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ABSTRACT

Sierra, Estefania A., Optimality of Delaunay Triangulations. Master of Science (MS), May, 2021,

44 pp., 3 tables, 38 figures, 19 references.

In this paper, we begin by defining and examining the properties of a Voronoi diagram

and extend it to its dual, the Delaunay triangulations. We explore the algorithms that construct

such structures. Furthermore, we define several optimal functionals and criterions on the set of all

triangulations of points in Rd that achieve their minimum on the Delaunay triangulation. We found

a new result and proved that Delaunay triangulation has lexicographically the least circumradii

sequence. We discuss the CircumRadii-Area (CRA) conjecture that the circumradii raised to the

power of alpha times the area of the triangulation holds true for all α ≥ 1. We took it upon ourselves

to prove that CRA conjecture is true for α = 1, FRV quadrilaterals, and TRV quadrilaterals. Lastly,

we demonstrate counterexamples where α < 1.
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CHAPTER I

INTRODUCTION

Voronoi diagrams and their dual, Delaunay triangulations, are very important structures in

Computational Geometry. That is a reason why their concepts have been rediscovered over time.

The properties of both Voronoi diagrams and Delaunay triangulations have been studied by many.

Both of these structures have become very powerful tools in a vast variety of areas. As a result,

there are several algorithms to compute them. We will discuss in further detail the history and

applications of both of these structures in the next few sections.

1.1 History

Figure 1.1: Descartes’ decomposition of space into vortices.
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Even though the Voronoi diagrams were named after Georgy Voronoi, their origins date back

to the seventeenth century. René Descartes was one of the first people to mention the concept of

Voronoi diagrams [2, 13]. He was a French-born philosopher, mathematician, and scientist. In 1644,

Descartes used, what is now known as Voronoi diagrams, to demonstrate that the universe consists

of vortices [2, 13]. Descartes claimed that due to the dispersal of matter it created vortices, and fixed

stars were the focal element of where the vortices were. Figure 1.1 is an illustration he included in

his work, Principles of Philosophy. Now fast forward a few centuries, Johann Peter Gustav Lejeune

Dirichlet, a German mathematician was also involved in the study of Voronoi diagrams. In 1850,

Dirichlet used Voronoi diagrams for his investigation of positive quadratic forms [2, 13]. Later,

Dirichlet’s work brought him to the discovery of Voronoi diagrams in two and three dimensions. In

1859, he was able to formalize this idea. Therefore, to this day, Voronoi diagrams are also called

Dirichlet tessellations.

Figure 1.2: Broad street pump

Moreover, in 1854, a serious cholera outbreak in London killed 500 people in five days.

John Snow, a physician, gathered statistics on the number of victims and locations of the outbreaks.

He divided inner London into neighborhoods, each having a separate water supply [11]. Snow

considered the sources of drinking water, and pumps distributed throughout the city. He drew a line

labeled "Boundary of equal distance between Broad Street Pump and other Pumps," (refer to Figure

1.2) which basically represented the Broad Street Pump’s Voronoi cell [3]. He plotted his data on a

chart, effectively constructing a Voronoi diagram. This revealed that almost all fatalities were in
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houses supplied by a single pump. When the pump handle was removed, death rates were greatly

diminished and the epidemic quickly died out [3, 11]. Snow’s work greatly impacted epidemiology.

Figure 1.3: Georgy Voronoi and Boris Delone

In 1907, Georgy Voronoi studied the Voronoi diagrams, and extended Dirichlet’s work into

higher dimensions. Voronoi was able to formalized the general n-dimensional case for Voronoi

diagrams [11]. Voronoi also briefly studied the dual diagrams now known as the Delaunay triangu-

lations. However, it wasn’t until Boris Delone that Delaunay triangulations were introduced. Boris

Delone was intrigued by geometry and started studying previous work on Voronoi diagrams [11].

This led Delone to discover the Delaunay triangulations. Delone generalized Voronoi diagrams and

Delaunay triangulations to the case of d-dimensional space [11]. Delone characterized his triangu-

lations through empty circles. This ended up becoming a way used to construct these structures

[11].

1.2 Applications

Voronoi diagrams and Delaunay triangulations have many applications. As it can be seen

in the history of them, Voronoi diagrams and Delaunay triangulations kept being rediscovered for

different purposes. One of the main applications was discussed earlier when John Snow used the

Voronoi diagram to single out the pump causing fatalities. This was an application in epidemiology.

Voronoi diagrams are also used in computational geometry, robotics, ecology, forestry, geography,

zoology, archaeology, and anthropology, just to name a few [6]. For instance, in computational
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Figure 1.4: Left: Application in robotics [1]. Right: Application in modeling terrain [1].

geometry, Voronoi diagrams are used for representation or quantization problems. Additionally,

Voronoi diagrams can also model natural occurrences such as animals’ territories or patterns of

urban settlements [6]. Moreover, Delaunay triangulations have been used in similar fields as

Voronoi diagrams such as computer graphics, robotics, and computational geometry. The Delaunay

triangulations have been used to model terrain from physical geography to game development [6].

They can also be used to generate meshes for the finite element method [6]. Overall, the Delaunay

triangulations are useful in any area where data represents moving points.

1.3 Introduction

This thesis presents an overview of definitions, properties and algorithms for Voronoi

diagrams and their dual, Delaunay triangulations. After getting familiar with their definitions and

properties, we will discuss the optimality of various functionals of the Delaunay triangulations. In

this thesis, we will present a proof for a conjecture.

To break it down, Chapter II explains the definitions and properties for Voronoi diagrams

and Delaunay triangulations. In addtion, it discusses the duality of them and several algorithms that

compute these structures. Furthermore, various functionals and criteria that are optimal and achieve

their minimum on the Delaunay triangulation are discussed in Chapter III. In this chapter, we

provide a proof for Delaunay triangulations having lexicographically the least circumradii sequence

see Theorem 3. This leads us to Chapter IV. The goal of this chapter is proving the conjecture of

circumradius of a triangulation raised to the power of alpha times the area of a triangulation holds

for all α ≥ 1. This means that it achieves its minimum if and only if t is a Delaunay triangulation.

4



The conjecture has been proved for α = 2 in [7]. We will consider the case of α ≥ 1 is true for this

conjecture. Now, the last chapter is for the conclusion of this paper. We will summarize everything

that was done in this thesis and the remaining properties left to be proved.
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CHAPTER II

VORONOI DIAGRAMS AND DELAUNAY TRIANGULATIONS

2.1 Definitions, Properties, and Algorithms of Voronoi Diagrams

A Voronoi diagram is a collection of regions that divide up the plane. Each region corre-

sponds to one of the sites (points), and all the sites in one region are closer to the corresponding site

than to any other site [19]. This would be considered an informal definition. We will accurately

define it later in the chapter. However, this brief definition helps grasp the main idea of what it is.

Now, for instance, let’s take a look at the post office problem. Let’s say there are several post offices

in the city. In Figure 2.1(a), consider the sites to be the locations of the post offices in the city.

(a) Voronoi Sites (b) Voronoi Sites as Post Offices

Figure 2.1: Post office problem

How can we determine which post office is closest to us? To figure this out, we would have

to analyze the whole map and for every site, we would have to find out which is the closest post

office to it. Therefore, we can divide the map into regions where every region knows which is the

closest post office [19]. After that, all you need to know is which region you are in to find the closest

post office. Let’s analyze the simplest example to demonstrate what occurs at every site. As it can
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be seen in the Figure 2.2, there are two sites p and q. We would have to take the bisection of the

two sites. In order to do that, we consider the line segment connecting the two sites and take the

perpendicular bisector. The perpendicular bisector passes through the midpoint of the line segment

pq and is perpendicular to it. Thus, if you are on the right section, then the closest post office is q.

If you are the left section, then the closest post office is p.

Figure 2.2: The bisection of two sites

2.1.1 Definitions and Properties

Let’s consider the points p and q. Denote the bisection of p and q as b(p,q) and their

Euclidean distance as d(p,x) [2]. Then, it’s bisection can be defined as

b(p,q) = {x ∈ R2 : d(p,x) = d(q,x)}.

This means that the distance to p is the same as the distance to q hence it’s on the perpendicular

bisector (orange line). On the left section, we have the half plane that is closer to p than q [2]. This

can be defined as

h(p,q) = {x : d(p,x)< d(q,x)}.

On the right section, we have the half plane that is closer to q than p and its defined as

h(q, p) = {x : d(q,x)< d(p,x)}.
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However, what if we have more than two sites. Figure 2.3 demonstrates how the Voronoi diagram

would look like.

Figure 2.3: Vor(P) = Voronoi diagram of P

Now let’s take a look into the formal definition of a Voronoi diagram.

Figure 2.4: Voronoi diagram of 4 points

Definition 1. (Voronoi Cell) Let P be a set of points in Rd . Then the Voronoi cell Vc of p ∈ P is

defined as

Vc = {x ∈ Rd : d(p,x)≤ d(q,x) for all q ∈ P}.

The Voronoi cell is defined as the set of all points in Rd that are closer to p than they are to

any other point q. This means the distance to p is smaller than the distance to all other points of this

set [2, 19]. This always exist for every point so at least the point itself has to lie on its own Voronoi

cell. Thus, it cannot be empty.

Proposition 1.

Vc = ∩q 6=ph(p,q)
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The Voronoi cell can be defined similarly as the two point case. Previously, we had shown

that we need the bisector between two points and that gives us the region of the cell of each of these

points. Now, if we do the same for all pairs of points, then we find the half plane that is closer to p

then to another point q [2, 19]. This is defined by all the points that lie on its side of the bisection.

Now, if we intersect all of these then we get the cell. If a point lies inside the half plane, then it’s

closer to p then to any other point.

Definition 2. Let P be a set of points in Rd and let p, p1, p2 ∈ P. Then the Voronoi edge Ve is

defined as

Ve = {x : d(p,x) = d(p1,x) and d(p,x)< d(q,x) ∀q 6= p, p1}

The Voronoi edge is defined by two points. Using Figure 2.4, there is an edge between the

Voronoi cell p and the Voronoi cell p1. These points have the same distance to the edge but there is

also no other point that is closer to it.

Definition 3. Let P be a set of points in Rd and let p, p1, p2 ∈ P. Then the Voronoi vertex Vv is

defined as

Vv = {x : d(p,x) = d(p1,x) = d(p2,x) and d(p,x)≤ d(q,x) ∀q}

The Voronoi vertex is defined by three points p, p1, p2. This is the boundary of the Voronoi

cell where p, p1, p2 meet so this point has three closest points in the point set. p, p1, p2 have the

same distance from the vertex [2, 19]. Therefore, we can define it similarly as the Voronoi edge, but

this time with three points instead of two. However, the difference is that a Voronoi vertex can have

three or more points with the same distance.

Definition 4. Voronoi diagram of P is defined by

Vor(P) = ∪p6=qVc(p,P)∩Vc(q,P)
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Lemma 1. Let P be a set of points in a plane. We can say Vor(P) is composed of n−1 parallel

lines if all the points are collinear. If not, Vor(P) is connected and its edges are line segments of

half lines.

Proof. Let’s assume that P is not collinear. Suppose that there is an edge e that is a full line in

Vor(P) where edge e is the bisection of p and q.

Figure 2.5: Proof of lemma 1

Now, let u be a point in P that is not collinear with p and q. Let e′ be the bisection of u and

q. Then, e′ is not parallel to e. Therefore, e′ intersects e. However, the section of e that is on the

half plane that is closer to u than to q forms a contradiction because e is bounded to at least one

side.

The proof of Lemma 1 was shown using the references [2, 19].

Lemma 2. Given a set P of n sites, Vor(P) consists of at most 2n−5 vertices and 3n−6 edges.

Proof. Using Euler’s formula where f = faces, v = vertices, and e = edges.

f = n⇒ (v+1)− e+n = 2

Since the minimum is 3 vertices and 2 edges, then

2e≥ 3(v+1)

10



e≤ 3
2
(v+1)

Thus, we get

(v+1)− 3
2
(v+1)+n≤ 2

1
2
(v+1)≤ n−2

v≤ 2n−5

Similarly, the edges can be derived from above. Hence, there are 3n−6 edges and 2n−5 vertices.

The proof of Lemma 2 was shown using the references [2, 16, 19].

Lemma 3. For the Voronoi diagram Vor(P) of a set of points P and CP(x), the largest empty circle

centered at x, the following holds [2, 19]:

1. A point x is a vertex of Vor(P) if and only if CP(x) contains three or more sites on its boundary.

2. The bisector between sites p and p1 defines an edge of Vor(P) if and only if there is a point x

on the bisector such that CP(x) contains both p and p1 on its boundary but no other site.

Figure 2.6: The largest empty circle centered at x.

Lemma 4. A point p of P lies on the convex hull of P if and only if its Voronoi cell Vc is unbounded.
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The proof for this lemma will not be shown, but can be found in the following references

[2, 19].

2.1.2 Algorithms

In addition, there are algorithms that help construct the Voronoi diagrams. The first one is

called the Half Plane Intersection algorithm. This algorithm is not the best one to construct the

Voronoi diagrams. This process takes O(n2logn) time which means it is not the fastest way to create

a Voronoi diagram [19]. However, later in the chapter we will discuss a faster method to construct

one.

The steps to construct a Voronoi diagram using the Half Plane Intersection algorithm are the

following:

1. Take the perpendicular bisector of two neighboring sites (see Figure 2.7a). The perpendicular

bisector becomes the Voronoi edge.

2. Repeat step 1 for all neighboring sites.

3. Construct a circle passing through 3 neighboring sites. The center of the circle becomes the

Voronoi vertex. As can be seen in Figure 2.7d, the vertices are in green.

4. The Voronoi cell is now complete. This process is repeated for every site to build the entire

Voronoi diagram (see the Voronoi cell for site B in Figure 2.7c).

Furthermore, in 1986, Steven Fortune created the sweep line algorithm. It was used to

generate Voronoi diagrams in O(nlogn) time and O(n) space. The Fortune’s algorithm takes a

sweep-line approach. It is a horizontal line moving from top to bottom where the sites above the line

have been added to the Voronoi diagram and the sites below the line have not yet been considered.

This algorithm also includes a x-monotone curve which is called the beach line which follows the

sweep line as it moves down [19]. It is called the beach line because the curved line looks like beach

waves. However, they are just parabolic arcs forming around the site as the sweep line moves. This
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(a) (b)

(c) (d)

Figure 2.7: Half plane intersection algorithm

is done by using the sweep line as the directrix and the site as the focus. Therefore, every point on

the parabolic curve is equidistant to p and L as can be seen in Figure 2.8. Moreover, the breakpoints

of the beachline trace out the Voronoi edges [19]. New arcs on the beachline only appear through

site events, that is, whenever the sweep line hits a new site. This means that we have at most 2n−1

arcs at the same time [19]. This is because the first site gives us exactly one and every new one can

split an old arc into two parts. Thus, we can get two more every site we encounter.

There are two events that can occur in this algorithm. The first one being the site event as

previously mentioned. The site event occurs as the sweep line moves downwards it will sweep over

new sites. This in exchange will add a new parabola into the beach line [19]. Now, the second event

that can occur is called the vertex event. This happens when the length of a parabolic arc keeps

shrinking until it disappears and a new Voronoi vertex will be created at this point [19].

For the vertex event, it occurs when the sweep line reaches the lowest point of a circle. There

are three sites above the sweep line, and the center of the circle is equidistant from all three sites

13



Figure 2.8: Left: Fortune’s algorithm. Right: Parabolic arcs forming.

Figure 2.9: Site event [19]

and from the sweep line. The parabolic arcs are consecutive on the beachline. Thus, when there is a

vertex event, a parabolic arc disappears from the beach line, and the center of the circle becomes the

vertex of the Voronoi diagram [19]. Furthermore, arcs only disappear from the beachline at vertex

events.

Figure 2.10: Vertex event [19]

2.2 Duality

In section 2.1, we discussed what Voronoi diagrams are and their respected properties. We

will now consider a related structure called the Delaunay triangulation (DT), which is the dual to the
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Voronoi diagram. Delaunay triangulations are triangulations that are formed from the connection

of the site points of a Voronoi diagram. The Voronoi vertices are the centers of the circumcircles,

a circle passing through all the vertices of a triangle. There are no points that will lie inside the

circumcircle of a triangle.

Figure 2.11: Voronoi diagram and its dual Delaunay triangulation

Due to the duality of the graphs, the properties of the Delaunay triangulation results from

the structure of the Voronoi diagram. For instance, the convex hull of the Delaunay triangulation

is the boundary of the exterior sites of the Voronoi diagram. The circumcircle property is also

an immediate result from the Voronoi diagram. The circumcircle of any triangle in the Delaunay

triangulation is considered empty because the interior of the circle contains no sites (see the dotted

circle in Figure 2.11). Since in its dual structure, the center of the circle is the vertex in the Voronoi

diagram as seen in Figure 2.11. Moreover, the empty circle property will be discussed further later

in the chapter.

Formally, from our Voronoi diagram the dual graph is defined as follows.

Definition 5. The graph G = (P,E) with {p,q} ∈ E⇐⇒Vc(p) and Vc(q) share an edge. Then the

graph G is the dual graph of Vor(P).

The vertex set of this graph is the point set P. In the Voronoi diagram there is one Voronoi
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Figure 2.12: Graph G = dual graph of Vor(P)

cell for every site (point). However, here the sites are the vertices of the dual graph. Then, in this

graph, we have an edge between two vertices of the Voronoi diagram. Now, the dual graph of

Vor(P) is to take all the sites and connect them if the corresponding Voronoi cells share an edge

[19].

Definition 6. The Delaunay graph DG(P) is the straight line drawing of G.

Figure 2.13: Delaunay graph

The Delaunay graph is taking the dual graph and draw all these edges in Figure 2.12 as

straight line segments [19]. Note that the Delaunay graph doesn’t have to be a triangulation. Instead,

we will call all triangulations Delaunay if they contain the Delaunay graph as a subgraph.
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2.3 Definitions, Properties, and Algorithms of Delaunay Triangulations

Delaunay triangulations can be useful in many fields. Since we have informally defined

what Delaunay triangulations are in the previous section. Let’s consider height interpolation. Let’s

say we have a topographic map and we want to show, for all the points, what is the height of the

point and how far above absolute zero it is. In order to do that, we have to measure the height for

every single point in the map. Since that would be way too much, we instead only measure the

height at some points and interpolate for everything in between. Using the sample points, we can

project them onto a plane. Since we still need to figure it out for all the points in between, then we

have to interpolate them. For interpolating, we just want to look at a few close points for the section

we want to interpolate. Thus, we use a triangulation of the point set to interpolate. Moreover, for

every edge, we have to interpolate between the two points that it connects, and for each triangle in

the triangulation, we only have to interpolate between the three points that construct the triangle.

Finally, we can lift each sample point to its correct height, and we have a good approximation.

2.3.1 Definitions and Properties

Before we can define the Delaunay triangulation, let’s first define a triangulation.

Definition 7. A triangulation of P is a maximal planar graph with vertex set P, that is, no edge can

be added without crossing other edges.

Figure 2.14: The convex hull is the boundary of the triangulations.

The following are properties of a triangulation [4, 19]:
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1. A triangulation is made of triangles hence the internal faces are triangles.

2. The outer polygon is a convex hull, that is, each triangulation of P contains the edges of the

convex hull of P, CH(P).

Lemma 5. Let P be a set of n sites, not all collinear, and let h be the number of sites on ∂CH(P).

Then any triangulation of P has 2n−2−h triangles and 3n−3−h edges.

This lemma can be proved by using Euler’s formula [12, 19]. However, this lemma only

works for R2. For d-dimensional, the number of simplices ranges from O(n) to O(n
d
2 ).

Now that we know what a triangulation and a Delaunay graph is, we can start defining a

Delaunay triangulation.

Lemma 6. Let P be a set of points in the plane. Then

1. There are points p1, p2, p3 ∈ P which are the vertices of the same face of the DG(P) if and

only if the circle through the three points does not contain a point of P in its interior.

2. There are points p1, p2 ∈ P that form an edge of the DG(P) if and only if there is a closed

circle C that contains p1 and p2 on its boundary and no other point of P.

Figure 2.15: Circumcircle property
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This lemma describes the circumcircle property. Since the center of the circle that contains

points p1, p2, and p3 is the corresponding vertex of the Voronoi diagram. Thus, by Definition 3,

the three points are the nearest neighbors to that Voronoi vertex (see black circle in Figure 2.15)

[2, 4, 12, 19]. Moreover, part 2 can be proved by contradiction by assuming that the triangulation

formed by p1, p2, and p3 is not Delaunay. Therefore, there lies a point inside the circumcircle. So,

when we try to find an empty circle that passes through the edge, there will be a point of P that lies

inside. Thus, it cannot be a Delaunay edge since there is no empty circle for edges [2, 4, 12, 19].

Now that we know how to get the Delaunay triangulation from the Delaunay graph, let’s

consider the empty circle property. We need to know how this property works to fully understand

Lemma 6.

Let p1, p2, p3 be a triangulation of a set of points. Then, the triangulation p1, p2, p3 is a

Delaunay triangulation if and only if its circumcircle does not contain any other points besides the

points in the triangulation. If the triangulation satisfies the empty circle test, then it is a Delaunay

triangulation [19]. In the rejected Figure 2.16, we can see that it does not satisfy the empty circle

test [12]. That is because point p2 lies inside the circle thus it cannot be a Delaunay triangulation.

However, in the accepted Figure 2.16, we see that the circumcircle is empty [12]. This means none

of the other points lie inside the circle.

Figure 2.16: Empty circle test

Theorem 1 (Delaunay, 1934). Let P be the triangulation of points. If P satisfies the Empty Circle
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Test, then it is a Delaunay triangulation.

Boris Nikolaevich Delaunay proved this theorem in 1934. It can be found in [5].

Lemma 7. Given a set P⊂ R2 of four points that are in convex position but not cocircular. Then P

has exactly one Delaunay triangulation.

In [8], the proof for lemma 7 can be found.

Figure 2.17: Case of four points

Given a triangulation of P, we call an edge locally Delaunay if it passes the empty circle test.

Lemma 8 (Delaunay, 1934). If the edge of a triangulation t of P is locally Delaunay then t is

DT (P).

Figure 2.18: Locally Delaunay
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Furthermore, let’s suppose that an edge ac is shared by the triangles abc and adc. If the

triangle abc satisfies the empty circle property, then the point d will lies outside the circumcircle of

triangle abc. Thus, the edge ac is called legal and locally Delaunay. In addition, this property is

symmetrical. Therefore, b is outside the circumcircle of triangle adc. Now, an edge ac is called

illegal and not locally Delaunay if d is inside the circumcircle of triangle abc, and once again, this

property is symmetrical [2, 19]. This means that b will lie inside the circumcircle of triangle of

adc as well. This brings us to the edge flipping property. If we have an edge that is not locally

Delaunay, we can flip it with the other diagonal in the convex quadrilateral. This operation states

that if you flip an edge that is not locally Delaunay, then the new edge is locally Delaunay. Moreover,

if it is a concave quadrilateral, then flipping the edge leads to an invalid configuration with two

overlapping triangles. Now if all the edges are locally Delaunay, then the triangulation is a Delaunay

triangulation [4]. So, let’s suppose we can start with an arbitrary triangulation. We can convert it to

a Delaunay triangulation by flipping all the illegal edges and making them legal [4, 19].

2.3.2 Algorithm

Figure 2.19: Flip algorithm

This leads us to the Flip Algorithm. This algorithm starts with the construction of an

arbitrary triangulation of a point set P. When two triangles form a convex quadrilateral ABCD, the

shared diagonal AC is flipped if and only if the angles α +β > 180◦ and replaced by diagonal BD

[19]. The edges get flipped until no triangle is non-Delaunay [4]. If we cannot do more flips then

the triangulation is DT . The Flip Algorithm follows Lemma 8. This algorithm takes O(n2) edge

flips which makes it a simple one to use.
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CHAPTER III

OPTIMALITY OF DELAUNAY TRIANGULATIONS

There are several functionals and criteria that optimize the Delaunay triangulation. We will

discuss them in the next two sections. Lastly but most importantly, we will discuss the Circumradii

Area conjecture and what is needed to show its optimal in the Delauny triangulation.

3.1 Optimal Criteria

3.1.1 Max-Min Angle Criterion

The diagonal of every convex quadrilateral that happens in a triangulation can be replaced

by another diagonal if the alternative one does not increase the minimum of the six angles in the two

triangles making up the quadrilateral [10, 15, 18]. Thus, the Delaunay triangulation maximizes the

minimum angle in a triangle. This means that the Delaunay triangulation stays away from "skinny"

triangles [12].

3.1.2 Lexicographical Angle Sequence

Moreover, a Delaunay triangulation maximizes the smallest angle, the second smallest angle,

the third smallest angle and so on. This can be associated with the angle sequence. This is defined

as the increasing sequence of angles (θ1,θ2, ...,θm) that appear in the triangles. Furthermore, this is

the first theorem about optimal properties of Delaunay triangulation, and it was proved in 1978 by

Sibson [18].

Theorem 2. Among all triangulations of a given point set, the Delaunay triangulation has the

lexicographically largest angle sequence.

Proof. Let’s begin the proof by recalling the inscribed angle theorem. This theorem states that the
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Figure 3.1: Angles

measure of an inscribed angle is half the measure of the intercepted arc. Since, in our case we are

looking at an inscribed triangle, then each angle will be half the measure of the minor arc. Now, the

interior angle is the average of the minor arc and the arc that forms when the lines intersecting at B

get extended (see Figure 3.1). On the other hand, the exterior angle is half the difference between

the minor arc and the intercepted angle formed as B′′ extends outside the circle.

a1 =
1
2
(
_
AC +

_

C′A′)

a2 =
1
2
(
_
AC)

a3 =
1
2
(
_
AC −

_

A′′C′′)

Thus, we can see from Figure 3.1 and the definitions that a1 > a2 > a3.

Figure 3.2: Edge flips

Let ABCD be a convex quadrilateral. Then, we have two adjacent triangles ∆ABC with
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angles ∠α,∠β ,∠γ and ∆ADC with angles ∠δ ,∠κ,∠ω (see Figure 3.2).

Suppose that ∆ABC and ∆ADC fails to satisfy the empty circle property resulting in ∆ABC

and ∆ADC being non-Delaunay. Therefore, we do an edge flip where the diagonal AC is replaced by

BD. The empty circle property is satisfied by ∆ABD and ∆BCD. Thus, it is a Delaunay triangulation.

Hence, we have

∠α
′ > ∠α, ∠γ

′ > ∠γ

∠δ
′ > ∠δ , ∠ω

′ > ∠ω.

This is proved by using the observation from Figure 3.1 and its definitions at the beginning.

In the orginal triangulations, we have ∠β and ∠κ . Since we did the edge flip, we now have

∠λ and ∠µ . However, these angles cannot be smaller than the minimum of ∠α,∠γ,∠δ ,∠ω . Thus,

DT has lexicographically the largest angle sequence.

3.1.3 Lexicographical Circumradii Sequence

Not only that, but it also applies to the sequence of radii of the circumcircles of the Delaunay

triangulation. The circumradii is the smallest when the triangulation is DT.

Let t be a triangulation of P and let ∆ be a triangle in t. Let R(∆1),R(∆2), ...,R(∆m) be the

circumradii of triangles in t in increasing order such that R(∆1) ≤ R(∆2) ≤ ... ≤ R(∆m). We call

this the circumradii sequence of t.

Theorem 3. Among all triangulations of a given point set, the Delaunay triangulation has the

lexicographically least circumradii sequence.

Proof. Suppose we have a convex quadrilateral ABCD with two triangulations (∆ABD,∆BCD)

that share an edge BD and (∆ABC,∆ADC) that share an edge AC. Denote RA = R(∆ABD),RB =

R(∆ABC),RC = R(∆BCD),RD = R(∆ADC) as the circumradius.

Let

RA ≤min(RB,RC,RD)

Theorem 9 from section 4.2 states that tBD = {∆ABD,∆BCD} is DT and we have one of two cases:
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Figure 3.3: ABCD

1. RA ≤ RC ≤ RB ≤ RD or

2. RA ≤ RB ≤ RC ≤ RD

It is easy to see that (RA,RC) is lexicographically less than (RB,RD).

3.1.4 The Radii Criterion

This criterion is the mean of circumradii of triangles in R2. In [15], Musin states that a

triangulation that contains "minimal sum of radii" is of greater quality since its triangulations are

closer to being regular triangles.

Figure 3.4: Circumcircle radius

Let t be a triangulation of P in R2 and let ∆ be a triangle in t. Then we define

Ra(∆) = Ra
0, where R0 is the circumcircle radius.
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Let ∆i ∈ t. Then we define

Ra(t) =
m

∑
i=1

Ra(∆i), where m is the number of triangles in t and a > 0.

Figure 3.5: Example of DT and non-DT

The following theorem easily follows from Theorem 3.

Theorem 4. Ra(t) achieves its minimum if and only if t is DT (P).

3.1.5 The Inradii Criterion

Lambert demonstrated that the Delaunay triangulation maximizes the mean inradii of

triangles.

Figure 3.6: Inradius of ∆ABC
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Let t be a triangulation of P in R2 and let ∆ be a triangle in t. Then we define

r(∆) = the inradius of ∆

Let ∆i be a set of triangles in t. Then we define

r(t) = ∑
i

r(∆i)

Theorem 5 (Lambert, 1994). The functional r(t) attains its maximum if and only if t is DT (P).

The proof of this theorem can be found in [9].

3.2 Optimal Functionals

3.2.1 The Harmonic Index

Suppose there is a polygon ∆ (see Figure 3.7), then its harmonic index (hrm(∆)) is the sum

of squares of lengths of the sides of ∆ divided by the area of ∆.

Figure 3.7: Polygon ∆

Let t be a triangulation of P in R2 and let ∆ be a triangle in t. Then we define the harmonic

index as

hrm(∆) =
a2 +b2 + c2

Area(∆)
, where a,b,c are the sides of polygon ∆.

Let ∆i ∈ t. Then we define
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hrm(t) = ∑
∆i∈t

hrm(∆i)

Theorem 6 (Musin,1995). The harmonic index hrm(t) of a triangulation t of P achieves its minimum

if and only if t is DT (P).

The proof for the harmonic index can be found [15]. Musin used the theorem of Local

Circle Test (LCT) to show that it was minimal which the proof for LCT can also be found in [15].

3.2.2 Weighted Sum of Squares of the Edge Lengths

Rajan [17] proved that the weighted sum of squares of the edge lengths is the smallest for

Delaunay triangulation, where the weight is the sum of volumes of the triangles incident on the

edge.

Let t be a triangulation of P in R2 and let ∆ be a triangle in t. Then we define

E(∆) = (a2 +b2 + c2) ·Area(∆)

Let ∆i ∈ t. Then we define

E(t) = ∑
i

E(∆i)

Theorem 7 (Rajan, 1994). E(t) achieves its minimum if and only if t is the DT (P).

3.2.3 Voronoi Functional

Let t be a triangulation of P in R2 and let ∆ be a triangle in t. Then we define the Voronoi

functional as

V f (∆) = area(∆)(a2 +b2 + c2−4R2)

This was proved in [7]. This functional V f (t) achieves its maximum if and only if t is DT (P).
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Figure 3.8: Centroid and circumcenter

3.2.4 D Functional

Let P be the centroid and O the circumcenter of a triangle ∆ ∈ t where t is a triangulation in

P in R2 (see Figure 3.8). Then we define

D(∆) = ||centroid(∆)− circumcenter(∆)||2 ·Area(∆)

Let ∆i ∈ t. Then we define

D(t) =
m

∑
i=1

D(∆i), where m is the number of triangles in t.

Conjecture (Musin, 2010): D(t) achieves its minimum if and only if t is DT (P).

3.3 CircumRadii-Areas (CRA)–Conjecture

Let t be a triangulation of P and let ∆ be a triangle in t. Then we define

Rα(∆) = Rα(∆) ·Area(∆), where Rα(∆) is the circumradius of ∆.

Rα(t) = ∑Rα(∆i) ·Area(∆i)

Conjecture: If α ≥ 1, then Rα(t) achieves its minimum if and only if t is DT (P).

This conjecture is proved for α = 2 in [7]. We are going to consider this conjecture for all α ≥ 1.
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CHAPTER IV

CRA–CONJECTURE ON DELAUNAY TRIANGULATION

Notations:

Figure 4.1: ABCD

RA = R(∆ABD)

RB = R(∆ABC)

RC = R(∆BCD)

RD = R(∆ADC)

SA = Area(∆ABD)

SB = Area(∆ABC)

SC = Area(∆BCD)

SD = Area(∆ADC)

tBD = {∆ABD,∆BCD}

tAC = {∆ABC,∆ACD}

a = |AB|,b = |BC|,c = |CD|,d = |DA| p = |BD|, q = |AC|.

|XY | denote the Euclidean distance between X and Y .

4.1 CRA–conjecture for a quadrilateral

In section 3.3, we define

Rα(∆) := Rα(∆) ·Area(∆)

Using the notations above, let

Rα(tBD) := Rα(∆ABD)+Rα(∆BCD).
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Conjecture 1. Suppose α ≥ 1 then tBD is a Delaunay Triangulation (DT ) if and only if Rα(tBD)≤

Rα(tAC) for all α ≥ 1. tBD is DT, i.e. ∠A+∠C < 180◦ if and only if Rα(tBD)< Rα(tAC).

Theorem 8 (the case α = 1). The conjecture is true for α = 1, i.e. tBD is DT if and only if

SA ·RA +SC ·RC ≤ SB ·RB +SD ·RD

(a) ABCD (b) A′B′C′D′

Figure 4.2: Quadrilaterals ABCD and A′B′C′D′

Proof. Let sides a,b,c,d be fixed and increase p on Figure 4.2a. So p̃(u) where u ∈ [0,1] such

that p̃(0) = p and p̃(1) = p′. Then a quadrilateral A′,B′,C′,D′ with sides a,b,c,d and the diagonal

|B′D′|= p′ is an inscribed quadrilateral , i.e. ∠A′+∠C′ = ∠B′+∠D′ = 180◦.

Note that for any triangle ∆ with sides x,y,z, we have

R(∆) =
x · y · z
4 ·S∆

.

Then R(∆) ·S∆ = 1
4x · y · z. Now if we let u ∈ [0,1], then we have the following notations:
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SA(u) = Area(a,d, p̃(u)) RA(u) = R(a,d, p̃(u))

SC(u) = Area(b,c, p̃(u)) RC(u) = R(b,c, p̃(u))

SB(u) = Area(a,b, q̃(u)) RB(u) = R(a,b, q̃(u))

SD(u) = Area(c,d, q̃(u)) RD(u) = R(c,d, q̃(u))

fp(u) = SA(u) ·RA(u)+SC(u) ·RC(u) fq(u) = SB(u) ·RB(u)+SD(u) ·RD(u)

Therefore, 4(SA ·RA +SC ·RC) = p(ad +bc) = fp(0). Other side follows, 4(SB ·RB +SD ·

RD) = q(ab+ cd) = fq(0).

Now, let’s consider fp(u) and fq(u). By definition, p̃(u) is increasing then q̃(u) is decreasing.

Therefore, this implies that fp(u) is increasing and fq(u) is decreasing with u.

We know that fp(1) = fq(1). Hence, for all u ∈ [0,1], we have fp(u)≤ fq(u). In particular,

fp(0)≤ fq(0) as required.

4.2 R-vertices

R-vertices can be defined for any polygon. It is the circumradii where the circumradii is

greater or equal to its neighbors or where the circumradii is less than or equal to its neighbors.

Suppose there is a polygon ABCD refer to Figure 4.1. Now, let there be a vertex B and

neighbors A and C then RB is the R-min if RA,RC ≥ RB. On the other hand, if RA,RC ≤ RB then

RB is R-max. Moreover, we say that a convex quadrilateral ABCD is FRV (Four R–vertices) if

RA ≤min(RB,RD) and RC ≤min(RB,RD). Now, We say that a convex quadrilateral ABCD is TRV

(Two R–vertices) if RA ≤ RB ≤ RC ≤ RD. We will need these definitions for the following lemmas

and theorem.

Lemma 9 and 10 and Theorem 9 were first proved by O. R. Musin in 1997 [15].

Lemma 9. Let RA ≤ min(RB,RD). Then tBD is DT , i.e. ∠A+∠C ≤ 180◦.
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Lemma 10. If RA ≤ min(RB,RD) then RC ≤ max(RB,RD).

Theorem 9. Let tBD is DT and RA ≤ RC or RB ≤ RD. Then we have one of two cases:

1. RA ≤ RC ≤ RB ≤ RD or

2. RA ≤ RB ≤ RC ≤ RD

We can call a quadrilateral ABCD FRV (Four R-vertices) if we have case I and TRV (Two

R-vertices) if we have a case II. Four R-vertices means there are two minimum and two maximum

and Two R-vertices means there is one minimum and one maximum.

4.3 CRA–conjecture is true for FRV quadrilaterals

Figure 4.3: Area of ABCD triangulations

Theorem 10. Suppose that a quadrilateral ABCD is FRV. Then the CRA conjecture is true for all

α > 0.

Proof. It is easy to see (Fig. 4.3) that

SA +SC = SB +SD = Area(ABCD).

Since RA ≤ RC ≤ RB ≤ RD we have

Rα
A ·SA +Rα

C ·SC ≤ Rα
C ·SA +Rα

C ·SC = Rα
C(SA +SC) = Rα

C(SB +SD)≤ Rα
B (SB +SD)
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= Rα
B ·SB +Rα

B ·SD ≤ Rα
B ·SB +Rα

D ·SD

4.4 CRA–conjecture is true for TRV quadrilaterals with SA ≥ SB

We have SA +SC = SB +SD. Then SA−SB = SD−SC.

Theorem 11. Let RA ≤ RB ≤ RC ≤ RD.

Suppose SA ≥ SB. Then Rα
A ·SA +Rα

C ·SC ≤ Rα
B ·SB +Rα

D ·SD for all α ≥ 0.

Proof. SA ·Rα
A − SB ·Rα

B ≤ (SA− SB)Rα
B ≤ (SA− SB)Rα

C = (SD− SC)Rα
C ≤ SD ·Rα

D− SC ·Rα
C as re-

quired.

4.5 CRA–conjecture is true for TRV quadrilaterals with bounded RC

Theorem 12. If ABCD is T RV and

RC <
RB ·SB +RD ·SD

SB +SD

then

Rα
A ·SA +Rα

C ·SC < Rα
B ·SB +Rα

D ·SD for all α ≥ 1.

Proof. Jensen’s inequality states that if f is a convex function, then for x1,x2 from its domain and

a1 > 0, a2 > 0, we have

f
(

a1 · x1 +a2 · x2

a1 +a2

)
≤ a1 · f (x1)+a2 · f (x2)

a1 +a2
.

Note f (x) = xα ,α ≥ 1 is convex. Thus,

Rα
B ·SB +Rα

D ·SD

SB +SD
≥
(

RB ·SB +RD ·SD

S

)α

> (RC)
α ≥ RC · (SC +SA)

SC +SA
≥

Rα
C ·SC +Rα

A ·SA

S
,

where S = SA +SC = SB +SD
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4.6 Properties of TRV quadrilaterals

Figure 4.4: ABCD where α = ∠BAC and δ = ∠BDC.

Theorem 13 (Musin, 2009). ABCD is T RV (i.e. RA < RB < RC < RD) if and only if 180◦− δ <

α < δ .

Hence, δ > 180◦−δ ⇒ δ > 90◦ [14].

Proof. Let the angles of ABCD satisfy the inequality above. Then sin∠α > sin∠δ and therefore,

RB < RC. Considering that ∠δ is obtuse, this implies that point A lies outside the circle BDC.

Therefore, ∠CAD < ∠CBD. Since both of these angles are acute, then we have sin∠CAD <

sin∠CBD and RC < RD. Furthermore, we have that ∠ACB < ∠ADB < 90◦ therefore RA < RB.

On the contrary, from RB < RC we get that ∠α lies between ∠δ and 180◦−∠δ . If ∠δ

is acute, then we have ∠ABD < ∠ACD. In addition, since RA < RD then ∠ABD > 180◦−∠ACD.

However, in this scenario RB <RA <RD <RC is obtained after repeating the previous argument.

4.7 Examples to the CRA–Conjecture

Let us use the following function for our tables and graphs:

F(α) = Rα
B ·SB +Rα

D ·SD−Rα
A ·SA−Rα

C ·SC

In this case, ABCD is FRV and the inequality F(α) is greater than 0 for all α > 0.

Example 1. Suppose there is a quadrilateral ABCD where a = b = c = d = 1 and p = 1 (see figure

4.1).

35



Example 1 (FRV)
Circumradius Ri
and Area Si

A B C D

R
√

3
3

√
3

√
3

3

√
3

S
√

3
4

√
3

4

√
3

4

√
3

4

Table 4.1: Example 1 (FRV)

Figure 4.5: Four R-vertices example 1

Example 2 and 3 show that CRA conjecture is not true for α < 1.

Example 2. Suppose there is a quadrilateral ABCD (see figure 4.4) where a = d = c = 1,b = 2.91

and p = 1.9369.

Example 2 (TRV)
Circumradius Ri
and Area Si

A B C D

R 2.0059 2.9243 5.1614 29.5458
S 0.2414 0.4975 0.273 0.0169

Table 4.2: Example 2 (TRV)

Example 3. Suppose there is a quadrilateral ABCD (see figure 4.4) where a = d = c = 1,b = 2.99

and p = 1.9927.
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Figure 4.6: Left: Two R-vertices example 2. Right: Example 2 from [0,0.1].

Example 3 (TRV)
Circumradius Ri
and Area Si

A B C D

R 5.8769 8.6746 16.4749 175.8346
100S 8.477 17.2342 9.0415 0.2844

Table 4.3: Example 3 (TRV)

Figure 4.7: Left: Two R-vertices example 3. Right: Example 3 from [0,0.1].
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CHAPTER V

CONCLUSION

In this paper, we studied the properties of Voronoi diagrams and its dual graph, Delaunay

triangulations. These structures are highly discussed in computational geometry and have become

great tools for many areas.

We started by discussing Voronoi diagrams and it’s properties. We defined the Voronoi cell,

edge, and vertex which are important definitions needed and referred to throughout the chapters

to understand other properties. Following the definitions, several properties were explored such

as a Voronoi diagram is a connected graph with edges that are line segments or half lines unless

collinear, is made up of 2n−5 vertices and 3n−6 edges, and the characteristics of the largest empty

circle. Moreover, we discuss two methods of construction. The first being the most basic one which

is the Half Plane Intersection, and the second one being the Fortune’s Algorithm. In the Fortune’s

Algorithm, we discussed two types of events that can occur during the construction of the Voronoi

diagram.

Next, we developed the definitions and properties of the dual graph, Delaunay triangulations,

by describing the duality between the two structures. We defined the dual as the straight line

graph. Before defining the Delaunay triangulation, we begun by defining a triangulation and some

properties such as the circumcircle property and empty circle test. These properties helped in

arriving to the definition of a Delaunay triangulation. We then consider the case of four points

and locally Delaunay. After that, we show the Flip Algorithm to demonstrate the construction of a

Delaunay triangulation.

We continued with the discussion of Delaunay triangulations. Here, we examined the

optimal functionals on triangulations and reductions to quadrilaterals. These include maximizing
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the minimum angle criterion, lexicographical order of angle sequence, radii criterion, inradii

criterion, harmonic index, weighted sum of squares of the edge lengths, Voronoi functional, and

D functional. All these criterions and functionals are important because they prove to be useful in

the study of algorithms and the development of optimal triangulations. They demonstrate whether

Delaunay triangulation will be optimal or not. We then presented a new result. We proved the

theorem that Delaunay triangulation has lexicographically the least circumradii sequence (see

Theorem 3). We also discussed the CircumRadii-Area (CRA) conjecture.

We extended our research to this conjecture. We proved that the CRA conjecture was true

for α = 1. We did this by fixing the sides of a quadrilateral ABCD and increasing the segment

BD. We ended up getting a new quadrilateral A′B′C′D′. The circumradius formula was required to

complete the proof. We were able to demonstrate that the conjecture was true for α = 1.

We carried on with this conjecture and proved that CRA conjecture was true for FRV

quadrilaterals. FRV quadrilaterals are where RA ≤ RC ≤ RB ≤ RD. We showed that Rα(tBD) ≤

Rα(tAC) was true for all α > 0. This was proved by showing that Rα
A ·SA+Rα

C ·SC ≤Rα
B ·SB+Rα

D ·SD.

The following step that was taken was proving that CRA conjecture was true for TRV

quadrilaterals with SA ≥ SB. TRV quadrilaterals are where RA ≤ RB ≤ RC ≤ RD. We were able to

show this by SA ·Rα
A −SB ·Rα

B ≤ SD ·Rα
D−SC ·Rα

C .

We proved that CRA conjecture was true for TRV quadrilaterals with bounded RC. This

proof was completed using the Jensen’s inequality.

We show the properties of TRV quadrilaterals. We use Theorem 13 proved by Musin to

demonstrate that a quadrilateral is TRV iff 180◦−∠BDC < ∠BAC < ∠BDC. This implies that

∠BDC is greater than 90◦.

Lastly, we demonstrated counterexamples for α < 1. These are table 4.2 and table 4.3, and

along with them, we provided graphs. We added a secondary graph for both of these examples to

show that it is not tangent to zero.

5.1 Status of CRA–conjecture

Now, let’s combine all the properties of ABCD together that remain to prove the conjecture.
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I. RA ≤ RB ≤ RC ≤ RD.

II. SA−SB = SD−SC < 0.

III. RC ·S > RB ·SB +RD ·SD, where S =Area(ABCD) = SA +SC = SB +SD.

IV. (See Theorem 8)

RA ·SA +RC ·SC ≤ RB ·SB +RD ·SD.

V. (See [7])

R2
A ·SA +R2

C ·SC ≤ R2
B ·SB +R2

D ·SD.

Proposition 2. Let ABCD is TRV and RC ·SC > RD ·SD. Then we have II.

Proof. Let’s assume the contrary, SC < SD. In this case, by I, we have that RC < RD which implies

that RC ·SC < RD ·SD. By contradiction, if ABCD is TRV and RC ·SC > RD ·SD then SD < SC.

It remains to prove our theorem for quadrilaterals with these properties. This is due to

these properties being complements for the proved theorems. For instance, the CRA conjecture

is proved for FRV, but it remains to prove the conjecture for non-FRV quadrilaterals, that is TRV

quadrilaterals. The CRA conjecture is proved for SA > SB, it remains to prove for SA < SB. The

conjecture is proved for RC < RB·SB+RD·SD
SB+SD

, it remains to prove for RC > RB·SB+RD·SD
SB+SD

.

5.2 Discussion

In this thesis, we were able to proved various theorems showing that the CRA conjecture

held true as previously mentioned. We can conclude that Rα where α = 1 attains its minimum at the

Delaunay triangulation. We can also conclude that for FRV quadrilaterals Rα where α > 0 attains its

minimum at the Delaunay triangulation. Similarly, for TRV quadrilaterals with SA ≥ SB, Rα where

α ≥ 0 attains its minimum at the Delaunay triangulation. Additionally, for TRV quadrilaterals with

bounded RC, Rα where α ≥ 1 attains its minimum at the Delaunay triangulation. These cases are

important because they demonstrate that the Delaunay triangulation is optimal when α ≥ 1 in the

CRA conjecture.
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However, it is not complete. There is still some work that needs continuation, and it would

be interesting to see where that leads us. As all these functionals and criteria help us to construct

optimal triangulations which are useful in a variety of fields.
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