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CLASSIFICATION ON BOUNDARY-EQUILIBRIA AND SINGULAR
CONTINUUMS OF CONTINUOUS PIECEWISE LINEAR SYSTEMS

HEBAI CHEN1, ZHAOSHENG FENG2, HAO YANG1, LINFENG ZHOU3

Abstract. In this paper, we show that any switching hypersurface of n-dimensional
continuous piecewise linear systems is an (n − 1)-dimensional hyperplane. For two-
dimensional continuous piecewise linear systems, we present local phase portraits and
indices near the boundary equilibria (i.e., equilibria at the switching line) and singular
continuum (i.e., continuum of non-isolated equilibria) between two parallel switching
lines. The definition of the index of singular continuum is introduced. Then we show that
boundary-equilibria and singular continuums can appear with many parallel switching
lines.

1. Introduction

In modern theory of dynamical systems, the study of qualitative properties of equi-
librium points has been an interesting topic [7, 20], because it reveals the topological
structure of orbits near equilibria and demonstrates dynamical behaviors intuitively. Es-
pecially, local phase portraits of hyperbolic equilibria (i.e., no eigenvalue of the associated
Jacobian matrices is located at the imaginary axis) persist in the C0 topology under small
nonlinear perturbation by the Hartman-Grobman theorem [20]. In addition to using phase
portraits to classify equilibria, we apply the index theory to do classifications of equilibria
for ordinary differential equations. Some applications of these two approaches to isolated
equilibria and singular lines of planar linear systems can be seen in [7, 20].

Recently, considerable attention has been attracted to dynamical behaviors of non-
smooth dynamical systems, since nonsmooth dynamical systems have tremendous appli-
cations in control engineering and mechanics, economics, climate modelling, physiological
modelling, medicine, ecology and epidemiology, see [1, 2, 11]. As shown in [1, 2, 10, 12],
there are a number of nonsmooth systems with the parameters which display bifurcations
at certain parametric values. However, their phase portraits are topologically equivalent
in certain regions. Hence, classifications of boundary-equilibria and singular continuums
by phase portraits can provide useful dynamical information of nonsmooth dynamical
systems. The index of an equilibrium is another quantity to characterize the topological
structure of equilibrium. Moreover, the study of an equilibrium can help us to better
understand the existence of limit cycles since the sum of the indices of all equilibria sur-
rounded by a limit cycle is 1. As we see, the planar continuous piecewise linear system
with the switching lines is actually the simplest nonsmooth dynamical system. For some
results of continuous piecewise linear systems we refer to [1, 5, 6, 15, 16, 17, 18, 19] and for
some boundary equilibria and singular continuums of continuous piecewise linear systems
we refer to [3, 4, 9, 14]. As far as our knowledge goes, there are no complete classifica-
tions on phase portraits of boundary-equilibria and singular continuums for continuous

2010 Mathematics Subject Classification. Primary 34C05; 34A26; 49J52.
Key words and phrases. piecewise linear system; boundary equilibrium; singular continuum; phase por-
trait; index.
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2 H. CHEN, Z. FENG, H. YANG AND L. ZHOU

piecewise linear systems. Furthermore, it does not seem that the definition of the index
of singular continuum was presented previously in the literature. The aim of this paper is
to discuss and demonstrate a complete classification of boundary-equilibria and singular
continuums of continuous piecewise linear systems.

The outline of this paper is given as follows. In Section 2, we recall some related
results on phase portraits and indices of the interior equilibria for smooth linear systems
and use them to show that these equilibria are not located at a switching manifold of
nonsmooth linear systems. After presenting phase portraits, indices of equilibria and
singular continuum in Sections 3 and 4 respectively, we rigorously prove that any switching
line of continuous piecewise linear systems must be a straight line.

2. Phase portraits and indices of interior equilibria

In this section, we briefly present phase portraits and indices of the interior equilibria,
i.e., the equilibria do not lie on the switching manifold which are the same as the ones for
smooth linear systems.

We start with the classification and index of an equilibrium of linear systems [7, 13, 20].
To define the index of an equilibrium, we recall the definition of rotation number of an
oriented close curve with respect to a continuous vector field [20].

Consider a continuous planar differential equation

(1)
dx

dt
= X(x, y),

dy

dt
= Y (x, y).

Let A(x, y) := (X(x, y), Y (x, y)) and L ⊂ R
2 be a piecewise smooth oriented close curve.

For any fixed oriented Jordan curve L ⊂ R
2, the rotation number of L with respect to

A(x, y), denoted by γ(A(x, y),L ), is given by

γ(A(x, y),L ) :=
∆L

2π
,

where ∆L is the net change of the vector A(x, y) as (x, y) traverses the loop in the
positive direction. Suppose that P0(x0, y0) is an isolated critical point of system (1). We
know that there is a value R > 0 such that for any 0 < r < R, the rotation number
γ (A(x, y), ∂S (P0, r)) is a constant independent of r (see [20, p.147]), where S (P0, r) :=

{(x, y) ∈ R
2 :
√

(x− x0)2 + (y − y0)2 ≤ r}, the open ball of radius r centered at P0,
contains only one equilibrium P0 of system (1), and ∂S (P0, r) denotes the boundary of
S (P0, r).

Definition 1. [20, p.147] For the continuous system (1), we suppose that P0(x0, y0) is
an isolated critical point of system (1) and r is a small positive constant. The rotation
number γ (A(x, y), ∂S (P0, r)) is called the index of the critical point P0 for system (1).

For an interior equilibrium, the continuous planar linear system can be written as

ẋ =

{

b1x+ a2y, if − ε ≤ x < a,

a1x+ a2y, if a ≤ x < a+ ε,
ẏ =

{

b2x+ a4y, if − ε ≤ x < a,

a3x+ a4y, if a ≤ x < a+ ε,
(2)

where a > 0, ϵ > 0 is very small, ai, bi ∈ R for i = 1, 2, 3, 4 and b1
2 + a2

2 + b2
2 + a4

2 ̸= 0.
Moreover, the Jordan canonical forms of

A :=

(

b1 a2
b2 a4

)
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have three cases

J1 :=

(

λ 0
0 µ

)

, J2 :=

(

λ 1
0 λ

)

, J3 :=

(

a b
−b a

)

,(3)

where λ2 + µ2 ̸= 0 and b ̸= 0.

Note that λ, µ cannot be zero simultaneously. Without loss of generality, we only
consider the case λ ≥ µ when A = J1, because the transformation (x, y, λ, µ) → (y, x, µ, λ)
can convert the case λ ≤ µ to the case λ ≥ µ.

Theorem 1. [20, Chapter 3] Given system (2) with the three Jordan canonical forms
(3), local phase portraits at equilibria are shown in Figure 1.

Specifically, when A = J1, in the cases µ = 0, λµ < 0, λ > µ > 0 and λ = µ > 0,
system (2) has a singular line x = 0, a unique equilibrium which is a saddle, a unique
equilibrium which is a bidirectional node, and a unique equilibrium which is a star node,
respectively. Phase portraits of system (2) are shown in Figure 1(a)-1(d), respectively.

When A = J2, in the cases λ = 0 and λ > 0, system (2) has a singular line y = 0 and a
unique equilibrium which is a unidirectional node respectively. Phase portraits of system
(2) are shown in Figure 1(e) and 1(f), respectively.

When A = J3, in the cases a = 0, b > 0 and a > 0, b > 0, system (2) has a unique
equilibrium which is a center and a unique equilibrium which is a focus, respectively. Phase
portraits of system (2) are shown in Figure 1(g) and 1(h), respectively.

Moreover, the index of the saddle is −1 and the index of a bidirectional node, or star
node, or unidirectional node, or center, or focus is 1.

Remark 1. Considering A = J1, we do not mention the case 0 > λ > µ, since we
can use the transformation (λ, µ, t) → −(λ, µ, t) to change the case 0 > λ > µ to the
case µ > λ > 0. For A = J2, we do not include the case λ < 0, since we can use the
transformation (t, λ) → −(t, λ) to change the case λ < 0 to the case λ > 0. Similarly, for
A = J3, we do not mention the cases a = 0, b < 0; a > 0, b < 0; a < 0, b > 0; and a < 0,
b < 0.

3. Phase portraits and indices of boundary-equilibria

In this section, we study phase portraits and indices of isolated equilibria for continu-
ous piecewise linear systems at a switching line. Note that the boundaries between two
different linear zones of piecewise linear systems are responsible for the non-smoothness
of vector fields, so we call this boundary as the switching curve of the system.

Proposition 2. A switching curve of continuous piecewise linear systems is a straight
line.

Proof. We consider a local region D ⊂ R
2 of phase space that only contains one switching

line. Without loss of generality, a continuous piecewise linear system in the neighborhood
D of the switching line can be rewritten in the form

ẋ =

{

b1x+ b2y + c1, if F (x, y) < 0,

a1x+ a2y + c2, if F (x, y) > 0,

ẏ =

{

b3x+ b4y + c3, if F (x, y) < 0,

a3x+ a4y + c4, if F (x, y) > 0,

(4)
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y

O                            x 

(a) A singular line x = 0

y

O                            x

(b) A saddle

y

O                            x

(c) A bidirectional node

y

O                            x

(d) A star node

y

O                            x

(e) A singular line y = 0

y

O                            x

(f) A unidirectional node

y

O                            x

(g) A center

y

O                            x

(h) A focus

Figure 1. Classification of an equilibrium in the linear system (2)
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where (a1, . . . , a4, b1, . . . , b4, c1, . . . , c4) ∈ R
12 and F : R2 7→ R is a continuous scalar

function of (x, y) ∈ D.

Let (x0, y0) be on the switching line F (x, y) = 0. Since the vector field of system (4) is
continuous, we obtain

{

b1x0 + b2y0 + c1 ≡ a1x0 + a2y0 + c2,

b3x0 + b4y0 + c3 ≡ a3x0 + a4y0 + c4

for all (x0, y0) ∈ {(x, y) ∈ D : F (x, y) = 0}. F (x, y) = 0 is not a straight line, if and only
if c1 = c2, c3 = c4 and ai = bi (i = 1, 2, 3, 4). In other words, system (4) is linear, implying
that the curve F (x, y) = 0 is not a switching line. Clearly, this is a contradiction. □

Remark 2. By using a similar approach we can see that the result described in Proposition
2 also holds for continuous piecewise linear systems in R

n, i.e., the switching hypersurface
is actually an (n− 1)-dimensional hyperplane.

Now we are ready to study the qualitative properties of boundary-equilibria. We con-
sider a local region D1 ⊂ R

2 of phase space that contains just one switching line and the
origin. Without loss of generality, a boundary-equilibrium lies at the origin and continuous
piecewise linear systems in D1 can be transformed to

(5) ẋ =

{

b1x+ a2y, if x < 0,

a1x+ a2y, if x > 0,
ẏ =

{

b2x+ a4y, if x < 0,

a3x+ a4y, if x > 0,

where (a1, a2, a3, a4, b1, b2) ∈ R
6, (x, y) ∈ D1, a4b1 − a2b2 ̸= 0, and a1a4 − a2a3 ̸= 0. For

system (5), we only consider a2 ≥ 0. Otherwise, if a2 < 0, we can derive the similar
result through the transformation (y, a2, a3, b2) → −(y, a2, a3, b2). Moreover, a1 = b1 and
a3 = b2 cannot hold simultaneously, since system (5) is a linear system and x = 0 is not
a switching line if a1 = b1 and a3 = b2.

The switching line x = 0 separates D1 into three regions

Sl := {(x, y) ∈ D1 : x < 0}, Sr := {(x, y) ∈ D1 : x > 0}, Σc := {(x, y) ∈ D1 : x = 0}.

Let D1 := Sl ∪ Σc ∪ Sr. Then the Jacobian matrices in the zones Sl and Sr are

Jl :=

(

b1 a2
b2 a4

)

, Jr :=

(

a1 a2
a3 a4

)

,

respectively. For simplicity, let D1 := detJl = a4b1 − a2b2, D2 := detJr = a1a4 − a2a3,
T1 := trJl = a4 + b1, T2 := trJr = a1 + a4, ∆1 := T1

2 − 4D1 and ∆2 := T2
2 − 4D2.

Dynamical behavior of system (5) at Sl (resp. Sr) is saddle type when D1 < 0 (resp.
D2 < 0), node type when D1 > 0 and ∆1 ≥ 0 (resp. D2 > 0 and ∆2 ≥ 0), focus type when
T1 ̸= 0, D1 > 0 and ∆1 < 0 (resp. T2 ̸= 0, D2 > 0 and ∆2 < 0), center type when D1 > 0
and T1 = 0 (resp. D2 > 0 and T2 = 0). Further, we call that the origin of system (5) is
a boundary-saddle point (resp., boundary-node point) if dynamical behaviors of system
(5) at Sl and Sr are saddle (resp., node). Moreover, we call that the origin of system
(5) is a boundary-focus point (resp., boundary-center point) if the origin of system (5)
is still a focus (resp. center). We can also define saddle-node point, saddle-focus point,
saddle-center point, node-focus point, and node-center point in a similarly manner.
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3.1. Boundary-saddle point. Local phase portraits at the boundary-saddle points can
be summarized by the following theorem.

Theorem 3. Suppose that D1 < 0 and D2 < 0 for system (5). When a2 = 0, system (5)
is topologically equivalent to

(6) ẋ =

{

b̃1x, if x < 0,

ã1x, if x > 0,
ẏ = y,

where ã1, b̃1 < 0 with ã1 ̸= b̃1. Local phase portrait at the boundary-saddle point is shown
in Figure 2.

Figure 2. Local phase portrait at the boundary-saddle point of system (6)

When a2 > 0, system (5) is topologically equivalent to

(7) ẋ =

{

b̃1x+ y, if x < 0,

ã1x+ y, if x > 0,
ẏ =

{

b̃2x, if x < 0,

ã3x, if x > 0,

where (ã1, b̃1) ∈ R
2 and ã3, b̃2 > 0. Local phase portrait at the boundary-saddle point is

shown in Figure 3.

Proof. For a2 = 0, from D1 < 0 and D2 < 0 it follows that

a1a4 < 0, b1a4 < 0.

In the zone Sl, with the transformation

(y, t) →
(

y +
b2

b1 − a4
x,

t

a4

)

,

system (5) is changed into (6), where b̃1 = b1/a4 < 0. In the zone Sr, with the transfor-
mation

(y, t) →
(

y +
a3

a1 − a4
x,

t

a4

)

,

system (5) is changed into (6), where ã1 = a1/a4 < 0.
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Figure 3. Local phase portrait at the boundary-saddle point of system (7).

For a2 > 0, we use the transformation (y, t) → (y + a4/a2x, t/a2) to change system (5)

into (7), where b̃1 = T1/a2, b̃2 = −D1/a
2
2, ã1 = T2/a2 and ã3 = −D2/a

2
2. Note that ã3,

b̃2 > 0 due to D1 < 0 and D2 < 0.

According to Theorem 1, we can obtain the local phase portrait at the boundary-saddle
point of system (6) as shown in Figure 2 and the local phase portrait at the boundary-
saddle point of system (7) as shown in Figure 3. □

3.2. Saddle-node point. Local phase portraits at the saddle-node point of system (5)
can be summarized in the following theorem.

Theorem 4. Suppose that D1 < 0, D2 > 0 and ∆2 ≥ 0 for system (5). When a2 = 0,
system (5) is topologically equivalent to

(8) ẋ =

{

b̃1x, if x < 0,

ã1x, if x > 0,
ẏ =

{

y, if x < 0,

ã3x+ y, if x > 0,

where b̃1 < 0, ã1 > 0, ã3 = 0 if ã1 ̸= 1 and ã3 ≥ 0 if ã1 = 1. Local phase portraits at the
saddle-node point of system (8) are presented in Figure 4.

When a2 > 0, system (5) is topologically equivalent to

(9) ẋ =

{

b̃1x+ y, if x < 0,

ã1x+ y, if x > 0,
ẏ =

{

b̃2x, if x < 0,

ã3x, if x > 0,

where b̃1 ∈ R, b̃2 > 0, and ã1 ≥ 2
√
−ã3 with ã3 < 0. Local phase portraits at the

saddle-node point of system (9) are presented in Figure 5.

Proof. For a2 = 0, from D1 < 0, D2 > 0 and ∆2 ≥ 0 it follows that

a1a4 > 0, b1a4 < 0.

In the zone Sl, with the transformation

(y, t) →
(

y +
b2

b1 − a4
x,

t

a4

)

,
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(a) ã1 = 1, ã3 = 0 (b) ã1 = 1, ã3 > 0

(c) ã1 > 1, ã3 = 0 (d) ã1 ∈ (0, 1), ã3 = 0

Figure 4. Local phase portraits at the saddle-node points of system (8).

(a) ã1 = 2
√
−ã3, ã3 < 0 (b) ã1 > 2

√
−ã3, ã3 < 0

Figure 5. Local phase portraits of the saddle-node points of system (9).

system (5) is changed into (8), where b̃1 = b1/a4 < 0. In the zone Sr, when a1 = a4, by a
scaling t → t/a4, system (5) is changed into (8), where ã1 = 1 and ã3 = a3/a4. Note that
system (8) is invariant under the transformation (y, ã3) → (−y,−ã3). Hence, we only
consider the non-negative ã3. When a1 ̸= a4, in the zone Sr, with the transformation

(y, t) →
(

y +
a3

a1 − a4
x,

t

a4

)

,
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system (5) is changed into (8), where ã1 = a1/a4 ∈ (0, 1)∪ (1,+∞) and ã3 = 0. Note that
ã1 > 1 for |a1| > |a4| and ã1 ∈ (0, 1) for |a1| < |a4|. Thus, local phase portraits at the
saddle-node points of systems (8) can be derived from Theorem 1 as shown in Figure 4.

When a2 > 0, from D1 < 0, D2 > 0 and ∆2 ≥ 0 it follows that

T2 = a1 + a4 ∈ (−∞− 2
√

D2] ∪ [2
√

D2,+∞).

In the zones Sl and Sr, we use the transformation (y, t) → (y + a4/a2x, t/a2) to change

system (5) into (9), where b̃1 = T1/a2, b̃2 = −D1/a
2
2, ã1 = T2/a2 ∈ (−∞ − 2

√
D2/a2] ∪

[2
√
D2/a2,+∞) and ã3 = −D2/a

2
2. Note that system (9) is invariant under the trans-

formation (y, t, ã1, b̃1) → −(y, t, ã1, b̃1). Hence, we only need to consider that ã1 ∈
[2
√
D2/a2,+∞). Therefore, by virtue of Theorem 1 we can obtain local phase portraits

at the saddle-node points of system (9) as shown in Figure 5. □

3.3. Saddle-focus/center point. We consider local phase portraits at the saddle-focus/center
points in this subsection.

Theorem 5. Suppose that D1 < 0, D2 > 0 and ∆2 < 0 for system (5). Then system (5)
is topologically equivalent to

(10) ẋ =

{

b̃1x+ y, if x < 0,

ã1x+ y, if x > 0,
ẏ =

{

b̃2x, if x < 0,

ã3x, if x > 0,

where b̃1 ∈ R, b̃2 > 0, ã21 < −4ã3 and ã3 < 0. The local phase portrait at the saddle-
focus/center point of system (10) is shown in Figure 6.

Figure 6. Local phase portrait at the saddle-focus/center point of system (10).

Proof. From D1 < 0, D2 > 0 and ∆2 < 0 it follows that

a2 ̸= 0, T2 = a1 + a4 ∈ (−2
√

D2, 2
√

D2).

With the transformation (y, t) → (y+a4/a2x, t/a2), system (5) is changed into (10), where

b̃1 = T1/a2, b̃2 = −D1/a
2
2, ã1 = T2/a2 ∈ (−2

√
D2/a2, 2

√
D2/a2) and ã2 = −D2/a

2
2. Thus,

according to Theorem 1, we obtain the local phase portrait at the saddle-focus/center
point of system (10) as shown in Figure 6. □
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3.4. Boundary-node point. In this subsection, we discuss local phase portraits at the
boundary-node point for system (5).

Theorem 6. Suppose that D1 > 0, D2 > 0, ∆1 ≥ 0 and ∆2 ≥ 0 for system (5). When
a2 = 0, system (5) is topologically equivalent to

(11) ẋ =

{

b̃1x, if x < 0,

ã1x, if x > 0,
ẏ =

{

b̃2x+ y, if x < 0,

ã3x+ y, if x > 0,

where b̃1 > 0, b̃2 = 0 if b̃1 ̸= 1, b̃2 ≥ 0 if b̃1 = 1, ã1 > 0, ã3 = 0 if ã1 ̸= 1 and ã3 ∈ R if
ã1 = 1, see Table 1. Local phase portraits at the boundary-node points of system (11) are
presented in Figure 7.

When a2 > 0, system (5) is topologically equivalent to

(12) ẋ =

{

b̃1x+ y, if x < 0,

ã1x+ y, if x > 0,
ẏ =

{

b̃2x, if x < 0,

ã3x, if x > 0,

where b̃1 ≥ 2
√

−b̃2, b̃2 < 0, ã21 ≥ −4ã3 and ã3 < 0. Local phase portraits at the boundary-
node points of system (12) are shown in Figure 8.

Table 1. Cases of boundary-node points

Cases of parameters of system (5) Cases of parameters of system (11)

In the Sl In the Sr In the Sl In the Sr

b1 = a4, b2 = 0

a1 = a4, a3 ̸= 0
b̃1 = 1,

b̃2 = 0

ã1 = 1, ã3 =
a3
a4

> 0

|a1| > |a4| ã1 =
a1
a4

> 1, ã3 = 0

|a1| < |a4| ã1 =
a1
a4

∈ (0, 1), ã3 = 0

b1 = a4, b2 ̸= 0

a1 = a4, a3 ̸= 0
b̃1 = 1,

b̃2 =
b2
a4

> 0

ã1 = 1, ã3 =
a3
a4

̸= 0

|a1| > |a4| ã1 =
a1
a4

> 1, ã3 = 0

|a1| < |a4| ã1 =
a1
a4

∈ (0, 1), ã3 = 0

|b1| > |a4|
|a1| > |a4| b̃1 =

b1
a4

> 1,

b̃2 = 0

ã1 =
a1
a4

> 1, ã3 = 0

|a1| < |a4| ã1 =
a1
a4

∈ (0, 1), ã3 = 0

|b1| < |a4| |a1| < |a4|
b̃1 =

b1
a4

∈ (0, 1),

b̃2 = 0
ã1 =

a1
a4

∈ (0, 1), ã3 = 0

Proof. When a2 = 0, from D1 > 0 and D2 > 0 it follows that

a1a4 > 0, b1a4 > 0.
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(a) b̃1 = 1, b̃2 = 0, ã1 = 1, ã3 >
0

(b) b̃1 = 1, b̃2 = 0, ã1 > 1, ã3 =
0

(c) b̃1 = 1, b̃2 = 0, ã1 ∈ (0, 1),
ã3 = 0

(d) b̃1 = 1, b̃2 > 0, ã1 = 1, ã3 >
0

(e) b̃1 = 1, b̃2 > 0, ã1 = 1, ã3 <
0

(f) b̃1 = 1, b̃2 > 0, ã1 > 1, ã3 =
0

(g) b̃1 = 1, b̃2 > 0, ã1 ∈ (0, 1),
ã3 = 0

(h) b̃1 > 1, b̃2 = 0, ã1 > 1, ã3 =
0

(i) b̃1 > 1, b̃2 = 0, ã1 ∈ (0, 1),
ã3 = 0

(j) b̃1 ∈ (0, 1), b̃2 = 0, ã1 ∈
(0, 1), ã3 = 0

Figure 7. Local phase portraits of the boundary-node points of system (11).
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(a) b̃1 = 2
√

−b̃2, ã1 = 2
√

−ã3 (b) b̃1 = 2
√

−b̃2, ã1 > 2
√

−ã3 (c) b̃1 > 2
√

−b̃2, ã1 > 2
√

−ã3

(d) b̃1 = 2
√

−b̃2, ã1 = −2
√

−ã3 (e) b̃1 = 2
√

−b̃2, ã1 < −2
√

−ã3 (f) b̃1 > 2
√

−b̃2, ã1 < −2
√

−ã3

Figure 8. Local phase portraits of the boundary-node points of system (12).

In the zone Sl, when b1 = a4, with a scaling t → t/a4, system (5) is changed into (11),

where b̃1 = 1 and b̃2 = b2/a4. When b1 ̸= a4, with the transformation

(y, t) →
(

y +
b2

b1 − a4
x,

t

a4

)

,

system (5) is changed into (11), where b̃1 = b1/a4 ∈ (0, 1)∪ (1,+∞) and b̃2 = 0. It is easy

to see that b̃1 > 1 for |b1| > |a4| and b̃1 ∈ (0, 1) for |b1| < |a4|. When a1 = a4 or a1 ̸= a4,
it reduces to system (11) in the zone Sr, see Table 1. Note that system (11) is invariant

under the transformation (y, b̃2, ã3) → −(y, b̃2, ã3) when b̃1 = 1, b̃2 = b2/a4 ̸= 0, ã1 > 0

and ã3 ∈ R. Thus, we only need to consider the positive case for b̃2. Since system (11) is

invariant under the transformation (y, ã3) → (−y,−ã3) when b̃1 = 1, b̃2 = 0, ã1 = 1 and
ã3 = a3/a4 ̸= 0, we only need to consider the positive case for ã3.

When a2 > 0, from D1 > 0, D2 > 0, ∆1 ≥ 0 and ∆2 ≥ 0 it follows that

a2 ̸= 0, T1 = b1 + a4 ∈ (−∞,−2
√

D1] ∪ [2
√

D1,+∞),

T2 = a1 + a4 ∈ (−∞,−2
√

D2] ∪ [2
√

D2,+∞).

With the transformation (y, t) → (y + a4/a2x, t/a2), system (5) reduces to (12), where

b̃1 = T1/a2 ∈ (−∞,−2
√

D1/a2] ∪ [2
√

D1/a2,+∞), b̃2 = −D1/a
2
2,

ã1 = T2/a2 ∈ (−∞,−2
√

D2/a2] ∪ [2
√

D2/a2,+∞), ã3 = −D2/a
2
2.
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Note that system (12) is invariant under the transformation (y, t, b̃1, ã1) → −(y, t, b̃1, ã1).

Hence, we only need to consider the case b̃1 ∈ [2
√
D1/a2,+∞), i.e., b̃1 ≥ 2

√

−b̃2.

Using Theorem 1, we can obtain local phase portraits at the boundary-node point of
system systems (11) as shown in Figure 7 and local phase portraits at the boundary-node
points of system (12) as shown in Figure 8. □

3.5. Node-focus point. In this subsection we present local phase portraits at the node-
focus points for system (5).

Theorem 7. Suppose that D1 > 0, D2 > 0, ∆1 ≥ 0 and ∆2 < 0 for system (5). Then
for T1 > 0 system (5) is topologically equivalent to

(13) ẋ =

{

b̃1x+ y, if x < 0,

ã1x+ y, if x > 0,
ẏ =

{

b̃2x, if x < 0,

ã3x, if x > 0,

where b̃1 ≥ 2
√

−b̃2, b̃2 < 0, ã21 < −4ã3 and ã3 < 0. Local phase portraits at the node-
focus/center points of system (13) are shown in Figure 9.

(a) b̃1 = 2
√

−b̃2 (b) b̃1 > 2
√

−b̃2

Figure 9. Local phase portraits at the node-focus/center point of system (13).

Due to D1 > 0 and ∆1 ≥ 0, we get

T1 ∈ (−∞,−2
√

D1] ∪ [2
√

D1,+∞).

Note that system (13) is invariant under the transformation (y, t, b̃1, ã1) → −(y, t, b̃1, ã1).
Hence, we only need to consider the case T1 > 0 in Theorem 7.

Proof. From D1 > 0, D2 > 0, ∆1 ≥ 0, ∆2 < 0 and T1 > 0, it follows that

a2 ̸= 0, T1 = b1 + a4 ∈ [2
√

D1,+∞), T2 = a1 + a4 ∈ (−2
√

D2, 2
√

D2).

With the transformation (y, t) → (y + a4/a2x, t/a2), system (5) is changed into (13),
where

b̃1 = T1/a2 ∈ [2
√

D1/a2,+∞), b̃2 = −D1/a
2
2,

ã1 = T2/a2 ∈ (−2
√

D2/a2, 2
√

D2/a2), ã2 = −D2/a
2
2.



14 H. CHEN, Z. FENG, H. YANG AND L. ZHOU

Thus, according to Theorem 1 we can obtain local phase portraits at the node-focus points
of system (13) as shown in Figure 9. □

3.6. Boundary-focus point and boundary-center point. In this subsection, we dis-
cuss local phase portraits at the boundary-focus points and boundary-center points for
system (5).

Theorem 8. Suppose that D1 > 0, D2 > 0, ∆1 < 0 and ∆2 < 0 for system (5). Then
system (5) is topologically equivalent to

(14) ẋ =

{

b̃1x+ y, if x < 0,

ã1x+ y, if x > 0,
ẏ =

{

b̃2x, if x < 0,

ã3x, if x > 0,

where b̃21 < −4b̃2, b̃2 < 0, ã21 < −4ã3 and ã3 < 0. The origin O is a stable boundary-focus

when b̃1/
√

−b̃2 + ã1/
√
−ã3 > 0, a boundary-center when b̃1/

√

−b̃2 + ã1/
√
−ã3 = 0, and

an unstable boundary-focus when b̃1/
√

−b̃2 + ã1/
√
−ã3 < 0, see Figure 10.

(a) b̃1/
√

−b̃2 + ã1/
√
−ã3 > 0 (b) b̃1/

√

−b̃2 + ã1/
√
−ã3 = 0 (c) b̃1/

√

−b̃2 + ã1/
√
−ã3 < 0

Figure 10. Local phase portraits at the boundary-focus/center point of system
(14).

Proof. From D1 > 0, D2 > 0, ∆1 < 0 and ∆2 < 0, it follows that

a2 ̸= 0, T1 = b1 + a4 ∈ (−2
√

D1, 2
√

D1), T2 = a1 + a4 ∈ (−2
√

D2, 2
√

D2).

When a2 > 0, with the transformation (y, t) → (y + a4/a2x, t/a2), system (5) reduces
to (14), where

b̃1 = T1/a2 ∈ (−2
√

D1/a2, 2
√

D1/a2), b̃2 = −D1/a
2
2,

ã1 = T2/a2 ∈ (−2
√

D2/a2, 2
√

D2/a2), ã3 = −D2/a
2
2.

With the transformation

(x, y) →
(

−
√

ã3

b̃2
x, y

)

in the zone Sl, system (14) can be rewritten as

(15)
dy

dx
=

ã3x

y − b̃1
√

ã3
b̃2
x
.
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In the zone Sr, systems (14) becomes

(16)
dy

dx
=

ã3x

y + ã1x
.

To characterize the stability of equilibrium O of system (14), we let M(0, yM) be a
point on the positive y-axis in D1 with a small |yM | and φ(M, I+) be the positive orbit

of system (14) with the initial point M . Since b̃2, ã3 < 0, b̃21 + 4b̃2 < 0 and ã1 + 4ã3 < 0,
the solution orbit φ(M, I+) of system (14) passing through M must intersect the positive
and negative y-axis at P (0, yP ) and N(0, yN) respectively, with yN < 0 and yP > 0.

When b̃1/
√

−b̃2 + ã1/
√
−ã3 > 0, we obtain

ã3x

y − b̃1
√

ã3
b̃2
x
>

ã3x

y + ã1x
.

By the comparison theorem, the orbit arc of (15) connecting the point N from the point
P is strictly located on the right side of the orbit arc connecting the point N from the
point M of (16), i.e., yM > yP > 0. Thus, the equilibrium O of system (14) is a stable

boundary-focus, as shown in Figure 10(a). Similarly, when b̃1/
√

−b̃2 + ã1/
√
−ã3 = 0, we

deduce
ã3x

y − b̃1
√

ã3
b̃2
x
≡ ã3x

y + ã1x
.

This indicates that yP ≡ yM based on the theory of the existence and uniqueness of
solutions of ordinary differential equations. Thus, the equilibrium O of system (14) is a

boundary-center, as shown in Figure 10(b). When b̃1/
√

−b̃2 + ã1/
√
−ã3 < 0, we have

ã3x

y − b̃1
√

ã3
b̃2
x
<

ã3x

y + ã1x
.

By the comparison theorem, the orbit arc of (15) connecting the point N from the point
P is strictly located on the left side of the orbit arc connecting the point N from the
point M of (16), i.e., yP > yM > 0. Thus, the equilibrium O of system (14) is an unstable
boundary-focus, as shown in Figure 10(c). □

3.7. Indices of boundary-equilibria. The following proposition follows from [20, Sec-
tion 6 of Chapter 2].

Proposition 9. [20, p.164] Consider the system

(17)
dx

dt
= X(x, y),

dy

dt
= Y (x, y),

where X(x, y) and Y (x, y) are continuous functions in a sufficiently small neighborhood
Sδ(O) of the origin O. Moreover, let O be a boundary-equilibrium of system (17). Let e
and p be the numbers of elliptic and parabolic sectors respectively, and h be the sum of the
hyperbolic and hyperbolic-elliptic sectors. Suppose that IO is the index of the equilibrium
O. Then we have

IO = 1 +
e− h

2
.

Taking into account Proposition 9, we can obtain the following result.
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Theorem 10. For system (5), when the origin is a boundary-saddle, we have the index
IO = −1. When the origin is a saddle-node or a saddle-focus, we have the index IO = 0.
When the origin is a boundary-node, or a boundary-focus, or a boundary-center, or a
node-focus, we have the index IO = 1.

Proof. Firstly, we present the qualitative property of the origin O of system (5) in Table
2. For simplicity, we do not consider the number of parabolic sector p. By virtue of
Proposition 9 and Table 2, when the origin is a boundary-saddle, we have h = 4 and
e = 0, which leads to IO = 1 + (e − h)/2 = −1. When the origin is a saddle-node or a
saddle-focus, we have h = 2 and e = 0, which leads to IO = 1+ (e− h)/2 = 0. When the
origin is a boundary-node, or a boundary-focus, or a boundary-center, or a node-focus,
we have h = e = 0, which gives IO = 1 + (e− h)/2 = 1. □

4. Phase portraits and indices of singular continuum

In this section, we study phase portraits and indices of singular continuums for contin-
uous piecewise linear systems.

We consider a local region D2 ⊂ R
2 of phase space that just contains one singular

continuum and the origin. Without loss of generality, continuous piecewise linear systems
in region D2 can be transformed to

(18)

ẋ =







b1x+ a2y, if x < 0,

− a2y0x/x0 + a2y, if 0 < x < x0,

a1(x− x0) + a2(y − y0), if x > x0,

ẏ =







b2x+ a4y, if x < 0,

− a4y0x/x0 + a4y, if 0 < x < x0,

a3(x− x0) + a4(y − y0), if x > x0,

where (a1, a2, a3, a4, b1, b2, y0) ∈ R
7, (x, y) ∈ D2, a4b1 − a2b2 ̸= 0 and a1a4 − a2a3 ̸= 0. We

call the continuum of non-isolated equilibria ω = {(x, y) ∈ D2 : y = y0x/x0, 0 ≤ x ≤ x0}
of system (18) to be a singular continuum. For system (18), we assume a2 ≥ 0. If a2 < 0,
the argument can be processed similarly by a transform y → −y.

For system (18), the switching lines x = 0 and x = x0 separate D2 into five regions as
follows:

SL := {(x, y) ∈ D2 : x < 0}, SC := {(x, y) ∈ D2 : 0 < x < x0},
SR := {(x, y) ∈ D2 : x > x0},
ΣC1

:= {(x, y) ∈ D2 : x = 0}, ΣC2
:= {(x, y) ∈ D2 : x = x0},

where D2 := SL ∪ SC ∪ SR ∪ΣC1
∪ΣC2

. The Jacobian matrices in the SL, SC and SR are

JL :=

(

b1 a2
b2 a4

)

, JC :=

(

−a2y0/x0 a2
−a4y0/x0 a4

)

, JR :=

(

a1 a2
a3 a4

)

,

respectively. Then we have

D1 := detJL = a4b1 − a2b2, D2 := detJR = a1a4 − a2a3, D3 := detJC = 0,

T1 := trJL = a4 + b1, T2 := trJR = a1 + a4, T3 := trJC = −a2y0/x0 + a4,

∆1 := T1
2 − 4D1, ∆2 := T2

2 − 4D2.
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Table 2. Qualitative properties of O of system (5).

Type of O Geometric configurations in Sδ(O)

boundary-saddle h = 4, e = 0, see Figures 2 and 3.

saddle-node h = 2, e = 0, see Figures 4 and 5

saddle-focus/center h = 2, e = 0, see Figure 6

boundary-node

When ã1b̃1 > 0, then h = 0, e = 0,

see Figures 7 and 8(a)-(c).

When ã1b̃1 < 0, then h = 1, e = 1,

see Figure 8(d)-(f).

node-focus/center h = 0, e = 0, see Figure 9

boundary-focus/center h = 0, e = 0, see Figure 10

Consider the system
{

ẋ = −a2y0x/x0 + a2y,

ẏ = −a4y0x/x0 + a4y,
(19)

where 0 ≤ x ≤ x0 and x0 > 0.

Lemma 11. When a2 = 0, system (19) is topologically equivalent to

(20) ẋ = 0, ẏ = −c̃2x+ y,

where 0 ≤ x ≤ x0 and c̃2 ∈ R. Phase portraits in the strip 0 ≤ x ≤ x0 are shown in
Figure 11. When a2 > 0, system (19) is topologically equivalent to

(21) ẋ = −c̃1x+ y, ẏ = 0,

where 0 ≤ x ≤ x0 and c̃1 ∈ R. Phase portraits in the strip 0 ≤ x ≤ x0 are shown in
Figure 12.

Proof. When a2 = 0, by a scaling t → t/a4, system (19) reduces to (20), where c̃2 = y0/x0.
When a2 > 0, we use the transformation (y, t) → (y+a4/a2x, t/a2) to change system (19)
to (21), where c̃1 = −T3/a2. Consequently, we can derive phase diagrams of systems (20)
and (21) in the strip 0 ≤ x ≤ x0 as shown in Figures 11 and 12, respectively. □

We call dynamical behavior of system (18) at SL (resp. SR) is saddle type when D1 < 0
(resp. D2 < 0), node type when D1 > 0 and ∆1 ≥ 0 (resp. D2 > 0 and ∆2 ≥ 0), focus
type when T1 ̸= 0, D1 > 0 and ∆1 < 0 (resp. T2 ̸= 0, D2 > 0 and ∆2 < 0), and center type
when D1 > 0 and T1 = 0 (resp. D2 > 0 and T2 = 0). We say the singular continuum of
system (18) to be a saddle-saddle continuum (resp. node-node continuum) if system (18)
at SL and SR is saddle (resp., node). Moreover, we say the singular continuum of system
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(a) c̃2 = 0 (b) c̃2 > 0 (c) c̃2 < 0

Figure 11. Phase portraits of system (20) in the strip 0 ≤ x ≤ x0

(a) c̃1 = 0 (b) c̃1 > 0 (c) c̃1 < 0

Figure 12. Phase portraits of system (21) in the strip 0 ≤ x ≤ x0.

(18) to be a focus continuum (resp. center continuum) if all orbits tend toward the singular
continuum (resp. all orbits form a family of closed curves around the singular continuum)
spirally. We can define saddle-node continuum, saddle-focus continuum, saddle-center
continuum, node-focus continuum and node-center continuum in a similar way.

4.1. Saddle-saddle continuum. We summarize local phase portraits at the saddle-
saddle continuum for system (18) in the following theorem.

Theorem 12. Suppose that D1 < 0 and D2 < 0 for system (18). When a2 = 0, system
(18) is topologically equivalent to

(22) ẋ =











b̃1x, if x < 0,

0, if 0 < x < x0,

ã1(x− x0), if x > x0,

ẏ =











y, if x < 0,

− c̃2x+ y, if 0 < x < x0,

y − c̃2x0, if x > x0,

where b̃1 < 0, ã1 < 0 and c̃2 ≥ 0. Local phase portrait at the saddle-saddle continuum is
shown in Figure 13.
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When a2 > 0, system (18) is topologically equivalent to

(23) ẋ =











b̃1x+ y, if x < 0,

− c̃1x+ y, if 0 < x < x0,

ã1(x− x0) + y − c̃1x0, if x > x0,

ẏ =











b̃2x, if x < 0,

0, if 0 < x < x0,

ã3(x− x0), if x > x0,

where (ã1, b̃1) ∈ R
2, ã3, b̃2 > 0 and c̃1 ≥ 0. Local phase portrait at the saddle-saddle

continuum is shown in Figure 14.

(a) c̃2 = 0 (b) c̃2 > 0

Figure 13. Local phase portrait at the saddle-saddle continuum of system (22).

(a) c̃1 = 0 (b) c̃1 > 0

Figure 14. Local phase portrait at the saddle-saddle continuum of system (23).

Proof. By Theorem 3 and Lemma 11, it is easy to derive systems (22) and (23). For

system (22), we have b̃1 = b1/a4 < 0, ã1 = a1/a4 < 0 and c̃2 = y0/x0. Since system (22)
is invariant under the transformation (y, c̃2) → (−y,−c̃2), we only need to consider the
case c̃2 ≥ 0. For system (23), we have

b̃1 = T1/a2, b̃2 = −D1/a
2
2, ã1 = T2/a2, ã2 = −D2/a

2
2, c̃1 = −T3/a2.

Since system (23) is invariant by the transformation (y, t, ã1, b̃1, c̃1) → −(y, t, ã1, b̃1, c̃1),
we only need to consider the case c̃1 ≥ 0. Thus, we can obtain the local phase portrait
at the saddle-saddle continuum of system (22) as shown in Figure 13 and the local phase
portrait at the saddle-saddle continuum of system (23) as shown in Figure 14. □
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4.2. Saddle-node continuum. For local phase portrait at the saddle-node continuum
for system (18), we have

Theorem 13. Suppose that D1 < 0, D2 > 0 and ∆2 ≥ 0 for system (18). When a2 = 0,
system (18) is topologically equivalent to

(24) ẋ =











b̃1x, if x < 0,

0, if 0 < x < x0,

ã1(x− x0), if x > x0,

ẏ =











y, if x < 0,

− c̃2x+ y, if 0 < x < x0,

ã3(x− x0) + y − c̃2x0, if x > x0,

where b̃1 < 0, ã1 > 0, ã3 = 0 if ã1 ̸= 1 and ã3 ≥ 0 if ã1 = 1, and c̃2 ∈ R. Local phase
portraits at the saddle-node continuum of system (24) are shown in Figure 15.

When a2 > 0, system (18) is topologically equivalent to

(25) ẋ =











b̃1x+ y, if x < 0,

− c̃1x+ y, if 0 < x < x0,

ã1(x− x0) + y − c̃1x0, if x > x0,

ẏ =











b̃2x, if x < 0,

0, if 0 < x < x0,

ã3(x− x0), if x > x0,

where b̃1 ∈ R, b̃2 > 0, ã1 ≥ 2
√
−ã3, ã3 < 0 and c̃1 ∈ R. Local phase portraits at the

saddle-node continuum of system (25) are shown in Figure 16.

Proof. From Theorem 4 and Lemma 11, we can derive systems (24) and (25) immediately.

For system (24), we have b̃1 = b1/a4 < 0, ã1 > 0, ã3 ≥ 0 and c̃2 = y0/x0. Since system
(24) is invariant under the transformation (y, c̃2) → (−y,−c̃2) when ã3 = 0, we only

need to consider the case c̃2 ≥ 0. For system (25), we have b̃1 = T1/a2, b̃2 = −D1/a
2
2,

ã1 = T2/a2 ∈ [2
√
D2,+∞), ã3 = −D2/a

2
2 and c̃1 = −T3/a2. Thus, we can obtain local

phase portraits at the generalized saddle-node points of system (24) as shown in Figure
15 and local phase portraits at the saddle-node continuum of system (25) as shown in
Figure 16. □

4.3. Saddle-focus/center continuum. In this subsection, we consider local phase por-
traits at the saddle-focus continuum for system (18).

Theorem 14. Suppose that D1 < 0, D2 > 0 and ∆2 < 0 for system (18). System (18) is
topologically equivalent to

(26) ẋ =











b̃1x+ y, if x < 0,

− c̃1x+ y, if 0 < x < x0,

ã1(x− x0) + y − c̃1x0, if x > x0,

ẏ =











b̃2x, if x < 0,

0, if 0 < x < x0,

ã3(x− x0), if x > x0,

where b̃1 ∈ R, b̃2 > 0, ã21 < −4ã3, ã3 < 0 and c̃1 ≥ 0. Local phase portraits at saddle-focus
continuums of system (26) are shown in Figure 17.

Proof. By Theorem 5 and Lemma 11, we can derive system (26) immediately. For sys-

tem (26), we have b̃1 = T1/a2, b̃2 = −D1/a
2
2, ã1 = T2/a2 ∈ (−2

√
D2/a2, 2

√
D2/a2),

ã3 = −D2/a
2
2 and c̃1 = −T3/a2. Since system (26) is invariant under the transformation

(y, t, ã1, b̃1, c̃1) → −(y, t, ã1, b̃1, c̃1), we only need to consider the case c̃1 ≥ 0. Thus, we
can obtain local phase portraits at the saddle-focus continuum of system (26) as shown
in Figure 17. □
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(a) ã1 = 1, ã3 = 0, c̃2 = 0 (b) ã1 = 1, ã3 = 0, c̃2 > 0 (c) ã1 = 1, ã3 > 0, c̃2 = 0

(d) ã1 = 1, ã3 > 0, c̃2 > 0 (e) ã1 = 1, ã3 > 0, c̃2 < 0 (f) ã1 > 1, ã3 = 0, c̃2 = 0

(g) ã1 > 1, ã3 = 0, c̃2 > 0 (h) ã1 ∈ (0, 1), ã3 = 0, c̃2 = 0 (i) ã1 ∈ (0, 1), ã3 = 0, c̃2 > 0

Figure 15. Local phase portraits at the saddle-node continuum of system (24).

4.4. Node-node continuum. For local phase portraits at the node-node continuum for
system (18), we have

Theorem 15. Suppose that D1 > 0, D2 > 0, ∆1 ≥ 0 and ∆2 ≥ 0 for system (18). When
a2 = 0, system (18) is topologically equivalent to

(27) ẋ =











b̃1x, if x < 0,

0, if 0 < x < x0,

ã1(x− x0), if x > x0,

ẏ =











b̃2x+ y, if x < 0,

− c̃2x+ y, if 0 < x < x0,

ã3(x− x0) + y − c̃2x0, if x > x0,
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(a) ã1 = 2
√
−ã3, c̃1 = 0 (b) ã1 = 2

√
−ã3, c̃1 > 0 (c) ã1 = 2

√
−ã3, c̃1 < 0

(d) ã1 > 2
√
−ã3, c̃1 = 0 (e) ã1 > 2

√
−ã3, c̃1 > 0 (f) ã1 > 2

√
−ã3, c̃1 < 0

Figure 16. Local phase portraits at the saddle-node continuum of system (25).

(a) c̃1 = 0 (b) c̃1 > 0

Figure 17. Local phase portraits at saddle-focus continuum of system (26).

where b̃1 > 0, b̃2 = 0 if b̃1 ̸= 1 and b̃2 ≥ 0 if b̃1 = 1, ã1 > 0, ã3 = 0 if ã1 ̸= 1 and ã3 ∈ R if
ã1 = 1, and c̃2 ∈ R. Local phase portraits at the node-node continuum of system (27) are
shown in Figures 18-20.
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When a2 > 0, system (18) is topologically equivalent to

(28) ẋ =











b̃1x+ y, if x < 0,

− c̃1x+ y, if 0 < x < x0,

ã1(x− x0) + y − c̃1x0, if x > x0,

ẏ =











b̃2x, if x < 0,

0, if 0 < x < x0,

ã3(x− x0), if x > x0,

where b̃1 ≥ 2
√

−b̃2, b̃2 < 0, ã21 ≥ −4ã3, ã3 < 0 and c̃1 ∈ R. Local phase portraits at the
node-node continuum of system (28) are shown in Figures 21-22.

Proof. By Theorem 6 and Lemma 11, we can derive systems (27) and (28) respectively.

For system (27), we have b̃1 = b1/a4 > 0, b̃2 = b2/a4 ≥ 0, ã1 = a1/a4 > 0, ã3 = a3/a4 ∈ R

and c̃2 = y0/x0 ∈ R. Since system (27) is invariant under the transformation (y, c̃2) →
(−y,−c̃2) for b̃1 > 0, b̃2 = 0, ã1 > 0, and ã3 = 0, we only need to consider the case c̃2 ≥ 0.

For system (28), we have b̃1 ≥ 2
√

−b̃2, b̃2 < 0, ã21 ≥ −4ã3, ã3 < 0 and c̃1 = −T3/a2 ∈ R.
Thus, we can obtain local phase portraits at the node-node continuum of system (27) as
shown in Figures 18-20 and local phase portraits at the node-node continuum of system
(28) as shown in Figures 21-22. □

4.5. Node-focus continuum. For local phase portraits at the node-focus continuum of
system (18), we have

Theorem 16. Suppose that D1 > 0, D2 > 0, ∆1 ≥ 0 and ∆2 < 0 for system (18). Then
system (18) is topologically equivalent to

(29) ẋ =











b̃1x+ y, if x < 0,

− c̃1x+ y, if 0 < x < x0,

ã1(x− x0) + y − c̃1x0, if x > x0,

ẏ =











b̃2x, if x < 0,

0, if 0 < x < x0,

ã3(x− x0), if x > x0,

where b̃1 ≥ 2
√

−b̃2, b̃2 < 0, ã21 < −4ã3, ã3 < 0 and c̃1 ∈ R. Local phase portraits at the
node-focus continuum of system (29) are shown in Figure 23.

The proof is closely analogous to that of Theorem 15, so we omit it.

4.6. Focus continuum and center continuum. For local phase portraits at the focus
continuum and center continuum for system (18), we have

Theorem 17. Suppose that D1 > 0, D2 > 0, ∆1 < 0 and ∆2 < 0 for system (18). Then
system (18) is topologically equivalent to

(30) ẋ =











b̃1x+ y, if x < 0,

− c̃1x+ y, if 0 < x < x0,

ã1(x− x0) + y − c̃1x0, if x > x0,

ẏ =











b̃2x, if x < 0,

0, if 0 < x < x0,

ã3(x− x0), if x > x0,

where b̃21 < −4b̃2, b̃2 < 0, ã21 < −4ã3, ã3 < 0 and c̃1 ≥ 0. Local phase portraits at focus
continuums and center continuums of system (30) are shown in Figure 24,

Proof. By Theorem 8 and Lemma 11, we can derive system (30) right away. For sys-

tem (30), we have b̃1 = T1/a2 ∈ (−2
√
D1/a2, 2

√
D1/a2), b̃2 = −D1/a

2
2, ã1 = T2/a2 ∈

(−2
√
D2/a2, 2

√
D2/a2), ã3 = −D2/a

2
2 and c̃1 = −T3/a2. Note that system (30) is invari-

ant under the transformation (y, t, ã1, b̃1, c̃1) → −(y, t, ã1, b̃1, c̃1). Hence, we only need to
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(a) ã1 = 1, ã3 = 0, c̃2 = 0 (b) ã1 = 1, ã3 = 0, c̃2 > 0 (c) ã1 = 1, ã3 > 0, c̃2 = 0

(d) ã1 = 1, ã3 > 0, c̃2 > 0 (e) ã1 = 1, ã3 > 0, c̃2 < 0 (f) ã1 > 1, ã3 = 0, c̃2 = 0

(g) ã1 > 1, ã3 = 0, c̃2 > 0 (h) ã1 ∈ (0, 1), ã3 = 0, c̃2 = 0 (i) ã1 ∈ (0, 1), ã3 = 0, c̃2 > 0

Figure 18. Local phase portraits at the node-node continuum of system (27)

for b̃1 = 1 and b̃2 = 0.

consider the case c̃1 ≥ 0. When c̃1 = 0, according to Theorem 8, local phase portraits at
the generalized boundary-focus/center points of system (30) are shown in Figure 24(a)-
(c). When c̃1 > 0, local phase portraits at the generalized boundary-focus/center points
of system (30) are shown in Figure 24(d). □

4.7. Indices of singular continuums. Based on the definition of the rotation number
of the continuous vector field around the oriented closed curve given in Section 2, we now
introduce the definition of index for singular continuums of system (18) by considering
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(a) ã1 = 1, ã3 > 0, c̃2 = 0 (b) ã1 = 1, ã3 > 0, c̃2 > 0 (c) ã1 = 1, ã3 > 0, c̃2 < 0

(d) ã1 = 1, ã3 < 0, c̃2 = 0 (e) ã1 = 1, ã3 < 0, c̃2 > 0 (f) ã1 = 1, ã3 < 0, c̃2 < 0

(g) ã1 > 1, ã3 = 0, c̃2 = 0 (h) ã1 > 1, ã3 = 0, c̃2 > 0 (i) ã1 > 1, ã3 = 0, c̃2 < 0

(j) ã1 ∈ (0, 1), ã3 = 0, c̃2 = 0 (k) ã1 ∈ (0, 1), ã3 = 0, c̃2 > 0 (l) ã1 ∈ (0, 1), ã3 = 0, c̃2 < 0

Figure 19. Local phase portraits at the node-node continuum of system (27)

for b̃1 = 1 and b̃2 > 0.
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(a) b̃1 > 1, b̃2 = 0, ã1 > 1, ã3 =
0, c̃2 = 0

(b) b̃1 > 1, b̃2 = 0, ã1 > 1, ã3 =
0, c̃2 > 0

(c) b̃1 > 1, b̃2 = 0, ã1 ∈ (0, 1),
ã3 = 0, c̃2 = 0

(d) b̃1 > 1, b̃2 = 0, ã1 ∈ (0, 1),
ã3 = 0, c̃2 > 0

(e) b̃1 ∈ (0, 1), b̃2 = 0, ã1 ∈
(0, 1), ã3 = 0, c̃2 = 0

(f) b̃1 ∈ (0, 1), b̃2 = 0, ã1 ∈
(0, 1), ã3 = 0, c̃2 > 0

Figure 20. Local phase portraits at the node-node continuum of system (27)

for b̃1 ̸= 1 and b̃2 = 0.

the continuous system (18) and supposing that ω is an isolated singular continuum of
system (18). Let

S (ω,R) := {(x, y) ∈ D2 : inf(u,v)∈ω
√

(x− u)2 + (y − v)2 ≤ R}.
Then there exists a positive R such that in a sufficiently small neighborhood S (ω,R) of
singular continuum ω it does not contain any equilibrium other than ω. Thus for the
isolated equilibrium and any positive numbers 0 < r1 < r2 < R [20, p.147], the absence

of equilibrium in the annulus S(ω, r2)\S(ω, r1) implies that

γ (A1, ∂S(ω, r2)) = γ (A1, ∂ (S(ω, r2)\S(ω, r1))) + γ (A1, ∂S(ω, r1)) = γ (A1, ∂S(ω, r1)) ,

where(x, y) ∈ D2, A1(x, y) := (X1(x, y), Y1(x, y)) is the vector field of system (18), and
∂S(ω, r) denotes the boundary of S(ω, r). So for 0 < r < R, γ (A1, ∂S(ω, r)) is an integer
independent of r.

Definition 2. Suppose that ω is a singular continuum of system (18). Let r > 0 be
a small enough such that S(ω, r) contains ω but does not contain any other equilibrium
points of system (18). The rotation number γ (A1, ∂S(ω, r)) is called the index of the
singular continuum ω of system (18).

Now we are ready to classify indices of singular continuums.
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(a) b̃1 = 2
√

−b̃2, ã1 = 2
√

−ã3,

c̃1 = 0

(b) b̃1 = 2
√

−b̃2, ã1 = 2
√

−ã3,

c̃1 > 0

(c) b̃1 = 2
√

−b̃2, ã1 = 2
√

−ã3,

c̃1 < 0

(d) b̃1 = 2
√

−b̃2, ã1 > 2
√

−ã3,

c̃1 = 0

(e) b̃1 = 2
√

−b̃2, ã1 > 2
√

−ã3,

c̃1 > 0

(f) b̃1 = 2
√

−b̃2, ã1 > 2
√

−ã3,

c̃1 < 0

(g) b̃1 > 2
√

−b̃2, ã1 > 2
√

−ã3,

c̃1 = 0

(h) b̃1 > 2
√

−b̃2, ã1 > 2
√

−ã3,

c̃1 > 0

(i) b̃1 > 2
√

−b̃2, ã1 > 2
√

−ã3,

c̃1 < 0

Figure 21. Local phase portraits at the node-node continuum of system (28)
for ã1 ≥ 2

√
−ã3.

Theorem 18. The index of an isolated singular continuum ω of system (18) is shown in
Table 3.

Proof. Since ω is an isolated singular continuum, there is a constant r > 0 satisfying
Definition 2. Hence, the vector field A1(x, y) is nonsingular on ∂S(ω, r), i.e., for all
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(a) b̃1 = 2
√

−b̃2, ã1 = −2
√

−ã3,

c̃1 = 0

(b) b̃1 = 2
√

−b̃2, ã1 = −2
√

−ã3,

c̃1 > 0

(c) b̃1 = 2
√

−b̃2, ã1 = −2
√

−ã3,

c̃1 < 0

(d) b̃1 = 2
√

−b̃2, ã1 < −2
√

−ã3,

c̃1 = 0

(e) b̃1 = 2
√

−b̃2, ã1 < −2
√

−ã3,

c̃1 > 0

(f) b̃1 = 2
√

−b̃2, ã1 < −2
√

−ã3,

c̃1 < 0

(g) b̃1 > 2
√

−b̃2, ã1 < −2
√

−ã3,

c̃1 = 0

(h) b̃1 > 2
√

−b̃2, ã1 < −2
√

−ã3,

c̃1 > 0

(i) b̃1 > 2
√

−b̃2, ã1 < −2
√

−ã3,

c̃1 < 0

Figure 22. Local phase portraits at the node-node continuum of system (28)
for ã1 ≤ −2

√
−ã3.

(x′, y′) ∈ ∂S(ω, r), we haveX2(x′, y′)+Y 2(x′, y′) ̸= 0. Apparently, the vector field A1(x, y)
in the ∂S(ω, r) is also piecewise smooth. For vector A1(x, y) = (X1(x, y), Y1(x, y)) with
(x, y) ∈ SC ∩ ∂S(ω, r), we have arctan(Y/X) = arctan(a4/a2) for the case a2 > 0 and
arccot(X/Y ) = arctan(a2/a4) for the case a2 = 0, due to the assumption that a2 and a4
are not equal to zero simultaneously. Thus, when a point (x, y) moves along ∂S(ω, r) in the



BOUNDARY-EQUILIBRIA AND SINGULAR CONTINUUMS 29

(a) b̃1 = 2
√

−b̃2, c̃1 = 0 (b) b̃1 = 2
√

−b̃2, c̃1 > 0 (c) b̃1 = 2
√

−b̃2, c̃1 < 0

(d) b̃1 > 2
√

−b̃2, c̃1 = 0 (e) b̃1 > 2
√

−b̃2, c̃1 > 0 (f) b̃1 > 2
√

−b̃2, c̃1 < 0

Figure 23. Local phase portraits at the node-focus continuum of system (29).

Table 3. The index of singular continuum of system (18).

Type of the singular continuum Index

saddle-saddle continuum −1

saddle-node continuum
0

saddle-focus continuum

node-node continuum

1node-focus continuum

focus continuum

center continuum

counterclockwise direction, the direction variation of the vector A(x, y) occurs in the zone

SC ∩ ∂S(ω, r). This implies that the direction of vector A1(x, y) is only associated with
the system identified in zones SL and SR. Consequently, Table 3 follows from Theorem
10. □
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(a) b̃1/
√

−b̃2 + ã1/
√
−ã3 > 0,

c̃1 = 0
(b) b̃1/

√

−b̃2 + ã1/
√
−ã3 = 0,

c̃1 = 0
(c) b̃1/

√

−b̃2 + ã1/
√
−ã3 < 0,

c̃1 = 0

(d) c̃1 > 0

Figure 24. Local phase portraits at the generalized boundary-focus/center
point of system (30).

5. Concluding remarks

When a continuous linear system has only one switching line and the boundary equilib-
ria, we note that all corresponding phase portraits of the boundary equilibria are global.
When a continuous linear system has two parallel switching lines and a singular contin-
uum, all corresponding phase portraits of the singular continuums are global except the
generalized boundary-focus, because it can induce a limit cycle [3, 8]. Moreover, it is also
notable that the boundary-equilibria and singular continuums may appear in the system
with many parallel switching lines.

When a continuous linear system has only one boundary equilibrium or one singular
continuum, the necessary condition of the existence of limit cycle is that the index of the
boundary equilibrium or singular continuum is 1. According to Theorem 10, for boundary
equilibria, there includes boundary-node, boundary-focus, boundary-center, and node-
focus. Based on Theorem 18, for singular continuum, there includes node-node continuum,
node-focus continuum, focus continuum and center continuum. It is notable that the index
of a singular continuum which intersects one or more than one parallel switching lines are
the same as the one which does not intersect any switching lines given in Theorem 18.
However, it is difficult to show local phase portraits for such singular continuums at this
stage since these singular continuums are polyline segments.
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