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ABSTRACT

Barai, Prosanta, Effects of Macronutrients Intake and Physical Activity on Childhood Obesity 

of Hispanic Children. Master of Science (MS), August, 2022, 88 pp., 22 tables, 30 figures, 

references, 100 titles.

Obesity has become more ubiquitous during the past few decades, and still, its prevalence 

is increasing. Although numerous studies are available in the literature contributing to diabetes 

and obesity prevention among Hispanic population, there is little to no study that has focused on 

early childhood, specifically the 4-6yo Hispanic population. Early prevention of obesity is the 

key for children health as well as their adulthood health. Our study aims to determine the 

causal path for this particular population’s obesity using most recent three cycles (2014-2018) 

of NHANES’ pre COVID pandemic data on physical activities, macronutrients intakes and 

socioeconomic factors. We also build a predictive machine-learning model to predict childhood 

obesity. Our analysis discovers a significant path from increased physical activity to decreased 

BMI. The Hispanic population has a significant positive causal path to BMI. Macronutrients, 

carbohydrate, fat, and sugar intakes show a positive path to BMI, while fiber intake shows a 

negative path to BMI. Interestingly, unlike other race/ ethnicity groups, Hispanic males and 

females have a significant positive path from carbohydrate intake to BMI. Among the 

machine-learning models we constructed, random forests model yields highest accuracy of 

eighty six percent, and the second highest accuracy of eight four percent from support vector 

machine algorithm.

Key Words: Obesity, Hispanic, Children, NHANES, Machine Learning, Path 
Analysis.
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CHAPTER I

INTRODUCTION

Overweight and obesity are defined as abnormal or excessive fat accumulation. A straight-

forward indicator of that is body mass index (BMI), a simple weight-for-height index often used to 

describe overweight and obesity in adults. It is calculated as a person’s weight in kilograms divided 

by the square of his height in meters (kg/m2). According to WHO, adults with BMI greater than 

or equal to 25 are classified as overweight and obese if greater than or equal to 30. However, in 

children under 5, overweight is defined as weight-for-height greater than two standard deviations 

above WHO Child Growth Standards median and obese if it is greater than or equal to three standard 

deviations [1].

Obesity has become more ubiquitous during the past few decades and still, the prevalence 

of it is increasing. It is in every population in the world and all regions, including rural parts 

of low- and middle-income countries [2]. A 1997 WHO expert consultancy report warned of an 

escalating epidemic of obesity that would put the populations of most countries at risk of developing 

non-communicable diseases (NCDs). Since then the prevalence statistics on obesity have escalated 

rapidly in almost all countries, and these country-specific trends are now coalescing to create a true 

pandemic. In 2016, more than 1.9 billion (39%) adults aged 18 years and older were overweight 

globally. Over 650 million (13%) of those adults were obese, which caused the global obesity 

percentage to be tripled in 2016 than that of 1975 [3]. As far as the younger population concern, 

the prevalence of overweight and obesity among children and adolescents aged 5-19 has risen 

dramatically from just 4% in 1975 to just over 18% (340 million) in 2016 [4]. Besides, in 1975 

less than 1% younger population (5-19 yo) were obese, while more than 124 million children and 

adolescents (6% of girls and 8% of boys) were obese in 2016 [5].
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In the USA, regardless of age, the severity of obesity is no different from the global trend.

Nationally, the prevalence of obesity has increased at an alarming rate over the past three decades.

In 1988, among the population of age 20 and over, 23% were diagnosed obese (2.8% were severely

obese). However, in 2017-2018 that prevalence roughly doubled and became 43% (9% was

severely obese) [6]. Historically, obesity primarily affected adults, but childhood obesity has grown

significantly in recent decades. From the mid-1970s to the mid-2015s, obesity roughly doubled

among U.S. children ages 2 to 5 and approximately increased by more than four times (4% to 18%)

among young people aged 6-11yo [7].

This massive prevalence of this chronic disease comes with massive costs. It not only

affects our organ system but increases the risk of premature death [8]. Numerous studies found

obesity has been linked to an increased risk of chronic disease, disability, death, decreased quality

of life, and productivity [9, 10]. According to WHO overweight, and obesity are linked to more

deaths worldwide than underweight [11]. Alone in the U.S., death caused by poor diet and physical

activity increased by 33% in the past decade, and death attributed to other causes decreased [12].

Children are also greatly affected by it. Studies found that overweight children are more likely to

develop heart disease and cause stroke before age 30 [13]. Health issues and obesity can cause high

social, medical, and phycological costs [14, 15]. Passive costs caused by obesity (e.g., preventive,

diagnostic) responsible for almost 7% of medical expenses in the U.S., and government health

service programs cover half of it [16].

No way we can ignore the alarming surge of obesity in the U.S. younger population. Because

as this generation of the population gets older, the U.S. healthcare system could meet an unexpected

increase in the physical complications associated with diabetes, such as amputations, blindness,

kidney failure, heart attacks [17, 18].

The rest of the chapters are organized as below. In Chapter II the previous research on

obesity is presented. Also, some informative thoughtful public health expert opinion is shown for

overall understanding of obesity. In chapter III we described the motivation and objectives that

guided us to do the work. Chapter IV includes the description and structure of the data, as well as

2



data cleaning, preprocessing, and how we handled it. Chapter V describes the necessary statistical

methods that we used in this study. Additionally, details of our study’s findings are presented in the

chapter VI. Chapter VII presents discussion and conclusion on findings. Chapter VIII is composed

of limitations we had, and possible future works to address and improve those limitations of our

study. Finally, the supporting supplementary materials were added in chapter A.
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CHAPTER II

LITERATURE REVIEW

2.1 Public Health Expert’s Opinion

Dietary patterns have a profound influence on human health, which has led the U.S. 

govern-ment to revise and reissue the Dietary Guidelines for Americans every five years [19, 

20]. These guidelines emphasize a diverse and balanced diet primarily based on the 

consumption of whole grains (at least half of total grain intake), fresh fruits and vegetables 

(F&V), followed by the consumption of nutritious dairy, oils (mostly from oils in vegetable 

and foods) and lean animal protein foods. Moreover, the guidelines suggest adequate physical 

activity with moderate intake of energy, with the hope of helping to alleviate the severe obesity 

epidemic in the U.S. These guidelines specifically recommend limiting the consumption of sodium, 

refined sugar, saturated fat, trans-fatty acids, and avoiding overconsumption of total energy.

A significant growth spurt happens during puberty, usually between 8 to 13 years of age in 

girls and 10 to 15 years in boys. Puberty lasts about 2 to 5 years. By the time girls reach age 15 

and boys reach age 16 or 17, the growth of puberty has ended for most, and they will have reached 

physical maturity. The following recommendations are critical to kids’ overall health and wellness:

• Enough rest: Sleep patterns vary by age and the individual child. But most kids need an

average of 10 to 12 hours of sleep per night. Sleep gives growing bodies the rest they need to

grow well [21].

• Good nutrition: A balanced diet full of essential vitamins and minerals will help kids reach

their full growth potential [22].

• Regular exercise: Because obesity is a problem for many kids, parents should ensure that
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their kids exercise regularly. Bicycling, hiking, in-line skating, sports, or any enjoyable

activity that will motivate kids to get moving will promote good health and fitness and help

them maintain a healthy weight [23, 24].

2.2 Previous Works

Numerous relentless researcher has put their time and effort into studying obesity from

different perspectives. Some focused on the causal relationship between diet and obesity, whereas

some focused on physical activity. Some other studies tried to analyze the economic aspect

associated with obesity [25]. For instance, Wang and Beydoun (2007) focused on predictive

analysis of the prevalence of obesity by considering gender, age, socioeconomic, racial/ethnic,

and geographic characteristics. The authors performed a systematic review and Meta-Regression

analysis on multi-platform data (NHANES, BRFSS, and Youth Risk Behavior Surveillance System).

The study projects an increasingly alarming rate of obesity for the next few decades . Additionally,

another latest research focused on 2831 individuals from NHANES 2011-2014 data of mixed

race (White, African American, and Mexican American) diagnosed with obesity [26]. The study

focused on the causal relationships of nutrition intake and physical activity on the BMI of those

individuals. Using multivariate analyses and path analyses, they conclude a significant causal path

from increased physical activity to increased magnesium (Mg) intake to decreased BMI . Another

study from 1999 focused more on the low-income Mexican American population. The obesity risk

factors measured were body fat percentage, dietary fat intake, daily fruit and vegetable intake, and

physical fitness [27].

There are quite a few studies that were more focused on how dietary intake (especially fiber)

affects the metabolism of the elderly population. For example, in 2000, an in-depth analysis was

performed focusing on the beneficial effects of high dietary fiber intake in patients with obesity.

Thirteen patients were studied over more than a month and provided two different diets. Later they

used repeated-measures analysis of variance and Wilcoxon signed-rank test to compare the two

dietary periods. The study found that increased fiber intake was beneficial for patients with obesity

(reduced BMI, reduced body fat percentage) [28]. A case-cohort study was conducted to determine
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the association between dietary fiber intake and risk of obesity diabetes in the European population

(n = 11,559) over 10.8 years. Country-specific HRs were estimated using Prentice-Weighted Cox-

proportional hazards models and were pooled using a random-effects meta-analysis. Dietary fiber

intake was associated with a lower risk of obesity [29].

As far as the younger population is concerned, some studies were conducted aimed at

the younger population (2-18yo). In 2012, a study was conducted to explore the association of

Fiber Intake with Childhood Obesity Risk (in 2-18yo, n = 2072) and Diabetes Risk of Adolescents

(12-18yo, n = 2595) using NHANES 2003-2006 data. Another study was conducted on 2 - 18yo

children. Both study discovered a beneficial association between dietary fiber intake and lower

risk for overweight and obesity [30]. Another study was designed to identify dietary patterns and

determine their relationships with obesity among Chinese children and adolescents. Data collected

from 1282 children and adolescents aged 7-17yo. Three dietary patterns were identified: modern

(high intakes of milk, fast foods and eggs), traditional north (high intakes of wheat, tubers and

other cereals) and traditional south (high intakes of vegetables, rice and pork). As a result, the

modern dietary pattern and the traditional north dietary pattern were associated with higher risk of

obesity [31]. In 2007 another study was conducted on a cross sectional data of 2-4yo and found

‘Overweight’ children had less educated fathers and heavier parents than ‘normal’ weight children

(p < 0.05).

Another study examined the relationship between dietary components, especially sugar

intake, and insulin dynamics in overweight Latino youth (9-13yo, n = 63). Hierarchical regression

analysis ascertained the potential independent relation between insulin dynamics and dietary

components. Higher total sugar intake was significantly associated with lower acute insulin response

(AIR) [32]. One study examined the association between overweight status and physical activity

(PA) among gender and ethnic (Hispanic vs. non-Hispanic) sub-groups in elementary school-

age children. There was a significant gender, ethnicity, and overweight interaction for total PA

(combination of sedentary PA and moderate to vigorous PA) and MVPA (both p < 0.01) [33].

Another study focused on residential seatings effect on (rural or urban) obesity and related health
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behaviors among children in the United States using NHANES data and found that significantly

more rural children were obese than urban children [34]. In 2004 another study was conducted

on 878 adolescents was to examine how diet, physical activity, and sedentary behaviors related to

overweight status and found that of the seven dietary and physical activity variables examined in this

cross-sectional study, insufficient vigorous physical activity was the only risk factor for higher body

mass index for adolescent boys and girls [35]. Another study examined the relationship between

television watching, energy intake, physical activity, and obesity status in 8-16yo US boys and girls.

It found that the prevalence of obesity is lowest among children watching no more than one hours of

television a day and highest among those watching four or more hours of television [36]. Another

study found that being African American/ Hispanic, male, less physically active, and belonging to

low-income families is more likely to be overweight [37]. Another study determined a negative

association between fiber intake and obesity Using regression analysis. The total fiber in grams was

inversely associated with BMI after adjusting for sex, age, education level, and income [38].

Another study was conducted on a sample of 5-6yo Hispanic (predominantly Mexican

American) children in Chicago, Illinois, to see if overweight is more common in more highly

acculturated immigrant families. Free access to food, drinking sweetened beverage was positively

correlated with overweight but no significant relation with acculturation [39].

Besides, some other studies attempted to explore the effect of Sugar-Sweetened Beverages

and dietary intake on obesity. A longitudinal 21 year follow-up study of Finnish children aged 3-

18yo found the increase in consumption of sugar-sweetened soft drinks from childhood to adulthood

was directly associated with BMI in adulthood in women (test statistics = 0.45, p = 0.0001) but not

in men [40]. A study was conducted on one hundred sixteen 2 year old children and one hundred

seven 5 year old children. Findings on juice consumption (sugar intake) have been more mixed;

cross-sectional studies find a link [41], but some long-term studies do not. For example, a recent

study looks at repeated cross-sections of 1,548 10 year old fifth graders in one school and finds

a positive, but not significant, relationship between sweetened beverage consumption and BMI

[42]. Less sugar sweetened beverage and more fiber intake were expectedly better for each case

7



[43, 44, 45, 46, 47, 48, 49].
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CHAPTER III

SCOPES AND OBJECTIVES

Although numerous pieces of literature available that tried to find answers to some pressing

issues like how obesity can be controlled and what risk factor is associated with it, using descriptive,

unadjusted prevalence measure. Even some of the work tried to alarm us by forecasting the

plausible scenario of a decade ahead. But none of them were aimed at the younger population

(4-6yo), especially the Hispanic children, because of some limitations. In contrast, in the United

States, the Hispanic population has a greater chance (11.7 percent) of being affected by obesity

[50]. Our approach to analyzing obesity and the overlooked younger cohort narrowed us down to a

unique perspective to put on obesity.

On top of that the global prevalence of obesity is projected to increase to 7079 individuals

per 100,000 by 2030, reflecting a continued rise across all regions of the world [51]. So, this

epidemic deserves more attention, and we should study this disease more meticulously than ever.

Because if we can determine the cause and risk factors associated with it at an early age, it will

strengthen us to fight the upcoming challenge of non-communicable chronic diseases like diabetes,

cardiac complications, cancers, and musculoskeletal disorders. By keeping that in consideration,

we set the purpose of this study as follows. Establish causal path models to analyze the effect of

physical activity and macro nutrition intake on early childhood obesity among Hispanic children.

Finally, we will implement cutting-edge machine learning algorithms (e.g., random forests, SVM,

and decision tree) to classify and predict obesity among US children of age four to six.
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CHAPTER IV

DATA AND VARIABLES

4.1 Brief Overview of NHANES Data

The National Health and Nutrition Examination Survey (NHANES) [52] program include

a series of health examination surveys conducted in mobile examination units or clinics by the

National Center for Health Statistics of the CDC. NHANES’ main aim is to assess the health and

nutritional status of a representative civilian US population using a multistage, stratified, clustered

probability sampling design. The resulting data indicate Americans’ nutritional and health status

through dietary intake data, biochemical tests, physical measurements, and clinical assessments for

evidence of nutritional deficiencies of individuals two years or older. The interviewer directly got

answers to necessary questions from those aged 16 years or older. If the selected sample were less

than sixteen years old, a SP (sampled person) or proxy interview was conducted and interviewer

obtained responses from the parent or guardian. Here is a brief description of the components and

their belongings data types.

1. Demographic data: The demographic file provides individual, family, and household-level

information on several topics like age, education, family wealth status, ethnicity, gender of

the respondent.

2. Dietary data: This component includes data regarding the individual’s dietary intake. What

respondents eat and what neuration they take from neuration supplements. However, the

dietary data has two parts:

(a) Individual food file: Contains detailed information about each food/ beverage item
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(including the description, amount of, and nutrient content) reported by each participant

is in the Individual Foods files.

(b) Total Nutrient Intakes Files: Contains each participant’s daily total energy and nutrient

intakes from foods and beverages, and whether the amount of food consumed was usual,

much more than usual, or much less than expected, are included in the Total Nutrient

Intakes files.

3. Laboratory data: Contains individual files on Urine Collection, Hepatitis A virus, HIV,

Heavy Metals, Plasma Glucose, Total Cholesterol, Triglycerides, etc.

4. Examination data: Contains individual files on Audiometry, Blood Pressure, Body Measures,

Muscular Strength, Oral Health, Vision Exam, etc.

5. Questionnaire data: Contains individual files on Physical Activity, Alcohol Use, Balance,

Blood Pressure, Diabetes, Drug Use, Social Support, Vision, Weight History, etc.

4.2 NHANES Data Retrieving and Processing

Initially, we decided to use the latest data from NHANES in this study to get the most

updated results. But Due to the coronavirus disease 2019 (COVID-19) pandemic, the NHANES

program stopped conducting fieldwork in March 2020. As a result, data collection for the NHANES

2019-2020 cycle was not finished, and the data that was gathered was not representative of the

entire country. Therefore, we decided to use the 2017-2018 cycle data. However, due to our defined

cohort of 4-6yo, to produce a reasonable representative sample, we used data beyond the 2017-2018

cycle [53, 54]. Literature suggests, sample size can be augmented by combining previous cycle

years data [34]. So, we decided to combine the NHANES cycles year “2014-2015,” “2016-2017,”

and “2017-2018” together.

To construct a specific data set for this study, we had to collect data from more than one

segment (see 4.1). For instance, age, gender, weight, and ethnicity are in the Demographics segment,

while data about dietary intake (includes 65 nutritional intake variables) is in the dietary data section.
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Table 4.1: List of variables, description and it’s code name in NAHNES dataset that were used in
the study.

Component Variable Name Description NHANES variable code name

ID Respondent sequence number SEQN
Gender Gender RIAGENDR
Age Age in years at screening RIDAGEYR
Race Race/Hispanic origin RIDRETH1
SES Income to poverty ratio INDFMPIR

Demographics data

Education HH reference persons’ education DMDHREDU

ID Respondent sequence number SEQN
Fiber Average dietary fiber intake (gm) DR1TFIBE, DR2TFIBE
Carb Average carbohydrate intake (gm) DR1TCARB, DR2TCARB
Sugar Average sugars intake (gm) DR1TSUGR, DR2TSUGR

Dietary Data(Total Nutrition Intake)

Fat Average fat intake(gm) DR1TTFAT, DR2TTFAT

ID Respondent sequence number SEQNExamination Data
BMI Body Mass Index (kg/m**2) BMXBMI

ID Respondent sequence number SEQNQuestionnaire data
Physical Activity (PA) Days physically active at least 60 min. PAQ706

BMI measurement data was collected from the examination data segment. Finally, data on physical

activity was collected from the questionnaire segment. One variable that was identical in each

segment in each year is the respondent sequence number (SEQN). We collect SEQN for each

segment to merge the segment data files. Before merging, other necessary steps were performed

as described in following sections. Table 4.1 shows the variables, key names, and descriptions we

initially decided to include in our study upon reviewing numerous pieces of literature. This study

will use combined data (cycle 2014-2015, 2015-2016, and 2017-2018)from NHANES.

4.2.1 Demographic Data

In the demographic data, age was recorded in years at the time of the interview. The race

was coded as " 1 = Mexican American ", "2 = Other Hispanic", "3 = Non-Hispanic White", "4 =

Non-Hispanic Black", and "5= Other Race - Including Multi-Racial". We combined "1 = Mexican

American" and "2 = Other Hispanic" as Hispanic children. The Household’s reference person’s1

education level was coded defiantly in cycles 2017-2018, 2013-2014, 2015-2016. Please refer to

Table 4.2 to see the differences. We recoded the 2013-2014 and 2015-2016 coding per 2017-2018.

So 2013-2014 and 2015-2016, so levels 1 and 2 merge into level 1 that is less than high school

1The household reference person is defined as the first household member 18 years of age or older listed on the
household member roster, who owns or rents the residence where members of the household reside.
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Table 4.2: Different levels of education in different cycle years.

Year Levels Value Description

2017-2018
1 Less than high school degree
2 High school grad/GED or some college/AA degree
3 College graduate or above

2013-14 and 2015-1016

1 Less Than 9th Grade
2 9-11th Grade (Includes 12th grade with no diploma)
3 High School Grad/GED or Equivalent
4 Some College or AA degree
5 College Graduate or above

degree (LHS). levels 3 and 4 merged into level 2 that is, high school grad/GED or some college/

AA degree (HSC). Finally, level 5 from the cycles 2013-2014 and 2015-2016 was recoded as 3. The

variable socioeconomic status (SES) represents the measure of the ratio of family income to poverty

threshold (HHS poverty guidelines specific to family size [55]). The value ranges from 0-4.99; the

higher the value is better the socioeconomic status.

4.2.2 Dietary Data

In order to record dietary data (fiber, fat, carb, sugar), NHANES conducted two 24-hour

dietary recall interviews where all foods and beverages consumed the previous 24 hours ending

at midnight were solicited and recorded using the standardized Automated Multiple Pass Method.

The first dietary recall was collected in person, and the second was collected by phone 3 to 10

days later, on a different day of the week. A set of food measurement guides were provided to

participants for assistance in estimating portion sizes during both the in-person and phone recalls.

For each participant, daily total energy and nutrient intakes from foods, beverages, and water

(including tap and bottled water), are included in the Total Nutrient Intakes data. This data does not

contain nutrients obtained from dietary supplement intakes, antacids, or medications. For example,

"DR1TTFAT = Total fat (gm)" measures the amount of fat an individual has taken on the first day

of the interview through the medium mentioned above. So we collected total dietary data from the

first day (DR1TTFAT ) and the second day (DR2TTFAT) and calculated the average of these two
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measurements to calculate the "Fat" variable [34]. If either of those two measures (day one and day

two) was missing, we took the available one. If both of them were missing, we recorded it as "NA."

So the resulting "Fat" variable contains an average fat intake of two days. A similar approach was

followed to calculate the variables "Fiber," "Carb," and "Sugar."

4.2.3 Examination Data

From this component, we extracted BMI information about sampled individuals. Body Mass

Index (BMI) was calculated as weight in kilograms divided by height in meters squared and then

rounded to one decimal place. The measurement was recorded for individuals of age two years

or more. This variable was later used to classify an individual as obese or not obese according to

CDCs guidelines [56]. According to CDC’s new" BMI reference, provided in 2000, "Overweight"

is defined as a BMI greater than or equal to the sex-age–specific reference 95th BMI percentile.

However, the gender and age specific reference BMI percentile is available from age 24 months,

24.5 months, and then with one month increment in ages. So reference BMI percentile was not

explicitly available for four years (48 months), five years (60 months), and six years (72 months). To

find out the reference BMI, we performed linear interpolation using the nearest two BMI available.

For example, BMI for age 60 was interpolated using the gender and age specific reference BMI for

ages 59.5 and 60.5. The exact manner was followed for ages 48 months and 72 months.

4.2.4 Questionnaire Data

We extracted physical activity data from this segment. In NHANES interview, individuals

of age 2-11 years were asked, "During the past seven days, on how many days were you/was SP

physically active for a total of at least 60 minutes per day? Add up all the time you/he/she spent in

any physical activity that increased your/his/her heart rate and made you/him/her breathe hard some

of the time." Then the answer was recorded numerically, ranging from 0 days to 7 days. According

to the guideline, a dichotomous variable was created as physically active if the record indicates

vigorous activity ≥3 days; otherwise, not physically active (< 3) days [57].
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4.3 Examination of Three Cycles of NHANES

We collected the necessary data files from the NHANES website according to our demand

and extracted the variables from each component listed in Table 4.1. Then we merged those four

components variable using "ID" as a key variable. After that, we cleaned the data: removing missing

values, taking care of special coded values, and any unusual observations. For example, the variable

"education" had 7 and 9 coded for "refused" and "don’t know" responses. After doing that, when

we applied the age filter (children of age 4-6yo), we had 468, 425, and 317 observations in the

2013-2014, 2015-2016, and 2017-2018 cycle data, respectively. Combining those three cycles, in

the end, gave us a cohort of 1210 children 4-6yo among them 348 observations was Hispanic. But

before we did that, we validated that these three cycles could be merged and used as a single data

set.

4.3.1 Comparison of Distribution

Figure 4.1 shows the grouped bar diagram of categorical variables for three cycles 2013-

2014, 2015-2016, and 2017-2018. The proportion of male and female individuals was similar across

three cycles, whereas non-Hispanic black children were the highest in 2017-2018. The proportion

of physically active children was found to be much higher across all three cycles than not active.
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Figure 4.1: Bar-diagram of Gender, Race, Education, and Physical activity by cycles.

4.3.2 Test of Hypothesis

The Figure 4.2 shows the probability density functions of continuous variables in our data.

Our visual inspection reveals that, there is not any considerable difference in the distribution of the

variables across all three cycles. Despite of visual confirmation, we performed the K-S test to test

the assumption that all three cycles of samples came from similar probability distribution under the

null hypothesis. Test statistics and p-value was reported in Table 4.3. Analysis reveals that there is

not enough evidence to assume their population differences. Additionally, we performed one way F

test for multiple mean comparisons. At a 5% level of significance, the p-value of the F-test tells us

we can assume the similarity in distributions. Finally, we performed Mood’s median test to test the

null hypothesis that the three population mean is equal. Combining Figure 4.2 and Table 4.4 we can

confirm that there is no dissimilarity among the three cycles of data.
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Figure 4.2: Probability density function of continuous variables for three cycles.

Table 4.3: Kolmogorov—Smirnov test, to pair wisely test whether three cohorts has different
distributions. Value inside parenthesis are p-value to corresponding test statistic. Bolder values
implies significant p-value.

Variables –> Age SES Fiber Carb Sugar Fat BMI

Cycle (2013-2014, 2015-2016) 0.02 (1.000) 0.1 (0.028) 0.05 (0.631) 0.05 (0.747) 0.05 (0.757) 0.1 (0.018) 0.07 (0.186)
Cycles (2013-2014, 2017-2018) 0.06 (0.444) 0.15 (0.000) 0.06 (0.608) 0.07 (0.261) 0.08 (0.182) 0.11 (0.023) 0.04 (0.852)
Cycle (2015-2016, 2017-2018) 0.05 (0.804) 0.06 (0.555) 0.07 (0.274) 0.1 (0.071) 0.06 (0.462) 0.05 (0.743) 0.06 (0.445)

Table 4.4: Test of hypothesis for equality of population mean and median in three cycles. Bolder
values implies significant p-value.

Variables F-test1 Mood’s Median-test2

Test statistic p-value Test statistic p-value

Age 0.610 0.544 3.350 0.187
SES 2.350 0.096 16.790 0.000
Fiber 1.480 0.228 3.000 0.223
Carb 0.800 0.450 4.160 0.125
Sugar 1.460 0.233 0.290 0.863
Fat 4.060 0.017 8.510 0.014
BMI 2.170 0.115 1.230 0.542

1 F-test for multiple mean comparison.
2 Mood’s median test: Test whether three cohorts has different Medians.
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CHAPTER V

STATISTICAL METHODS

5.1 Path Analysis

Path analysis is a statistical technique used mainly to examine the comparative strength of

direct and indirect relationships among variables. A series of parameters are estimated by solving

one or more structural equations to test the fit of the correlation matrix in two or more causal models,

which the researcher hypothesizes to fit the data. Geneticist Sewall Wright initially developed path

analysis in the 1920s to examine the effects of hypothesized models in phylogenetic studies [58]. In

Wright’s analysis, the unknown parameters in the model were solved by developing a system of

equations based on the correlations among variables impacting the outcome. The goal of the path

analytic method was to discover "the extent to which any specific cause causes the variance of a

given consequence" along each individual path in such a system [58].

A few decades later, along with social science and biology, other scientific fields adopted

this efficient method to address causality in versatile problems, including health care and the latest

health issue [59, 60]. Wu, Datta, and others used path analysis to examine the causal path among

demographic and nutrition intake on type 2 diabetes [26]. Besides its applicability in numerous

fields, we chose path analysis due to another advantage. Using path analysis, we could explicitly

specify how the variables relate to one another and expect the development of detailed and logical

theories about the processes influencing obesity. It will also be beneficial because it will allow us

to break apart the causal linkages among various factors affecting obesity into direct effects and

indirect components. Even though path analysis suits interval level data, its efficiency, structure,

recent advancement[61] and wide availability of computational tools [62] motivated us to implement
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Figure 5.1: An example of Exogenous, Endogenous variables and Mediation effects.

this method in our study.

5.1.1 Exogenous, Endogenous Variables, and Mediation

Variables often play more than one role in path models and this is reflected in the analytic

language used in path analysis. Exogenous variables are variables whose cause is external to the

model and whose role is to explain other variables or outcomes in the model. In Figure 5.1, for

example, the model does not explain the variability in mediator. However, these exogenous variables

are hypothesized to account for differences dependent variables.

Endogenous variables are variables that are caused by one or more variables within the

model. Endogenous variables have incoming arrows and can include outcome variables (only

incoming arrows) and intervening causal variables. Endogenous variables, such as nutrient intake,

have only incoming arrows. The hypothetical model in Figure 5.2 indicates that nutrient intake

are influenced by other variables in the model (e.g., age, income to education), and in turn have an

effect on BMI.

The overall association between two variables can be generated by several different causal

relationships at the same time. The overall association between x and y could be due to the effects of

a causal ancestor on a causal descendant, (and/ or) the effects of a common causal ancestor, (and/ or)

due to an unresolved causal relationship. The effects of causal ancestors on causal descendants can
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be breakdowns into direct and indirect effects. Indirect effects are the effects of a causal ancestor

on its descendant that are completely transmitted through some other variable. This intervening

variable is sometimes called a mediator of the causal effect. For instance, in Figure 5.1, the effect

of X on BMI along the path X → N → BMI is an indirect effect of X that is mediated by N. To

quantify this effect, we have to multiply the path coefficients (b, c) along this path. This indirect

effect measures how much BMI would change following a change in X if all causal parents of

BMI except for N were held constant. In general, an indirect effect measures how much the effect

variable would change following a change in the indirect cause when this effect is transmitted only

along the path in question. However, the direct causal effects are the effect that goes directly from

one variable to another without using any mediator. For example in Figure 5.1 the coefficient a

express the direct effect of X on BMI (X → BMI).

5.1.2 Hypothetical Causal Model

We will use Path Analysis[58, 63, 64] to determine the causal relationship between demo-

graphic variable, nitration intake, physical activity to the outcome variable obesity. According to

studies[65, 66, 67], there is a strong correlation between body fat and BMI; it is the most accurate

way to calculate body fat. So our hypothetical causal model is built under this assumption.

A hypothetical causal model often represented by path diagram which consisted rectan-

gle (variables), oval (error variance among endogenous variables) and pointed arrow to portray

a hypothetical causal path. So our hypothetical causal model is shown in Figure 5.2. From our

knowledge, this method has not been used for this particular reason in this type of cohort. This

method fit a multivariate non-experimental dataset to a complex causal model using causal struc-

tural equations [58, 63, 64]. This powerful technique analyzes and compares different complex

hypothetical causal models afterward finds a model that consistently fits the data. Using Bonferroni

correction, it estimates path coefficients thus, the causal importance of the variables in the pathways

to the outcomes can be quantitatively estimated. We will initially hypothesize that physical activity

(X1) and demographic characteristics (X2) affect nutrition intakes (N1 and N2), and they also affect

BMI in other words, physical activity and dietary choices directly affect BMI. Here, N’s, BMI
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Figure 5.2: Hypothetical causal model: X1 and X2 indicate demographic characteristics (such as
age, gender and ethnicity, physical activity). N1 and N2 are nutrition intake variables.

are endogenous variables (ie variances are partially explained by the other variables within the

causal model) whereas, X’s are exogenous variables (i.e. variances not explained by variables in

the hypothetical causal model). As the variance of an endogenous variable is modeled by other

variables, e here represents the residual error of that measurement.

5.1.3 Model Structure

For simplicity, first, we will define a simpler model with fewer variables and then move

towards its generalization. For endogenous variables: yk,y j′ , exogenous variables: x j,x j′ , and errors:

εk,εk′ , the structural coefficients representing the direct (partial) effect of an exogenous variable

x j on an endogenous variable yk is γk j (gamma) and of an endogenous variable yk′ on another

endogenous variable yk is βkk′ (beta). Covariances between two exogenous variables, x j and x j′ is

σ j j′ and two error variables, εk and εk′ is σkk′. Finally, the variance can be written as σ2
j or as σ j j

(i.e., the covariance of a variable with itself).

Consider we have four exogenous (x1, x2, x3, x4) variable and two endogenous variables y1

and y2.
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Figure 5.3: Causal model with four exogenous and two endogenous variables. Here γ is the
path coefficients from exogenous variables to endogenous variables. β is the path coefficient for
endogenous to endogenous variables.

Using the above notation, we can construct a diagram of this example model like Figure 5.3

The structural equation of the model shown in Figure 5.3 can easily be written as

y5i = γ50 + γ51x1i + γ52x2i +β56y6i + ε7i

y6i = γ60 + γ63x3i + γ64x4i +β65y5i + ε8i

(5.1)

By excluding the intercept term and collecting variables and equation term on one side, we

have the following model for an individual observation,

1y5 −β56y6 − γ51x1 − γ52x2 +0x3 +0x4 = ε7

−β65y5 +1y6 +0x1 +0x2 − γ63x3 − γ64x4 = ε8

(5.2)

Note that the variables that don’t have a path connection got 0 as a coefficient. Now the

Equation 5.2 can be expressed as following matrix form,

22



 1 −β56
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y6
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x1

x2

x3

x4


=

 ε7

ε8

 (5.3)

In general the individual model can be expressed for q endogenous and m exogenous variables.

B
(q×q)

yi
(q×1)

+ Γ
(q×m)

xi
(m×1)

= ε i
(q×1)

(5.4)

Finally, for n observations the model will be-

Y
(n×q)

B′
(q×q)

+ X
(n×m)

Γ
′

(m×q)
= E

(n×q)
(5.5)

If Y and E follows the standard assumptions of linear models [68], the likelihood function corre-

sponding to Equation 5.5 can be expressed as follows,

loge L(B,Γ,Σεε) =n loge |det(B)|− nq
2

loge 2π − n
2

loge det(Σεε)

− 1
2

n

∑
i=1

(Byi +Γxi)
′
Σ
−1
εε (Byi +Γxi)

(5.6)

Values of Γ and B that maximizes the function will be the estimates of the coefficients [69].

5.1.4 Estimation of Parameters in R-lavaan

We used R lavaan library to estimate the effects of exogenous and mediators on BMI. While

accounting for slight violations of the normality assumption (6.2, we used the maximum likelihood

function and NLMINB [70] optimization method to find the optimized value of parameters [71].

Then indirect effect was calculated by defining custom parameters as a function of the product of

the path coefficients (ρ1 ∗ρ2) on the specified pathway. The total causal effects of demographic

variables or physical activity on the outcome (BMI) are the sum of the direct and indirect effects
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from all the paths that lead to the outcome [64]. Special Indirect Effect (SIE) in Table 6.3 denotes a

variable’s impact through a single mediator variable. And the Total indirect Effects (TIE) is the sum

of all SIE. Finally, the Total Effects (TE) comprises the TIE and any direct effects a variable has on

the outcome variable. The strength of the causality increases with the absolute value of the route

coefficient. A positive path coefficient indicates that a causal variable increases the outcome value,

and a negative path coefficient indicates a causal variable decreases the outcome value. An indirect

path (i.e., the path that goes through mediators) was considered significant if the absolute value

of the product of the single path coefficients is greater than 0.01 using the path product property

[63, 64].

5.1.5 Assumptions

Like other modeling techniques, path analysis is based on a number of assumptions. When

the analysis is done, it requires careful consideration if the model assumption is holding or not. A

substantial violation in model assumption could lead to erroneous estimates of parameters resulting

in biased high variance estimates [72]. Because the path analysis framework we present relies on

the solution of multiple linear regression equations, the statistical assumptions underlying these

procedures merit attention [73, 74].These assumptions are summarized as follows:

• All dependent variables should be roughly normally distributed, and all relationships between

the variables are presumed to be causal, linear, and additive. It’s also forbidden to have other

curvilinear relationships or interactions.

• Residuals should not be correlated with the variables that predict the outcome variables toward

which they point. This means that in Figure 5.3 ε7 is not correlated with variables Y5 and X1

and X2. That implies residual from the nutrition intake variables should not correlate with

demographic variables like age, gender, race etc. This assumption implies that all relevant

variables are included in the model, and any unmeasured variables are not correlated with the

specified predictor variables.

• Causation flows in one direction; there are no feedback loops. Model is recursive.
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• The variables are measured without error. Implies exogenous variables used in the model

should be error free in terms of measurement error.

• Predictor variables may be continuous, ordinal categorical, or dichotomous.

• There is low multicollinearity among predictor variables in any of the structural equations.

5.1.6 Model Significance and Goodness-of-Fit

In statistical modeling, "goodness-of-fit" evaluates how well sample data fits a distribution

from a population having a normal distribution. Simply put, it makes assumptions about whether

a sample is representative of the data found in the actual population or is biased. The disparity

between the actual values and those predicted by the model in the case of a normal distribution is

established via goodness-of-fit. The chi-square is one of the techniques for figuring out goodness-of-

fit. However, the ordered Mahalanobis distances vs. estimated quantiles (percentiles) for a sample

of size n from a chi-squared distribution is an advanced variant of the standard chi-square test that

can be very helpful. When using data from a multivariate normal distribution, this should resemble

a straight line. The K-S test of distributional equality can be done to further check the normality

assumption [75]. It basically takes the supremum of the difference of the empirical CDF of the first

and the second sample, respectively, and compares it with test statistics to make a decision. A brief

discussion on the K-S test is available in the supplementary material (see A).

We used the comparative fit index to evaluate the fit of our path analysis model. We chose

this because of one advantage over other matrices. The comparative fit index (CFI) accounts for the

sample size difficulties present in the chi-squared test of model fit and the normed fit index when

analyzing the model fit by considering the difference between the null and the hypothesized model

[76]. A null model is typically in which observed variables are constrained to covary with no other

variables. Larger numbers indicate better fit, while CFI values range from 0 to 1. A CFI value of.90

or higher can be regarded as an indication of good model fit [77].

We also used the SRMR metric to evaluate the model fit. It is the average of the standardized

residuals between the observed and hypothesized covariance matrices is represented by the term
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"standardized root mean square residual" (SRMR) (Chen, 2007). This absolute fit index can be

defined as follows

SRMR =

√√√√∑
p
i=1 ∑

i
j=1
[(

si j − σ̂i j
)
/
(
siis j j

)]2
p(p+1)/2

where si j indicates a component of S sample covariance matrix and σ̂i j shows a component of Σ(θ̂)

hypothesized model whereas p is the number of observed variables.

Although SRMR can be used to determine an acceptable fit when it generates a value less

than 0.10, an SRMR value less than .08 is widely used by researchers to consider the model fit as a

good fit. Its relative independence from sample size is one of the reasons why researchers use the

SRMR index in SEM modeling [78].

5.2 Supervised Learning

In the past few decades, statistical learning, in a general sense, improved significantly both

in efficiency and accuracy. Most of it happened due to massive computational advancement and

the relentless work of many researchers. Nowadays, it has become a sophisticated method to

address many real-world situations like classification and predictive analysis. Supervised learning,

popularly known as supervised machine learning, is a subcategory of machine learning and artificial

intelligence. It is distinguished by how it trains computers to accurately classify data or predict

outcomes using labeled datasets. The model modifies its weights as input data is fed into it until the

model has been properly fitted, which takes place as part of the cross-validation process. Usually, a

training set is used in supervised learning to instruct models to produce the desired results. This

training dataset has the right inputs and outputs, enabling the model to develop over time. The loss

function verifies the algorithm’s correctness, and iterations are made until the error is sufficiently

reduced. When using data mining, supervised learning may be divided into two issues: regression

and classification. The following sections 5.2.1 to 5.2.5 briefly describes the robust supervised

learning method that we have used in this study for classification purposes.
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5.2.1 Principle Component Regression (PCR)

Building the first M principal components, Z1, . . . ,ZM, and utilizing these components as

predictors in a linear regression model which is fitted using least squares is known as the principal

components regression (PCR) technique [79, 80, 81, 82]. The main point is that much of the

variability in the data and the connection to the response can frequently be explained by a small

number of principal components. In other words, we assume that the directions where X1, . . ., and

Xp exhibit the greatest variance are the directions where Y is present. So, the fitted equation can be

expressed as

ŷpcr
(M)

= ȳ1+
M

∑
m=1

θ̂mzm

where θ̂m = ⟨zm,y⟩/⟨zm,zm⟩. Since the zm are each linear combinations of the original x j,

we can express the solution in terms of coefficients of the x j:

β̂
pcr(M) =

M

∑
m=1

θ̂mvm

5.2.2 Support Vector Machine

Support vector machine (SVM) [83], an approach for classification developed in the com-

puter science community in the 1990s that separates two (sometimes more) classes based on the

principle of maximum margin classifier using a one/set of hyper plane in an high dimensional space,

which is used for classification, regression, and outliers detection. In a p dimensional space, a

hyper-plane is a flat affine subspace of dimension p-1. SVM separates data using a separating line

and furthest away from the closet data point and this make SVM unique from other algorithm [81].

SVM are widely used as it can find a complex relationship between data without having lots of

information about the data set. But SVM was an extension of the maximum margin classifier due

to its limitation to the nonseparable class. Even though the support vector classifier can address

the issue, the SVM can go beyond the linear margin and can work with more real-life linearly
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Figure 5.4: Example of linear and nonlinear SVM with overlapping classes. 1

nonseparable classes. Figure 5.4 demonstrates how SVM separates a linearly nonseparable class.

But if the number of features is bigger than the number of data point SVM trends to overfit.

The figure on the left showing the linear support vector boundary for with two overlapping

classes and figure to the right showing the nonlinear SVM with a 4th degree polynomial kernel

for some hypothetical data. The support vector machine classifies a test observation depending

on which side of a hyperplane it lies. The hyperplane is chosen to correctly separate most of the

training observations into the two classes. It is the solution to the optimization problem

maximize
β0,β1,...,βp,ε1,...,εn

M

subject to ∑
p
j=1 β 2

j = 1

yi (β0 +β1xi1 +β2xi2 + . . .+βpxip)≥ M (1− εi)

εi ≥ 0, ∑
n
i=1 εi ≤C,

(5.7)

Here M represents the margin Moreover, with the introduction of linear K (xi,xi′) =

1The figure was taken from the book "An Introduction to Statistical Learning [84]."
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∑
p
j=1 xi jxi′ j, and polynomial K (xi,xi′) =

(
1+∑

p
j=1 xi jxi′ j

)d
kernel we could address the nonliniear-

ity in the class boundary using SVM.

5.2.3 K-nearest Neighbors

K-nearest neighbors (KNN) is a supervised learning technique that determines the class of

the desired data point based on the K closest point from it [85, 81]. The KNN algorithm determines

a data point’s class by using the majority vote principle. For example, if we set k as 7, the classes of

7 closest points are checked. Then KNN predicts the class according to the majority class out of the

seven nearest classes. In general, say, K is a positive integer and x0 is a test observation, the KNN

classifier first identifies the K points in the training data that are closest to x0, represented by N0. It

then estimates the conditional probability for class j as the fraction of points in N0 whose response

values equal j:

Pr(Y = j|X = x0) =
1
K ∑

i∈N0

I (yi = j)

Finally, KNN applies Bayes rule and classifies the test observation x0 to the class with the largest

probability.

5.2.4 Classification Tree

The classification tree is a popular supervised machine learning technique [86, 86]. As the

name suggests, the branches of a classification tree stand for attributes, and the leaves stand for

decisions. When in use, the decision tree procedure begins at the trunk and proceeds through the

branches until it reaches a leaf. Hunt’s, one of the earliest classification tree algorithms, helps us to

understand this concept better (the latest algorithm includes CART, ID3, C4.5, etc.). Let Dt be the

set of training records (samples) that reach a node t; then the tree grows using the following general

procedure:

• If Dt contains records that belong the same class yt, then t is a leaf node (pure) labeled as yt .

That is no further brancing is necessary ftom this node.

• If Dt is an empty set, then t is a leaf node labeled by the default class, yd
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• If Dt contains records that belong to more than one class (also known as an impure node), the

algorithm will use an attribute test to split the data into smaller subsets. Recursively apply the

procedure to each subset until desired purity of the node is met.

Now, a few questions might come to our mind about how we can decide where to split the

attributes or, in other words, what the best split is and when to stop splitting. To determine the best

split, we can use misclassification error, Gini index, or cross-entropy function.

Since the algorithm aims to assign an observation in a given region to the most commonly

occurring class of training observations in that region, the classification error rate is simply the

fraction of the training observations in that region that do not belong to the most common class. So

the classification error at a node t is :

Error(t) = 1−max
j

P( j | t)

Which measures misclassification error made by a node, and its maximum is (1−1/nc) when

records are equally distributed among all classes, implying the least interesting information. And

minimum (0.0) when all records belong to one class, implying the most interesting information.

Gini Index for a given node t :

GINI(t) = 1−∑
j
[p( j | t)]2

Here p( j | t) is the relative frequency of class j at node t ). Maximum (1−1/nc) acquires when

records are equally distributed among all classes, implying the least interesting information, and

minimum (0.0) happens when all records belong to one class, implying most interesting information.

A more advanced algorithm like CART and SLIQ do the splitting based on the Gini measures of

the entire split, which is a weighted average of each child node. Say a parent node p is split into k

partitions (children), then the quality of the split is computed as
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GINIsplit =
k

∑
i=1

ni

n
GINI(i)

Where, ni is the number of records at child i, and n is the number of records at node p.

Entropy at a given node t:

Entropy (t) =−∑
i

p( j | t) log p( j | t)

Here p( j | t) is the relative frequency of class j at node t ). Maximum ( lognc ) acquires when

records are equally distributed among all classes, implying most information, and minimum (0.0)

happens when all records belong to one class, implying least information. Like Gini, the entropy

measures of the entire split, which is a weighted average of each child node, can be calculated as

Entropysplit =−
k

∑
i=1

ni

n
Entropy(i)

Where, ni is the number of records at child i, and n is the number of records at node p.

However, an algorithm like ID3 and C4.5 uses the gain of a split to decide which split to go

with. The gain of a split is often referred to as Information Gain and can be calculated as

Gain ( split ) = E( Parent set )−∑E( all child sets )

GAINsplut = Entropy (p)−

(
k

∑
i=1

ni

n
Entropy(i)

)
The algorithm chose the splits that achieve the most reduction in entropy, i.e., split that maximizes

the GAIN.

5.2.5 Random Forests

Random forests is widely used ensemble learning method where the classification output of

the random forests is the class selected by most trees [87, 81]. Other ensemble learning methods
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such as bagging methods get success for reducing the variance of an essential prediction function.

Bagging especially works better for trees where variance is high and bias is low. Random forests

is modification of the bagging technique that builds a large collection of de-correlated trees. The

principle difference between bagging and random forests is the choice of predictor of subset size

say m. For example, if a random forests model has m = p then the model is simply to bagging.

Random forests generally outperform than the decision trees but in comparison to accuracy it is

lower than the gradient boosted trees. The random forests algorithm’s steps are as follows:

• Step 1: From a data set with k predictors, n predictors are selected randomly and used in the

Random forests algorithm.

• Step 2: Then, build a unique classification tree for each sample.

• Step 3: Each decision tree will produce an output.

• Step 4: For classification, the final result will be evaluated using a majority vote (or an

average for regression problem).

5.2.6 Chi-square, p-value, and Level of Significance

Absolute Fit Indices assess how well a researcher’s theoretical model fits the observed data

they have collected. The only statistically based measure of fit is that the Likelihood Ratio Test,

also known as the "chi-square" (CMIN) statistic and its associated "probability" or p-value. Since it

is a test of statistical significance, the chi-square test stands out among other alternative measures

of fit in SEM. A p-value can be computed using the model degrees of freedom and the chi-square

value. This tests the null hypothesis that the observed data and anticipated model are equal, which

shouldn’t be statistically significant if the model fits the data well.

For example, consider testing the following hypothesis

H0 : θ ∈ Ω0

H1 : θ ∈ Ω1

(5.8)

32



In Equation 5.8 Ω0 represents the parameter space under null model whereas Ω1 represents

the parameter space under data model. If L0 is the maximum likelihood function from equation

5.6 under null hypothesis and L1 is the maximum likelihood function from Equation 5.6 under

alternative hypothesis then the LR statistic can be defined by,

W =−2log
(

L0

L1

)
≥ 0

If r0 is the number of free parameters under the null hypothesis and let r is the number of free

parameters under the alternative hypothesis, then for large sample size n, the statistic W ∼ χ2
ν=r−r0,α

.

For given α ∈ (0,1), χ2
ν ,α denotes the α level critical value of χ2

ν , the chi-square random variable

or the chi-square distribution with ν degrees of freedom. Here the α level is the probability of

rejecting the null hypothesis when the null hypothesis is true. The standard is the α level, set of

0.05. The p-value is the smallest value for which the null hypothesis can be rejected. It indicates

how extreme the data are. We compare the p-value with the α to determine whether the observed

data are statistically significantly different from the null hypothesis. If the p-value is less than or

equal to the α (p <.05), then we reject the null hypothesis, and we say the result is statistically

significant. If the p-value is greater than α (p >.05), then we fail to reject the null hypothesis, and

we say that the result is statistically insignificant ([88]). However, the χ2 statistic is very sensitive

to sample size, and we have to be very careful reporting this statistic, at the same time compare

other Parsimony Adjusted Indices (CFI) and Predictive Fit Indices (SRMR).

5.3 Model Validation for Machine Learning Models

Model validation is a step that comes after model training and involves comparing the trained

model to a test set of data. A portion of the training set’s data set may or may not be included in the

testing data. Any machine learning model’s ultimate objective is to learn from examples in a way

that allows it to generalize its knowledge to situations it has never encountered before. Finding the

appropriate machine learning technique to build our model is crucial when we approach a problem

with a dataset in hand.
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5.3.1 Cross-Validation

In cross-validation, a subset of the sample would ideally be kept aside and used to evaluate

the effectiveness of a prediction model, given that we have enough data. Based on the size of

the subset, the validation method is named. For instance, a K=10 fold cross validation implies

the training data was roughly divided into ten equal parts and passed through a model trained by

the rest of the K-1 part of the data. For a data divided into K approximately equal sections, say

κ : {1, . . . ,N} 7→ {1, . . . ,K} be an indexing function that indicates the partition to which observation

i is allocated by the randomization. Denote by f̂−k(x) the fitted function, computed with the k the

part of the data removed. Then the cross-validation estimate of prediction error is

CV( f̂ ) =
1
N

N

∑
i=1

L
(

yi, f̂−κ(i) (xi)
)

Typical choices of K are 5 or 10. We used ten-fold cross-validation in this study whenever it was

needed. Hyperparameter tuning is often done using cross-validation. For example, given a set of

models f (x,α) indexed by a tuning parameter α , denote by f̂−k(x,α) the α the model fit with

the k the part of the data removed. Then for this set of models the following function CV( f̂ ,α)

provides an estimate of the test error curve, and tuning parameter α̂ can be found by minimizing

this function.

CV( f̂ ,α) =
1
N

N

∑
i=1

L
(

yi, f̂−κ(i) (xi,α)
)

5.3.2 Evaluation Metrics

An evaluation metric measures the performance of a model after training. You build a model,

get proper feedback from the model is expected. Therefore, picking the appropriate metric when

assessing an ML model is crucial. Selecting only one statistic may not always yield the greatest

results; instead, it may be beneficial to combine several metrics. We used the following metrics to

evaluate our implemented ML models.
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Figure 5.5: A general example of a confusion matrix.

5.3.2.1 Confusion Matrices. A table describing the distribution of classifier 

performance on the data is called a confusion matrix. It is a N × N matrix used to assess how 

well a classification model is working. It demonstrates the model’s effectiveness and what areas 

require improvement. Consider the Figure 5.5.

Here:

• TP: true positive (the correctly predicted positive class outcome of the model),

• TN: true negative (the correctly predicted negative class outcome of the model),

• FP: false positive (the incorrectly predicted positive class outcome of the model),

• FN: false negative (the incorrectly predicted negative class outcome of the model). 

5.3.2.2 Accuracy. Accuracy is a statistic that summarises how well a classification task 

was performed by dividing the total number of accurate predictions by the total number of 

predictions the model made. It is the proportion of all the data points that were successfully 

predicted.

Accuracy =
(T P+T N)

(T P+FN +FP+T N)
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5.3.2.3 Balanced Accuracy. Both binary and multi-class classification uses balanced 

accuracy. Its application is when working with imbalanced data or when one of the target groups 

shows up much more frequently than the other. It is the arithmetic mean of sensitivity and 

specificity.

Balanced Accuracy =
sensitivity + specificity

2

Sensitivity is the proportion of actual positives that are accurately predicted out of all positive

predictions produced by the model is measured by this, also known as the true positive rate or recall.

Sensitivity =
T P

T P+FN

Specificity is the estimates of the ratio of correctly detected negatives to all of the model’s predicted

negative outcomes and is also referred to as the true negative rate.

Specificity =
T N

(T N +FP)

5.3.3 Creating Training and Test data

Having representative class measurements i.e. uniform distribution over each target category

is the core of ML performance. An ideal situation would be a 1:1 class ratio. However, it is not

the case in the real world, and when it doesn’t happen and any of the classes has small number

of observation in it, it’s called a class imbalance problem [89]. ML researchers had and still are

hugely suffering from this class imbalance problem [90, 91, 92, 93]. However, to tackle this issue,

several techniques have been developed. For example, in the deep learning field, data augmentation

(axis rotation, contrast, sharpness modification in image data) is already a widely used established

technique. But, due to the nature of our data, we will use force sampling or "SMOTE: synthetic

minority over-sampling technique [94]" to overcome this issue. In this method, we will randomly

choose 20-30 percent of the positive class sample into the test data set.
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CHAPTER VI

RESULTS

6.1 Descriptive Statistics

We used National Health and Nutrition Examination Survey (NHANES) dataset to inves-

tigate the obesity problem among 4-6yo U.S. children. Given the study structure, our data set

includes the latest data we could find at the time of this study (2017-2018) and two years before

that. Therefore, we had 1210 observations from the cycle years "2013-2014", "2015-2016," and

"2017-2017." Table 6.1 gives us a quick overview of the data. It reveals that there is no missing

value available in the data. The five-number summary also tells us the fiber intake is the lowest

among all dietary variables, which is 12.89 gm. In the data there was around 23 percent (281) obese

children and 51% (617) female and 49% male(593). Three of the most prevalent ethnic groups

in the United States were represented in the study population: non-Hispanic whites made up 30%

(367) of the population, non-Hispanic blacks accounted for 23% (279), Hispanics made up 29%

(348), and other racial origins made up about 18% (216).

The correlation plot in Figure 6.1 shows that there are some degrees of multicollinearity in

the data. For example, fiber intake is correlated with the carb, sugar, and fat intake having Pearson

correlation coefficients of 0.63, 0.34, and 0.43, respectively. Overall the nutrient intake seems to be

correlated with each other. The rest of the variables look fine with lower correlation coefficients.

Also, we did the χ2 association test between gender and education. That came insignificant with

χ2 = 2.314, df = 3, and p-value = 0.314. This implies there is not enough evidence to say that

gender and education is not associated with each other. Moreover, if we look at Figure 6.2 it looks

like all the numerical variable are approximately normally distributed except SES. It is showing a
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Table 6.1: Descriptive statistics for the variables included in the path analyses for the entire study
cohort. five number summary and SD was reported for continuous variables and and the frequency
and percentage (%) are reported for categorical variables.

Age Gender Race Education SES Fiber Carb Sugar Fat BMI PA Obesity
Min:
4.0

Male:
593 (49%)

Hispanic:
348 (28.8%)

LHS:
227 (18.8%)

Min:
1.0

Min:
1.3

Min:
40.5

Min:
9.2

Min:
8.9

Min:
12.2

Not Act:
92 (7.6%)

Not Obese:
929 (76.8%)

1st Qu:
4.0

Female:
617 (51%)

NHW:
367 (30.3%)

HSC:
682 (56.4%)

1st Qu:
2.0

1st Qu:
9.1

1st Qu:
169.5

1st Qu:
71.6

1st Qu:
44.6

1st Qu:
15.1

Act:
1118 (92.4%)

Obese:
281 (23.2%)

Median:
5.0

NHB:
279 (23.1%)

CA:
301 (24.9%)

Median:
3.0

Median:
12.1

Median:
211.6

Median:
96.0

Median:
57.1

Median:
16.0

Mean:
5.0

Other:
216 (17.9%)

Mean:
3.2

Mean:
12.9

Mean:
217.2

Mean:
100.1

Mean:
60.6

Mean:
16.6

3rd Qu:
6.0

3rd Qu:
4.0

3rd Qu:
16.0

3rd Qu:
258.3

3rd Qu:
123.6

3rd Qu:
73.8

3rd Qu:
17.3

Max:
6.0

Max:
5.0

Max:
43.7

Max:
542.7

Max:
292.6

Max:
225.1

Max:
33.4

SD:
0.8

SD:
1.5

SD:
5.4

SD:
67.4

SD:
39.5

SD:
23.5

SD:
2.4

Figure 6.1: The correlation structure among numerical variables for the entire cohort.
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Figure 6.2: Density and bar plot of the variables that were used in the study.

slight right skewed pattern.

6.2 Path Analysis Results

6.2.1 Fit and Significance of Path Model

We will start this section by presenting the necessary assumption check and goodness-of-fit

results. One of the critical assumptions in SEM path analysis is low multicollinearity among

exogenous and endogenous variables. If we look at the correlation plot presented in Figure 6.1, we

can see that there is some degree of multicollinearity among endogenous nutrition intake variables.

Overall, the nutrient intake showed moderate multicollinearity with the maximum correlation

between Carb and Sugar (0.82) with a variance inflation factor (VIF) of 1.258. Although there is

no single cutoff point above which multicollinearity should be considered bad, there are widely

accepted literature that suggests correlation coefficient < 0.8 and/ or VIF less than 5 or 10 depending

on the situation [95, 96].

Regarding the normality assumption concern, a quick look at the distribution curve in

Figure 6.2 confirms the normality of continuous variables in the data. However, a more thorough

multivariate normality check was also performed. The Q-Q-plots of the Mahalanobis distance
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Figure 6.3: Q-Q plot of ordered Mahalanobis distances versus estimated chi-square quantiles
(percentiles) to check the multivariate normality of the data.

is a widely accepted test for multivariate normality [97]. For multivariate data, we plotted the

ordered Mahalanobis distances versus estimated quantiles (percentiles) for a sample of size n from

a chi-squared distribution with degrees of freedom p in Figure 6.3. This should resemble a straight

line for data from a multivariate normal distribution. Outliers will show up as points on the upper

right side of the plot for which the Mahalanobis distance is notably greater than the chi-square

quantile value.

After checking the assumption, we used T-Rule for the proper identification of the model.

Here T is the number of free and unconstrained parameters. T has an upper bound defined by the

number of exogenous and endogenous variables [T< 0.5 (p+q)*(p+q+1)] [74]. For our data, the

upper limit of T was found to be 78. We also carefully looked for the under-identification of the

SEM model. We used the Parsimony Adjusted Indices (CFI) to evaluate the fit of our path analysis

model. Larger numbers indicate better fit, while CFI values range from 0 to 1. As we discussed in

section 5.1.6 that a CFI value of.90 or higher could indicate a good model fit, our model’s CFI was

found to be 0.909. We reported standardized root mean square residual (SRMR) to investigate the

model fit further. Our model’s SRMR value was found to be 0.088, around the acceptable range of
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Table 6.2: Table of the difference between the observed and implied covariance matrix of fitted
model.

Variables Fiber Carb Sugar Fat BMI Age Gender Race Education SES PA

Fiber 0.000
Carb 0.307 0.310
Sugar 0.339 0.200 0.000
Fat 0.417 0.369 0.382 0.000
BMI 0.114 0.076 0.060 0.010 0.001
Age 0.000 0.000 0.000 0.000 0.000 0.000
Gender 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Race 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Education 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

less than 0.1.

Finally, we reported another essential measure which is the residuals covariance matrix.

Table 6.2 shows the residuals of our fitted model. This is simply the difference between the observed

and implied covariance matrix. An ideal situation would be all 0 elements. The table implies a good

fit with fewer nonzero entries in nutrition intake cells.

The path diagram in Figure 6.4 shows the significant paths, and Table 6.3 shows the estimated

significant path coefficients. Physical activity had a significant direct causal effect on BMI but

did not have a significant another mediator. Through nutrition intake, physical activity had a total

indirect effect of -0.004, but in total, it had a total effect of -1.168 (ρ1 =−0.004 and ρ2 =−1.64),

decreasing BMI. If we held this indirect effect constant, then the resulting path coefficient -1.164

represents the direct effect of physical activity on reducing BMI. We can conclude that physical

activity alone affects BMI more than other mediators. Age had increased BMI with a total causal

effect of ρ = 0.266, which included a direct effect of ρ = 0.232 and a total indirect effect of

ρ = 0.035 through nutrition intake. Similarly, a higher education level (CA) caused a decrease in

BMI measurement with a direct effect of ρ = −0.706 but had a total indirect effect of ρ = 0.08

through nutrition intake, resulting in a total causal effect (ρ = 0.627) on BMI. Socioeconomic status

has a direct impact of -0.036 on decreasing BMI but had a really low total indirect effect through

nutrition intake (ρ = 0.001), resulting in a total decreasing effect of (ρ =−0.035) on BMI.
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Table 6.3: Significant paths and summarized causal effects based on the path analysis for the entire
population. A bold value indicates the total effect (both direct and indirect) on BMI.

Paths
Intermediate Path Coefficients Total Direct/

Indirect Effects
ρ1 ρ2

Age

(Age –> Fiber) 0.117

(Age –> Sugar) 0.132

(Age –> Fat) 0.144

SIE (Age –> Fiber –> BMI) 0.117 -0.089 -0.01

SIE (Age –> Carb –> BMI) 0.161 0.109 0.017

SIE (Age –> Fat –> BMI) 0.144 0.179 0.026

TIE (Age –> Nutrient Intake –> BMI) 0.035

TE (Age –> BMI) 0.266

Gender

(Gender –> Fiber) -0.154

(Gender –> Carb) -0.219

(Gender –> Sugar) -0.132

(Gender –> Fat) -0.171

SIE (Gender –> Fiber –> BMI) -0.154 -0.089 -0.031

SIE (Gender –> Carb –> BMI) -0.219 0.109 -0.031

SIE (Gender –> Fat –> BMI) -0.171 0.179 -0.031

TIE (Gender –> Nutrient Intake –> BMI) -0.043

TE (Gender –> BMI) 0.191

Race

Hispanic

(Hispanic –> BMI) 0.329
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Table 6.3 continued.

Paths
Intermediate Path Coefficients Total Direct/

Indirect Effects
ρ1 ρ2

(Hispanic –> Fiber) 0.307

SIE (Hispanic –> Fiber –> BMI) 0.307 -0.089 -0.027

TE ( Hispanic –> BMI) 0.304

Non Hispanic Black (NHB)

(NHB –> Fiber) 0.156

(NHB –> Carb) 0.19

SIE (NHB –> Fiber –> BMI) 0.156 -0.089 -0.014

SIE (NHB –> Carb –> BMI) 0.19 0.109 0.021

SIE (NHB –> Fat –> BMI) 0.107 0.179 0.019

Other Race

(Other Race –> BMI) -0.383

(Other Race –> Sugar) -0.316

(Other Race –> Fat) -0.103

SIE (Other Race –> Fat –> BMI) -0.103 0.179 -0.018

TE (Other Race –> BMI) -0.421

Education

High school and Some Collage (HSC)

(HSC –> Fiber) -0.384

(HSC –> Sugar) 0.347

(HSC –> Fat) 0.251

SIE (HSC –> Fiber –> BMI) -0.384 -0.089 0.034

SIE (HSC –> Carb –> BMI) 0.119 0.109 0.013

SIE (HSC –> Fat –> BMI) 0.251 0.179 0.045
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Table 6.3 continued.

Paths
Intermediate Path Coefficients Total Direct/

Indirect Effects
ρ1 ρ2

TIE (HSC –> Nutrient Intake –> BMI) 0.098

TE(HSC –> BMI) -0.069

Collage and Above (CA)

(CA –> BMI) -0.706

(CA –> Sugar) 0.348

(CA –> Fat) 0.248

SIE (CA –> Carb –> BMI) 0.206 0.013 0.022

SIE (CA –> Fat –> BMI) 0.248 0.179 0.044

Physical Activity (PA)

(PA–> BMI) -1.164

SIE (PA–> Fiber –> BMI) 0.112 -0.089 -0.01

TE (PA –> BMI) -1.168

Among the four nutritional variables included in the path analysis (Fiber, Carb, Sugar,

Fat), independently, Carb, Sugar, and Fat had an increasing effect on BMI with respective path

coefficients of ( ρ = 0.109, 0.018, and 0.179), but Fiber intake has a decreasing impact of -0.089 on

BMI.

To investigate the difference in the causal structure between males and females, we per-

formed separate path analyses (see Figure 6.5 and 6.6) on gender-specific samples. Our analysis

reveals that physical activity directly affecting BMI for both males and females. In females, age

played a more significant role than females affecting BMI. In males, age only affected BMI neg-

atively via fiber, causing lower BMI with high fiber intake, whereas in males, age significantly

affected BMI both directly and indirectly. In female sample, Non-Hispanic Black had negative (ρ1 =

0.313, ρ2 = 0.011) and positive (ρ1 = 0.150, ρ2 = 0.213) mediated through fiber and carb respectively
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Figure 6.4: Path diagram for the entire sample. Paths of green indicate positive path coefficients,
while paths of red line indicate negative path coefficients. The widths of the paths are related to
the absolute values of path coefficients, and the wider of the line is the stronger causation. Only
significant paths are shown in the diagram.

but our study did not find any significance in male sample (see Figure 6.5, 6.6). Education also

played an important role in affecting BMI both in male and female children. In females, higher

education of children’s household reference members (usually parents) showed a negative causal

effect on BMI through higher fiber intake. In contrast, the male had an opposite (ρ = 0.268) effect

through the increased fat intake. Among Hispanic males and females, higher fiber intake caused

decreased BMI, but only the female Hispanic cohort had direct causation to BMI (see 6.5, 6.6)).

We performed further gender-ethnicity-specific analysis To investigate these findings further.

Based on the path analysis of different gender-ethnicity-specific subpopulations, a common signifi-

cant nutritional variable was found to be carb intake (see Figure 6.7 and 6.8). No significant direct

causation was found in Hispanic females, but in males, physical activity and higher education were

found to be directly affecting BMI. In Non-Hispanic black children, age and sugar were found to be

important for both males and females for increased BMI but through a different ancestor. As Figures

6.9 and 6.10 show, in Non-Hispanic Black females, education positively mediated through sugar,
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Figure 6.5: Path diagram for the males only. Paths of green indicate positive path coefficients,
while paths of red line indicate negative path coefficients. The widths of the paths are related to
the absolute values of path coefficients, and the wider of the line is the stronger causation. Only
significant paths are shown in the diagram.

causing increased BMI. Still, in males, age was causing higher sugar intake resulting in higher BMI.

Among other racial group (6.11, 6.12) socioeconomic status found to be directly affecting BMI ( ρ

= -0.291) in males in female age showed direct positive causation (ρ = 0.822). However, female

socioeconomic status caused increased fat intake but did not significantly mediate BMI.

6.3 Predictive Results

This section will show how we implemented several ML methods and their results. Each

model was trained using the same training data set we created at the beginning of the analysis. Later

trained models were validated using testing data. Training and testing data was created following

the method described in section 5.3.3. In our case, we used a 70:30 percent training-test split. And

around 30 percent of the testing sample was chosen from the positive class (obese). By doing so,

we had an 847: 363 training test split. Among the test data, 107 cases were from the obese class.
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Figure 6.6: Path diagram for the females only. Paths of green indicate positive path coefficients,
while paths of red line indicate negative path coefficients. The widths of the paths are related to
the absolute values of path coefficients, and the wider of the line is the stronger causation. Only
significant paths are shown in the diagram.
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Figure 6.7: Path diagram for the Hispanic males. Paths of green indicate positive path coefficients,
while paths of red line indicate negative path coefficients. The widths of the paths are related to
the absolute values of path coefficients, and the wider of the line is the stronger causation. Only
significant paths are shown in the diagram.

Figure 6.8: Path diagram for the Hispanic females. Paths of green indicate positive path coefficients,
while paths of red line indicate negative path coefficients. The widths of the paths are related to
the absolute values of path coefficients, and the wider of the line is the stronger causation. Only
significant paths are shown in the diagram.
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Figure 6.9: Path diagram for the Non-Hispanic Black males. Paths of green indicate positive path
coefficients, while paths of red line indicate negative path coefficients. The widths of the paths are
related to the absolute values of path coefficients, and the wider of the line is the stronger causation.
Only significant paths are shown in the diagram.

Figure 6.10: Path diagram for the non-Hispanic Black females. Paths of green indicate positive path
coefficients, while paths of red line indicate negative path coefficients. The widths of the paths are
related to the absolute values of path coefficients, and the wider of the line is the stronger causation.
Only significant paths are shown in the diagram.
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Figure 6.11: Path diagram for the Other Racial males. Paths of green indicate positive path
coefficients, while paths of red line indicate negative path coefficients. The widths of the paths are
related to the absolute values of path coefficients, and the wider of the line is the stronger causation.
Only significant paths are shown in the diagram.

Figure 6.12: Path diagram for the Other Racial females. Paths of green indicate positive path
coefficients, while paths of red line indicate negative path coefficients. The widths of the paths are
related to the absolute values of path coefficients, and the wider of the line is the stronger causation.
Only significant paths are shown in the diagram.
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Table 6.4: The confusion matrix and accuracy of using principle component regression using test
data.

Confusion Matrix

Prediction/Reference label Not Obese Obese Total

Not Obese 242 28 270
Obese 14 79 93

Total 256 107 363
Accuracy: 0.8843 95% CI: (0.8468, 0.9153); P-value: 0.000

Sensitivity: 0.7383; Specificity: 0.9453

6.3.1 Principle Component Regression Results

In this approach, we chose several linear combinations of our regressor (component).

Because we can see from Figure 6.1 that there is low to moderate multicollinearity in our data, using

a combination of colinear features will less number of components might perform better. As Table

6.5 below, a single component can explain 25 percent variability in obesity. Trends keeps improving

until the 7th component. After that additional component does not capture any extra variability in

the data given that our main purpose is to reduced the dimentionality as much as possible with lower

cross validation error. Because, the standard approach here is to look for a low cross-validation

error with a lower number of components than the number of variables in our dataset. If this is not

the case or if the smallest cross-validation error results with a number of components close to the

number of variables in the original data, then there is no dimensionality reduction. Additionaly, the

test mean squared error(MSE) in crossvalidation starts with 0.4 when the first principal component

is included followed by one point decrease in MSE when the second primary component is included.

And after the 7th component no additional improvement is noticed.

Figure 6.13 shows a steep decline in validation error until the 7th component, and then the

decrement is not much significant which is inclined with the previous findings. So we conclude that

seven components are enough to explain more than 81% of the variation in the data, even the CV

score is a little higher than with 7th or 8th components. Finally, note that ten components explain

all the variability in obesity as expected.
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Table 6.5: Cumulative percentage of training variance explained by several component in pcr.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

CV 0.403 0.401 0.379 0.363 0.317 0.311 0.309 0.272 0.272 0.272
adjCV 0.403 0.401 0.379 0.364 0.312 0.310 0.311 0.272 0.272 0.272

Var Explained 24.877 39.900 49.430 58.720 67.780 76.100 83.720 89.840 94.670 99.200
Obesity 1.365 12.300 18.980 40.400 41.870 42.070 55.030 55.530 55.570 55.570

Figure 6.13: Mean square error vs number of component plot of PCR model.
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Figure 6.14: ROC curve of PCR model when applied on test and training dataset.

Therefore, using the first seven components, we proceed further and train and test our model.

The Table 6.4 summarize the testing results. It reveals that the trained model is accurately predicting

321 observations; that is, the accuracy is around 88 percent. But As we discussed in section 5.3.2 it

is better to use the balanced accuracy, and the balance accuracy is 84 percent.

6.3.2 Support Vector Machine(SVM) Results

To implement a support vector machine to our data, we used the e1071 library in R, which

contains implementations for several statistical learning methods. In particular, the svm() function

was used to fit a support vector classifier with the argument kernel="linear" was used. A cost

argument in the library allows us to specify the cost of a violation to the margin. But before we

did our final modeling, several pilot models were run on the training data for multiple cost ranges

with linear kernel. 10-fold cross-validation was considered to find out the best-performing cost

parameter. The cost and associated error rates are shown in Table 6.6. It shows that the minimum

cost 0.211 is associated with the cost value 1. Figure 6.15 shows how error rate is changing with
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Table 6.6: Hyper parameter estimation of SVM using 10 fold cross validation.

Cost 0.001 0.010 0.100 1.000 5.000 10.000 100.000

Error 0.187 0.178 0.118 0.073 0.077 0.082 0.125

Figure 6.15: Cost vs error rate of SVM’s hyper parameter estimation.

increment of costs.

For the optimum value of the cost parameter, we fit the support vector classifier to our data.

Our model used 138 support vectors to draw the hyperplane between the two classes while using a

"linear" kernel. This model performed really well on training data with a misclassification error

rate of 0.068, but the performance decreased by approximately 4% when the model was applied to

unseen test data (0.096). Detailed performance of the model is given in the confusion matrix Table

6.7. As our data is a class imbalance, we are interested in knowing whether our model’s accuracy is

higher than the percentage of the data that belongs to the class with the majority. And the significant

p-value (0.0007) reveals that the 90% accuracy we have is better than no information rate. Again

the balanced accuracy is showing an expectedly smaller accuracy of 85%. However, we tested
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Table 6.7: The confusion matrix and accuracy of support vector machine.

Confusion Matrix

Prediction/Reference label Not Obese Obese Total

Not Obese 249 28 277
Obese 7 79 86

Total 256 107 363
Accuracy: 0.9036; 95% CI : (0.8685, 0.9319); P-Value : 0.0007

Sensitivity: 0.7383; Specificity: 0.9727

several other kernel options such as "polynomial," "radial bias," and "sigmoid." Even though some

kernels performed better than the linear kernel during training, misclassification errors increased

when encountered unseen test data.

In Figure 6.16 the ROC curve shows the true positive rate (TP), i.e., the number of correctly

predicted positive class outcomes of the model against the false positive rate (FP), i.e., he incorrectly

predicted the positive class outcome of the model. Using multiple cutoff probability of class

allocation creates thousands of TP and FP. In our favorable scenario, we expect a well-performed

model to show greater TP against the corresponding FP. According to the ROC curve, Our trained

model is behaving well on the training data, but the model slightly deviates from the training when

applied to testing data.

6.3.3 K-nearest Neighbors (KNN) Results

While doing KNN, we had to consider the fact that the scale of the variables matters because

the KNN classifier determines the observations that are closest to a given test observation to predict

the class of that observation. Any large-scale factors will have a significantly more significant

impact on the distance between the observations and, thus, on the KNN classifier than small-scale

variables. So, we standardize the variables that were larger in magnitude such as Carb, Sugar, and

Fat (see the summary Table 6.1).

As we described in section 5.2.3 how KNN determines the class of the desired data point

based on the K closest point from it. As a result, it might be mistaken to keep K larger than usual.
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Figure 6.16: ROC curve of SVM model when applied on training and test data.

Then we could make a more informed decision about an observation’s actual class. But as we

discovered, this is always not the case. As the K value gets larger, there is an increasing risk of using

features value that might be appropriate for other classes rather than the actual class. Figure 6.17

reveals how classification error changes with the value of K. We performed the parameter tuning to

find the optimum K that minimizes the error, at the same time, addresses the issue described above.

After doing a 10-fold cross-validation 1000 times, we found the optimum K to be 84, which gave us

the minimum cross-validation error. However, we picked K value as 30 because the error rate after

K = 30 does not improve significantly enough.

Therefore, using K = 30, we move forward and train our model with the KNN algorithm.

Despite doing the force sampling, the KNN algorithm fails to predict the positive class (obese).

One possible explanation could be a large amount of negative class data and KNN’s nearest voting

algorithm. We think due to the excessive amount of negative class data in training, the nearest vote

is resulting in not being obese anyway. This explains the low specificity of our model. Additionally,
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Figure 6.17: Corss-validation error vs K plot of K-nearest neighbor algorithm.

for the first time, we are seeing the advantage of using balanced accuracy because the overall

accuracy is 80% in most ML practices which might be acceptable. However, the balanced accuracy

is 65%, meaning decision-making with this model will be misleading.

6.3.4 Classification Tree Results

We used R’s “tree” library to construct a classification tree for our data. But, before the

analysis was performed, we had to consider one significant issue with the classification tree method.

Table 6.8: The confusion matrix and accuracy of K-nearest neighbor.

Confusion Matrix

Prediction/Reference label Not Obese Obese Total
Not Obese 256 74 242
Obese 0 33 33

Total 256 107 363
Accuracy : 0.7961; 95% CI : (0.751, 0.8364); P-value: 0.000

Sensitivity : 0.3084; Specificity : 1.0000
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Figure 6.18: Graph of number of effective end nodes vs corss-validation error of classification tree.

The issue is when to stop growing the tree. In theory, it might seem that growing the tree until the

end should be the primary choice because it will allow the tree to classify every observation. Such a

tree will learn the pattern in the training data so well that there will be no misclassification. In this

case, we will face the classical overfitting problem with machine learning.

On the other hand, if we don’t let the tree grow sufficiently enough, it will cause an

oversimplified model that is of no use to us. Therefore, we decided to prune the tree in order to

determine the optimal level of tree complexity and cost complexity. So, rather than deviance, we

performed a classification-error-guided cross-validation and pruning process to select a sequence of

trees for consideration. The figure 6.18 shows the number of terminal nodes of each tree considered

as well as the corresponding error rate. The tree with 9 terminal nodes results in the lowest

cross-validation error rate, with 70 cross-validation errors.

Then we refit our tree with nine terminal nodes, and the algorithm used the top six significant

features "PA," "Fat," "SES," "Fiber," "Carb," and "Race" to classify the obesity status. One of
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Table 6.9: The confusion matrix and accuracy of classification tree.

Confusion Matrix

Prediction/Reference label Not Obese Obese Total
Not Obese 253 33 286
Obese 3 74 77

Total 256 109 363
Accuracy: 0.9008; 95% CI: (0.8653, 0.9296); P-value: 0.000

Sensitivity: 0.6916; Specificity: 0.9883

Figure 6.19: Final rendered classification tree with nine terminal nodes. Left branch from any given
node implies satisfied node condition.
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Figure 6.20: Training and testing ROC curve of decision tree algorithm.

the most attractive properties of trees is that they can be graphically presented to display the tree

structure, specific split, node labels, and tree growing. Figure 6.19 portrays the graphical layout

of the grown tree. According to figure 6.19 the most critical indicator of Obesity appears to be

physical activity since the first branch differentiates physically active from not physically active

status. Another interesting observation is the algorithm left branch ended quickly into pure node

(that is, homogeneous class label) at the Fiber split < 33 gm of average sugar intake.

Regarding accuracy prediction, the fitted model can classify 90 percent of the observations

during testing, and the model misclassifies 33 true obese cases as not obese resulting 69 percent

sensitivity rate, i.e., 31 percent of the true obese cases were misclassified by the model. During

testing, the model’s sensitivity was found to be 69 percent, i.e., 69 percent of the cases was truly

classified obese by the model that were actually obese. Let us have a look at the ROC curve in

Figure 6.20. It represents the plot of the false positive rate against the true positive rate. The ROC

curve reveals that the model is performing well during training and with slightly poor performance

60



Table 6.10: Detailed feature importance table of random forests algorithm.

Variables Not obese Obese Mean Decrease (Accuracy) Mean Decrease (Gini)

Age -0.56 0.56 -0.14 11.80
Gender -0.56 -0.08 -0.42 7.35
Race -0.40 1.14 0.22 18.50
SES 1.93 2.81 3.21 56.93
Education 5.03 2.78 6.15 19.52
Fiber 1.79 1.85 2.48 55.29
Carb 6.19 -4.51 4.77 51.85
Sugar 5.65 -3.26 4.22 55.13
Fat 2.27 2.10 3.58 60.92
PA 9.10 10.65 13.22 15.85

during testing with a AUC value 0.839.

6.3.5 Random Forests Results

As described in section 5.2.5, random forests provide an improvement over bagged trees by

way of a minor tweak that helps to decorrelates the trees. In other words, building a random forest

at each split in the tree prevents the algorithm from using high correlated predictors all the time.

For instance, say there is one very strong predictor in the data set, along with several other

moderately strong predictors. Then in the collection of bagged trees, most or all of the trees will

use this strong predictor in the top split. Therefore, all the bagged trees will look quite similar

to each other, resulting in highly correlated trees with high within-tree variance. So using R’s

“randomForest” library, we estimated prediction error and out-of-bag error (OOB) for a set of

variable selections. We repeated each instance 1000 times, and figure 6.21 shows the MSE and

OOB for the number of variables we want to choose in each split. Here we are looking for the

combination of low MSE and OOB to determine the number of variables we should randomly

sample as candidates at each split. Our estimates suggest we should use six randomly selected

variables at each split to achieve the best results.

After we train our model with six variables at each tree split, we calculated the importance

of the variables used in this study. Four measures of variable importance are reported in the table

6.10. The first two columns represent the class-specific performance of each feature. That is, what
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Figure 6.21: MSE and OOB error with respect to number of variables selected as sample candidates
at each split.

Figure 6.22: Graph of mean decrease in accuracy and Gini for each variables in random forests
classification.
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Table 6.11: The confusion matrix and accuracy of random forests classification.

Confusion Matrix

Prediction/Reference label Not Obese Obese Total
Not Obese 249 27 276
Obese 7 80 87

Total 256 107 363
Accuracy: 0.9063; 95% CI: (0.8716, 0.9343); P-value:0.000

Sensitivity: 0.7477; Specificity: 0.9727

effect the added variable has on the class prediction accuracy. However, as our data resembles a

class imbalanced random forest, in the third column mean decrease in accuracy of a certain variable

was reported. This gives us the overall effect a variable has on predicting class. Finally, the fourth

column represents the average decrease in Gini impurity measures. As we already discussed in

section 5.2.5 that a smaller Gini impurity means a better split, so the third and fourth column

essentially represents how effective a variable was in splitting the nodes. The results indicate that

across all of the trees considered in the random forest, the variable SES, Education, and Race are by

far the three most important variables from demographic data. Moreover, among nutrition intake

variables, all four of them have a measurable effect on predicting a child’s obesity status. Figure

6.22 summarizes the mean decrease in accuracy and Gini impurity for each feature in the data. In

general, variables with a low mean decrease in accuracy should be on the far left of the first figure

and to the far right of the second figure of figure 6.22. A quick look at the figure 6.22 corroborates

this hypothesis.

The Table 6.11 reflects the random forests classifications performance when unseen test

observations feed into the model. The diagonal elements of the confusion matrix table 6.11 indicate

correct predictions, while the off-diagonals represent incorrect predictions. Hence our model

correctly predicted 249 observations as not obese and 80 observations as obese, for a total of 320

correct predictions. However, when a 10 fold cross validation was performed on the the 100 times

the average testing error found to be 0.164 (16.4 percent). Additionally, the balanced accuracy was

found to be 86 percent with a sensitivity of 75 percent. And during testing the area under the ROC
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Figure 6.23: ROC curve of random forests model when applied on training and test data.

Table 6.12: The summary of all the machine learning models we used and their corresponding
accuracy, balanced accuracy, sensitivity, speceficity, AUC, and 95% CI.

Models Accuracy Balanced Accuracy Sensitivity Speceficity AUC 95% CI of accuracy

PCR 0.880 0.840 0.730 0.940 0.831 (84, 91)
SVM 0.900 0.850 0.740 0.970 0.855 (86, 93)
KNN 0.790 0.650 0.310 1.000 0.654 (75, 83)
Classification Tree 0.900 0.840 0.700 0.980 0.839 (86, 92)
Random Forests 0.910 0.860 0.750 0.970 0.859 (87, 93)

curve was found to be 0.859 (Figure 6.23).

Finally, Table 6.12 shows us the summary of all the models we used and their corresponding

balanced accuracy, Sensitivity AUC, etc. It shows that the random forest was the best performing

model among all, having 86% balanced accuracy. And the sensitivity of the ransom forests algorithm

was found to be 0.75; that is, the model could accurately identify 75% of the obese cases as obese.

Across all the models, we experienced high model specificity meaning all models were good at

identifying negative class, in this case, non-obese children. One reason we could think of the high

volume of negative class data in the training and testing sample. The support vector machine and
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the principal component algorithm also performed well during both training and testing.
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CHAPTER VII

CONCLUSION AND DISCUSSION

Our study comprises two parts. First, we studied the effect of demographics and micronu-

trient intake on 4-6yo U.S. children using Path Analysis. Then combining knowledge from our

study and literature knowledge, we made an informed decision about what causes obesity in the

U.S. younger cohort. Second, using these factors use implemented sophisticated machine learning

algorithm to build an ML model to predict obesity.

Our study discovered a significant causal relationship between gender, race, and ethnicity

in obesity. Hispanic ethnicity independently showed a significant positive causal path to BMI. A

household’s reference person’s low education level showed positive causation to BMI. In most

instances, age also showed significant positive causal relation to BMI. Age consistently significantly

increased BMI in all analyses. But through higher fiber intake, age showed a decreasing causal

relationship with BMI during the study with the entire and gender-race specific samples. Especially

in females, age directly caused increased BMI with p = 0.323. In non-Hispanic black males and

females, we also found the direct causal effect of age on BMI. There is a strong chance that it’s

due to biological growth, but this hypothesis again can’t explain why age has a decreasing effect

on BMI mediated through fiber. Our study showed a substantial direct impact of PA on decreasing

BMI across both gender subgroups. In some gender-race-specific subgroups effect of PA was not

significant such as in non-Hispanic black children and Hispanic females. Our study found lower

BMI was associated with increased physical activity.

Among nutrition intake, the significant path was passed through all nutrition intake variables

but in different instances. In females, fiber and carb intake were found to be substantial, whereas

fiber and fat intake was significant for males. Carb intake was found to be significant in both
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Hispanic males and females. Sugar played a significant role in increasing BMI in non-Hispanic

black males and females. Among other racial origins, our study found a significant causal pathway

between fiber intake and BMI. We developed a handful of hypothesized causal models and tested

them but only reported the best-performing one.

In summary, micronutrient intake, education, race, and physical activity showed significant

causation to BMI. Hispanic ethnicity was found to be positively associated with BMI. In every

sample and homogenous subsample where the effect of physical activity was present, it was always

found to be negative. Age showed increasing causation to BMI.

We implemented several machine learning models on our data set. But here, we would

like to mention the data structure from an ML perspective carefully. Our data was class imbalance

data, meaning obese class frequency was lower than usual compared to the non-obese class. We

used SMOTE technique to address this issue. Among the applied ML algorithms, the tree-based

algorithm seems to fit our data well. We trained two tree-based methods classification of trees and

random forests. Both models performed well during testing, but the random forest was the best

performing one, with around 86 percent of balanced accuracy during testing. Besides these two

algorithms, we also applied SVM, PCR, and KNN. SVM and PCR performed competitively with

tree based method with respective balanced accuracy of 85%, 84% respectively, but KNN performed

the worst among all (balanced accuracy 65%).
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CHAPTER VIII

LIMITATIONS AND FUTURE WORK

The biggest challenge we faced doing this study was preparing the data to produce an

acceptable sample size. There were lots of missing values in the data set across different IDs and

variables. Depending on how many missing values we can estimate in future studies, using missing

value estimation methods like bootstrap, interpolation, and EM algorithm results could be improved.

The second biggest challenge we overcome is understanding and taking appropriate action regarding

the class imbalance problem. In the future, if more data becomes available, our study framework

can be applied and evaluated. Even though we applied established methodologies to overcome

the class imbalance problem, there will always remain scope to improve the data due to that our

predictive model was performing marginally better on predicting positive class (obese). Again the

scope of improvement is here based on data availability. We only used demographic characteristics

and nutrition intake to study obesity. A better result could be expected if genetic factors were taken

into consideration. According to the definition of psychical activity and the nature of the question

NHANES asked individuals, we conclude that the PA data for the younger population is unreliable.

So it was challenging to perform statistical analysis and produce acceptable results. The physical

activity data’s reliability was made based on the NHANES variable "perfect recall." It reflects how

reliable the recall information is. We wish to build our possible future research from this work

by combining path analysis with machine learning to explore more complex path networks that

fit the real-world context. The motivation behind this idea was taken from Yu and Yan (2022)

[98] approach to Combining machine learning and main path analysis to analyze citation network.

[77, 76]
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APPENDIX A

SUPPLEMENTARY MATERIALS

Moods Median Test Mood’s median test is a nonparametric test to compare the medians of

two independent samples [99]. Hypotheses are defined as

1. Null hypothesis: The medians of the populations from which the groups were sampled are

equal.

2. Alternative hypothesis(two-sided): The medians of the populations from which the groups

were sampled are not all equal.

Kolmogorov-Smirnov Test The Kolmogorov-Smirnov test (K-S test) is a nonparametric

test of the equality of continuous (or discontinuous), one-dimensional probability distributions that

can be used to compare a sample with a reference probability distribution (one-sample K-S test), or

to compare two samples (two-sample K-S test) [100]. Hypotheses are defined as

1. Null hypothesis: The probability distribution of the populations from which the groups were

sampled are similar.

2. Alternative hypothesis (two-sided): The probability distribution of the populations from

which the groups were sampled are NOT similar.

For this test the empirical distribution function Fn for n independent and identically dis-

tributed (i.i.d.) ordered observations Xi and can be defined as

Fn(x) =
number of (elements in the sample ≤ x)

n
=

1
n

n

∑
i=1

1[−∞,x] (Xi)
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where 1[−∞,x] (Xi) is the indicator function, equal to 1 if Xi ≤ x and equal to 0 otherwise.

In that case, the Kolmogorov-Smirnov statistic is

Dn,m = sup
x

∣∣F1,n(x)−F2,m(x)
∣∣ ,

where F1,n and F2,m are the empirical distribution functions of the first and the second sample

respectively, and sup is the supremum function. For large samples, the null hypothesis is rejected at

level α if

Dn,m >

√
− ln

(
α

2

)
·

1+ m
n

2m

Table A.1: All individual paths and summarized causal effects based on the path analysis for the
entire population.

Paths Estimates Std Error P-value Std.lv Std.all

Fiber

(Age –>Fiber) 0.117 0.033 0.000 0.117 0.096

(Gender –>Fiber) -0.154 0.055 0.005 -0.154 -0.077

(Hispanic –>Fiber) 0.307 0.069 0.000 0.307 0.139

(Non Hispanic Black –>Fiber) 0.156 0.078 0.047 0.156 0.066

(Other Race –>Fiber) 0.058 0.084 0.049 0.058 0.022

(SES –>Fiber) 0.008 0.024 0.736 0.008 0.012

(High school and Some Collage –>Fiber) -0.384 0.130 0.003 -0.384 -0.182

(Collage and Above –>Fiber) -0.076 0.148 0.606 -0.076 -0.033

(Physical Activity–>Fiber) 0.112 0.104 0.278 0.112 0.030

Carb

(Age –>Carb) 0.161 0.030 0.000 0.161 0.160

(Gender –>Carb) -0.219 0.059 0.000 -0.219 -0.132
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Table A.1 continued.

Paths Estimates Std Error p-value Std.lv Std.all

(Hispanic –>Carb) 0.017 0.076 0.241 0.017 0.009

(Non Hispanic Black –>Carb) 0.190 0.093 0.041 0.190 0.096

(Other Race –>Carb) -0.083 0.081 0.311 -0.083 -0.038

(SES –>Carb) 0.014 0.024 0.555 0.014 0.026

(High school and Some Collage –>Carb) 0.119 0.123 0.335 0.119 0.068

(Collage and Above –>Carb) 0.206 0.150 0.171 0.206 0.107

(Physical Activity–>Carb) -0.007 0.092 0.936 -0.007 -0.002

Sugar

(Age –>Sugar) 0.132 0.029 0.000 0.132 0.109

(Gender –>Sugar) -0.132 0.056 0.019 -0.132 -0.066

(Hispanic –>Sugar) -0.080 0.079 0.315 -0.080 -0.036

(Non Hispanic Black –>Sugar) 0.015 0.090 0.871 0.015 0.006

(Other Race –>Sugar) -0.316 0.082 0.000 -0.316 -0.121

(SES –>Sugar) 0.011 0.024 0.636 0.011 0.017

(High school and Some Collage –>Sugar) 0.347 0.112 0.002 0.347 0.164

(Collage and Above –>Sugar) 0.348 0.140 0.013 0.348 0.150

(Physical Activity–>Sugar) -0.107 0.119 0.368 -0.107 -0.028

Fat

(Age –>Fat) 0.144 0.036 0.000 0.144 0.119

(Gender –>Fat) -0.171 0.054 0.002 -0.171 -0.086

(Hispanic –>Fat) 0.013 0.077 0.866 0.013 0.006

(Non Hispanic Black –>Fat) 0.107 0.082 0.190 0.107 0.045

(Other Race –>Fat) -0.103 0.079 0.031 -0.103 -0.039

(SES –>Fat) 0.002 0.024 0.920 0.002 0.004
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Table A.1 continued.

Paths Estimates Std Error p-value Std.lv Std.all

(High school and Some Collage –>Fat) 0.251 0.115 0.029 0.251 0.119

(Collage and Above –>Fat) 0.248 0.134 0.064 0.248 0.107

(Physical Activity–>Fat) 0.048 0.090 0.594 0.048 0.013

BMI

(Fiber –>BMI) -0.089 0.096 0.035 -0.089 -0.036

(Carb –>BMI) 0.109 0.190 0.568 0.109 0.037

(Sugar –>BMI) 0.018 0.139 0.898 0.018 0.007

(Fat –>BMI) 0.179 0.096 0.044 0.179 0.073

(Age –>BMI) 0.231 0.079 0.004 0.231 0.078

(Gender –>BMI) 0.234 0.139 0.093 0.234 0.048

(Physical Activity–>BMI) -1.164 0.240 0.000 -1.164 -0.126

(Hispanic –>BMI) 0.329 0.192 0.047 0.328 0.061

(Non Hispanic Black –>BMI) -0.083 0.194 0.667 -0.083 -0.014

(Other Race –>BMI) -0.383 0.213 0.050 -0.383 -0.060

(SES –>BMI) -0.036 0.063 0.564 -0.036 -0.023

(High school and Some Collage –>BMI) -0.167 0.308 0.588 -0.167 -0.032

(Collage and Above –>BMI) -0.706 0.373 0.048 -0.706 -0.125

Table A.2: All individual Special effects, Total Indirect Effects, and Total effects based on the path
analysis for the entire population.

Mediations Estimate Std Error p-value Std.lv Std.all

Age

SIE (Age –>Fiber –>BMI) -0.010 0.011 0.336 -0.010 -0.003

SIE (Age –>Carb –>BMI) 0.017 0.030 0.555 0.017 0.006
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Table A.2 continued.

Mediations Estimate Std Error p-value Std.lv Std.all

SIE (Age –>Sugar –>BMI) 0.002 0.018 0.898 0.002 0.001

SIE (Age –>Fat –>BMI) 0.026 0.015 0.048 0.026 0.009

TIE (Age –>Nutrient Intake –>BMI) 0.035 0.017 0.039 0.035 0.012

TE (Age –>BMI) 0.266 0.076 0.000 0.266 0.090

Gender

SIE (Gender –>Fiber –>BMI) 0.014 0.016 0.394 0.014 0.003

SIE (Gender –>Carb –>BMI) -0.024 0.043 0.585 -0.024 -0.005

SIE (Gender –>Sugar –>BMI) -0.002 0.019 0.902 -0.002 0.000

SIE (Gender –>Fat –>BMI) -0.031 0.018 0.041 -0.031 -0.006

TIE (Gender –>Nutrient Intake

–>BMI)
-0.043 0.024 0.038 -0.043 -0.009

TE (Gender –>BMI) 0.191 0.136 0.039 0.191 0.039

Race

Hispanic

SIE (Hispanic –>Fiber –>BMI) -0.027 0.031 0.041 -0.027 -0.005

SIE (Hispanic –>Carb –>BMI) 0.002 0.018 0.219 0.002 0.000

SIE (Hispanic –>Sugar –>BMI) -0.001 0.014 0.321 -0.001 0.000

SIE (Hispanic –>Fat –>BMI) 0.002 0.018 0.091 0.002 0.000

TIE (Hispanic –>Nutrient Intake

–>BMI)
-0.025 0.031 0.433 -0.025 -0.005

TE (Hispanic –>BMI) 0.304 0.191 0.032 0.304 0.056

Non Hispanic Black

SIE (Non Hispanic Black –>

Fiber –>BMI)
-0.014 0.019 0.459 -0.014 -0.002
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Table A.2 continued.

Mediations Estimate Std Error p-value Std.lv Std.all

SIE (Non Hispanic Black –>

Carb –>BMI)
0.021 0.042 0.622 0.021 0.004

SIE (Non Hispanic Black –>

Sugar –>BMI)
0.000 0.015 0.987 0.000 0.000

SIE (Non Hispanic Black –>

Fat –>BMI)
0.019 0.019 0.319 0.019 0.003

TIE (Non Hispanic Black –>

Nutrient Intake –>BMI)
0.026 0.031 0.404 0.026 0.005

TE (Non Hispanic Black –>BMI) -0.057 0.200 0.775 -0.057 -0.010

Other Race

SIE (Other Race –>Fiber –>BMI) -0.005 0.014 0.710 -0.005 -0.001

SIE (Other Race –>Carb –>BMI) -0.009 0.027 0.740 -0.009 -0.001

SIE (Other Race –>Sugar –>BMI) -0.006 0.044 0.899 -0.006 -0.001

SIE (Other Race –>Fat –>BMI) -0.018 0.019 0.032 -0.018 -0.003

TIE (Other Race –>Nutrient Intake

–>BMI)
-0.038 0.036 0.291 -0.038 -0.006

TE (Other Race –>BMI) -0.421 0.210 0.043 -0.421 -0.066

Socioeconomic Status

SIE (SES –>

Fiber –>BMI)
-0.001 0.004 0.846 -0.001 0.000

SIE (SES –>

Carb –>BMI)
0.002 0.007 0.819 0.002 0.001

SIE (SES –>

Sugar –>BMI)
0.000 0.004 0.964 0.000 0.000
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Table A.2 continued.

Mediations Estimate Std Error p-value Std.lv Std.all

SIE (SES –>

Fat –>BMI)
0.000 0.005 0.926 0.000 0.000

TIE (SES –>

Nutrient Intake –>BMI)
0.001 0.006 0.819 0.001 0.001

TE(SES –>BMI) -0.035 0.062 0.575 -0.035 -0.022

Education

High school and Some College

SIE (High school and Some Collage –>

Fiber –>BMI)
0.034 0.042 0.420 0.034 0.007

SIE (High school and Some Collage –>

Carb –>BMI)
0.013 0.039 0.738 0.013 0.002

SIE (High school and Some Collage –>

Sugar –>BMI)
0.006 0.048 0.897 0.006 0.001

SIE (High school and Some Collage –>

Fat –>BMI)
0.045 0.038 0.234 0.045 0.009

TIE (High school and Some Collage –>

Nutrient Intake –>BMI)
0.098 0.060 0.049 0.098 0.019

TE(High School and Some Collage –>BMI) -0.069 0.312 0.826 -0.069 -0.013

College and Above

SIE (Collage and Above –>

Fiber –>BMI)
0.007 0.022 0.760 0.007 0.001

SIE (Collage and Above –>

Carb –>BMI)
0.022 0.051 0.663 0.022 0.004
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Table A.2 continued.

Mediations Estimate Std Error p-value Std.lv Std.all

SIE (Collage and Above –>

Sugar –>BMI)
0.006 0.052 0.905 0.006 0.001

SIE (Collage and Above –>

Fat –>BMI)
0.044 0.038 0.047 0.044 0.008

TIE (Collage and Above –>

Nutrient Intake –>BMI)
0.080 0.052 0.129 0.080 0.014

TE(Collage and Above –>BMI) -0.627 0.373 0.033 -0.627 -0.111

Physical activity

SIE (Physical activity–>

Fiber –>BMI)
-0.010 0.019 0.592 -0.010 -0.001

SIE (Physical activity–>

Carb –>BMI)
-0.001 0.020 0.967 -0.001 -0.000

SIE (Physical activity–>

Sugar –>BMI)
-0.002 0.020 0.923 -0.002 -0.000

SIE (Physical activity–>

Fat –>BMI)
0.009 0.019 0.654 0.009 0.001

TIE (Physical activity–>

Nutrient Intake –>BMI)
-0.004 0.032 0.897 -0.004 -0.000

TE (Physical activity –>BMI) -1.168 0.249 0.000 -1.168 -0.126
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Table A.3: The goodness of fit measures (adjusted R2, CFI, SRMR of gender specific path model.

Adjusted R2 Estimate

Fiber 70

Carb 46
Suger 55
Fat 33
BMI 78

CFI: 0.924; SRMR: 0.032

Table A.4: The residuals correlation difference of our gender-specific fitted model. This is simply
the difference between the observed and implied covariance matrix. An ideal situation would be all
0 elements.

Variables Fiber Carb Suger Fat BMI AGE Race SES Education PA

Fiber 0.000
Carb 0.612 0.000
Suger 0.326 0.765 0.000
Fat 0.443 0.580 0.356 0.000
BMI 0.069 0.027 0.081 0.042 0.000
AGE 0.000 0.000 0.000 0.000 0.000 0.000
Race 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Education 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PA 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000

Table A.5: The goodness of fit measures (adjusted R2, CFI, SRMR of female race-specific path
model.

Adjusted R2 Estimate

Fiber 81
Carb 47
Suger 65
Fat 53
BMI 71

CFI: 0.871; SRMR: 0.062
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Table A.6: The residuals correlation difference of our gender race-specific fitted model. This is
simply the difference between the observed and implied covariance matrix. An ideal situation would
be all 0 elements.

Variables Fiber Carb Suger Fat BMI AGE Race SES Education PA

Fiber 0.000
Carb 0.612 0.000
Suger 0.326 0.765 0.000
Fat 0.443 0.580 0.356 0.000
BMI 0.069 0.027 0.081 0.042 0.000
AGE 0.000 0.000 0.000 0.000 0.000 0.000
Race 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Education 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PA 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000
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