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ABSTRACT 

Anning, Emmanuel, Cucurbitacin B: a potential natural agent for targeting tumor immune cell 

population. Master of Science (MS), July 2022, 56 pp., 2 tables, 11 figures, references, 128 titles. 

Immune checkpoint blockade (PD1, PDL-1 and CTLA-4) immunotherapies have 

emerged as the breakthrough in cancer treatment. However, some malignancies show marginal 

response. One factor that influences the efficacy of immunotherapy is the development of 

immunosuppressive tumor microenvironment (TME), caused by infiltration of myeloid derived 

suppressor cells (MDSCs) and tumor associated macrophages (TAM) into the tumor, facilitating 

metastatic tumor growth and immunotherapy resistance. We have identified Cucurbitacin B 

(Cuc. B), a potent small molecule that targets TAM and MDSCs and inhibits Stat3, CSF-1R, and 

PI3Kγ signaling axis at lower doses compared to the pharmacological inhibitor of PI3Kγ (IPI-

549). IL-4 polarization of TAM caused a loss of the phagocytic capacity which we observed to 

be restored by Cuc. B treatment. Cuc. B treatment also inhibited the expression of PDL-1 in 

TAMs.  Taken together, our results suggest that Cuc. B has the potential to reprogram TAM and 

MDSCs via targeting Stat3, CSF-1R, and PI3Kγ. Therefore, Cuc B could be a novel therapeutic 

modality in improving tumor immunity and checkpoint blockade PD-1/CTLA-4 immunotherapy 

against non-responsive malignancies. 
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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

The incidence of cancer is on the ascendency with an estimation of 1.9 million new cases 

and an estimated cancer-related death of 609,360 in the United States for the year 2022. On the 

world scale, nearly 10 million cancer-related mortalities and about 20 million cases were 

recorded in the year 2020  (Siegel et al. 2022). Although there has been an insurgence of new 

therapeutic modalities for the management of cancer, resistance to cancer therapy remains a bane 

of successful cancer therapeutics (Ahmad 2013; Gatenby and Brown 2020; Quagliano, 

Gopalakrishnapillai, and Barwe 2020). The state of Texas alone has estimated new cases of 

129,770 with an estimated death of 41, 810. The 5-year survival rate for all cancers is 67%, and 

solid tumors such as pancreatic, liver, and intrahepatic bile duct cancer remain low at 11% and 

20 % respectively (Siegel et al. 2022). 

Despite the breakthroughs presented by the emergence of immune checkpoint blockade 

(i.e. PDL-1 (programmed death-ligand 1), PD-1R (programmed death-1 receptor), CTLA-4 

(cytotoxic T lymphocyte antigen 4)) immunotherapies, various solid tumors such as pancreatic 

and liver cancers show only a marginal response (Ribas and Wolchok 2018; Sangro et al. 2021; 

Yang 2015; Yap et al. 2021). A key component that has been identified to contribute to the 

attenuation of the efficacy of immunotherapy is the development of an immunosuppressive 

tumor microenvironment (TME) (Petitprez et al. 2020). Upon infiltration of tumor immune cell
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populations such as the myeloid derived suppressor cells (MDSCs) and tumor associated 

macrophages (TAM) into the tumor sites, various mechanisms are initiated which culminate in 

metastatic tumor growth and also contribute to immunotherapy resistance(Gabrilovich 2017; 

Noy and Pollard 2014). Therefore, small molecules which have the capacity to target various 

immune cell populations in the tumor microenvironment such as MDSCs, and TAM could be 

used in enhancing checkpoint blockade immunotherapy response and by extension, enhance 

tumor immunity against non-responsive tumors. 

1.2 Statement of the Purpose 

 In this study, we have selected a very potent small molecule Cucurbitacin B (Cuc. B) 

which targets STAT3, CSF-1R, and PI3Kγ at lower doses compared to existing specific small 

molecule inhibitors (Xu et al. 2020; Zhou et al. 2017). Various studies have suggested its potent 

chemopreventive and chemotherapeutic efficacy alone or in combination with chemotherapeutic 

drugs against various types of cancers (Garg, Kaul, and Wadhwa 2018; Luo et al. 2019; Mao et 

al. 2019). However, no study has explored the effect of Cuc. B tumor immunity in cancer. Our 

novel observations provided us with strong evidence that Cuc. B reprograms TAMs and MDSCs 

via targeting STAT3, CSF-1R, and PI3Kγ and these pathways have been shown to induce 

immunosuppression in various cancers (Han et al. 2021; Valero et al. 2021; Zou et al. 2020). By 

employing the use of in-vitro culture systems, we propose the M1 phenotype promotion of Cuc. 

B with a concomitant abrogation of M2 phenotype. On the premise of this compelling evidence, 

we hypothesize that, Cuc. B treatment could be a novel therapeutic modality in improving tumor 

immune surveillance and improving checkpoint blockade PD-1/CTLA-4 immunotherapy against 

non-responsive malignancies. 
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CHAPTER II 

REVIEW OF LITERATURE 

2.1 Cancer and Cancer Epidemiology 

Cancer is a malignancy characterized by uncontrolled growth of cells due to either the 

inactivation of tumor suppressors or the activation of protooncogenes, where the cells lose their 

functional features and have the tendency of invading other sites to cause deleterious health 

effects (Garg et al. 2018). As rightly discussed in their review, “the hallmarks of cancer”,  

Hanahan & Weinberg (2000) described the six cardinal qualities of cancers namely; limitless 

replicative potential, evading apoptosis, sustained angiogenesis,  insensitivity to anti-growth 

signals, self-sufficiency in growth signals and tissue invasion and metastasis. Currently, cancer 

remains the world’s leading cause of mortality with nearly 10 million cancer-related deaths and 

about 20 million new cases have been recorded worldwide in 2020 (Sung et al. 2021). There are 

an estimated 1.9 million new cases and 609,360 cancer-related deaths in the United States alone 

for the year 2022 (Siegel et al. 2022). Despite the improving 5-year survival rate for all 

combined cancers which currently stands at 67%, solid tumors such as pancreatic, liver, and 

intrahepatic bile duct cancer remain low at 11% and 20 % respectively. 

Cancer risk factors are multifaceted, ranging from environmental factors such as air 

pollution, and exposure to ultraviolet and ionizing radiation, to lifestyles such as tobacco 
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smoking, alcohol intake, infection like the H. pylori infection, hepatitis (B and C) virus, and 

other infections and carcinogenic exposures (Sung et al. 2021)

2.2 Tumor Microenvironment (TME) 

 The TME represents various cell types and structures located within the tumor niche that 

evolve with the tumor cells and promote the development and growth of the tumor (Junttila and 

de Sauvage 2013). Within the TME are vascular networks which are produced in response to 

signals from the tumor, fibroblasts for the maintenance of tissue structural framework, and 

immune cells such as neutrophils,  dendritic cells, T-cells, and monocytes as well as signaling 

molecules produced by both the tumor and normal cells (Junttila and de Sauvage 2013). 

Primarily the TME and the tumor cells have bidirectional communication to promote both 

normal cellular and tissue homeostasis as well as the growth and development of the tumor cells 

(Quail and Joyce 2013). 

 Studies have shown that the TME composition changes constantly and this dynamism 

stems from the changes in the environmental conditions as well as varying oncogenic signals 

which ensue as the tumor progresses. These changes result in the evolution of the 

microenvironment toward a  pro-tumorigenic state while disrupting the normal cellular 

interaction within healthy normal adult tissues  (Quail and Joyce 2013). During carcinogenesis, 

immune components such as macrophages and fibroblasts inhibit the growth of immune 

components of the tumor cells. As the tumor develops, these immune components are then 

polarized into phenotypes via the synthesis of cytokines, chemokines, growth factors, and 

proteases that have pro-tumorigenic roles which include but are not limited to tumor growth, 
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invasion of cancer cells, and angiogenesis (Denton, Roberts, and Fearon 2018; Hanahan and 

Weinberg 2011).  

Hypoxia is one of the major hallmarks of the TME and facilitates the growth and 

metastasis of tumors. Within the developing tumor, there is acute vascular collapse secondary to 

high interstitial pressure and immature blood vessel formation which culminates in TME hypoxia 

(Horsman et al. 2012). The vascular endothelial growth factor (VEGF) is one of the 

proangiogenic cytokines produced by tumor cells to promote angiogenesis under low nutrient 

and hypoxic conditions which is very typical of the TME (Claesson-Welsh and Welsh 2013). 

Aside from promoting tumorigenesis, the TME also plays a pivotal role in therapy resistance 

(Shree et al. 2011; Vitale et al. 2019). The subsequent paragraphs highlight some components of 

the TME.  

 

2.2.1 Tumor Associated Macrophages (TAMs) 

 Macrophages are key components of the innate immune system that facilitate immune 

responses via antigen presentation and phagocytosis (Chen et al. 2015). Macrophages found in 

the tumor milieu may either be tumoricidal (M1) or pro-tumorigenic (M2), but in tumors there is 

an increase in the polarization of M1 towards the M2 phenotype in the microenvironment as 

tumors transition to advanced stages (Mantovani and Sica 2010).   

TAMs form a key component of the ecology of tumor cells that exhibit pro-tumoral 

properties. Via their immunosuppressive and angiogenic enhancing properties, TAMs can ensure 

the evolution of tumor cells into malignant tumors by promoting tumor cell growth, motility, 

invasion, and metastasis (Noy and Pollard 2014). Additionally, TAMs release various growth 

factors, pro-tumorigenic proteases, and cytokines within the TME which suppresses T-cell 
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effector functions and promotes the progression of tumors into malignancy. By creating an 

inflammatory environment, macrophages can promote tumor growth and subsequently promote 

tumor invasion, migration and angiogenesis during malignant transformation (Qian and Pollard 

2010; Szefel, Danielak, and Kruszewski 2019).  

Phenotypically, M1 macrophages due to their immunosuppressive effect express various 

receptors, cytokines, and effectors that mediate their immunosuppressive action. Some of these 

which are rightly classified as M1 markers include iNOS/NOS2, Il-12, TNF-α, IL-6, IL-12, 

CD80, and CD86. Pro-tumorigenic M2 macrophages are also characterized by various markers 

such as Arg1, IL-10, Ym1, FIZZ1,Mrc 1, PPARγ, TGFβ  (Mantovani et al. 2002; Sica and 

Mantovani 2012).  

 

2.2.2 Myeloid Derived Suppressor Cells (MDSCs) 

 MDSCs, as defined by Gabrilovich et al., (2017), refer to myeloid cell populations 

including macrophages and dendritic cells which contribute to generating immunosuppressive 

TME. (Gabrilovich et al. 2007). Myeloid cells originate from pluripotent hematopoietic stem 

cells after a series of differentiation, and they have the sole function of promoting both innate 

and adaptive immunity. However, during cancer, myeloid cells are polarized to MDSCs which 

contrary to regular myeloid cells, exert an immunosuppressive effect within the TME by 

inhibiting other immune cells such as the effector T cells and the natural killer cells properties 

(Gabrilovich 2017; Gabrilovich, Ostrand-Rosenberg, and Bronte 2012; Szefel et al. 2019). 

Growth factors and chemokines such as the granulocyte–macrophage colony stimulating factor 

(GM-CSF), CSF-1, and CCL-2  secreted by the tumor cells promote the myeloid cells 

recruitment (Pollard 2009; Pylayeva-Gupta et al. 2012). MDSCs induce CD8+ cytotoxic T 
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lymphocyte (CTL) dysfunction which is correlated with poor cancer prognosis(Lechner et al. 

2013).  

Various growth factors ( chemokines and cytokines) such as endothelial growth factor 

(VEGF), colony stimulating factor (CSF1), macrophage-colony stimulating factor (M-CSF),  

granulocyte macrophage-colony stimulating factor (GM-CSF), stem cell factor (SCF),  cyclo-

oxygenase2 (COX-2), prostaglandin E2 (PGE2),  interleukin-6 (IL-6) and IL-1β  secreted by the 

tumor cells promote the differentiation of monocytes into MDSCs  (Dufait et al. 2015; Lechner, 

Liebertz, and Epstein 2010).  Through the induction of reactive oxygen species, these myeloid 

lineages have been shown to induce nitration of TCR/CD8, resulting in the failure of CD8+
 T 

cells to bind the peptide MHC resulting in tumor escape (Nagaraj et al. 2007). Another suggested 

mechanism by which MDSCs sufficiently suppresse anti-tumor immunity is via arginase-1 and 

iNOS mediated depletion of L-arginine and production of reactive oxygen and nitrogen species, 

key components for T-cell receptor maturation needed for T-cell proliferation and interaction 

with tumor antigens (Szefel et al. 2019; Talmadge 2007). In coherence with this fact, the 

inhibition of MDSCs was seen to be characterized by the inhibition of inducible nitric oxide 

synthase (iNOS) and arginase-1 by Dufait et al., (2015). 

Various phenotypic markers that characterize MDSCs include CD11b, CD11c, CD 206, 

IL-1β and TNF-α (Umemura et al. 2008). By utilizing RT-PCR Lechner et al., (2010) 

successfully characterized the various immune factors expressed by MDSC which included 

arginase1, iNOS, COX-2, TNF-α, VEGF, TGF-β, IL-4, IL-6 and IL-1β, using RT-PCR (Lechner 

et al. 2010). The hallmark of popular chemotherapeutic agents such as gemcitabine, 5-

fluorouracil and docetaxel is the depletion of MDSCs (Kodumudi et al. 2010; Vincent et al. 

2010). 
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2.2.3 T Cells  

During inflammatory events and cancers, naïve T cells are activated and differentiated 

into effector T-cells to elicit effector roles to clear implicated antigens after which some of the T-

cells persists and are differentiated into memory cell which downregulate effector T-cell function 

as a regulatory mechanism. The immunosuppressive nature of the TME curtails the effector roles 

of CD8+ T cells via a variety of mechanisms, with a common one being immune checkpoint 

blockade via programmed cell death-1 (PD-1) (Wherry et al. 2007). During tumor progression, 

Treg cells infiltrate the tumor and promotes tumor immune escape by inhibiting cytotoxic T cell 

and B cell proliferation.  Inhibition of antigen presentation by dendritic cells is also a key 

immunosuppressive mechanism of  Treg cells (Quail and Joyce 2013). Treg cells suppress the 

function of Th1/TH2/Th17 lymphocytes thereby causing overall immunosuppression (Szefel et 

al. 2019).  

2.2.4 Natural Killer (NK) cells 

As a key component of the innate immune system, natural killer cells are one of the 

principal effector cells against tumor cells. Key cytokines such as interferon γ (IFNγ) released by 

NK cells promote helper T cell polarization (Chiossone et al. 2018).  Also, recruitment of other 

immune cells such as dendritic cells into solid tumors is enhanced by NK cells via the release of 

some chemokines such as CCL5, XCL1, and 2. NK cells are however key culprits of the 

immunosuppressive effect of MDSCs and Treg cells during cancer where they inhibit the 

cytotoxicity of  NK cells on tumor cells (Quail and Joyce 2013).  
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2.2.4 Cancer-associated Fibroblasts (CAFs) 

Fibroblasts are major connective tissues responsible for the synthesis and degradation of 

extracellular matrix components. Contrary to the regulatory roles in inflammation and epithelial 

differentiation as well as promotion of wound healing by normal fibroblasts, CAFs produce 

chemokines and growth factors that promote endothelial cell recruitment (Kalluri and Zeisberg 

2006). CAFs have been implicated in the initiation, progression, and metastasis of cancer 

through but not limited to driving HGF and TGFβ expression, stromal cell-derived factor 1 

(SDF-1) secretion, and promotion of the release of metastatic genes respectively (Grum-

Schwensen et al. 2005; Kuperwasser et al. 2004; Orimo et al. 2005). Most tumors are 

characterized by an aberrantly over-expression CAFs with distinctive properties from fibroblasts. 

CAFs express various markers such as α- smooth muscle actin (α-SMA), vimentin, fibroblast 

activation protein (FAP), fibroblast specific protein (FSP), and other fibroblast-associated 

proteins (Micke and Ostman 2004; Paulsson et al. 2009). 

  

 

 

 

 

 

 

Figure 1.1: Schematic representation of the interplay between components of the tumor 
microenvironment and tumor cells: 
 During tumorigenesis, cytokines produced by the tumor cells induces the transformation of 
various immune cells in the TME which in turn promotes the progression, invasion, metastasis 
and therapy resistance of the tumor cells. TAM: Tumor Microenvironment, MDSC: Myeloid 
derive suppressor cells, CAF: Cancer Associated Fibroblast, T reg cells: Regulatory T cells. 
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2.3 Current Cancer Therapies 

 Various treatment strategies are adopted based on the type and the stage of cancer 

advancement. To enhance the effectiveness and response to therapy, some clinicians prescribe 

treatment regimens that may be a combination of these treatment options. At the core of every 

cancer treatment option is the aim to completely remove tumorous tissues without causing harm 

to the normal neighboring tissues. However, a compromise to settle for the reduction of tumors 

and associated complications to a subclinical state is made when absolute remission is not a 

viable option (Wang, Lei, and Han 2018). Increasing knowledge in cancer dynamics coupled 

with various technological advancements have revolutionized cancer treatment strategies over 

time. We discuss some of the treatment strategies as follows. 

2.3.1 Surgery 

 Surgical procedures involve the removal of cancerous tissues which may end either in the 

total or partial removal of the cancerous tissues depending on the advancement level of the 

cancer and the affected areas during surgery. Surgical procedures are often used for biopsies 

during screening and are the mainstay for localized, early-stage tumors (Wyld, Audisio, and 

Poston 2015). Gradually, surgical procedures are becoming commonplace in the treatment of 

non-hematological cancers notable of them is cervical cancer (Peng et al. 2016; Pu et al. 2013). 

One of the emerging technologies in surgical oncology is robotic surgery. Particularly in 

neurosurgery, robot-assisted technologies are utilized in the excision of deep benign 

astrocytoma. Computer tomography images in the form of interactive 3D displays have aided 

surgeons in performing complex procedures with greater ease and precision. Robotic surgeries 

have become the mainstay for biopsies and treatment of breast, abdominal, gynecological, and 

urological cancers (Hashizume and Tsugawa 2004). 
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 A major disadvantage of surgery as a treatment option for cancer is the incidence of 

recurrence of cancer shortly after a surgical procedure. For instance, within five years after 

surgery, 1 in 4 colorectal cancer patients are likely to have recurrence with signs of colon cancer 

metastasis (van der Bij et al. 2009; Coffey et al. 2003).  

2.3.2 Radiotherapy 

 Cancer radiotherapy is a common treatment modality in cancer management with over 

50% of cancer patients known to have had radiation therapy. Patients either receive radiotherapy 

as a standalone therapy or as a combination therapy with surgery or chemotherapy(Delaney et al. 

2005).  Radiotherapy in the clinical setting involves the use of an external beam for deep tissue 

deposition of energy via high-energy photons while avoiding the exposure of radiation to the 

skin, with a typical treatment schedule spanning over 8 weeks where treatment is given in daily 

fractions. Brachytherapy is a form of internal radiotherapy where the source of radiation is 

implanted in the tumor (Allen, Her, and Jaffray 2017). Chemoradiation, the concurrent 

administration of chemo and radiation therapy has been used clinically for the management of 

various cancers. In chemoradiation, DNA modifying agents (cisplatin and temozolomide) and 

antimetabolite (gemcitabine and 5-fluorouracil) along with radiosensitizers are administered for 

improving clinical outcomes against cancer (Wahl and Lawrence 2017). 

 A major clinical challenge associated with radiation therapy is the induction of hypoxic 

TME. O2 is a known radiosensitizer that enhances cancer cell death during radiotherapy by 

producing free radicals within the tumor cells. Tissue hypoxia in cancer cells causes a reduction 

in the generation of free radicals needed for the induction of DNA  damage (Rey et al. 2017). 

Clinical application of radiotherapy is also limited to primary tumor with very little use when 
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tumors have metastasized since therapy for metastasized tumors requires a systemic approach 

(Ganesh and Massagué 2021). Also, the increased risk of toxicity is a major limitation associated 

with radiotherapy as the incidence of major side effects such as leukopenia, radiation dermatitis, 

anorexia, alopecia, oral mucositis and just to mention but a few increases with increasing 

radiation intensity and duration, thereby placing limitations on the therapeutic window (Bradley 

et al. 2015).  

2.3.3 Chemotherapy 

 Chemotherapy involves the administration of various cytotoxic chemical agents which 

are relatively more toxic to pathogens to eradicate tumors or alleviate tumor burden, and this 

often involves the intravenous administration of cytotoxic drugs (Anon 1937; Nygren 2001). 

These cytotoxic agents are classified based on their mechanism of action and briefly discussed 

below are some general classifications of commonly used clinical chemotherapeutic agents. 

Alkylating agents and alkylators-related agents such as cyclophosphamide and cisplatin 

respectively elicit their cytotoxicity via DNA binding, where they disrupt DNA activity. 

Antimetabolites (gemcitabine and 5-fluorouracil) are also a class of chemotherapeutic agents that 

share similar structural characteristics with various biomolecules. These agents can then be 

incorporated into various cellular synthetic pathways and eventually either halt the synthesis of 

essential DNA and RNA components of the tumor cells or result in the synthesis of a non-

functional end product(Sauter and Gillingham 2020).  Topoisomerase inhibitors inhibit the 

enzyme topoisomerase which is required for the induction of transient single or double-stranded 

breaks in DNA during DNA replication, thereby inhibiting the overall replicative process within 

the tumor. Microtubule interacting agents are a class of cytotoxic agents that disrupts normal 

microtubule formation. Thus, these classes of cytotoxic agents result in an abnormal 
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microtubular formation which results in the inhibition of eukaryotic cell proliferation thereby 

promoting cell death (Steinmetz and Prota 2018).  

Administration of the chemotherapeutic agents is often used clinically in combination  

with different agents that attack the cancer cells at different stages of the tumor development to 

elicit a synergistic effect (Hellyer and Wakelee 2020). The use of chemotherapy can either be 

adjuvant therapy or neoadjuvant therapy. Adjuvant therapy is administered after initial therapy 

such as surgery or radiotherapy to eradicate the remaining tumor cells. In neoadjuvant therapy, 

chemotherapeutic agents are administered preoperatively to reduce tumor size to render them 

operable (Leow et al. 2014; Miller et al. 2014). Chemotherapy has been the mainstay for the 

management of most malignancies but developing chemoresistance is a major challenge 

encountered by onco-clinicians. The molecular mechanism of drug resistance includes increased 

drug metabolism, increased ABC transporter (P-glycoprotein) that cause efflux of drugs from 

cancer cells, and increased DNA repair capacity (Bukowski, Kciuk, and Kontek 2020). Various 

organ toxicity (cardiotoxicity, nephrotoxicity, neurotoxicity and hepatotoxicity) are major 

challenges associated with the use of chemotherapeutic agents (Gramatyka 2014; Iki and Urabe 

2000; Miller et al. 2010; Oun, Moussa, and Wheate 2018). Therefore, the discovery of new non-

toxic drugs and the development of new strategies which can reduce the organ toxicity of 

chemotherapy are in urgent need.  

2.3.4 Hormonal Therapy 

 The use of hormonal therapy (HT) has gained popularity in both gynecological and non-

gynecological cancers. HT is based on the premise that some cancers are characterized by an 

underlying hormonal dysregulation and by correcting this dysregulation, homeostasis can be 

restored to halt the onset, progression as well as metastasis of cancer. Often in gynecological 
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cancers, there is a cessation in the synthesis of ovarian hormones in menopausal women whereas 

younger patients tend to have premature ovarian insufficiency necessitating the need to replace 

these lacking hormones (Deli, Orosz, and Jakab 2020). In managing breast and other 

gynecological cancer aromatase inhibitor (tamoxifen) estrogen and/or progestogen preparations 

are administered either alone or in combination to improve clinical outcomes (Barchiesi et al. 

2020; Drăgănescu and Carmocan 2017). In non-gynecological cancers such as prostate, thyroid, 

and bladder cancer, various hormonal blockers and hormonal regulators are used in their 

management (Jastrzebska, Gietka-Czernel, and Zgliczyński 2001; Oottamasathien and Crawford 

2003).  

2.3.5 Targeted Therapies 

 In cancer therapeutics, targeted therapy involves targeting specific molecular components 

using drugs to inhibit the growth and proliferation of cancer cells (Lee, Tan, and Oon 2018). As 

cancer cells develop, they evolve various mechanisms to elude immune surveillance, resulting in 

their unregulated and uncontrolled growth (Hanahan and Weinberg 2011). In targeted therapy, 

various molecular alterations that distinguish cancerous cells from normal cells are identified and 

serve as points of attack using specific agents that attack these alterations (Røsland and Engelsen 

2015). These molecular targets include ligands, receptors, genes, growth factors, and various 

pathways involved in cell cycle, angiogenesis, cell growth, survival,  metastasis, and apoptosis 

(Saijo 2010). The identification of molecular heterogenicity between normal healthy cells and 

cancerous cells employs the use of various molecular tools for the accurate selection of genes, 

proteins, and other molecules as targets for therapy(Lee et al. 2018).   

 The various categories of agents used in targeted therapy include monoclonal antibodies 

(e.g. Nivolumab), small molecules (e.g. sorafenib), vaccines, and gene therapy(Lee et al. 2018). 
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Developing resistance is also a major drawback associated with targeted therapy.  Since targeted 

therapy is directed towards a specific molecular target, it becomes inefficacious when there is 

heterogeneity in the target within the tumor. Moreover, cancer cells can also evolve to be 

independent of the molecular target resulting in their continuous growth and aggressiveness 

despite therapy (Lee et al. 2018).   

Immunotherapy is currently one of the targeted therapies which has shown very 

promising results in the management of liver and pancreatic cancer. The human immune system 

has a cytotoxic potential mediated by tumor-specific T cells that target tumor cells (Kalbasi and 

Ribas 2020). However, tumor cells evolve to bypass this innate immune response by enhancing 

the upregulation of the ligands to the inhibitory receptors located on the surface of the cytotoxic 

T-cells, thereby inhibiting their activation. CTLA-4 and PD1 are key regulatory checkpoints 

whose ligands are aberrantly overexpressed in TME to suppress cytotoxic T-cell activity (Pardoll 

2012). Some evolving cancer therapies aim at targeting the evasive mechanism of tumors by 

enhancing tumor immune surveillance. Some of these agents have already received Food and 

Drugs Administration (FDA) approval and are either used individually or in combination with 

other anti-cancer agents.  

Ipilimumab is one of such therapeutic molecules that promote anti-tumor immunity by 

targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) while activating T cells 

(Sharma et al. 2011). Nivolumab and lambrolizumab, an antibody to the programmed death 1 

(PD1) receptor and ligand respectively are also anti-tumor immune-enhancing agents that 

promote anti-tumor immunity(Hamid et al. 2013; Wolchok et al. 2013). Cetuximab and 

bevacizumab, which are inhibitors of EGFR and VEGF angiogenesis respectively are also FDA-

approved drugs that are used in the clinical management of cancer (Wilkes 2018).  
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2.4 Cucurbitacin B. 

 Cucurbitacin B (Cuc. B) is a natural small molecule in the Cucurbitaceae family which 

are chemically characterized by the tetracyclic nucleus, 19-(10➝9β)-abeo-5α-lanostane-5-ene 

and a molecular weight of 558.7. The botanical source includes the roots, fruit, and seeds of 

cucurbitaceous plants such as Citrullus, Cucumins, Lagenaria and Bryonia species. 

Cucurbitacins are crystalline,  hydrophobic nature, and readily soluble in organic solvents 

(Enslin and Rehm 1958; Garg et al. 2018; Kaushik, Aeri, and Mir 2015). Cucurbitacins have 

been used as anti-inflammatory, analgesic, anti-infective and anti-cancer agents across countries 

in the Asian subcontinent (Arora and Kaushik 2016; Mallick et al. 2017). 

In numerous pre-clinical investigations, Cuc. B has demonstrated encouraging anti-

cancer effectiveness against colon, breast, liver, and lung malignancies. Cuc. B has also showed 

that it has a similar impact as several effective anti-cancer medications (Jayaprakasam, Seeram, 

and Nair 2003). The same investigation by Jayaprakasam et al., (2003) also produced evidence 

of the anti-inflammatory and the lipid peroxidation inhibitory effect of Cuc. B. There is also 

evidence that suggests a pleiotropic effect of Cuc. B, inducing apoptosis and cell cycle arrest 

(Tannin-Spitz et al. 2007).  

 Cuc. B has been shown to inhibit the activation of both Janus kinase2 (JAK2) and STAT3 

signaling pathway and this contributes to the induction of apoptosis and growth inhibition of 

various cancerous cells (Escandell et al. 2008; Sun et al. 2005; Xie et al. 2016). Zhou et al., 

(2017) reported that Cuc. B in pancreatic cancer where experimental findings showed that Cuc. 

B effectively inhibits pancreatic cancer cell proliferation by arresting the cells in the G2/M phase 

of the cell cycle. This growth inhibition was due to the inhibitory effect of Cuc. B on EGFR 

expression as well as other downstream signaling components such as PI3K/Akt/mTOR and 
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STAT3 (Zhou et al. 2017). Through its inhibitory effect on PI3K/Akt/mTOR pathway, Cuc. B 

inhibits epithelial-mesenchymal transition (EMT), a major factor that promotes tumor metastasis, 

induced by TGF-β which is a regulator of cell growth and differentiation (Yuan et al. 2022).  A 

similar inhibitory effect of Cuc. B in tumor metastasis was observed in hepatoma cells via the 

inhibition of the PI3K/AKT signaling pathway ( Zhou X. et al., 2012). Findings by Mao et al., 

(2019) also suggested an antiproliferative and apoptotic effect of Cuc. B in colorectal cancer via 

regulation of B-cell translocation gene 3 (BTG3) methylation level (Mao et al. 2019). However, 

evidence addressing the role of Cuc. B in cancer immunotherapy is very lacking.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Structure and images of the botanical sources of Cucurbitacin B  
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2.5 Key Molecular Targets of Cuc. B 

2.5.1   Phosphoinositide-3-kinaseγ (PI3Kγ) Pathway 

 Phosphoinositide-3-kinaseγ (PI3Kγ) is a subclass of the PI3K lipid kinase family which 

act together with the Akt pathway to promote cellular growth and survival. The  PI3K/Akt 

pathway is typically active in a cellular environment where nutrient and oxygen supply is 

deficient, which exemplifies the TME, making it a key pathway to target in cancer therapy(Porta, 

Paglino, and Mosca 2014). PI3K along with other signaling components such as the mammalian 

target of rapamycin (mTOR) and AKT enhances growth, angiogenesis, metastasis as well as 

therapy resistance in cancer (Porta et al. 2014). 

Targeted pharmacological and genetic inhibition of PI3Kγ increased the infiltration of 

cytotoxic T-cell population and reduce the TAMs and MDSC population within the TME and 

enhances the immune checkpoint blockade immunotherapy against cancer (De Henau et al. 

2016; Evans et al. 2016; Kaneda et al. 2016; Kraehenbuehl et al. 2022).   

2.5.2 CSF-1R Signaling Pathway 

 CSF-1R is a transmembrane tyrosine kinase receptor that stimulates the formation of 

macrophages and/or granulocytes from hematopoietic precursors (Smith et al. 1995). This 

receptor which is encoded by the c-fms proto-oncogene stimulates the differentiation and 

proliferation and of monocytes/macrophages whiles sustaining the protumorigenic effect of 

TAMs (Fujiwara et al. 2021; Stanley et al. 1983). CSF1-R is activated by the colony-stimulating 

factor 1 receptor (CSF-1R) which is a polypeptide growth factor (Rettenmier, Roussel, and Sherr 

1988). The overexpression of the CSF-1 ligand and its receptor has been observed in various 

cancers. CSF-1 induces down-regulation of granulocyte-specific chemokine expression in CAFs. 
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This crosstalk mediated by HDAC2 causes a decreased granulocyte recruitment to tumors 

thereby enhancing the tumorigenicity (Kumar et al. 2017).  

CSF-1 promotes polarization of macrophages into the protumorigenic M2-TAMs. A 

study by Fujiwara and colleagues showed that BMDM chemotaxis is enhanced upon CSF1-

mediated phosphorylation of ERK ½ in BMDMs which also promotes polarization towards M2 

phenotype (Fujiwara et al. 2021). Targeting CSF1/CSF1R signaling pathway, increased 

stimulation of CD8+
 T cells with a concomitant reduction in the polarization, chemotaxis, and 

survival of TAMs (Fujiwara et al. 2021). 

2.5.3 STAT 3 Pathway 

 STAT 3 is a subtype of the family of signal transducers and activators of transcription 

(STATs), which are latent cytoplasmic transcription factors that regulate transcription either 

directly or indirectly via the transduction of extracellular signals (Darnell 1997). The biological 

functions of STATs include regulations of cell cycle progression, proliferation, differentiation, 

and apoptosis (Battle and Frank 2002; Bromberg and Darnell 2000; Silva 2004). Various growth 

factors (chemokine and cytokines) such as interleukin 6, interferons and EGFphosphorylate 

STATs. STAT3 phosphorylation can occur at either the tyrosine site, as an early event where the 

transcription factors are activated or at serine site (Ser-727) for the enhancement of 

transcriptional activity (Turkson and Jove 2000). The phosphorylated STAT 3 then undergoes 

homodimerization or heterodimerization and subsequently translocates into the nucleus to 

promote transcription of various genes linked to proliferation, invasion and apoptosis inhibition 

of cancer cells (Sun et al. 2005).  

The transcriptional activity of STAT is highly regulated in normal cells however in tumor 

cells, STAT is dysregulated and the constitutive activation of STAT particularly STAT3 plays a 
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key role in the increased proliferation of tumor cells (Lehmann et al. 2003; Turkson and Jove 

2000). The constitutive activation of STAT3 as observed by Bromberg et al. (1999) is capable of 

mediating the transformation of cells and formation of tumors in nude mice. Dysregulated 

STAT3 activation has also been associated with the pathogenesis of hematological and solid 

tumors, presenting STAT3 as a good target in cancer therapy  (Csomós et al. 2021; Yu and Jove 

2004). In this thesis, we for the first time evaluated the effect of Cuc. B on PI3Kγ/CSF-1R/Stat3 

signaling pathways in tumor cells and how targeting these signaling components impact on the 

phenotypes of MDSc and TAMs. 
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CHAPTER III 

MATERIALS AND METHODS 

3.1 Cell lines, reagents, and treatments 

Murine macrophages cell line Raw 264.7 was obtained from American Type Culture 

Collection (ATCC, TIB-71, Manassas, VA) and cultured in complete Dulbecco's Modified 

Eagle's Medium (DMEM) supplemented with 10% heat inactivated FBS (Life Technologies, 

Grand Island, NY), 1x Antibiotic-Antimycotic and incubated at 37°C in a humidified 

environment of 5% CO2.  Cuc. B was purchased from Cayman chemical (Ann Arbor, MI) and 

dissolved in Dimethyl Sulfoxide (DMSO, Sigma, St. Louis MO). Interleukin-4 (IL-4) (Sigma, St. 

Louis, MO) was dissolved in 1X PBS and used at a concentration of 20 ng/mL.  GAPDH 

(21185), AKT (9272s), iNOS (13120s), PI3K (p110) gamma (4252s), CD206/MRC1 (24595s), 

p-STAT3 (94994s), p-CSF-1R-MCSFR (3155s), MCSF(28917s) PDL-1 (13684s) were 

purchased from cell signaling. STAT3 (ad119352) was purchased from  Abcam. pAKT (sc 

514032), Arg 1 (sc47715) were purchased from Santa Cruz Biotechnology. A complete list of 

reagents used in this study is shown in supplementary (Table 2). 

3.2 MTT Assay 

A colorimetric assay using 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazoliumbromide 

(MTT) was used to determine the cytotoxicity of Cuc. B towards Raw 264.7 murine macrophage 
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cells. Briefly, cells were seeded at a density of 5 × 103 /well in 96-well plates and cultured until 

cells were 75-80% confluent. Confluent cells were then treated with the respective compounds as  

indicated and followed with the addition of MTT at a concentration of 5mg/mL at a volume of 

20 µL per well for at least 2 hours at 37°C. Media was then removed and replaced with DMSO 

(150µL per well) and incubated at room temperature for 15 minutes on a shaker. Optical density 

(OD) was recorded at 570nm using a spectrophotometer.

3.2 Endotoxin Assay 

Endotoxin concentration was determined with ToxinSensor Endotoxin detection system 

(GenScript, Piscataway, NJ) to account for any potential endotoxin contamination following 

manufacturer’s instructions and endotoxin levels were found to be below 0.01eu/mL (0.004 

eu/mL) endotoxin unit for Cuc. B.  

3.4 In-vitro isolation of BMDMs from murine bone marrow 

We used discarded C57BL/6J mice from our approved UTRGV-IACUC protocol to 

isolate BMDMs. Briefly, BMDMs were isolated using a protocol developed by the Liza 

Makowski Lab  (UTHSC, Memphis, TN). Briefly, bone marrow cells from the femur and tibia 

bone of C57BL/6 J mice were isolated and grown in two 150mm plates containing 20mL 

BMDM complete media (RPMI supplemented with 10% FBS, 1% pen./strep, 10 mM HEPES, 

2mM GlutaMAX, 20ng/mL recombinant mouse M-CSF) after RBC lysis using RBC lysate 

buffer.  Ten mL BMDMs complete media was added to each plate on day 4 and the cells were 

allowed to grow for 2 more days after which the cells were passage into plates for further 

treatments and analysis. Raw 264.7 cells were also used in generating TAMs as described by Liu 

et al., (2019). 
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3.5 In-vitro differentiation of MDSCs from murine bone marrow 

MDSCs were generated according to the protocol by Weber et al., (2020) and (Marigo et 

al. 2010). Briefly, bone marrow cells from the femur and tibia bone of C57BL/6 J mice were 

isolated and 2.5 × 106 cells were culture in 100mm plates with 10mL MDSC complete media 

(RPMI supplemented with 10% FBS, 1% pen./strep, 10 mM HEPES,  1mM sodium pyruvate, 

1mM non-essential amino acids, 40ng/mL recombinant mouse IL-6 and 40ng/mL recombinant 

mouse GM-CSF) and treated with the needed compounds after day 4 for as required.  

3.6 Western immunoblot analysis 

 Cells were seeded in 60mm or 100 mm plates and treated with the required treatments 

and treatment duration after cells attached and grew 75-80% confluent. After treatment duration, 

cells were collected in RIPA lysis Buffer System (Santacruz Biotech., Dallas, TX), sonicated, 

centrifuged and a bicinchoninic acid (BCA ) assay was used to quantify 40µg protein from the 

supernatant. The protein was then separated using 10% SDS-PAGE with a subsequent transfer of 

the separated proteins unto a PVDF membrane. Proteins were then blocked in 10% skim milk in 

TBST (0.1 % Tween 20-Tris buffered saline) at room temperature for one hour after which the 

primary antibodies were incubated with the membranes overnight. Membranes were washed in 

TBST buffer and incubated in HRP-conjugated secondary antibodies for an hour at room 

temperature. Membranes were incubated in chemiluminescence reagents for 30 seconds and 

images were taken using ChemiDocTMMP (Bio-rad, Hercules, CA).  

3.7 Quantitative real time PCR (qRT-PCR) 

 Total RNA was extracted from cells after treatment as described earlier using TRIzol 

(Life Technologies, Carlsbad CA). The purity and concentration of isolated RNA was 

determined using Nanodrop OneC (Thermo Scientific, Madison, WI). 2000ng RNA was used to 
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synthesize cDNA RNA using High-Capacity cDNA Reverse Transcription Kit (Thermofisher, 

Graiciuno, LT). RT-PCR was ran using CFX 96 Real Time SystemTM (Bio-Rad Inc., Singapore) 

to determine the expression level of various genes normalized to the fold change of GAPDH.  

3.8 Immunofluorescence Assay 

 Cells were cultured in Lab-Tek IICC2 4-well chamber slide system (Thermo Fisher 

Scientific, Rochester, NY). After duration of treatment, cells were fixed with 4% 

Paraformaldehyde for 15 minutes at 4°C and permeabilized with 0.2% triton X-100 for 5 

minutes. Cells were then blocked using 10% donkey serum at room temperature for 1 hour and 

then incubated in the respective primary antibody overnight at 4°C. Cells were then washed in 

TBST (1x tris-buffered saline, 0.1% tween 20) and incubated in the secondary antibody (Alexa 

Fluor 488-conjugated antibody, Jackson ImmunoResearch ) for one hour at room temperature, 

washed and mounted in antifade mounting medium with DAPI (Vectashield, Burlingame, CA). 

Images were taken and analyzed using the Nikon AX confocal microscope system. 

3.9 In-vitro phagocytosis and killing assays 

In-vitro phagocytosis assay was performed using Vybrant Phagocytosis Assay Kit 

(ThermoFisher Scientific) according to the manufacturer’s protocol. Briefly, BMDM plated at a 

density of 100,000 cells per well in a 96 well plate (Corning) in complete RPMI-1640 medium 

were pre- treated in groups with Cuc. B., IPI-549 and IL-4 overnight then media was replaced by 

100 µL of fluorescent BioParticle suspension containing fluorescent E. coli bioparticles. Cells 

were then incubated at 37°C 5% CO2 for two hours, washed twice with 1X PBS to remove non-

phagocytosed particles, resuspended in  1X PBS and fluorescence was analyzed using FITC 

channel on EVOS m7000 Cell Imaging (Thermo Fisher Scientific). 
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3.10 Statistical Methods 

All data obtained during this study were presented as Mean ±Standard error of mean 

(SEM). Statistical analyses were done using unpaired, two-tailed student’s t-test and one-way 

analysis of variance (ANOVA) with the level of significance set at p-values < 0.05 with the 

levels of significance represented respectively as follows *p< 0.05, **p<0.01, ***p<0.001. All 

graphs were generated using GraphPad Prism (5.03, GraphPad Software, Inc., La Jolla, CA, 

USA). 
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CHAPTER IV 

RESULTS 

4.1 Cuc. B exhibits a dose-dependent antiproliferative effect on Raw 264.7 cells 

To assess the effect of Cuc. B on the viability of Raw 264.7 cells, cells were treated with 

Cuc. B at different concentrations for 24 and 48 hours respectively in the presence of IL-4 

(20ng/mL) and cell viability was measured using MTT at O.D. 570nM. As shown in Figure. 1, 

Cuc. B produced a significant (p<0.05) dosage dependent decrease in the viability of Raw 264.7 

cells (Figure 3.1) confirming the cytotoxic effect of Cuc. B on M2 polarized macrophages. IC50 

was determined to be 500 nM and 250 nM at 24 and 48 hours respectively.  

Raw 264.7 cells were treated with IL-4 (20ng/mL) or indicated concentrations of Cuc.B for24 
hours (A) and 48 hours (B) Cell cytotoxicity was determined by MTT assay. Data are 
expressed in terms of percentage of control (t 100%) ±SEM (n=8). Comparisons were made by 
applying ANOVA followed by Dunnett’s post hoc test; *p< 0.05, **p<0.01, ***p<0.001 were 
considered significant as compared to control group. 

Figure 3.1 Cuc. B treatment exhibits cytotoxic effect on Raw 264.7 cells: 
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4.2 Cuc. B batch used was devoid of endotoxin contamination 

To determine if the effect of Cuc. B is not attributed to any form of endotoxin 

contamination, endotoxin concentration in Cuc. B determined and endotoxin levels were found 

to be 0.004 eu/mL for Cuc. B. (Figure 3.2) which is below the minimum allowed endotoxin 

concentration (0.01eu/mL ). From this, we can infer that all the results produced from Cuc. B 

treatment is solely due to the effect of Cuc. B.  

 

 

 

 

 

 

 

 

 

 

        

Table 1: Table showing the respective absorbances and corresponding endotoxin 
concentrations of LAL standard samples and Cuc. B  

 

Sample 
Average 
Absorbance 

Change in 
Absorbance Conc. in EU/ml 

LAL reagent water (Blank) 0.051 0 - 
0.1 EU/ml Standard 0.587 0.536 0.1 

0.05 EU/ml Standard 0.369 0.318 0.05 

0.025 EU/ml Standard 0.179 0.128 0.025 

0.01 EU/ml Standard 0.100333 0.049333 0.01 

Cuc. B 0.073667 0.022667 0.0038 

Figure 3.2: Cuc. B has no endotoxin contamination:  

y = 0.1804x - 0.0003
R² = 0.9851
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Endotoxin concentration in Cuc. B was determined using endotoxin kit by GeneScript. Results 
indicated shows endotoxin concentration of Cuc. B was found to be to be 0.004 EU/mL 
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4.3 BMDMs and MDSCs were successfully generated form murine one marrow 

In-vitro isolation of BMDMs and MDSCs was successfully performed after growing 

isolated murine bone marrows in BMDM complete media for 7 days and MDSCs complete 

media for 5 days respectively. Our results demonstrated that these cells were differentiated 

(Figure. 3.4). These cells were then used for our experiments.  

 

 Figure 3.3: Schematic representation of steps for the in-vitro generation of BMDM and 
MDSC from murine macrophages 
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Figure 3.4: Representative images of in-vitro generation and treatment of BMDMs and 
MDSCs from mouse bone marrow.  

Representative images are showing the phenotypic changes of isolated macrophages during in-
vitro generation of BMDMs (A) and MDSCs (B) and images after 24 hours treatments (C&D) of 
PI3Kγ inhibitor (IPI-549 1µM) and Cuc. B (0.25 - 1.0µM) in the presence of IL-4 20 ng/mL or 
vehicle for BMDMs and without IL-4 for MDSCs 
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4.4 Cuc. B treatment restores the phagocytic capacity of TAMs 

The main function of macrophages is to phagocytize foreign pathogens, and apoptotic 

bodies generated after apoptosis induction or killing tumor cells.  To investigate the effect of 

Cuc. B on phagocytic capacity, we first polarized BMDMs into TAMs with the treatment of  IL-

4 (20 ng/mL) for 24 hours and then treated with PI3Kγ inhibitor (IPI-549 1µM) and Cuc. B 

(0.25µM) in the presence of IL-4 (20 ng/mL). Control group cells were treated with the vehicle. 

The phagocytic capacity of BMDMs was determined by quantification of bioparticles within 

macrophages after washing off non-ingested particles. We observed a significant (P<0.001) 

reduction of phagocytosis of bioparticles by IL-4 treated BMDMs, which was significantly 

recovered by Cuc B treatment at a lower concentration.  However, IPI-549 was unable to 

significantly recover this phagocytic effect of BMDMs (Fig. 3.5).  These results strongly suggest 

that Cuc. B treatment has the potential to enhance the innate immune response to kill tumor cells.  

 

Figure 3.5: Cuc. B promotes the phagocytic capacity in macrophages in-vitro: 

(A) Representative image of phagocytosis of fluorescent E. coli bioparticles by BMDMs with the 
treatment of PI3Kγ inhibitor (IPI-549 (1µM)) and Cuc. B 0.25µM, in the presence of IL-4 (20 
ng/mL) or vehicle (control) as determined by fluorescent microscopy imaging on the FITC 
channel. B. Quantification of phagocytosis BMDMs in indicated groups. Data shown in the bar 
graph represents Mean ± SEM of triplicate well. *p< 0.05, **p<0.01, ***p<0.001 values were 
considered as significant as compared to control group. 

A B 
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4.5 Cuc. B abrogates M2 polarization of macrophages and promotes  

M1-like phenotype 

To investigate whether Cuc B has the potential to inhibit M2 polarization and increase of  

M1 macrophage phenotype,  We initially performed these experiments in polarized M2-TAMs 

murine macrophage cell line (Raw 264.7) and then in polarized BMDMs.  In this experiment, 

RAW264.7 and BMDMs were treated with IL-4 (20 ng/ml). Control and treatment group cells 

were treated with vehicle(DMSO) and Cuc. B (0.25-1.0 µM) or IPI-549 (1µM) for 24 hours. In 

our first experiment, Cuc B treatment inhibited the expression of M2 markers (Arg I and IL-10) 

in Raw 264.7 cells (Fig. 3.7 B). It has been demonstrated that TAMs secrete  PDL-1  which 

neutralizes the function of T-cells. Therefore, we determined the effect of Cuc B  on the 

expression of PDL-1 in RAW264.7 cells. Results demonstrated a significant (P<0.001) decrease 

in PDL-1 expression in RAW264.7 cells.  We further determine the effect of Cuc B on the 

expression of PI3Kγ and iNOS. Surprisingly, we observed that Cuc B treatment abolished the 

protein levels of PI3Kγ in RAW264.7 cells as determined by confocal microscopy (Fig.3.7A) 

and Western blot analysis (Fig. 3.7C).  

In-vitro generated MDSCs cells were also cultured and treated with vehicle (DMSO), 

Cuc. B or IPI-549 for 24 hours. We further performed detailed experiments in M2-polarized 

BMDMs. We first determined the expression of various markers of M1 and M2 by qPCR. Cuc B 

treatment showed a dose-dependent significant (P<0.01-0.001) decrease expression of various 

M2 markers (Arg1, Ym1, FIZZ1, PPARγ, and TGFβ) and a significant (P<0.01)  increase in M1 

markers (NOS2, IL-6 and CD11C)  compared to  IL-4 alone treatment group (Figure 3.6 A-B) 

Cuc B also inhibited the protein level of CD206 in BMDMs (Fig.3.6 D) as determined by 

Western blot analysis.  We observed a significant decrease of  MCSFR, AKT, PI3K p110γ and p-
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STAT3 ) in IL-4 polarized BMDMs treated with Cuc B when compared with  IL-4 alone 

treatment (Figure 3.6 (D). These results strongly suggest that  Cuc. B can inhibit the pro-

tumorigenic potential of TAMs by targeting CSF/CSF1R, Stat3, PI3Kγ, and Akt signaling 

pathways.  

4.6 Cuc. B has more potential in targeting TAMs compared to IPI-549 

A comparative study was performed using IPI-549, a known potent inhibitor of PI3Kγ 

(p110γ) (Evans et al. 2016). From the results obtained, a marked decrease in protein expression 

of MCSFR was observed in IL-4 + Cuc. B treated BMDMs compared to BMDMs -treated with 

IL-4+ IPI-549,  as determined by confocal microscopy (Figure. 3.8 A). Cuc B treatment also 

showed a marked decrease in the expression of  STAT3, CSF1, CSFR, and PI3Kγ in IL-4 

polarized  BMDMs. This effect was more significant as compared to IPI-549 (Figure 3.8 B) 
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Figure 3.6: Cuc. B inhibits M2 polarization of BMDM and promotes M1-like phenotype in-vitro: 

Relative mRNA expression of M1 markers (A) and M2 markers (B) in BMDM by p-PCR analysis and protein levels by Western blot 
analysis (D) in BMDMs after 24-hour treatment with Cuc. B (0.25 -1.0 µM) in the presence of IL-4 (20 ng/mL) or vehicle (control). 
Schematic representation of inhibitory effect off Cuc. B on IL-4 induce polarization of BMDM (C). Values in bar graph shows Mean 
± SEM of biological triplicate. *p< 0.05, **p<0.01, ***p<0.001 were considered as significant compared to IL-4 treated group.
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Figure 3.7: Cuc. B inhibits M2 polarization of Raw 264.7 M1-like phenotype in-vitro: 

Confocal microscopy images (A) Relative mRNA expression (B) by RT-PCR analysis and 
protein expression by western blot (C) in Raw 264.7 cells after 24-hour treatment with PI3Kγ 
inhibitor (IPI-549 (1µM)), Cuc. B (0.25µM and 0.5µM) in the presence of IL-4 20ng/mL or 
vehicle (control). Mean ± SEM shown. *p< 0.05, **p<0.01, ***p<0.001 compared with control 
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Figure 3.8: Cuc. B shows TAM suppressive effect comparable to PI3Kγ inhibitor, IPI-549: 

Representative confocal microscopy images showing the expression of MCSFR (A) and relative mRNA expression of TAM markers (B) in 
BMDM by RT-PCR analysis after 24-hour treatment with PI3Kγ inhibitor (IPI-549 (1µM)), Cuc. B (0.25µM and 0.5µM) in the presence of IL-
4 20ng/mL or vehicle (control). Mean ± SEM shown. *p< 0.05, **p<0.01, ***p<0.001 compared with control. 
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4.7 Cuc. B suppresses bone marrow derived MDSCs activity in-vitro 

MDSCs are one of the key tumor immune cells which create immunosuppressive TME to 

facilitate the growth and metastasis of tumor. Thus, targeting these cells help in suppressing the 

growth and metastatic phenotypes of cancer.  We further investigate the effect of Cuc. B on the 

bone marrow derived MDSCs. In this experiment, MDSCs were treated with Cuc. B (0.25 -

1.0µM) or IPI-549 (1µM) or vehicle (control). Protein expression by western blot analysis 

showed a dose-dependent decrease in expression of Arg-1, Stat3, and CD206 when compared to 

control. We also observed a marked decrease in the protein levels of  Stat3, pAKT and CD206 

compared to control.   These results strongly suggest the potential suppressive effect of Cuc. B 

on MDSCs. 

 

 

Protein expression by western blot (A) and relative mRNA by pRT-PCR analysis (B) showing 
a decrease in the expression of various MDSC markers after 24-hour treatment with Cuc. B 
(0.25µM, 0.5µM and 1.0µM) or IPI-549 1µM in the presence of IL-4 20ng/mL or vehicle 
(control). Mean ± SEM shown. *p< 0.05, **p<0.01, ***p<0.001 compared with control 

Figure 3.9: Cuc. Suppresses MDSC activity in-vitro:  
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CHAPTER V 

DISCUSSION 

The tumor microenvironment remains a very important component that influences tumor 

development, growth and progression (Denton et al. 2018; Hanahan and Weinberg 2011). 

Various immune components such as TAMs, CAFs, MDSCs, neutrophils, dendritic cells, T- 

cells that are transformed in the tumor milieu during tumorigenesis promote tumor progression 

and spread of tumors (Kalluri & Zeisberg, 2006; Junttila & de Sauvage, 2013). Additionally, 

response to therapy is greatly influenced by the components of the TME (Shree et al. 2011; 

Vitale et al. 2019). This presents targeting of the TME as an attractive treatment modality in 

cancer therapeutics. Clinically, targeted therapies that focus on ceasing the progression of 

changes as well as restoring alterations in the tumor immune landscape during tumorigenesis are 

producing good clinical outcomes. Notable amongst these agents include checkpoint blockade 

inhibitors anti-CTLA4 and PD1 antibody (Hamid et al., 2013; Sharma et al., 2011). 

Cuc. B., a triterpenoid of the Cucurbitaceae family has extensive evidence supporting its 

anti-tumor effect in various solid tumors via a myriad of suggested mechanisms such as 

induction of apoptosis and cell cycle arrest (Jayaprakasam et al., 2003;Tannin-Spitz et al., 2007). 

Multiple studies have reported on the inhibitory effect of Cuc. B on various pathways that 

promote tumor progression and metastasis such as the Janus kinase2 (JAK2)/STAT3 and the 

PI3K/Akt/mTOR pathways in various tumors ( Xie et al., 2016; J. Zhou et al., 2017).
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Interestingly, these pathways have also been reported to mediate immune checkpoint 

blockade immunotherapy resistance against tumors (Cannarile et al. 2017; O’Donnell et al. 2018; 

Zou et al. 2020). In this study, we investigated the Cuc. B potential in targeting key tumor 

immune cell populations (TAMs and MDSCs) which are linked to generating 

immunosuppressive TME and checkpoint blockade immunotherapy resistance and failure against 

various tumor types.   

Macrophages are undoubtedly a major component of the innate immune system that 

opposes the progression and spread of cancer and any treatment modality that promises to 

improve macrophage immune function promises to be essential artillery in the battle against 

cancer (Mantovani and Sica 2010). Our findings strongly suggest that Cuc. B has the potential of 

targeting both TAMs and MDSCs which was evidenced by a significant decrease in various 

markers of M2-TAMs and MDSCs. Cuc B treatment restored the phagocytic potential of M2 

polarized BMDM. These results suggest the likely restoration of the functionality of 

macrophages upon repolarization of TAMs into M1 phenotype after Cuc. B treatment. Cuc. B 

produced results comparable to, IPI-549, an inhibitor of PI3Kγ, which is also producing 

significant preclinical results in cancer immunotherapy (De Henau et al. 2016). This study 

provides convincing evidence that paves the way for further studies into the role of Cuc. B in 

tumor immune surveillance and its role in enhancing tumor immune checkpoint blockade 

therapy.  
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CHAPTER VI 

CONCLUSION 

TAMs and MDSCs are the major immune cells generating tumor immunosuppressive 

environment and checkpoint blockade immunotherapy resistance. PI3Kγ, MCSFR and Stat3 

signaling are activated in these cells and targeting these pathways have been shown to enhance 

checkpoint blockade immunotherapy response against cancer. Our results strongly demonstrated 

that Cuc. B is a potential natural agent which has strong potential in simultaneously targeting 

Stat3/CSF-1R and PI3Kγ in both TAMs and MDSCs. Therefore, we strongly believe that Cuc B 

treatment will work as an adjuvant to enhance checkpoint blockade immunotherapy response in 

less responsive tumors. Further studies are required to prove this hypothesis in appropriate pre-

clinical mouse models of cancer.
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Table 2: List of items with their respective manufacturers and catalogue numbers 

Item Manufacturer Catalogue/Item No. 

Cucurbitacin B Cayman Chemical 14820 

GMCSF Sigma SRP3201 

MCSF Sigma M9170 

Mouse Il-6 Recombinant protein Invitrogen RMIL61 

Mouse Il-4 Recombinant protein Sigma SRP3211 

TRIzol Reagent Life technologies 399612 

RIPA Lysis Buffer System Sant cruz Biotechnology 24948A 

FBS Life Technologies 10437-028 

RPMI Media Life Technologies 1187-093 

Antibiotic-Antimycotic Life Technologies 15240-062 

0.25% Trypsin-EDTA Life Technologies 25200-056 

PBS Life Technologies 10010-023 

Accutase Solution Sigma A6964 

HEPES Solution Sigma SRE 0065 

RBC lysing buffer Sigma R7757 

L-Glutamine Sigma TMS-002-C 

TRIzol Life Technologies 15596018 

Vybrant Phagocytosis Assay ThermoFischer Scientific V6694 
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Abbreviations 

TAM Tumor Associated Macrophages 

MDSC Myeloid Derived Suppressor Cells 

Cuc. B Cucurbitacin B 

PDL-1 Programmed death ligand 1 

CTLA-4 Cytotoxic T lymphocyte antigen 4 

CTL Cytotoxic T lymphocyte  

TME Tumor microenvironment 

CTLA-4 The cytotoxic T-lymphocyte-associated antigen-4 

PD1 Programmed Death 1  

PDL1 Programmed death ligand1  

GM-CSF granulocyte–macrophage colony stimulating factor 

ROS Reactive oxygen species 

CAF Cancer-associated Fibroblasts  

VEGF Vascular endothelial growth factor 

EGF Epidermal growth factors 
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