to the target

assembly. This allows the truth of instance of staged UAV to correspond to the truth of the QBF.

Theorem 4.2.2. [10] Unique Assembly Verification in the Staged Assembly Model is PSPACE-

complete with τ = 2.

Specifically we may also bound the specific level of PH that n stage UAV is hard for.

Theorem 4.2.3. [10] For all n > 1, UAV in the Staged Assembly Model with n stages is Π
p
n−1-hard

with τ = 2.

32

4.2.1 Membership

Improved Membership bounds were shown in [10] lowering the gap between membership

and hardness to a constant number of levels of the Polynomial Hierarchy. We do so using a similar

method of using 3 promise problems asking about if an assembly is producible or terminal in a bin,

and asking the max assembly size in a bin. By utilizing oracles to promise problems rather than the

more general algorithms allowed for a stricter membership algorithm lowering the member to only

a additive factor above the number of stages.

Theorem 4.2.4. The n-stage Unique Assembly Verification problem in the staged assembly model is

in Π
p
n+1.

33

CHAPTER V

TILE AUTOMATA

The Tile Automata model was introduced in [19] merging ideas from Cellular Automata

and Tile Self-Assembly. The authors showed that freezing tile automata (where a tile cannot repeat

states) is capable of simulating non-freezing systems. This powerful model has also been shown to

be capable of simulating models of programmable matter [5]. A model motivated by real-world

implementations, the Signal-passing Tile Assembly Model, is able to simulate Tile Automata [16]

meaning results shown in the TA model carry over to STAM at scale. Ameobots is a model of

programmable matter where the agents are allowed to move and expand/contract. Tile Automata

has also been shown to be capable of simulating this model [5].

In [8] we investigated Tile Automata and it’s ability to do computation. These results were

based around the ability for Tile Automata to simulate a Turing machine even at 1D. We can divide

the results into two areas. The first is building 1×n lines. While I do no cover those in depth for

non-freezing systems it was shown that it is possible to build busy beaver length lines based on

simulating a Turing machine.

5.1 General

The ability for tiles to detach usually gives undecidable results for problems like UAV. This

is shown in [8]. Even when we add the freezing restriction we can still simulate a Turing machine

by replacing tiles using the method from [19]. However this uses macroblocks of scale 5×5 so

in an effort to minimize the use of the second dimension we show that we can do this even with

assemblies of only height-2.

34

Transition
Rules

Freezing 1D Result 2D Result Theorem

Affinity
Strengthen-

ing

Freezing PNP
|| -Complete coNPNP-Complete Thms. 5.2.5, 5.2.2

Affinity
Strengthen-

ing

Non-freezing PSPACE-Complete PSPACE-Complete Thm. 5.1.3

General Freezing Open Undecidable Thm. 5.1.2

General Non-freezing Undecidable Undecidable Thm. 5.1.1

Table 5.1: Results for the Unique Assembly Verification in Tile Automata. Transition Rules
describes the types of transition rules allowed in the system. In Affinity Strengthening Systems
all transition rules increase affinity so no detachment may occur. Freezing indicates whether the
system is freezing where tiles cannot repeat states. Result 1D is the complexity of UAV in one
dimension and Result 2D is the complexity of UAV in two dimensions. Theorem is where these
results can be found.

Theorem 5.1.1. [8] Tile Automata Unique Assembly Verification is undecidable in one dimension.

Theorem 5.1.2. [8] Freezing Tile Automata Unique Assembly Verification is undecidable even when

all assemblies are of max height-2.

However there is still no result for only height 1 Freezing Tile Automata. We cannot perform

the same tile replacement as in 2D as removing a tile in the middle of the assembly will result in it

falling off. Currently the only Turing machine in Freezing without detachment can only simulate

bounded time Turing machines as each time the head moves over a cell it uses up a state. Thus you

cannot walk arbitrarily back and forth. Is UAV in 1D freezing Tile Automata decidable? Or does

there exist some other computational model that may be simulated.

5.1.1 Affinity Strengthening

With Affinity Strengthening Tile Automata we now have an upper size limit on the assem-

blies need to check as if we ever build something larger than our target we can reject as with many

of the previous models. We have shown PSPACE-completeness of UAV under this restriction. As

35

11 0 0BL CBR0 1 1 0 T T T T...

0

11 0 0BL CBR0 1 1 0 T T T T...

0
0

11 0 0BL CBR0 1 1 0 T T T...

0 0

x1 x2 x3 x4

A

Additional Tiles attaching to
Assignment Assembly

(a)

0

0 0

0

0 0

0 0

0 0

0 0 0 0
0
00 0

0 0

x1 x2 x3 x4

0 0

1 1

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

x1 = 1 x3 x4

Test Assembly Creation

x2 = 0

0
0 0 0

0
1 0 0

0
1

0
00 0 0 0

x1 = 1 x3 x4x2 = 1

...

(b)

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

11 0 0BL CBR0 1 1 0 T T T...

0 0
A

x1 x2 x3 x4

11 0 0BL CBR1 0 1 0 T T T...

0 0
A

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

Matching Assignment to x1,x2

Different Assignment to x1,x2

(c)

Figure 5.1: Example of ∀∃SAT over 4 variables with k = 2. (a) Transition rules pass a signal to the
left that transitions the tile next to the state representing x1, allowing a tile to attach. This allows
more transitions that allow a tile to attach over the state representing x2 (since it is = 1). Finally,
the leftmost T is transitioned to state A. (b) Four test assemblies are built, each representing an
assignment to x1,x2. A test assembly can attach to an assignment assembly with the A state if they
encode the same assignment to x1,x2.

we can simulate a Turing machine under this restriction, however we cannot detach tiles to make

them fall apart. Thus were left with an assembly that is the size of the space we used.

Theorem 5.1.3. [8] The Unique Assembly Verification problem in Affinity Strengthening Tile

Automata is PSPACE-complete.

5.2 Freezing Affinity Strengthening

Taking the idea of computation and test assemblies to the lowest height possible creating

a reduction with a target assembly of height 3. We can simulate a non-deterministic polynomial

time Turing machine in one dimension which functions as the computation assembly. If it satisfies

the formula tiles attach building geometry that encodes the assignment to X for a coNPNP-hard

reduction for UAV.

Definition 5.2.1 (∀∃3SAT). Given a 3SAT formula φ(x1, . . . ,xk,xk+1, . . . ,xn), is it true that for every

assignment to variables x1, . . . ,xk, there exists an assignment to xk+1, . . . ,xn such that φ(x1, . . . ,xn)

is satisfied?

Theorem 5.2.2. [8] Unique Assembly Verification in height-3 freezing Affinity Strengthening Tile

Automata is coNPNP-complete.

36

X0,1 X1,1 X2,1 X3,1 X4,1 X9,1

X0,2 X1,2 X2,2 X3,2 X4,2 X5,2 X6,2 X7,2 X8,2 X9,2

X0,0 X1,0 X2,0 X3,0 X4,0 X5,0 X6,0 X7,0 X8,0 X9,0 X10,0 X11,0 Xy,0 Xz,0

11 0 0BL CBR1 0 1 0 T T T...

0 0
A

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

11 0 0 CBR1 0 1 0 T T T...

0 0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

X0,1

X0,0

...

11 0 0BL CBR1 0 1 0 F F F...

0 0
B

0
0 0 0 0 0

0
00 0 0 0

11 0 0 CBR1 0 1 0 F F F...

0 0
B

0 0 0 0 0
0
00 0 0 0

X0,1

X0,0

0

Target Assembly

True Assignment False Assignment

Figure 5.2: An overview of how all assignment assemblies transition to the target assembly.
Assignment assemblies marked true can grow to the target assembly by attaching to a test assembly.
Those flagged false can attach to “blank” test assemblies, and the filler tile fills in the spots missing
relative to the target assembly.

5.2.1 One Dimensional

The case of 1-Dimensional Freezing Affinity Strengthening Tile Automata revealed a

interesting result. It is solvable in PNP
|| which the problems solvable in Polynomial time with access

to a NP oracle, however only a polynomial number of queries that must all be made at the same

time.

Definition 5.2.3 (PNP
||). Class of problems solvable by a deterministic Turing machine in polynomial

time that is allowed a single query to a polynomial number of parallel NP oracles.

Definition 5.2.4 (Max True 3SAT Equality). For a 3-CNF formula F, let max-1(F) denote the

maximum number of variables set to true in a satisfying assignment to F. Given two 3-CNF formulas

F1 and F2, is it true that max-1(F1) = max-1(F2)?

Max True 3SAT Equality is complete for the class PNP
|| [49]. Given an instance of this

problem, the reduction provides an instance of 1D freezing ASTA UAV.

Overview At a high level, given an instance of Max True 3SAT Equality (F1,F2), we utilize

the same 1D Turing machine simulation to represent each assignment/formula pair with an assembly,

and flag these assemblies as True or False. We modify the system to allow it to count the number of

37

ones that are contained in the true assemblies, and add a “count” state to the left/right edge of these

assemblies that reflects this number. To reach the target assembly, an assembly representing an

F1 assignment has to find a counterpart assembly representing an F2 assignment to attach to. This

attachment is done through the count state that represents the number of ones in the assignment. The

affinities between separate count states are designed such that all assemblies can find a necessary

counterpart if and only if max-1(F1) = max-1(F2).

Theorem 5.2.5. Unique Assembly Verification in One Dimensional freezing Affinity Strengthening

Tile Automata is PNP
|| -complete.

38

BIBLIOGRAPHY

[1] L. M. ADLEMAN, Q. CHENG, A. GOEL, M.-D. A. HUANG, D. KEMPE, P. M. DE ESPANÉS,
AND P. W. K. ROTHEMUND, Combinatorial optimization problems in self-assembly, in
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 23–32.

[2] P. K. AGARWAL, B. ARONOV, T. GEFT, AND D. HALPERIN, On two-handed planar assembly
partitioning with connectivity constraints, in Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, D. Marx,
ed., SIAM, 2021, pp. 1740–1756.

[3] P. K. AGARWAL, B. ARONOV, T. GEFT, AND D. HALPERIN, On two-handed planar assembly
partitioning with connectivity constraints, in Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), SIAM, 2021, pp. 1740–1756.

[4] G. AGGARWAL, Q. CHENG, M. H. GOLDWASSER, M.-Y. KAO, P. M. DE ESPANES, AND

R. T. SCHWELLER, Complexities for generalized models of self-assembly, SIAM Journal on
Computing, 34 (2005), pp. 1493–1515.

[5] J. C. ALUMBAUGH, J. J. DAYMUDE, E. D. DEMAINE, M. J. PATITZ, AND A. W. RICHA,
Simulation of programmable matter systems using active tile-based self-assembly, in DNA
Computing and Molecular Programming, C. Thachuk and Y. Liu, eds., Cham, 2019, Springer
International Publishing, pp. 140–158.

[6] Y. BRUN, Arithmetic computation in the tile assembly model: Addition and multiplication,
Theoretical Comp. Sci., 378 (2007), pp. 17–31.

[7] N. BRYANS, E. CHINIFOROOSHAN, D. DOTY, L. KARI, AND S. SEKI, The power of
nondeterminism in self-assembly, in Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, 2011, pp. 590–602.

[8] D. CABALLERO, T. GOMEZ, R. SCHWELLER, AND T. WYLIE, Verification and Compu-
tation in Restricted Tile Automata, in 26th International Conference on DNA Computing
and Molecular Programming (DNA 26), C. Geary and M. J. Patitz, eds., vol. 174 of Leib-
niz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2020, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, pp. 10:1–10:18.

[9] D. CABALLERO, T. GOMEZ, R. SCHWELLER, AND T. WYLIE, The complexity of multiple
handed self-assembly, in Unconventional Computation and Natural Computation, I. Kostitsyna
and P. Orponen, eds., Cham, 2021, Springer International Publishing, pp. 1–18.

39

[10] D. CABALLERO, T. GOMEZ, R. SCHWELLER, AND T. WYLIE, Covert computation in
staged self-assembly: Verification is pspace-complete, in Proceedings of the 29th European
Symposium on Algorithms, ESA’21, 2021.

[11] , Complexity of verification in self-assembly with prebuilt assemblies, in Proceedings of
the Symposium on Algorithmic Foundations of Dynamic Networks, SAND’22, 2022.

[12] , Unique assembly verification in two-handed self-assembly, in International Colloquium
on Automata, Languages and Programming (ICALP) 2022 (To Appear), 2022.

[13] S. CANNON, E. D. DEMAINE, M. L. DEMAINE, S. EISENSTAT, D. FURCY, M. J. PATITZ,
R. SCHWELLER, S. M. SUMMERS, AND A. WINSLOW, On the effects of hierarchical self-
assembly for reducing program-size complexity, Theoretical Computer Science, 894 (2021),
pp. 50–78.

[14] S. CANNON, E. D. DEMAINE, M. L. DEMAINE, S. EISENSTAT, M. J. PATITZ, R. T.
SCHWELLER, S. M. SUMMERS, AND A. WINSLOW, Two Hands Are Better Than One (up to
constant factors): Self-Assembly In The 2HAM vs. aTAM, in 30th International Symposium
on Theoretical Aspects of Computer Science (STACS 2013), vol. 20 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2013, pp. 172–184.

[15] A. A. CANTU, A. LUCHSINGER, R. SCHWELLER, AND T. WYLIE, Covert Computation
in Self-Assembled Circuits, in 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), vol. 132 of Leibniz International Proceedings in Informatics
(LIPIcs), 2019, pp. 31:1–31:14.

[16] , Signal Passing Self-Assembly Simulates Tile Automata, in 31st International Symposium
on Algorithms and Computation (ISAAC 2020), Y. Cao, S.-W. Cheng, and M. Li, eds.,
vol. 181 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany,
2020, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 53:1–53:17.

[17] , Covert Computation in Self-Assembled Circuits, Algorithmica, 83 (2021), pp. 531–552.
arXiv:1908.06068.

[18] C. CHALK, D. FERNANDEZ, A. HUERTA, M. MALDONADO, R. SCHWELLER, AND

L. SWEET, Strict self-assembly of fractals using multiple hands, Algorithmica, 76 (2014).

[19] C. CHALK, A. LUCHSINGER, E. MARTINEZ, R. SCHWELLER, A. WINSLOW, AND

T. WYLIE, Freezing simulates non-freezing tile automata, in International Conference on
DNA Computing and Molecular Programming, Springer, 2018, pp. 155–172.

[20] C. CHALK, A. LUCHSINGER, R. SCHWELLER, AND T. WYLIE, Self-assembly of any
shape with constant tile types using high temperature, in Proc. of the 26th Annual European
Symposium on Algorithms, ESA’18, 2018.

40

[21] G. CHATTERJEE, N. DALCHAU, R. A. MUSCAT, A. PHILLIPS, AND G. SEELIG, A spatially
localized architecture for fast and modular dna computing, Nature nanotechnology, 12 (2017),
pp. 920–927.

[22] H.-L. CHEN AND D. DOTY, Parallelism and time in hierarchical self-assembly, SIAM Journal
on Computing, 46 (2017), pp. 661–709. Preliminary version appeared in SODA 2012.

[23] M. COOK, T. STÉRIN, AND D. WOODS, Small tile sets that compute while solving mazes, in
27th International Conference on DNA Computing and Molecular Programming, 2021.

[24] E. D. DEMAINE, M. L. DEMAINE, S. P. FEKETE, M. ISHAQUE, E. RAFALIN, R. T.
SCHWELLER, AND D. L. SOUVAINE, Staged self-assembly: nanomanufacture of arbitrary
shapes with o(1) glues, Natural Computing, 7 (2008), pp. 347–370.

[25] E. D. DEMAINE, M. L. DEMAINE, S. P. FEKETE, M. J. PATITZ, R. T. SCHWELLER,
A. WINSLOW, AND D. WOODS, One tile to rule them all: Simulating any tile assembly
system with a single universal tile, in International Colloquium on Automata, Languages, and
Programming, Springer, 2014, pp. 368–379.

[26] D. DOTY, Theory of algorithmic self-assembly, Communications of the ACM, 55 (2012),
pp. 78–88.

[27] , Producibility in hierarchical self-assembly, in Unconventional Computation and Natural
Computation, O. H. Ibarra, L. Kari, and S. Kopecki, eds., Cham, 2014, Springer International
Publishing, pp. 142–154.

[28] D. DOTY, L. KARI, AND B. MASSON, Negative interactions in irreversible self-assembly,
Algorithmica, 66 (2013), pp. 153–172.

[29] N. FATES, A guided tour of asynchronous cellular automata, in International Workshop on
Cellular Automata and Discrete Complex Systems, Springer, 2013, pp. 15–30.

[30] S. P. FEKETE, J. HENDRICKS, M. J. PATITZ, T. A. ROGERS, AND R. T. SCHWELLER,
Universal computation with arbitrary polyomino tiles in non-cooperative self-assembly, in
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2014, pp. 148–167.

[31] E. GOLES, P.-E. MEUNIER, I. RAPAPORT, AND G. THEYSSIER, Communication complexity
and intrinsic universality in cellular automata, Theoretical Computer Science, 412 (2011),
pp. 2–21.

[32] A. S.-A. R. GROUP, VersaTile. https://github.com/asarg/VersaTile, 2014.

[33] J. HENDRICKS AND J. OPSETH, Self-assembly of 4-sided fractals in the two-handed tile
assembly model, Natural Computing, 18 (2018), pp. 75–92.

41

[34] J. HENDRICKS, M. J. PATITZ, T. A. ROGERS, AND S. M. SUMMERS, The power of duples
(in self-assembly): It’s not so hip to be square, Theoretical Computer Science, 743 (2018),
pp. 148–166.

[35] A. KEENAN, R. SCHWELLER, M. SHERMAN, AND X. ZHONG, Fast arithmetic in algorithmic
self-assembly, Natural Computing, 15 (2016), pp. 115–128.

[36] D. E. KNUTH AND A. RAGHUNATHAN, The problem of compatible representatives, SIAM
Journal on Discrete Mathematics, 5 (1992), pp. 422–427.

[37] M. G. LAGOUDAKIS AND T. H. LABEAN, 2d dna self-assembly for satisfiability., in DNA
Based Computers, 1999, pp. 141–154.

[38] P.-E. MEUNIER, , AND D. WOODS, The non-cooperative tile assembly model is not intrinsi-
cally universal or capable of bounded turing machine simulation, in STOC: Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Association
for Computing Machinery, 2017, pp. 328–341.

[39] P.-E. MEUNIER, M. J. PATITZ, S. M. SUMMERS, G. THEYSSIER, A. WINSLOW, AND

D. WOODS, Intrinsic universality in tile self-assembly requires cooperation, in Proceedings
of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014, pp. 752–
771.

[40] P.-E. MEUNIER AND D. REGNAULT, Directed Non-Cooperative Tile Assembly Is Decidable,
in 27th International Conference on DNA Computing and Molecular Programming (DNA 27),
M. R. Lakin and P. Šulc, eds., vol. 205 of Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, 2021, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
pp. 6:1–6:21.

[41] P.-E. MEUNIER, D. REGNAULT, AND D. WOODS, The program-size complexity of self-
assembled paths, in STOC: Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Association for Computing Machinery, 2020, pp. 727–737.

[42] J. E. PADILLA, W. LIU, AND N. C. SEEMAN, Hierarchical self assembly of patterns from
the robinson tilings: Dna tile design in an enhanced tile assembly model, Natural Computing,
11 (2012), pp. 323–338.

[43] J. E. PADILLA, M. J. PATITZ, R. T. SCHWELLER, N. C. SEEMAN, S. M. SUMMERS, AND

X. ZHONG, Asynchronous signal passing for tile self-assembly: Fuel efficient computation
and efficient assembly of shapes, International Journal of Foundations of Computer Science,
25 (2014), pp. 459–488.

[44] M. PATITZ, Pytas. http://self-assembly.net/wiki/index.php?title=PyTAS.

[45] M. J. PATITZ, An introduction to tile-based self-assembly and a survey of recent results,
Natural Computing, 13 (2014), pp. 195–224.

42

[46] R. SCHWELLER, A. WINSLOW, AND T. WYLIE, Complexities for high-temperature two-
handed tile self-assembly, in DNA Computing and Molecular Programming, R. Brijder and
L. Qian, eds., Springer International Publishing, 2017, pp. 98–109.

[47] , Verification in staged tile self-assembly, Natural Computing, 18 (2019), pp. 107–117.

[48] N. C. SEEMAN, Nucleic acid junctions and lattices, Journal of theoretical biology, 99 (1982),
pp. 237–247.

[49] H. SPAKOWSKI, Completeness for parallel access to np and counting class separation,
Ausgezeichnete Informatikdissertationen 2005, (2006).

[50] E. WINFREE, Algorithmic Self-Assembly of DNA, PhD thesis, California Institute of Technol-
ogy, June 1998.

[51] E. WINFREE, R. SCHULMAN, AND C. EVANS, The xgrow simulator.
https://www.dna.caltech.edu/Xgrow/.

[52] D. WOODS, Intrinsic universality and the computational power of self-assembly, Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373
(2015), p. 20140214.

[53] D. WOODS, D. DOTY, C. MYHRVOLD, J. HUI, F. ZHOU, P. YIN, AND E. WINFREE,
Diverse and robust molecular algorithms using reprogrammable dna self-assembly, Nature,
567 (2019), pp. 366–372.

[54] T. WORSCH, Towards intrinsically universal asynchronous ca, Natural Computing, 12 (2013),
pp. 539–550.

43

BIOGRAPHICAL SKETCH

Timothy Axel Gomez was born and grew up in the Rio Grande Valley and graduated from

Harlingen High School South in 2016. Timothy received his Bachelor’s in Computer Science

from University of Texas Rio Grande Valley (UTRGV) in 2020 where he also served as president

of Phi Kappa Theta, a fraternity on campus. While an undergraduate he joined the Algorithmic

Self-Assembly research group where he along with other students published many papers working

under Dr. Robert Schweller and Dr. Tim Wylie. Timothy continued his education at UTRGV

where he received the Presidential Graduate Research Assistantship to support him as a graduate

student. He received his Master’s degree in Computer Science in 2022. Timothy can be reached at

tagomez62@gmail.com

44

	Computational Complexity in Tile Self-Assembly
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER I. Introduction
	Models
	Abstract Tile Assembly Model
	2-Handed Assembly Model
	Staged Assembly Model
	Tile Automata

	Problems
	Producibility
	Unique Assembly Verification
	Unique Shape Verification
	Tile Assembly Computers and Covert Computation

	Experimental Motivation

	CHAPTER II. Abstract Tile Assembly Model
	Producibility
	Non-Cooperative Binding

	Unique Assembly Verification
	Unique Shape Verification
	Tile Assembly Computers
	Covert Computation
	Negative Glues
	3D
	Wire
	Input Assemblies
	NAND gate
	Back Filling and Target Assemblies
	P-Completeness

	Beyond Tiles

	CHAPTER III. 2 Handed Assembly Model
	Definitions
	Producibility
	Temperature-1

	Unique Assembly Verification
	Rogue Assemblies
	UAV is coNP-hard
	Tree Shaped Assemblies

	Unique Shape Verification
	Generalizations
	High Temperature
	Multiple Tile Model
	Prebuilt Assemblies
	Multiple hands

	CHAPTER IV. Staged Assembly Model
	Covert Circuits
	Unique Assembly Verification Problem
	Membership

	CHAPTER V. Tile Automata
	General
	Affinity Strengthening

	Freezing Affinity Strengthening
	One Dimensional

	BIBLIOGRAPHY
	Biographical Sketch

