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Abstract: Ring laser gyroscopes (RLGs) based on non-Hermitian exceptional points (EPs)
have garnered much recent interest due to their exceptional sensitivity. Such gyroscopes typically
consist of two-ring laser resonators, one with loss and one with an equal amount of optical gain.
The coupling strength between these ring resonators is a key parameter determining the sensitivity
of EP-based RLGs. Here we explore how the exceptional sensitivity demonstrated in this coupled
dimer may be further enhanced by adding more dimers in an array. Specifically, we propose
two types of ring laser gyroscope lattice arrays, each composed of N coupled dimers arrayed
serially or concentrically with periodic boundary conditions, that guide counter-propagating
photons in a rotating frame. Using coupled mode theory, we show that these lattice gyroscopes
exhibit an enhanced effective coupling rate between the gain and loss resonators at the EP, thereby
producing greater sensitivity to the angular rotation rate than their constituent dimers. This work
paves the way toward EP-based RLGs with the necessary sensitivity for GPS-free navigation.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ring laser gyroscopes (RLGs) use the Sagnac effect to measure rotation rates in inertial navigation
systems. When two counter-propagating light rays with the same frequency pass through a ring
resonator in a rotational reference frame, they acquire opposite frequency shifts. These frequency
shifts ∆ωs are linearly related to the rotation rate Ω of the single ring resonator through

∆ωs =
4πRΩ
λ

, (1)

where R is the radius of the ring, and λ is the wavelength of light [1]. Thus, by monitoring
the Sagnac frequency splitting, the gyration rates in navigational systems may be measured.
Unfortunately, measuring this splitting becomes challenging for even moderate rotation speeds
(≲ 10◦ per second). Greater sensitivity is needed for slower rotation rates, so alternatives are
needed for precision inertial navigation [2].

Many techniques have been studied for enhancing the sensitivity of RLGs. [1,3–11] Among
them, perhaps the most promising are those based on exceptional point (EPs) in non-Hermitian
systems [11–21]. Non-Hermitian systems are open systems that exhibit physical features of
tremendous interest [22–30], especially for sensing using coupled gain-loss resonators because
the phase transition that occurs at an EP makes them extremely sensitive to perturbations. Thus,
the addition of non-Hermitian potentials to an RLG allows them to operate near an EP singularity
and significantly enhances their sensitivity. The Hilbert space of such systems becomes distorted
at the EP, producing a degeneracy-induced intersection of complex Riemann sheets associated
with the spectrum of the system. For an Mth order EP, with an integer M being two or larger,
the spectrum around this intersection and the sensitivity of the system is given by the Mth-root
of the coupling strength between the gain and loss resonators, independent of the radius of the
rings. [14] Thus, any small perturbation around the EP will amplify by its Mth root. This effect
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has been discussed in detail in Ref. [11] where the EP-based gyroscopes using various methods
are thoroughly reviewed.

A recent experimental demonstration of a non-Hermitian RLG operated near a second-order
EP used a Helium-Neon gain medium in a triangular cavity [14]. The clockwise (CW) and
counter-clockwise (CCW) modes were modified to establish non-Hermiticity by inducing a
differential loss in the system, mimicking gain-loss non-Hermitian RLGs. Because it was a
second-order EP, the frequency shift was proportional to the square root of Sagnac frequency, so
a very small rotation of the system produced a large frequency splitting and enhanced its ability
to measure very low rotation rates by many orders of magnitude. A more recent prototype has
demonstrated the ability to measure the 0.004◦ per second rotation speed of the earth, a needed
capability for GPS-free navigation [2].

There are limits to how much sensitivity enhancement is possible with this approach. The
sensitivity of EP-based RLGs is determined by the coupling strength between the loss and gain
ring resonators. This coupling strength cannot be arbitrarily increased for very practical reasons:
decreasing the gap between the two ring resonators increases the coupling strength, but the
smallest achievable gap distance is limited by the fabrication process. Alternative routes to
engineer the effective coupling between the two rings of an EP-based RLG are needed.

Here we propose an alternative based on loss-gain ring dimers in an array with periodic
boundary conditions. We consider two geometries here, one arrayed in a serial manner and one
arrayed in a concentric geometry, each of which generates an effective coupling between the
modes propagating in the lattice composed of loss and gain rings. This ultimately creates rotation
rate sensitivity greater than that of a single dimer.

2. Serial ring lattice

Consider N dimers composed of identical rings with resonance frequency ω0 whose gain (γG<0)
and loss (γL>0) are balanced. Without loss of generality, we assume ω0 = 0. The rings
are coupled serially so as to form a periodic boundary condition in which each ring is also
coupled to its nearest neighbor ring. The counter-propagating light rays travel within the coupled
rings of the lattice in a manner characterized by the intra- and inter-dimer coupling constants
κ and ν, respectively. We assume that these coupling constants are real and that κ = mν, for
which 0 ≤ m ∈ ℜ. In order to illustrate the potential benefit of lattice geometries, we do not
include noise in our calculations and postpone the study of noise to future research. Fig. (1-a)
schematically illustrates an example of such a lattice with N = 6 dimers, whose frame is rotating
clockwise with the angular rotation rate Ω.

Using coupled-mode theory [31], we can write a set of Schrödinger-like equations indicating
the diffraction dynamics of the electric field amplitudes within the gain (ψn) and loss (ϕn) rings
of the nth dimer, as (︃

i
d
dt

− iγG + ∆ωs

)︃
ψn + κϕn + νϕn−1 = 0,(︃

i
d
dt

− iγL − ∆ωs

)︃
ϕn + κψn + νψn+1 = 0,

(2)

where t is time, and ∆ωs is the shift in the resonant frequency of the rings due to the Sagnac
effect of Eq. (1).

To analyze the setup further, it is instructive to use the momentum representation of the field
amplitudes. For the ψn (t) component this would be given by

ψn (t) =
1

2π

∫ π

−π
dqψ̄q (t) einq, (3)

in which ψ̄q (t) corresponds to the field amplitude in momentum space, q with is the wavenumber
and the interval of the integral covers the Brillouin zone −π ≤ q ≤ π. A similar equation can be
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Fig. 1. (a) Schematic diagram of a serial ring lattice comprised of N = 6 coupled gain
(G) and loss (L) rings, with coupling constants κ = 1012 s−1 and ν = 0.5κ s−1. In this
model the CW mode in one resonator couples to a CCW mode of the nearest neighbor
resonator. The CW and CCW modes experience the Sagnac effect with opposite signs. (b)
The beat frequency ∆ω for wavenumbers q = 0 (+) and π

2 (⃝) as a function of rotation rate
Ω, compared to the single dimer case (⋆).
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written for ϕn. Notice that for a lattice with a periodic boundary condition, the wavenumbers
become quantized as q = 2πm

N with m = 0, 1, . . . , N.
Substituting Eq. (3) and the similar equation for ϕn into (2), we obtain a 2 × 2 Hamiltonian for

the coupled cavities

H = ⎛⎜⎝
−iγG + ∆ωs κ + νe−iq

κ + νeiq −iγL − ∆ωs

⎞⎟⎠ . (4)

Applying stationary solutions to this Hamiltonian determines the band structure ω±(q) of the
system

ω± = −i
(γG + γL)

2

±

√︃
κ2 + 2κν cos q + ν2 −

(︂
i∆ωs +

γG − γL

2

)︂2
.

(5)

For the non-rotating case where ∆ωs = 0, we find from Eq. (5) that when

γG − γL = 2
√︂
κ2 + ν2 + 2κν cos q, (6)

the system is at its exceptional point for the mode associated with the corresponding q, the
eigenvectors of the Hamiltonian (4) abruptly coalesce, and the system lases at a single frequency.

However, when the system starts rotating with ∆ωs the system departs from exceptional point
and two supermodes will be created with a beat frequency ∆ω [14,16]. In other words, by
operating at the exceptional point, the beat frequency between the two branches of the band
structure (∆ω = ω+ − ω−) will be given by

∆ω = 2

√︄
∆ω2

s − 2i∆ωs

(︃√︂
κ2 + v2 + 2κν cos q

)︃
. (7)

Note first that the dispersion relation Eq. (5) and beat frequency Eq. (7) of the serial lattice
model is invariant under the exchange of κ and ν. Thus, the beat frequency remains the same if
we exchange intra- and inter-dimer coupling strengths. Second, the beat frequency is a function
of the wavenumber q, so one can tune the beat frequency by varying the wavenumber. Beyond
RLGs, this might be useful for other applications, such as tunable optomechanical modulators
and filters.

Furthermore, it is clear from Eq. (7) that the largest beat frequency |ℜ(ω+ − ω−)| occurs at
q = 0 where

∆ω = 2
√︂
∆ω2

s − 2i∆ωs(κ + ν). (8)
Because the effective coupling is the sum of the intra- and inter-dimer couplings in the system,

we can increase the beat frequency by increasing either. This is the advantage over a system
with only a single dimer composed of two coupled ring resonators, whose beat frequency
∆ω = 2

√︁
∆ω2

s − 2iκ∆ωs only contains the intra-dimer coupling term.
To illustrate this advantage, Fig. (1-b) compares the beat frequency of an N = 6 serial ring

lattice to the single dimer model in Ref. [14], as a function of Ω for q = 0 and π
2 . We use the

experimentally reported parameters R = 100 µm, λ = 1.55 µm, κ = 1012 s−1 [14], and assume
an inter-dimer coupling constant ν = 0.5κ s−1. We see that because of the cos q term the lattice
model provides a higher beat frequency and greater sensitivity for 0 ≤ q ≤ π/2 than in the single
dimer case reported in Ref. [14], while for q>π/2 the lattice becomes less sensitive. Note that
the mode associated with q = 0 is the last mode that enters the broken phase or weak-coupling
regime; all other modes are already in the broken phase with imaginary energy eigenvalues.
Consequently, to operate at q = 0 the gain profile must be tuned such that other modes do not
lase, even if they are in the broken phase.
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3. Concentric ring lattice

In this section, we introduce an alternative lattice to show the power of our method for modifying
the effective coupling and achieving higher sensitivity. The second model is again composed of a
lattice of dimers, characterized by intra-dimer coupling constant κ, with a periodic boundary
condition, as depicted in Fig. (2-a). The difference from the serial lattice is in the way the
inter-dimer couplings ν occur: each dimer ring in the concentric lattice is coupled to two rings in
adjacent dimers, not just one as in the serial case (compare Figs. 1(a) and 2(a)).

Fig. 2. (a) The concentric lattice model with N = 8 dimers aligned radially along the
circumference of a circle. The rings interact internally with κ and are coupled to the rings of
the adjacent dimers through coupling constant ν. The frame is rotating clockwise with the
angular speed of Ω, while the light rays propagate through the gain-loss cavities in opposite
directions. (b) Beat frequencies for κ>ν and wavenumbers q = 0 (+) and π

4 (⃝), compared
to the single dimer case (⋆). (c) Beat frequencies for ν>κ for three different wavenumbers.

Following the same coupled mode theory formalism we developed for the serial lattice, we
calculate the wave function and the diffraction dynamics of the electric field amplitudes in the
concentric lattice. In this case, we find that the amplitudes of the electric fields within the gain
and loss rings of the nth dimer are given by(︃

i
d
dt

− iγG + ∆ωs

)︃
ψn + κϕn + ν (ϕn−1 + ϕn+1) = 0,(︃

i
d
dt

− iγL − ∆ωs

)︃
ϕn + κψn + ν (ψn−1 + ψn+1) = 0.

(9)
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The Hamiltonian of Eq. (9) in momentum space is then given by

H = ⎛⎜⎝
−iγG + ∆ωs κ + 2ν cos q

κ + 2ν cos q −iγL − ∆ωs

⎞⎟⎠ . (10)

From this, we can calculate the beat frequency from the band structure eigenfrequencies as

∆ω = 2
√︃
(κ + 2ν cos q)2 −

(︂
i∆ωs +

γG − γL

2

)︂2
, (11)

for which the ∆ωs = 0 degeneracy occurs when

γG − γL = 2 (κ + 2ν cos q) . (12)

To operate at the exceptional point and obtain the highest sensitivity of the concentric lattice,
we apply Eq. (12) into (11) and find a new relationship for the beat frequency, namely

∆ω = 2
√︂
∆ω2

s − 2i∆ωs (κ + 2ν cos q). (13)

In comparison with Eq. (7), notice that the beat frequency here is not invariant under the
exchange of the two coupling values. Thus, exchanging the couplings will change the sensitivity
of the gyroscope, as shown in Fig. (2-b,c).

Figure (2-b) plots the beat frequency of an N = 8 concentric ring lattice with respect to Ω
for κ = 1012 s−1 and ν<κ for wavenumbers q = 0 and π

4 . Notice the enhanced sensitivity over
the simple gain-loss RLG dimer, especially for q = 0, when intra-dimer coupling dominates
inter-dimer coupling. Alternatively, Fig. (2-c) plots the latter relation for ν = 1012 s−1 for ν>κ
for three different values of wavenumber q. It is clear that sensitivity strongly depends on q. The
mode that enters the broken regime first has less sensitivity than the one that enters last. As
before, the system must be operated such that the modes already in the broken regime do not gain
enough to start lasing.

Before closing this section we would like to mention that in order to create the concentric ring
configuration, one might need to put the outer rings out of plane such that they become parallel
to the rings in the inner circle.

4. Conclusion

In summary, we introduced two lattice geometries of coupled gain-loss resonator dimers for
enhancing sensitivity over single dimer EP-based RLGs. The coupled gain-loss ring dimer in a
lattice with periodic boundary conditions enhanced effective coupling between the ring dimers.
We studied two lattice configurations, a serial ring lattice, and a concentric ring lattice, using
coupled mode theory. We showed that for any mode with q ≠ π the effective coupling strength
between the two modes of the lattice can be greater than the coupling strengths between any
two adjacent rings. Hence, the sensitivity of RLGs based on these configurations would also
be higher than that of single dimers. Although both configurations proposed in this letter are
working based on second-order exceptional points, the second one breaks the symmetry in the
effective couplings between the modes and allows for better control of the system. However, this
comes with a price of a mode difficult fabrication process. The two configurations considered
here may be generalized to other configurations with the same rotational symmetry. Lattices of
coupled dimers may pave the way for integrated EP-based RLGs with the extreme sensitivity
required for measuring tiny rotation rates. However, excessive noise at EPs might still limit their
use [32–36]. Nonlinear effects could suppress excessive noise near EPs [28]. Together with such
noise-suppression techniques, lattices of coupled dimers are promising for integrated EP-based
RLGs with a sensitivity high enough to measure earth rotation and enable GPS-free navigation.
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