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NOTE ON ILLUMINATING CONSTANT WIDTH BODIES

ALEXEY GLAZYRIN♠

Abstract. Recently, Arman, Bondarenko, and Prymak constructed a constant width
body in Rn whose illumination number is exponential in n. In this note, we improve
their bound by generalizing the construction. In particular, we construct a constant
width body in Rn whose illumination number is at least (τ + o(1))n, where τ ≈ 1.047.

1. Introduction

A boundary point x of a convex n-dimensional body B is said to be illuminated by a
direction (unit vector) ` if the ray from x in the direction of ` intersects the interior of B.
The set of directions L illuminate B if each boundary point of B is illuminated by some
direction from L. A natural question is to determine the minimal size of an illuminating
set, also called an illumination number [2], for a given B or for a given class of convex
n-dimensional bodies.

In [6], Schramm showed that the illumination number of any n-dimensional body of

constant width is no greater than (
√

3/2 + o(1))n. The question of existence of bodies of
constant width with exponential illumination numbers (see [5, Problem 3.3]) was recently
answered in the affirmative by Arman, Bondarenko, and Prymak [1]. They constructed a
body of constant width whose illumination number is at least (cosπ/14 + o(1))−n.

The construction of Arman, Bondarenko, and Prymak is based on the union of con-
gruent right spherical cones inscribed in the unit sphere. Cones are chosen in such a
manner that the diameter of the union is equal to the diameter of each cone. Then there
exists a body of constant width of the same diameter containing this union of cones [4,
Theorem 54, p. 126]. Choosing the apexes of cones according to the economical covering
of the sphere constructed by Böröczky and Wintsche [3] and estimating the number of
apexes that can be illuminated by the same direction, Arman, Bondarenko, and Prymak
show that there is a body of constant width with the illuminating number exponential
in dimension. Their construction allows for the base of the exponential bound equal to
(cos(π/14))−1 ≈ 1.026.

The main idea of this note is to generalize their construction and, by this, gain more
freedom in choosing apexes of cones. For our construction, we consider right spherical
cones whose apexes lie in the unit sphere but whose bases belong to a concentric sphere of
a possibly different radius R. We fix the radius R, the distance from the apex to the base
d, the angle α between the axis and the generatrix of a cone, and the spherical radius β
of the base sphere, see Figure 1.

These parameters are not independent but a separate notation for each of them will be
more convenient for us. We always consider only cones whose diameter is d, that is, the
condition 2R sin β ≤ d is always satisfied.

For each x ∈ Sn−1, we denote by Q(x) the cone with the fixed parameters R, d, α, β
whose apex is x. For a subset X ⊂ Sn−1, we denote the union

⋃
x∈X

Q(x) by W(X).

♠ Partially supported by the NSF grant DMS-2054536.
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Figure 1. Cone and its axial section

For x, y ∈ Sn−1 the spherical distance between x and y is denoted by θ(x, y). For
0 < α < π/2, the spherical cap with center x and spherical radius α is denoted by
C(x, α).

The following lemma describes sufficient conditions for the diameter of W(X) to be d,
thus extending Lemma 3 in [1].

Lemma 1.1. The diameter of W(X) is d if the following conditions are satisfied for each
pair of points x, y ∈ X:

(1) 2 sin(θ(x, y)/2) ≤ d;
(2) θ(x, y) ≥ 2β;
(3) 2R ≤ d or θ(x, y) ≤ 2 arcsin d

2R
− 2β.

For the main result of the note we also use two lemmas from [1].

Lemma 1.2. [1, Lemma 1] Suppose 0 < α ≤ π/6. K is a convex body in Rn whose
diameter is d. For some x ∈ Sn−1, Q(x) ⊂ K and x is on the boundary of K. Then x is
illuminated by ` only if ` ∈ C(−x, π/2− α).

Lemma 1.2 is formulated in [1] for cones inscribed in the unit sphere but the proof
works in our case just as well.

Lemma 1.3. [1, Lemma 2] Suppose 0 < ψ < ϕ < π/2 are fixed. Then for every positive

integer n there exists X ⊂ Sn−1 with |X| =
(

1+o(1)
sinϕ

)n
such that ψ ≤ θ(x, y) ≤ π − ψ for

each pair x, y ∈ X and every point of Sn−1 is contained in at most O(n log n) spherical
caps C(x, ϕ), for all x ∈ X.

The main result of this note is the following theorem.

Theorem 1.4. For every positive integer n, there exists an n-dimensional body of constant

width K with illumination number at least (τ + o(1))n, where τ = 1
4

√
1
6
(111−

√
33) ≈

1.047.

2. Proofs

Proof of Lemma 1.1. Due to condition (1), distances between x, y ∈ X are no greater
than d.
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Bases of spherical cones form spherical caps of spherical radius β on the concentric
sphere of radius R. For x ∈ Sn−1 the interior of the corresponding spherical cap formed
by the base of Q(x) consists precisely of all points on the sphere of radius R whose distance
to x is greater than d. In order to ensure that distances from points in X to all cone
bases are no greater than d, we need for spherical caps to be non-intersecting. This means
that the spherical distance between their centers, that is θ(x, y), is at least 2β, which is
precisely condition (2).

Finally, we need to check that the distances between points in two different cone bases
are at least d. If d ≥ 2R, this condition is satisfied automatically because 2R is the
diameter of the sphere of radius R. If the second part of condition (3) is satisfied, then
the spherical distance between two furthest points in spherical caps θ(x, y) + 2β is no
greater than 2 arcsin d

2R
so the Euclidean distance between them is no greater than d. �

The proof of Theorem 1.4 follows the steps of the proof of the main result in [1]. We
just need to choose suitable parameters for the cone.

We set d = 2R so that condition (3) is automatically satisfied. We also impose the
condition 2β + α = π/2 so that the angle α is maximal possible. By the law of cosines,

cosα = 3R2+1
4R

and cos β = 3R2−1
2R

. Using these values, we solve the equation sin(2β) = cosα

for R and find the only feasible root R0 = 1
3

√
1
2
(9 +

√
33) ≈ 0.905. Then d0 = 2R0,

β0 = arccos

(
1
4

√
1
2
(15 +

√
33)

)
, α0 = π

2
− 2β0.

Proof of Theorem 1.4. We set ψ = 2β0 and ϕ = ψ + ε, for a small ε > 0. Take the
collection X of points in Sn−1 constructed by Lemma 1.3. For this collection, we take the
union of corresponding cones W(X) with parameters α0, β0, R0, d0 each.

We first check that the condition ψ ≤ θ(x, y) ≤ π − ψ for every pair of points x, y ∈ X
implies all conditions of Lemma 1.1. Indeed, condition 2R sin β ≤ d and conditions (2)
and (3) are satisfied automatically. Condition θ(x, y)/2 ≤ π/2− β0 implies

2 sin(θ(x, y)/2)− d0 ≤ 2 cos β0 − d0 = 2
3R2

0 − 1

2R0

− 2R0 =
R2

0 − 1

R0

≤ 0,

because R0 < 1. Therefore, condition (1) is also satisfied and, by Lemma 1.1, the diameter
of W(X) is d.

By [4, Theorem 54, p. 126], there exists K, a body of constant width d0 containing
W(X). For each x ∈ X, x is on the boundary of K and, by Lemma 1.2, the set of
directions illuminating it belongs to C(−x, π/2− α0). Due to the construction of the set
X via Lemma 1.3, each direction vector ` may belong only to O(n log n) spherical caps
C(−x, ϕ). Since ϕ = π/2− α0 + ε, each direction may illuminate only O(n log n) apexes
from X. The illumination number of K is, therefore, at least

|X|
O(n log n)

=

(
1 + o(1)

sinϕ

)n
= (cos(α0 − ε) + o(1))−n.

The theorem is then proved for τ = (cosα0)
−1 = 1

4

√
1
6
(111−

√
33) ≈ 1.047 �

References

[1] A. Arman, A. Bondarenko, and A. Prymak. Convex bodies of constant width with exponential
illumination number, https://arxiv.org/abs/2304.10418.

[2] V.G. Boltyanski. The problem of illumination of the boundary of a convex body (in Russian), Izv.
Mold. Fil. Akad. Nauk SSSR, no. 10 (1960): 79-86.

https://arxiv.org/abs/2304.10418


NOTE ON ILLUMINATING CONSTANT WIDTH BODIES 4
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