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ABSTRACT

Garcia, Brenda L., Modeling Functions into an Angular Displacement of an Elastic Pendulum.

Master of Science (MS), May, 2022, 35 pp., 9 figures, references, 9 titles.

In this thesis we study the relation between analytic signals and a variety of pendulum

systems. The representation of a signal as a pair of time varying amplitude and phase has been well

studied and often related to linear mass spring systems. The differential equations describing pendu-

lum systems are nonlinear and we provide analytical and numerical results regarding interpretation

about the amplitude and the phase of signals in different pendulum settings. We report an explicit

solution of the Elastic Pendulum problem in the case of linear phase. We develop an experimental

procedure to piece-wise approximate bounded functions on a partition of a finite interval. On each

sub-interval the function is approximated by a solution of a Pendulum system. The parameters

of the corresponding differential equations are determined by optimization on each sub-interval.

The smoothness of the approximation is controlled by the initial conditions provided by the given

function.
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CHAPTER I

INTRODUCTION

The goal of this work is to model a bounded C2 function θ(t) on a finite interval as the

angular displacement of a pendulum. The procedure we present can be used for denoising of

solutions of the Pendulum Equation and extends similar result for a mass spring system studied in

[8]. The experimental work helps to gain better understanding about the pendulum system.

1.1 Simple Pendulum

A simple pendulum (shown below in figure 1.1) as defined in [7], is a body suspended from

a fixed support so that it swings freely back and forth under the influence of gravity. We use the

method of Lagrange’s equations to find the equation of motion of the simple pendulum for a body

with a mass of 1 as derived similarly in [4].

Figure 1.1: Simple Pendulum [7].

Our system consists of a single independent variable t, therefore, the corresponding La-

grange’s Equations are:
d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0. (1.1)
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The symbol q in the equation symbolizes generalized coordinates. A generalized coordinate is a

coordinate in which we don’t really mind about what direction we use, we only care about the

magnitude. Mechanical energy is conserved in a simple pendulum with no friction. Kinetic and

gravitational potential energy combine to make total mechanical energy. There is a continual

interchange between kinetic energy and gravitational potential energy as the pendulum swings back

and forth. The Kinetic energy as defined below by T is the kinetic energy along the direction of the

pendulum and the energy involved in the swinging motion of the pendulum. The Kinetic energy

is given by the equation T = 1
2mv2 where m is the mass of the pendulum, and v is the velocity in

the tangential direction θ due to the swaying of the pendulum. The velocity in the tangential θ

direction is ℓθ̇ . Hence, the kinetic energy of the simple pendulum is

T =
1
2

mℓ2
θ̇

2. (1.2)

The potential energy of the simple pendulum can be modeled by the gravitational potential

energy equation Vg = mgh where g is the acceleration due to gravity and h is the height. This

equation is used to model objects of free fall, the pendulum, on the other hand, is restrained by the

rod or string and does not fall freely. As a result, we must express the height in terms of, the angle,

and ℓ, the pendulum’s length. Hence, the potential energy for the simple pendulum is

V = mgℓ(1− cosθ). (1.3)

When we take the potential energy (energy of position) away from the kinetic energy (energy

of motion) we end up with an equation called the Lagrangian of the system, denoted below in

equation

L = T −V =
1
2

mv2 − [mgℓ(1− cosθ)] (1.4)

Now we substitute L into Lagrange’s equation (1.1) and take the derivative with respect to the only

generalized coordinate q1 = θ .

2



∂L
∂θ

=−mgℓsinθ

d
dt
(

∂L
∂ θ̇

) = mℓ2
θ̈

⇒ d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= mℓ2

θ̈ − (−mgℓsinθ) = 0 (1.5)

After simplification and setting m = 1 we get the following equation of motion for the simple

pendulum

θ̈ +
g
ℓ

sinθ = 0, (1.6)

with g as the magnitude of the gravitational field, ℓ is the length of the rod or cord, and θ is the angle

from the equilibrium position to the pendulum. A pendulum is a simple harmonic oscillator with

a restoring force F that acts to bring the body to its equilibrium position and undergoes a simple

harmonic motion with a constant amplitude and frequency around the equilibrium point for minor

displacements (which does not depend on the amplitude) [7].

1.2 Analytic Signal

The equation of motion for a pendulum has only 1 degree of freedom, angle of displacement.

Given an analytic signal as defined in [2], is a complex-valued function with no negative frequency

components. It is defined below as a two-dimensional signal with real and imaginary parts that are

real-valued functions related by the Hilbert transform as

U(t) = u(t)+ iH[u(t)]. (1.7)

The Hilbert transform is defined as a specific linear operator that takes a real-valued function u(t)

and produces another real-valued function H(u(t)).

3



The Hilbert transform of the function u(t) is

H[u(t)] = ũ(t) =
1
π

∫
∞

−∞

u(τ)
t − τ

dτ, (1.8)

which we will use the notation ũ(t) in this paper. The mathematical integral definition does not

provide much insight into the undertstanding and application of the HT. The physical meaning of

the HT, on the other hand, allows us to obtain a far deeper understanding of the transformation. The

HT is physically equivalent to a special kind of linear filter in which all of the spectral components’

amplitudes are left unchanged but their phases are shifted by π/2.

We consider the analytic signal in the form

F(t) = f (t)+ i f̃ (t), (1.9)

where f̃ (t) = H[ f (t)] is defined as

F(t) = x(t)cosθ(t)+ ix(t)sinθ(t). (1.10)

We will model x(t) as an amplitude and θ(t) is an angular displacement in Pendulum systems. A

physical system with an additional degree of freedom can be considered if the rod has a variable

length.

4



CHAPTER II

ELASTIC PENDULUM

An elastic pendulum (shown below in Figure 2.1) is a physical system where a mass is

suspended from a fixed point by a light spring, which can stretch but not bend, so that the resulting

motion contains elements of both a simple pendulum and a one-dimensional spring-mass system.

We use the method of Lagrange’s equations to find the equations of motion as derived similarly in

[3] and [9].

Figure 2.1: Elastic Pendulum [1].

2.1 Equations of Motion

Our system consists of a single independent variable t, therefore, the corresponding La-

grange’s Equations are:
d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0. (2.1)
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The symbol q in the equation symbolizes generalized coordinates. A generalized coordinate is a

coordinate in which we don’t really mind about what direction we use, we only care about the

magnitude. The system we are using only uses the generalized coordinates of extension x(t) (which

is the length of the string) and angle θ(t) (the angle of the string from vertical). Let us consider

a pendulum made of a light spring with a mass m attached at the end as shown above in Figure

2.1. The equilibrium length of the spring is ℓ0. Let the spring have length ℓ(t) = ℓ0 + x(t) when

stretched by x(t), and let its angle with the vertical be θ(t). In this case there are two energy’s

present: kinetic energy and potential energy.

Kinetic energy as defined below by T is the kinetic energy along the direction of the spring

and the energy involved in the swinging motion of the pendulum. The Kinetic energy is given by

the equation T = 1
2mv2, where m is the mass of the pendulum, and velocity v, in the case of the

elastic pendulum, is a vector since it has two components, one in the radial direction r due to the

spring displacement, and the other in the tangential direction θ due to the swaying of the pendulum.

The velocity is a vector squared and can be rewritten as v2 = v2
r + v2

θ
, because it is a vector, hence,

we square each component of the vector. The velocity in the radial direction is ẋ and the velocity in

the tangential θ direction is ℓθ̇ = (ℓ0 + x)θ̇ . Hence, the kinetic energy for the elastic pendulum is

T =
m
2
(ẋ2 +(ℓ0 + x)2

θ̇
2). (2.2)

Potential energy, the stored energy of position, defined below by V is simply given by

gravitational potential energy and elastic potential energy. The amount of gravitational potential

energy is dependent to the mass m and height h of the object. The gravitational potential energy

equation is Vg = mgh where g is the gravitational field strength (also known as the acceleration

generated by gravity) and has a value of 9.8 N/kg. The gravitational potential energy for the elastic

pendulum is Vg =−mg(ℓ0 + x)cosθ . Now, because the elastic restoring force is not constant, for

this reason, we integrate Hooke’s Law F = kx with respect to x and get Vk =
1
2kx2 which is the

elastic potential energy of the spring where k is the spring constant, and x is the spring stretch.

6



Hence, the potential energy for the Elastic Pendulum is

V =−mg(ℓ0 + x)cosθ +
1
2

kx2. (2.3)

When we take the potential energy (energy of position) away from the kinetic energy (energy of

motion) we end up with an equation called the Lagrangian of the system, denoted below in equation

(2.4) as L

L = T −V =
1
2

mẋ2 +
1
2

m(ℓ0 + x)2
θ̇

2 +mg(ℓ0 + x)cosθ − 1
2

kx2. (2.4)

Now, we substitute L into Lagrange’s equation (2.1) and in each case take the derivative with respect

to the associate coordinate. For the generalized coordinate q1 = x we get

d
dt
(
∂L
∂ ẋ

) = mẍ

∂L
∂x

= m(ℓ0 + x)θ̇ 2 +mgcosθ − kx

⇒ d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= mẍ− (m(ℓ0 + x)θ̇ 2 +mgcosθ − kx) = 0, (2.5)

and for the generalized coordinate q2 = θ we get

d
dt
(

∂L
∂ θ̇

) = 2m(ℓ0 + x)ẋθ̇ +m(ℓ0 + x)2
θ̈

∂L
∂θ

=−mg(ℓ0 + x)sinθ

⇒ d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= 2m(ℓ0 + x)ẋθ̇ +m(ℓ0 + x)2

θ̈ − (−mg(ℓ0 + x)sinθ) = 0. (2.6)

We simply equations (2.5) and (2.6) and get the equations of motion for the Elastic pendulum system

below:

ẍ− (ℓ0 + x)θ̇ 2 +
k
m

x−gcosθ = 0 (2.7)

7



θ̈ +
2ẋ

ℓ0 + x
θ̇ +

g
ℓ0 + x

sinθ = 0 (2.8)

The parameters in the equations of motion as defined in [9] are the rest length ℓ0 which can be

stretched by length x(t), g is the gravitational acceleration, k/m is the stiffness of mass ratio, and

the angle of oscillation of the pendulum to its equilibrium position is θ(t). The equations (2.7) and

(2.8) cannot be solved explicitly. The two equations are linear in x(t), but nonlinear in θ(t) because

of cosθ and sinθ . In the next section, we will eliminate x(t) from the system to obtain equation for

θ(t).

2.2 Solving for the Spring Length

We will label the first equation of the elastic pendulum system as E1 and the second equation

of the elastic pendulum system as E2. We let ℓ0 = 1, k
m = b and multiply E2 by 1+x

2θ̇
and get the

following

E1 : ẍ+(b− θ̇
2)x− θ̇

2 −gcosθ = 0 (2.9)

E2 : ẋ+
θ̈

2θ̇
x+

θ̈

2θ
+

gsinθ

2θ̇
= 0. (2.10)

We consider solution for the system above for general θ(t) and x(t). Although both equations

are linear for x(t), the first equation is second order for x(t) and the second equation is first order

for x(t) so we choose to solve equation (2.10) for x(t) and we get the result below. We can solve for

x(t) by the integrating factor method. The first step is to rewrite E2 (2.10) in standard form

E2 : ẋ+
θ̈

2θ̇
x =− θ̈

2θ̇
− gsinθ

2θ̇
. (2.11)

Now we solve for our integrating factor

v = e
1
2
∫

θ̈

θ̇
dt = e

1
2 ln|θ̇ | =

√
|θ̇ |.

8



We multiply it to both sides and integrate, then solve for x(t)

√
|θ̇ |

(
ẋ+

θ̈

2θ̇
x =− θ̈

2θ̇
− gsinθ

2θ̇

)
(2.12)

∫
(

√
|θ̇ |x)′dt =−

∫ √
|θ̇ |

(
θ̈ +gsinθ

2θ̇

)
dt (2.13)

√
|θ̇ |x =−1

2

∫ √
|θ̇ |

(
θ̈ +gsinθ

θ̇

)
dt + c (2.14)

x =− 1

2
√

|θ̇ |

(∫ √
|θ̇ |

(
θ̈ +gsinθ

θ̇

)
dt + c

)
(2.15)

for a constant c. We label our solution x2(t) respectively

x2(t) =− 1

2
√

|θ̇ |

(∫ √
|θ̇ |

(
θ̈ +gsinθ

θ̇

)
dt + c

)
. (2.16)

Next is to find x1(t) using E1 (2.9). The first step is to get rid of ẍ and we do it by 2θ̇

θ̈
( d

dt E2−E1)

and after simplifying we get

ẋ+
( ...

θ θ̇ − θ̈ 2

θ̈ θ̇
− 2θ̇

θ̈
(b− θ̇

2)

)
x+

( ...
θ θ̇ − θ̈ 2

θ̈ θ̇
+

3θ̇gcosθ

θ̈
− gsinθ

θ̇
+

2θ̇ 3

θ̈

)
= 0. (2.17)

Now in order to get rid of ẋ we subtract E2 from the above equation and get

( ...
θ θ̇ − θ̈ 2

θ̈ θ̇
− 2θ̇

θ̈
(b− θ̇

2)− θ̈

2θ̇

)
x+

( ...
θ θ̇ − θ̈ 2

θ̈ θ̇
+

3θ̇gcosθ

θ̈
− gsinθ

θ̇
+

2θ̇ 3

θ̈
− θ̈

2θ̇
− gsinθ

2θ̇

)
= 0.

(2.18)

Lastly, we solve for x and after simplifying we get

x1(t) =−1+
3gθ̈ sinθ −6gθ̇ 2 cosθ −4bθ̇ 2

2
...
θ θ̇ −2θ̈ 2 +4θ̇ 4 −4bθ̇ 2 − θ̈ 2

. (2.19)
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The next step is to solve for θ(t) by setting

x1(t) = x2(t),

and we get

−1+
3gθ̈ sinθ −6gθ̇ 2 cosθ −4bθ̇ 2

2
...
θ θ̇ −2θ̈ 2 +4θ̇ 4 −4bθ̇ 2 − θ̈ 2

=− 1

2
√
|θ̇ |

(∫ √
|θ̇ |

(
θ̈ +gsinθ

θ̇

)
dt + c

)
, (2.20)

which is nonlinear third order integro-differential equation. We run into complications in equation

(2.20) above: The absolute value of θ̇ might result in a break point where it is not smooth. The

nonlinearity is a big problem, the equation is very nonlinear. To remove the integral on the right

side of the equation our method would be to differentiate the equation, but then we are left with a

very complicated nonlinear fourth order differential equation in terms of θ(t).

If we compare, the solution to the pendulum equation as solved in [6] and expressed by

elliptic functions as the following

φ(t) = 2tan−1

 tan φ0
2 cn(iωt|m)− i

2ω
φ̇0 sec2(φ0

2 )dn(iωt|m)sn(iωt|m)

1+
(

φ̇ 2
0

2ω2(cos(φ0)+1) −1
)

sn(iωt|m)2

 , (2.21)

m =
1
4

(
2(1+ cos(φ0))−

φ̇ 2
0

ω2

)
, (2.22)

we can see that this solution is very complicated for a practical use. Hence, solving for θ(t) for the

elastic pendulum system will require more work. So in our case, we consider fixing θ(t) to find a

particular class of solutions.

2.3 Linear Angular Displacement

We consider a simple but nontrivial example by fixing θ(t) to be a linear function.

10



Theorem 1. Let θ(t) = αt +β , where α,β ∈ R and α ̸= 0, then for b = 4α2 and

x(t) =
g

2α2 cos(αt +β )+
1
3

(2.23)

the pair θ(t) and x(t) is a solution of the Elastic Pendulum system.

Proof. We want to proof that x(t) and θ(t) is a solution of the Elastic Pendulum system below

E1 : ẍ+(b− θ̇
2)x− θ̇

2 −gcosθ = 0 (2.24)

E2 : ẋ+
θ̈

2θ̇
x+

θ̈

2θ
+

gsinθ

2θ̇
= 0 (2.25)

If θ(t) = αt +β is fixed when we compute its derivatives with respect to t

θ̇(t) = α

θ̈(t) = 0

and substitute them into equations (2.24) and (2.25) we get

E1 : ẍ+(b−α
2)x−θ

2 −gcos(αt +β ) = 0 (2.26)

E2 : ẋ =
−g
2α

sin(αt +β ) (2.27)

From from E2 in (2.27) we integrate with respect to t and solve for x(t) and we get the following

solution

x(t) =
g

2α2 cos(αt +β )+ c. (2.28)

for a constant c.
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Using the solution x(t) in (2.28) we calculate ẋ and ẍ

ẋ(t) =
−g
2α

sin(αt +β ) (2.29)

ẍ(t) =
−g
2

cos(αt +β ) (2.30)

and substitute it into E1 in (2.26) to solve for the unknowns c and b

− g
2

cos(αt +β )+(b−α
2)(

g
2α2 cos(αt +β )+ c)−α

2 −gcos(αt +β ) = 0 (2.31)

⇒ (−3+
b

α2 −1)
g
2

cos(αt +β )+(b−α
2)c−α

2 = 0 (2.32)

For equation (2.32) to equal to zero, we need (−4+ b
α2 ) = 0 and (b−α2)c−α2 = 0, hence we

need

⇒ b = 4α
2 and ⇒ c =

1
3
.

Therefore, when b = 4α2, for a linear θ(t) = αt +β , and

x(t) =
g

2α2 cos(αt +β )+
1
3
, (2.33)

the pair θ(t) and x(t) is a class of solutions of the Elastic Pendulum system.

If we consider x(t)cosθ(t) being the signal f (t) then H[ f (t)] = f̃ (t) = x(t)sinθ(t) and

since θ(t) and x(t) are analytic, this means that x(t) and θ(t), being the amplitude and frequency

for this analytic signal, are also the angular displacement and the varying spring length in the

Elastic Pendulum. In the next chapter we reformulate the elastic pendulum system in "rectangular

coordinates" with respect to f and f̃ .
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CHAPTER III

ELASTIC PENDULUM IN RECTANGULAR COORDINATES AND ANALYTIC SIGNAL

Why Hilbert Transform? The Hilbert transform (HT), unlike other integral transforms such

as Fourier or Laplace, is not a domain transform meaning it does not involve change of domain.

Because our functions are of time domain signal, it is clear that the HT of our signal would be

another time-domain signal. And if our signal is real value, then the HT of our signal is also real

valued [2].

3.1 Analytic Representation

For our system of the Elastic pendulum, the analytic signal

F(t) = f (t)+ i f̃ (t) (3.1)

where f̃ (t) = H[ f (t)] is defined as

F(t) = (ℓ0 + x(t))cosθ(t)+ i(ℓ0 + x(t))sinθ(t) (3.2)

where x(t) is the amplitude and θ(t) is the frequency around the equilibrium point. The hilbert

transform of f (t) is simply a phase shift of π/2 which gives us f̃ (t) = (ℓ0 + x(t))sinθ(t).

3.2 Polar Notation

A real vibration process u(t), detected by a transducer, is merely one of many potential

projections (the real component) of some analytic signal U(t), according to analytic signal theory.

The hilbert transform will then conjugate the second projection of the same signal (the imaginary

13



component) ũ(t) as defined in equation (3.2).

The geometrical representation of an analytic signal is a phasor rotating in the complex plane.

A phasor can be represented as a vector at the origin of the complex plane having a length

A(t) (which is the relation to the length of the string of the elastic pendulum) and an angle, or

angular displacement, ψ(t) (the relation to the angle of displacement of the elastic pendulum). The

initial real signal is defined by u(t) = A(t)cosψ(t) as a projection on the real axis. The analytic

signal in exponential representation is of the form

U(t) = |U(t)|[cosψ(t)+ isinψ(t)] = A(t)eiψ(t), (3.3)

its instantaneous amplitude can be determined as

A(t) = |U(t)|=
√

u2(t)+ ũ2(t) (3.4)

and its instantaneous phase as

ψ(t) = arctan
ũ(t)
u(t)

. (3.5)

The change of coordinates from rectangular (u, ũ) to polar (A,ψ) produces u(t) = A(t)cosψ(t),

ũ(t) = A(t)sinψ(t) [2].

3.3 Rectangular Coordinates Transformation

In Theorem 1 and the comments after it, we showed that for linear phase θ and the corre-

sponding amplitude x, the signal f (t) = x(t)cosθ(t) is analytic and in polar representation. Next,

we formulate a system which corresponds to this observation i.e. a necessary condition for analytic

signal f + i f̃ = xeiθ to be such that x and θ are solutions for the elastic pendulum.

Lemma 2. Let f and f̃ be two real valued functions and f + i f̃ = (l0 + x)cosθ(t) + i(ℓ0 +

x(t))sinθ(t), then if θ(t) and x(t) are solutions of the elastic pendulum system the pair of functions

14



f and f̃ are solutions of the following system:

f f ′′+ f̃ f̃ ′′+
k
m
( f 2 + f̃ 2 − ℓ0

√
f 2 + f̃ 2)−g f̃ = 0 (3.6)

f f̃ ′′+ f̃ f ′′+g f = 0 (3.7)

Proof. By direct computation, we consider the Elastic Pendulum system

ẍ− (ℓ0 + x)θ̇ 2 +
k
m

x−gcosθ = 0 (3.8)

θ̈ +
2ẋ

ℓ0 + x
θ̇ +

g
ℓ0 + x

sinθ = 0. (3.9)

with the analytic signal defined previously as

F(t) = f (t)+ i f̃ (t) = (ℓ0 + x(t))cosθ(t)+ i(ℓ0 + x(t))sinθ(t). (3.10)

From definition (3.4) we define the amplitude as

x(t) =
√

f 2 + f̃ 2 (3.11)

and from definition (3.5) we define the phase as

θ(t) = tan−1(
f̃
f
). (3.12)

We compute the derivatives for x(t)

ẋ(t) =
f f ′+ f̃ f̃ ′√

f 2 + f̃ 2
, (3.13)
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ẍ(t) =
f 3 f ′′+ f 2 f̃ ′2 + f̃ f 2 f̃ ′′−2 f f̃ f ′ f̃ ′+ f f̃ 2 f ′′+ f̃ 2 f ′2 + f̃ 3 f̃ ′′

( f 2 + f̃ 2)3/2 . (3.14)

We compute the derivatives for θ(t)

θ̇(t) =
f̃ ′ f − f̃ f ′

f 2 + f̃ 2
, (3.15)

θ̈(t) =
2 f f̃ f ′2 + f f̃ 2 f̃ ′′−2 f f̃ f̃ ′2 − f 2 f̃ f ′′−2 f 2 f ′ f̃ ′+2 f̃ 2 f ′ f̃ ′− f̃ 3 f ′′+ f 3 f̃ ′′

( f 2 + f̃ 2)2
. (3.16)

We substitute the respective derivatives into the Elastic Pendulum system and note that from

f (t) = (ℓ0 + x(t))cosθ(t) and f̃ (t) = (ℓ0 + x(t))sinθ(t) we solve for cosθ(t) and sinθ(t) and

substitute that as well. After simplification we get the following equations below

f f ′′+ f̃ f̃ ′′+
k
m
( f 2 + f̃ 2 − ℓ0

√
f 2 + f̃ 2)−g f̃ = 0 (3.17)

f f̃ ′′+ f̃ f ′′+g f = 0. (3.18)

We have the system in rectangular coordinates, and it requires additional study, which we

will leave for future investigation. Next, we consider a different pendulum system to expand the

class of solutions in order to achieve the goal of modeling a larger class of functions into an angular

displacement of an elastic pendulum.
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CHAPTER IV

PENDULUM WITH VARYING PARAMETERS

Next, we will model a given function θ(t) by a simple pendulum system with friction. We

consider the pendulum with a fixed length for a particular interval, and in the next interval the length

will change, and again on the next interval the length will change, and it’ll continue changing in

each interval. It will not be a smooth change, meaning it is not elastic all the time, it is elastic by

the sudden jumps. Hence, we want to see how the process will work if we fix the length of the

pendulum to be piece-wise constant.

4.1 Numerical Approach

The second equation of motion (2.8) can be approximated by setting γ(t) = 2ẋ
ℓ0+x (which

defines friction in the pendulum) and ω0(t) =
g

ℓ0+x (which is related to x(t), the length of the

string/spring) and we get

θ̈ + γθ̇ +ω0sinθ = 0. (4.1)

This will be our model to investigate, which is the second equation of the Elastic Pendulum system

with parameters γ and ω0 as defined above, and is also a generalization of the Pendulum equation

with an external force.

Let a partition P be defined by the points, t0 = 0< t1 < ... < tn = 1 and intervals I j = (t j−1, t j)

for j = 1,2,3, ..,n. We are looking for a numerical solution to the pendulum system described above

on each I j intervals with fixed γ j and ω0 j .

We can relate the process to the elastic pendulum. Once we find γ j and ω0 j we can obtain

an estimate for x and ẋ. Using ω0(t) we solve for x(t) and get equation (4.2) as shown below.
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We substitute equation (4.2) into γ(t) for x(t) and solve for ẋ(t) and we get equation (4.3) as

shown below

x(t j) =
g

ω0 j

− ℓ0 (4.2)

ẋ(t j) =
g
2
·

γ j

ω0 j

. (4.3)

In our setting, we are given θ(t), hence the procedure that we use to determine the optimal

parameters γ j and ω0 j on each interval I j for equation (4.1) can be the least square method.

4.2 Methodology

We are looking for coefficients γ j and ω0 j that will minimize the L2 norm or the integral in

(4.4) on each interval I j. Let a partition P be defined by the points, t0 = 0 < t1 < ... < tn = 1 and

intervals I j = (t j−1, t j) for j = 1,2,3, ..,n then

L = min(γ j,ω0 j)
∫

I j

(θ̈ + γ jθ̇ +ω0 jsinθ)2dt. (4.4)

To simplify the expression we use definitions such as ∥θ∥2 = (
∫

I j
θ 2dt)

1
2 and ⟨θ̇ ,sinθ⟩=

∫
I j

θ̇sinθdt

and get

L = ∥θ̈∥2
2 +2⟨θ̈ , θ̇⟩γ +2⟨θ̈ ,sinθ⟩ω0 + γ

2∥θ̇∥2
2 +2γ⟨θ̇ ,sinθ⟩ω0 +ω

2
0∥sinθ∥2

2. (4.5)

Now we minimize (4.5) with respect to the unknowns as shown below for γ

∂L
∂γ

= 2⟨θ̈ , θ̇⟩+2γ∥θ̇∥2
2 +2⟨θ̇ ,sinθ⟩ω0 = 0 (4.6)

and ω0

∂L
∂ω0

= 2⟨θ̈ ,sinθ⟩+2ω⟨θ̇ ,sinθ⟩+2ω0∥sinθ∥2
2 = 0. (4.7)
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Then (4.6) and (4.7) gives us the following system for a partition P on I j

 2∥θ̇∥2
2 2⟨θ̇ ,sinθ⟩

2⟨θ̇ ,sinθ⟩ 2∥sinθ∥2
2


 γ j

w0 j

=

 −2⟨θ̈ , θ̇⟩

−2⟨θ̈ ,sinθ⟩

 . (4.8)

There is a condition that ω0 > 0, since it is related to the length of the string, hence, it cannot

be negative. We can check if the condition follows by solving for ω0. We set the system in (4.8) as

Ax = b

and use inverse matrix to solve for x

x = A−1b

and we get the following below

 γ

ω0

=

 ∥sinθ∥2
2

2(∥θ̇∥2
2)(∥sinθ∥2

2)−2(⟨θ̇ ,sinθ⟩)(⟨θ̇ ,sinθ⟩)
−⟨θ̇ ,sinθ⟩

2(∥θ̇∥2
2)(∥sinθ∥2

2)−2(⟨θ̇ ,sinθ⟩)(⟨θ̇ ,sinθ⟩)
−⟨θ̇ ,sinθ⟩

2(∥θ̇∥2
2)(∥sinθ∥2

2)−2(⟨θ̇ ,sinθ⟩)(⟨θ̇ ,sinθ⟩)
∥θ̇∥2

2
2(∥θ̇∥2

2)(∥sinθ∥2
2)−2(⟨θ̇ ,sinθ⟩)(⟨θ̇ ,sinθ⟩)


 −2⟨θ̈ , θ̇⟩

−2⟨θ̈ ,sinθ⟩

 .

(4.9)

Now we solve for ω0 and obtain the following solution

ω0 =
⟨θ̇ ,sinθ⟩⟨θ̈ , θ̇⟩

∥θ̇∥2
2∥sinθ∥2

2 −⟨θ̇ ,sinθ⟩⟨θ̇ ,sinθ⟩
−

∥θ̇∥2
2⟨θ̈ ,sinθ⟩

∥θ̇∥2
2∥sinθ∥2

2 −⟨θ̇ ,sinθ⟩⟨θ̇ ,sinθ⟩
. (4.10)

As mentioned before we want ω0 to be positive. Therefore, one can use the equation (4.10) to check

if the condition ω0 > 0 is not satisfied.
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4.3 Algorithm Outline

The least square method is applied on partition P on each interval I j to find γ j and ω0 j . On

I1, we solve the initial value problem

ÿ1 + γ1ẏ1 +ω01 siny1 = 0 (4.11)

with initial conditions

y1(t1) = f (t0) (4.12)

ẏ1(t1) = ḟ (t0). (4.13)

Inductively, we repeat the process for j = 2,3, ...,n with initial conditions on I j

y j(t j) = y j−1(t j−1) (4.14)

ẏ j(t j) = ẏ j−1(t j−1). (4.15)

Hence, I1 is the first interval. We solve it on the first interval with initial conditions coming from

the given function f , the given function is θ(t), this is defined in equations (4.12) and (4.13). Then,

on the next intervals, the initial conditions won’t be from θ(t), it’ll be equations (4.14) and (4.15)

on y j−1 for j = 2,3, ...,n which are the initial conditions from the function before. We inductively

repeat this process on each interval until we have done so for all intervals. We have two different

examples for our function θ(t) in the next section where we present the numerical results using the

process explained.
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CHAPTER V

NUMERICAL RESULTS

The goal is to consider functions that are not solutions to the pendulum and that are standard

functions in signal processing. The numerical work is done by using Matlab, the codes can be found

in Appendix. We present two numerical results in the following sections.

5.1 Elliptic Cosine

The first example is the function θ(t) as an approximation of an elliptic cosine [5],

θ(t) =
√

1+Lcos(
√

1+L)t√
1+Lcos(

√
1+Lt)

. (5.1)

The time variable t ∈ [0,1]. For reference we include the pendulum with a fixed length rod

on one interval for L = 80 shown in figure 5.1.
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Figure 5.1: Signal approximation 1.

In Figure 5.1 the continuous line is the function θ(t) and the dotted line is the approximation

obtained by the algorithm described above on one interval with a constant length. We see that the

two lines have nothing in common, so the length being constant will not work. Now we consider a

pendulum with varying length:

The time variable t ∈ [0,1] in partition P where the partitions are considered equidistant. For

L = 80 and 30 sub-intervals the results are listed in Figures 5.2, 5.3 and 5.4.
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Figure 5.2: Signal approximation 2.

Figure 5.3: Error 1.
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In Figure 5.2 the continuous line is the approximation of the elliptic cosine function θ(t) and

the dotted line is the approximation obtained by the algorithm described above. The colorful lines in

the dotted lines are the solutions on different intervals. Figure 5.3 shows the difference between the

function θ and the approximant. We see that our procedure preserves the general characteristics of

the function and is a very good approximation. We used 30 sub-intervals, and although our solution

is a good approximation, we have error at the end, in which we hope to improve by using more

sub-intervals.

Now we take a look at amplitude approximation of the function in Figure 5.4.

Figure 5.4: Amplitude approximation 1.

In Figure 5.4 the continuous line is the interpolated w0. The x (crosses) are the γ values, and

the circles are the w0 values on the 30 sub intervals. We can conclude from this graph that these

peaks in space correspond to where the original function has rapid changes as displayed in Figure

5.2. Hence, it is necessary for the length of the string to have these varying changes. From this

example, we conclude that with small modifications, the approximation of elliptic cosine as our

function θ(t) and a pendulum with varying length, we might be able to model it as a solution of the
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elastic pendulum.

5.2 Chirp Type Function

Now, we consider a second example as the function θ(t)

θ(t) = etcos(10t2). (5.2)

We have the same setting as before, the time variable t ∈ [0,1] in partition P where the partitions are

considered equidistant. For L = 80 and 30 sub-intervals the results are shown below in Figures 5.5,

5.6, and 5.7.

Figure 5.5: Signal approximation 3.
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Figure 5.6: Error 2.

In Figure 5.5 the continuous line is the chirp type function θ(t) and the dotted line is the

approximation obtained by the algorithm described above. The colorful lines in the dotted lines

are the solutions on different intervals. Figure 5.6 shows the difference between the function θ and

the approximant. We see that our procedure preserves the general characteristics of the function

and is an almost perfect approximation. We used 30 sub-intervals, and although our solution is

a good approximation, we have error at the end, in which we hope will improve by using more

sub-intervals.

Now we take a look at amplitude approximation of the function in Figure 5.7.
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Figure 5.7: Amplitude approximation 2.

In Figure 5.7 the continuous line is the interpolated w0. The x (crosses) are the γ values,

and the circles are the ω0 values on the 30 sub intervals. Again, we come to the same conclusion

from this graph these peaks in space correspond to where the original function has rapid changes

as displayed in Figure 5.5. Hence, it is necessary for the length of the string to have these varying

changes. From this example, we conclude that with small modifications, the chirp type function

θ(t) and a pendulum with varying length, we might be able to model it as a solution of the elastic

pendulum. Note, that in figures 5.4 and 5.7 we visualize what is the behavior of the elastic string

(spring) to model it in this physical setting, and we can see clearly that it requires the string (spring)

part to change rapidly, hence, we need elasticity.
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CHAPTER VI

CONCLUSION

In this thesis we investigated the relations between the analytic signals and different pen-

dulum systems. The pendulum systems considered were the elastic pendulum and the simple

pendulum with varying coefficients. For the elastic pendulum we found analytic solutions in the

case of the linear phase and reformulated the system in signal processing setting. In chapter IV we

considered a numerical procedure for modeling a given function θ(t) as a simple pendulum with

friction. We developed an experimental procedure to piece-wise approximate bounded functions on

a partition of a finite interval. On each sub-interval the function is approximated by a solution of a

Pendulum system. The parameters of the corresponding differential equations are determined by

optimization on each sub-interval. The smoothness of the approximation is controlled by the initial

conditions provided by the given function.

This work has a variety of potential future investigation. The most important problem is

to solve the fourth order nonlinear integro-differential equation from chapter II. By solving this

equation we will obtain a solution of the elastic pendulum system. As well as solving for f and f̃

from the elastic pendulum system in rectangular coordinates that we derived in chapter IV. Solving

for f and f̃ will give us the solution of the system in signal processing setting. Although we

successfully modeled a wide class of functions as a simple pendulum with friction, the question

we can further study is what kind of functions can be modeled? Can all functions be modeled as

a simple pendulum with friction, or only certain functions? This is a future problem that requires

more investigation.
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APPENDIX

MATLAB CODES

In this appendix we list the Matlab procedures used in chapter V.

Least square method (LSM)

The function leastsq takes as input the interval [a,b], a step dt and a function f . The outputs

are the two parameters k and w, corresponding to ....

function [k w] = leastsq(a,b,t,dt,f)

% compute the derivatives of f .

dz=diff(f)/dt;df(end+1)=df(end);x

ddf=diff(df)/dt;ddf(end+1)=ddf(end);

%compute the coefficients in the LS matrix.

R=cumsum(df.*df)*dt;M(1,1)=R(end);

R=cumsum(df.*sin(f))*dt;M(2,1)=R(end);M(1,2)=M(2,1);

R=cumsum(sin(f).*sin(f))*dt;M(2,2)=R(end);

R=cumsum(ddf.*df)*dt;B(1,1)=-R(end);

R=cumsum(ddf.*sin(f))*dt;B(2,1)=-R(end);
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% compute the parameters k,w.

r=M B;

k=r(1);w=r(2);

end;

Pendulum Equation with friction (PEF)

Once the parameters k,w are obtained from leastsq.m the solution of the corresponding PEF

is obtained by using ODE45 with the following code.

function dy = pendul(t,y,k,w)

dy=zeros(2,1);

dy(1) = y(2);

dy(2)=-k*y(2)-w*sin(y(1));

end;

Main Procedure

The main function is elpend.m. The inpput parameters are the number of partition N, and the

parameter in the elliptic cosine L.

function elpend=elpend(N,L)

%elliptic cosine function initial conditions
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i0=1;

i1=0;

%chirp type function phase initial conditions

i0=1;

i1=1;

ind=1;

st=1/N;

for a=0:st:(1-st)

b=a+st;

dt=(b-a)/1000;t=a:dt:b;

% elliptic cosine function

% f=sqrt(1+L)*cos(sqrt(1+L)*t)./sqrt(1+L*cos(sqrt(1+L)*t). 2̂)+0*cos(17*t);

% chirp type function

% f=exp(t).*cos(10*t.2̂);

[k w] =leastsq(a,b,t,dt,f);

[T Y ] = ode45(@(t,y)pendul(t,y,k,w),[a b],[i0 i1]);

% Figure 1 progressively shows the original function f and the approximant Y .

hold on;figure(1);plot(T,Y(:,1),’.’,t,f);

% The initial conditions for the next iteration are set next.

gam(ind)=k;len(ind)=w;ind=ind+1;

i0=Y(end,1);i1=Y(end,2);

pause;

end;
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t=0:st:1-st;

% Figure 2 shows the parameters k j and w j.

figure(2);plot(t,len,’o’,t,len,t,gam,’x’);

elpend=len;

end;
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