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ABSTRACT

Stukopin, Andrey V., Solitary and periodic wave solutions for several short wave model equations.

Master of Science (MS), May, 2020, 36 pp., 15 figures, 9 references.

We study the periodic and solitary wave solutions to several short wave model equations

arising from a so-called β -family equation for β = 1,2,4. These are integrable cases which possess

Lax pair and multi-soliton solutions. By phase plane analysis, either the loop or cuspon type

solutions are predicted. Then, by introducing a hodograph, or reciprocal, transformation, a coupled

system is derived for each β . Applying a travelling wave setting, we are able to find the periodic

solutions exactly expressed in terms of Jacobi Elliptic functions. In the limiting cases of modulus

k=1, they all converge to the known solitary waves.
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CHAPTER I

INTRODUCTION

This work examines several short wave model equations. The main goal is to show that the

following, so-called β -family, equation,

uxt = u+βuuxx +u2
x (1.1)

where u = u(x, t) represents a scalar function of x and t, subscripts x and t denote partial differ-

entiation, has an interesting set of solutions with structures that vary depending on the nonlinear

coefficient β . From a physical standpoint, the β -family of equations appears in the description of

the short-wave behavior of nonlinear systems [3]. It is known that when β is equal to 1,2, or 4,

Eq.(1.1) is integrable, and, therefore is of great interest. Specifically, what we intend to do is to

show that Eq.(1.1) admits the so-called loop type periodic and solitary solution when β = 1, and

cuspon type periodic and solitary solutions when β = 2,4.

Back in 1978, Ostrovsky derived an equation for weakly nonlinear surface waves in a

rotating ocean:
∂

∂x

(
∂u
∂ t

+ c0
∂u
∂x

+αu
∂u
∂x

+β
∂ 3u
∂x3

)
= γu

where c0 is the velocity of dispersionless linear waves, α is the nonlinear coefficient, β and γ are

the dispersion coefficients (for Coriolis and Bousinnesq dispersion, respectively.) This equation

combines effects of small nonlinearity with weak dispersion. When γ = 0, we get the well-known

KdV equation and when β = 0, we get the following equation:

∂

∂X

(
∂u
∂ t

+ c0
∂u
∂X

+αu
∂u
∂X

)
= γu

1



Letting x = X−Vt, v = −αu
γ

, we get the following:

γ

α
V vxx−

c0γ

α
vxx +

γ2

α
v2

x +
γ

α
vvxx =

−γ2

α
v

Divide by γ2

α
:

V
γ

vxx−
c0

γ
vxx + v2

x + vvxx =−v

Letting W = c0−V
γ

, we get

(v−W )vxx + v2
x + v = 0 (1.2)

In 2005, Stepanyants provided stationary and travelling wave solutions to the above equation [7].

Shortly, Matsuno considered the following equation [5]:

αux−uxxt = βuxuxx +uuxxx (1.3)

He demonstrated that it stems from the short-wave limit of the following PDE:

ut +αux−uxxt +(β +1)uux = βuxuxx +uuxxx (1.4)

In fact, when β = 2, Eq.(1.4) becomes the Camassa-Holm (CH) equation, and when β = 3, it

reduces to the Degasperis-Procesi (DP) equation. We notice that Eq.(1.1), upon differentiating w.r.t.

x, becomes

uxxt = ux +(β +2)uxuxx +βuuxxx

which in turn can be transformed into Eq.(1.3) by the following series of transformations: u=−αβu,

∂t = β∂t and ∂x =
1

αβ
∂x. We get

1
αβ

uxxt =
1
β

ux−
β +2

β

1
αβ

uxuxx−
1

αβ
uuxxt =⇒

=⇒ uxxt = αux−
β +2

β
uxuxx−uuxxt

2



Letting β+2
β
→ β , yields Eq.(1.3). Therefore, Eq.(1.1) is closely related to the CH and DP equations

in the sense that, for β = 2 and β = 1, it is the short-wave limit of the CH and DP equations,

respectively. In 2017, Andrew N.W. Hone, Vladimir Novikov and Jing Ping Wang classified the

integrable nonlinear partial differential equations of second order with quadratic and cubic nonlinear

terms of the following general form:

uxt = u+ c0u2 + c1uux + c2uuxx+ c3u2
x +d0u3 +d1u2ux +d2u2uxx+d3uu2

x (1.5)

namely, from the viewpoint of integrability. Their main result was proving the following theorem:

If Eq.(1.5) possesses an infinite hierarchy of local symmetries, then up to rescaling u→ λu, x→ µx,

t→ νt, it is one of the following list:

uxt = u+(u2)xx (1.6)

uxt = u+(u3)xx (1.7)

uxt = u+4uuxx +u2
x (1.8)

uxt = u+(u2−4u2ux)x (1.9)

uxt = u+2uuxx +u2
x (1.10)

uxt = u+u2uxx +uu2
x (1.11)

uxt = u+α(2uuxx +u2
x)+β (u2uxx +uu2

x), αβ 6= 0 (1.12)

It is clear that equation (1.6) can be converted into the β = 1 case of Eq.(1.1) via u→ 2u rescaling.

Equations (1.10) and (1.8) correspond to β = 2 and β = 4 cases, respectively and were derived in

the process of studying the short-wave dynamics of surface gravity waves in [4]. Fairly recently,

Matsuno published a paper [6], where he analyzed the latter equation. Solutions to the former two

equations can be found in Matsuno’s earlier paper that was published in 2006 [5]. In this work,

we intend to obtain the periodic solutions for β = 1,2 and β = 4. In the limiting case with period

going to infinity, these solutions converge to the solutions derived by Matsuno.

3



CHAPTER II

SOLITARY WAVE SOLUTIONS

In this chapter, we are primarily concerned with finding solitary wave solutions to the β -

family of equations. In order to do that, we will assume that the equation admits so-called traveling

wave solutions. In many cases, this method allows for reduction of the problem to finding solutions

of an ordinary differential equation of order one less than the order of the original partial differential

equation [2]. Even though this entails a loss in terms of the number of possible solutions to the

original partial differential equation, it provides a very good idea about the structure of the solutions

to the equation in question. It is often impossible to directly take the integral of the dependent

function and find periodic solutions. In this case, one may look for some sort of boundary conditions

which would reduce the complexity of the problem and allow for finding solitary wave solutions.

2.1 Propagating Wave Solutions

We focus on propagating wave solutions to Eq.(1.1):

uxt = u+βuuxx +u2
x

depending on one variable u = u(η) where η = x− ct (which is position and time dependent, c

represents the speed of the wave.) We have that ut =−cuη , ux = uη . Then Eq.(1.1) becomes

(βu+ c)uηη +u2
η +u = 0 (2.1)

4



2.1.1 Case 1: βu+ c > 0

Assume βu+c > 0 and consider Eq.(2.1). We note that (βu+c)uηη +u2
η can be viewed as

[(βu+ c)αuη ]η = βα(βu+ c)α−1u2
η +(βu+ c)αuηη = (βu+ c)α−1[(βu+ c)uηη +βαu2

η ]

So, it is clear that we need to have α = 1
β

. Multiplying Eq.(2.1) by (βu+ c)
1
β
−1 and using the

above equality, we get

[(βu+ c)
1
β uη ]η +u(βu+ c)

1
β
−1

= 0

Now, we multiply the above equation by (βu+ c)
1
β uη and get

((βu+ c)
1
β uη)η ∗ (βu+ c)

1
β uη +uuη ∗ (βu+ c)

2
β
−1

= 0

Integrating w.r.t. η , we get

u2
η +

2u− c
2+β

+
2D

(βu+ c)
2
β

= 0 (2.2)

where D is a constant of integration.

2.1.2 Case 2: βu+ c < 0

Assume that βu+ c < 0. We multiply Eq.(2.1) by −1

(−βu− c)uηη −u2
η −u = 0 (2.3)

We rewrite (−βu− c)uηη −u2
η as

[(−βu−c)αuη ]η =−βα(−βu−c)α−1u2
η +(−βu−c)αuηη =(−βu−c)α−1[(−βu−c)uηη−βαu2

η ]

So, it is clear that we need to have α = 1
β

. Multiplying Eq.(2.3) by (−βu− c)
1
β
−1 and using the

above equality, we get

[(−βu− c)
1
β uη ]η −u(−βu− c)

1
β
−1

= 0

5



Now, we multiply the above equation by (−βu− c)
1
β uη and get

((−βu− c)
1
β uη)η ∗ (−βu− c)

1
β uη −uuη ∗ (−βu− c)

2
β
−1

= 0

Integrating w.r.t. η , we get

u2
η +

2u− c
2+β

+
2D′

(−βu− c)
2
β

= 0 (2.4)

where D′ is a constant of integration (not necessarily the same as D.)

2.2 Solitary Wave Solution for β = 1

Letting β = 1 and D = D′, equations (2.2) and (2.4) become the same:

u2
η +

2u− c
3

+
2D

(u+ c)2 = 0

By fixing c =−1, the phase plane plot is given in Fig. 2.1 for different values of D =−1/6,−1/10.

The blue line corresponds to a solitary wave solution while the red line predicts a periodic solution.

We will give more explanations as follows. We consider the case, when the period of the propagating

wave becomes very large, which allows us to view it as a solitary wave. In other words, we take

the following boundary conditions: as η →±∞, we have that u,uη → 0. Then, from the above

equation, we get:

−c
3

+
2D
c2 = 0 ,

which gives D = c3

6 . Then, the above equation becomes:

u2
η +

2u− c
3

+
c3

3(u+ c)2 = 0 (2.5)

6



Figure 2.1: The profile of uη for β = 1, c =−1. The blue line represents a solitary wave solution.

The red line represents a periodic wave solution.

Now, we notice that (2.5) is separable. We let u = cv, then equation (2.5) becomes:

cv2
η +

2v−1
3

+
1

3(v+1)2 = 0 (2.6)

After performing the necessary algebraic operations, we arrive at∫
dv√

−2v+1
3 − 1

3(v+1)2

=± 1√
c
(η +η0)

Integrating and letting η0 = 0, yields

v
(√

3(2v+3)−2
√

2v+3 · tanh−1
(√

2v
3 +1

))
(v+1)

√
−v2(2v+3)
(v+1)2

=± η√
c

7



Now, assuming v 6=−1 and simplifying, we have that

√
−c(6v+9)−

√
−4c · tanh−1

(√
2v
3
+1

)
=±η (2.7)

Substituting v = u/c back into (2.7), yields an implicit solution for u in terms of η . Fig. 2.2 shows

how the implicit solution looks like, which is a loop type solitary wave solution.

Figure 2.2: The profile of u for β = 1, c =−1.

2.3 Solitary Wave Solution for β = 2

We proceed to the case β = 2. It is obvious that the equations (2.2) and (2.4) to be consistent

by putting D′ =−D. Then the two cases become one and we have:

u2
η +

2u− c
4

+
2D

(2u+ c)
= 0 (2.8)

Fixing the value of c = −1, the phase plane plot is shown in Fig. 2.3 for different values of

D = 1/8,1/10. Same as the case of β = 1, the blue line predicts the solitary wave while the red line

predicts the periodic wave. Both of them have singularity at u = 0.5 (cuspon). The solitary wave

8



will be confirmed below.

We use equation (2.8) to plot uη as a function of u implicitly:

Figure 2.3: The profile of uη for β = 2, c =−1. The blue line represents a solitary wave solution.

The red line represents a periodic wave solution.

In view of the boundary conditions u,uη → 0 as η →±∞ for a solitary wave solution, we

must have

−c
4

+
2D
c

= 0

which gives D = c2

8 , then equation (2.8) becomes:

u2
η +

2u− c
4

+
c2

4(2u+ c)
= 0 (2.9)

Again, we notice that (2.9) is separable and let u = cv. After performing the necessary algebraic

9



operations, we arrive at ∫
dv√

(−2u+1
4 )− 1

4(2v+1)

=± 1√
|c|

(η +η0)

Integrating and letting η0 = 0, yields

2
√
−v2

2v+1

(
−2v+

√
2v+1 · tanh−1 (√2v+1

)
−1
)

v
=± η√

c

Now, we assume that v 6=−1/2 and simplify the above equation to get:

−
√

4c(2v+1)+
√
−4c · tanh−1

(√
2v+1

)
=±η (2.10)

We substitute v = u/c back into equation (2.10) and plot η versus u:

Figure 2.4: The profile of u for β = 2, c =−2.

We see that the solution, u, has a cusp-shaped form at η = 0. Since u→ 0 as η →±∞, it is

10



a one-soliton solution.

2.4 Solitary Wave Solution for β = 4

For β = 4, equation (1.1) admits periodic and solitary wave solutions when βu+ c < 0. To

this end, we substitute β = 4 into equation (2.4):

u2
η +

2u− c
6

+
2D′

(−4u− c)
1
2
= 0 (2.11)

From Fig.2.5, one can see that by fixing c = −1, a solitary wave solution is anticipated for

D′ = −1/12 and a periodic one for D′ = −1/18. Both of the solutions are cuspon type with

singularity at u = 0.25. Then, for a solitary wave, we have

−c
6

+
2D′

(−c)1/2 = 0

which implies D′ = c(−c)1/2

12 . When plugged into (2.11), it gives us the following equation:

u2
η +

2u− c
6

+
c(−c)1/2

6(−4u− c)1/2 = 0 (2.12)

Plotting uη as a function of u implicitly, we have

11



Figure 2.5: The profile of uη for β = 4, c =−1. The blue line represents a solitary wave solution.

The red line represents a periodic wave solution.

Now, equation (2.12) is separable. Let u = cv, then we have:∫
dv√

−2v+1
6c − 1

6c
√

4v+1

=±(η +η0)

After quite a hairy integration, letting η0 = 0, we get

±η =

[√
6
√

4v+1−1

√
8v2−2v+

√
4v+1−1

4v+1
· ln
(
(
√

4v+1−1)2
)
+12
√

4v+1v−6
√

v+1+6−

−
√

6(
√

4v+1−1)

√
8v2−2v+

√
4v+1−1

4v+1
· ln

(
−8v+

√
4v+1−

√
24v+6

√
2v+

1√
4v+1

−1−1

)]/
/[√

6(
√

4v+1−1)

√
−(2v+1)+ 1√

4v+1
−1

c

]

We substitute v = u/c back into the above equation and plot η versus u:

12



Figure 2.6: The profile of u for β = 4, c =−4.

We see that u→ 0 as η →±∞. So we have a one-soliton cuspon solution.

13



CHAPTER III

PERIODIC WAVE SOLUTIONS

In this chapter, we are after a more difficult task - finding periodic solutions to the β -family

of equations. In order to do so, we will need to calibrate our equation via several transformations

in order to be able to "intelligently guess" the form in which the solutions may appear. This task

seems rather abstract, but once the equation takes its final shape, more information could be derived

from it, and then the matter of guessing the right form of the solutions will be entirely replaced by

the matter of choosing the right form.

3.1 Hodograph Transformation

Recall that equation (1.1) is given by:

uxt = u+βuuxx +u2
x

Multiplying (1.1) by −1 and making use of the following transformation: u→−u, we have

uxt = u−βuuxx−u2
x (3.1)

Let us establish an equivalence between (3.1) and the following system, which was first introduced

in [1]:

{ mt +mxu+bmux = 0 (3.2)

m = 1−uxx (3.3)
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Substituting (3.3) into (3.2), we get

−uxxt +(−uxxxu)+b(1−uxx)ux = 0 =⇒

=⇒ uxxt = bux−uxxxu−buxxux (3.4)

Let b = β+2
β

; ∂t =
1
β

∂t ; ∂x = (β +2)∂x; u = (β +2)−1u.

Then, (3.4) becomes

(β +2)2

β

1
β +2

uxxt =
β +2

β
ux−

(β +2)3

(β +2)2 uuxxx−
β +2

β

(β +2)3

(β +2)2 uxxux =⇒

=⇒ β +2
β

uxxt =
β +2

β
ux− (β +2)uuxxx−

(β +2)2

β
uxxux =⇒ uxxt = ux−βuuxxx− (β +2)uxxux

Integrating w.r.t. x, we get

uxt = u−βuuxx−u2
x

Thus, equation (3.1) is equivalent to the system of equations (3.2) and (3.3). Now, consider Eq.(3.2):

mt +mxu+bmux = 0

Multiply equation (3.2) by 1
bm

1
b−1. We get:

1
b

m
1
b−1mt +

1
b

m
1
b−1mxu+m

1
b ux = 0

or

(m
1
b )t +(m

1
b u)x = 0 (3.5)
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Let m
1
b = p. This implies m = pb. Substituting the former into (3.5), we have:

pt +(pu)x = 0 (3.6)

Above equation implies a conservative law, so we can introduce a hodograph transformation

dy = pdx− pudt, ds = dt (3.7)

Such that ∂x = p∂y; ∂t = ∂s−up∂y. Substitute into (3.6)

ps−uppy + p(pyu+uy p) = 0 =⇒ ps−uppy +uppy +uy p2 = 0

=⇒ ps +uy p2 = 0 =⇒ ps

p2 =−uy

=⇒
(

1
p

)
s
= uy

Also, substituting m = pb into (3.3) and using the above mentioned transformation: ∂x = p∂y, we

get

pb = 1−uxx = 1− p(puy)y

Thus, we have the following system:


(

1
p

)
s
= uy (3.8)

pb = 1− p(puy)y (3.9)

We note that the inverse mapping (y,s)→ (x, t) is given by the following conditions:

∂x
∂y

=
1
p

(3.10)

∂x
∂ s

= u (3.11)
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3.2 Elliptic Functions

In order to proceed with finding periodic solutions to the β -family of equations, we need to

give a couple of definitions and several basic identities. The trigonometric form of the incomplete

elliptic integral of the first kind is given by

F(φ ,k) =

∫
φ

0

dθ√
1− k2 sin2

θ

Now, letting t = sinθ and z = sinφ gives the Legendre normal form:

F(z;k) =

∫ z

0

dt√
(1− t2)(1− k2t2)

Then, the Jacobi elliptic sine and cosine along with the delta amplitude are given as follows:

sn(u) = sinφ = z (3.12)

cn(u) = cosφ =
√

1− sn2(u) (3.13)

dn(u) =
√

1− k2sn2(u) (3.14)

Some basic identities:

sn2(u)+ cn2(u) = 1 (3.15)

dn2(u)+ k2sn2(u) = 1 (3.16)

The derivatives of the Jacobi elliptic functions are given as follows:

(sn(u))′ = cn(u)dn(u) (3.17)

(cn(u))′ =−sn(u)dn(u) (3.18)

(dn(u))′ =−k2sn(u)cn(u) (3.19)
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Now, the Weierstrass elliptic functions have a second-order pole at u = 0 and, therefore, in order to

be completely specified, need either their half-periods: ω1, ω2 or so-called elliptic invariants: g2,g3.

As far as this research is concerned, we need to define the Weierstrass elliptic functions only via

their Jacobi counterparts:

℘(u;g2,g3) = e3 +(e1− e3)sn−2
(

u
√

e1− e3,

√
e2− e3

e1− e3

)
(3.20)

where e1, e2 and e3 are the roots of p(µ) = 4µ3−g2µ−g3.

3.3 Periodic Wave Solution for β = 1

When β = 1, we have that b = β+2
β

= 3. Substitute b = 3 into equation (3.9). Then, we get

the following system:


(

1
p

)
s
= uy (3.21)

p3 = 1− p(puy)y (3.22)

Now, we let w = p−1 and assume that w(y,s) = w(η) as well as u(y,s) = u(η), where η = y− cs.

(3.21) yields that

−cwη = uη

Substituting the above into (3.22), we get that

w−3 = 1−w−1(w−1uη)η =⇒ 1
w3 = 1+

c
w

(wη

w

)
η

=⇒

=⇒
wη

w3 = wη + c
wη

w

(wη

w

)
η

=⇒ −1
2

w−2 +E = w+
c
2

(wη

w

)2
=⇒

=⇒ w2
η =
−1
c
(2w3−2Ew2 +1) =

−2
c
(w3−Ew2 +

1
2
)
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So, we have a cubic expression in the dependent variable, w, on the right-hand side which can be

factored out in the following way:

w2
η =
−2
c
(w−α)(w−β )(w− γ) (3.23)

Collecting and comparing the coefficients of w0 and w1, yields:

w0 :
−1
2

= αβγ (3.24)

w1 : 0 = αγ +βγ +βα (3.25)

We consider the case c < 0.

Figure 3.1: The presumptive profile of the zeros of (wη)
2 for b = 3, c < 0.

In the figure above, we assumed, without loss of generality, that α < 0 < β < γ . We see

that in order for (wη)
2 to be non-negative, we must have α ≤ w≤ β . So, we let

w = α +(β −α)sin2(t) (3.26)
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A very similar idea was used by Toda in his book [8] for the KdV equation. Now, equation (3.26)

can be used to derive the following several equations:

dw = 2(β −α)sin(t)cos(t)dt (3.27)

w−α = (β −α)sin2(t) (3.28)

w−β =−(β −α)cos2(t) (3.29)

w− γ =−(γ−α)(1− k2 sin2(t)) (3.30)

Where k2 = β−α

γ−α
. We substitute (3.28), (3.29) and (3.30) into (3.23) and get that:

(
dw
dη

)2

=
−2
c
(γ−α)(β −α)2 sin2(t)cos2(t)(1− k2 sin2(t))

=⇒ dw
dη

=±
√
−2
c
(γ−α)(1− k2 sin2(t)) · (β −α)sin(t)cos(t)

=⇒ ±(η +η0) =

∫
dw√

−2
c (γ−α)(1− k2 sin2(t)) · (β −α)sin(t)cos(t)

=

=

∫
2(β −α)sin(t)cos(t)dt√

−2
c (γ−α)(1− k2 sin2(t)) · (β −α)sin(t)cos(t)

=

=

√
−2c

γ−α

∫ t
dt√

(1− k2 sin2(t))
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We let z = sin(t) and η0 = 0, then we have that:

±η =

√
−2c

γ−α

∫ z
dz√

(1− z2)(1− k2z2)
=

=

√
−2c

γ−α
sn−1(z) =⇒ z = sin(t) = sn

(
±η

√
γ−α

−2c

)

=⇒ w = α +(β −α)sin2(t) = α +(β −α)sn2
(

η

√
γ−α

−2c

)

Since w = α +(β −α)sn2
(

η

√
γ−α

−2c

)
, then w varies between α < 0 and β > 0, so we always have

the periodic loop-shaped waves. In the limiting case k→ 1, we have β = γ , then we solve for

β = γ = 1 and α =−1/2, so

w = 1− 3
2

sech2

(
η

√
3
−4c

)
(3.31)

We use the fact that that −cwη = uη , which implies that:

u = A+
3c
2

sech2

(
η

√
3
−4c

)
(3.32)

for some constant A. Also, recall that w = 1/p = ∂x/∂y. Then, setting s = 0 and c =−1, we get

the following:

x =

∫
1− 3

2
sech2

(
y

√
3

2

)
dy = y−

√
3tanh

(
y

√
3

2

)
(3.33)

Now, equations (3.32) and (3.33) give us a parametric solution for u in terms of x:
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Figure 3.2: The profile of u for b = 3, c =−1, α =−0.5, β = γ , k = 1, A =−1 at s = 0.

Which is consistent with our result from Chapter 2. Now, let us obtain the periodic solution.

Using the fact ∂x/∂y = w, we have :

x = αy+(β −α)

∫ y

sn2
(

η

√
γ−α

−2c

)
dy+K(s)

We recall: −cwη = uη which implies that:

u = A− cα− c(β −α)sn2
(

η

√
γ−α

−2c

)
(3.34)
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for some constant A. Now, we solve for K(s) by using the fact ∂x/∂ s = u:

∂x
∂ s

= u =⇒ ∂

∂ s

(
αy+(β −α)

∫ y

sn2
(

η

√
γ−α

−2c

)
dy+K(s)

)
= A− cα− c(β −α)sn2

(
η

√
γ−α

−2c

)

=⇒ ∂

∂y

(
−c(β −α)

∫ y

sn2
(

η

√
γ−α

−2c

)
dy

)
+K′(s) = A− cα− c(β −α)sn2

(
η

√
γ−α

−2c

)

=⇒ −c(β −α)sn2
(

η

√
γ−α

−2c

)
+K′(s) = A− cα− c(β −α)sn2

(
η

√
γ−α

−2c

)

=⇒ K′(s) = A− cα =⇒ K(s) = (A− cα)s+d

So, we have that:

x = αy+
β −α

k2 y− β −α

k2

√
−2c

γ−α
E
(

η

√
γ−α

−2c

)
+(A− cα)s+d (3.35)

where E(u) =
∫ u

0 dn2(v)dv. Conditions (3.24) and (3.25) imply:

− 1
2
≤ α, α 6= 0

β =
±(
√

8a3 +1)+1
4a2

γ =
∓(
√

8a3 +1)+1
4a2

In light of the above equations, (3.34) and (3.35), setting d = 0, we plot x vs.−u (due to the

transformation we made at the beginning: u→−u) at s = 0 (note that y becomes η):
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Figure 3.3: The profile of the periodic loop solution for b = 3, c =−1, k→ 1 (k 6= 1).

The closer α is to−0.5 and, therefore, k is to 1, the larger the period of the wave is. However,

it is clear that as long as k 6= 1, we will have a periodic solution.

3.4 Periodic Wave Solution for β = 2

When β = 2, we have that b = β+2
β

= 2. Substitute b = 2 into equation (3.9), we get the

following system:


(

1
p

)
s
= uy (3.36)

p2 = 1− p(puy)y (3.37)
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We let w = p−1 and assume that w(y,s) = w(η) as well as u(y,s) = u(η), where η = y− cs. As

before, we have that: −cwη = uη . Substituting this into (3.37), we get

w−2 = 1−w−1(w−1uη)η =⇒ 1
w2 = 1+

c
w

(wη

w

)
η

=⇒

=⇒
wη

w2 = wη + c
wη

w

(wη

w

)
η

=⇒ −1
w

+D = w+
c
2

(wη

w

)2
=⇒

=⇒ w2
η =
−2
c
(w3−Dw2 +w) =

−2
c

w(w2−Dw+1)

Factoring w2−Dw+1, we have that

w2
η =
−2
c

w(w−α1)(w−α2) (3.38)

such that α1α2 = 1 and α1 +α2 = D. This means that either c < 0 and α1,α2 < 0, or c > 0 and

α1,α2 > 0. We consider the case c < 0.

Figure 3.4: The presumptive profile of the zeros of (wη)
2 for b = 2, c < 0.
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We assume 0 < α1 < α2 and let

w = α1 sin2(t) (3.39)

Then, we have that

dw = 2α1 sin(t)cos(t)dt (3.40)

w−α1 =−α1 cos2(t) (3.41)

w−α2 =−α2(1− k2 sin2(t)) (3.42)

where k2 = α1
α2

. Following the footsteps of the case b = 3, we substitute (3.39), (3.41) and (3.42)

into (3.38) and get that:

w = α1sn2
(

η

√
α2

−2c

)
= α1−α1cn2

(
η

√
α2

−2c

)
(3.43)

Since w varies between 0 and α1, we have a cuspon solution. Consider the limiting case of k = 1.

In this case, we get α1 = α2 = 1. Then we have

w = 1− sech2
(

η√
−2c

)
(3.44)

We use the fact that that −cwη = uη which implies that:

u = c · sech2
(

η√
−2c

)
(3.45)

Note that the integration constant was set to 0 as we are considering the limiting case. Also, recall

that w = 1/p = ∂x/∂y. Then, setting s = 0 and c =−1 and integrating with respect to y, we have:

x = y−
√

2tanh
(

y√
2

)
(3.46)
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Equations (3.45) and (3.46) give us a parametric solution for u in terms of x:

Figure 3.5: The profile of u for b = 2, c =−1, α1 = α2 = 1, k = 1 at s = 0.

The result is consistent with the one form Chapter 2. Now, we construct a periodic solution

explicitly using the fact w = 1/p = ∂x/∂y. We have :

x = α1

∫ y

sn2
(

η

√
α2

−2c

)
dy+K(s)

We solve for K(s) by using the fact ∂x/∂ s = u:

K(s) = As+d

We recall that −cwη = uη which implies that

u = A− cα1sn2
(

η

√
α2

−2c

)
(3.47)
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Similarly to the case c < 0 for b = 3, we have that:

x =
α1

k2 y− α1

k2

√
−2c
α2

E
(

η

√
α2

−2c

)
+As+d (3.48)

Keeping the conditions α1α2 = 1, α1 < α2 as well as k =
√

α1/α2 in mind and setting d = 0, we

plot x vs.−u at s = 0:

Figure 3.6: The profile of the periodic loop solution for b = 2, c =−1, k→ 1 (k 6= 1).

3.5 Periodic Wave Solution for β = 4

When β = 4, we have that b = β+2
β

= 4+2
4 = 3

2 . Substitute b = 3
2 into equation (3.9), we get

the following system:


(

1
p

)
s
= uy (3.49)

p
3
2 = 1− p(puy)y (3.50)
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Let p−1/2 = w, then p = w−2, uη =−2cwwη , substituting the first equation, we have

w−3 = 1+2cw−2(w−1wη)η (3.51)

Multiplying both sides by wwη and integrating, we have

−w−1 +D =
1
2

w2 + c(w−1wη)
2 (3.52)

or

2c(wη)
2 =−(w4−2Dw2 +2w) =−(w−α)w(w−β )(w− γ) (3.53)

where D is an integration constant. We consider the case c < 0 and assume α < 0 < β < γ with the

relations α +β + γ = 0 and αβγ =−2.

Figure 3.7: The presumptive profile of the zeros of (wη)
2 for b = 3

2 , c < 0.
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Let z = η/
√
−2c, then we have

z =

∫ w

w0

dw√
w4−2Dw2 +2w

(3.54)

Let f (w) = w4−2Dw2 +2w. It was shown in [9] that if we choose w0 = 0, so that f ′(w0) = 2 and

f ′′(w0) =−4D, then we have that the above integral admits the solution

w = w0 +
1
4

f ′(w0) ·
(

℘(z;g2,g3)−
1
24

f ′′(w0)

)−1

=⇒ (3.55)

w =
1
2

(
℘(z;g2,g3)+

D
6

)−1

(3.56)

where g2 =
1
3D2, g3 =

1
27D3− 1

4 and

℘(z;g2,g3) = e3 +(e1− e3)ns2(
√
(e1− e3)z,k) (3.57)

is the Weierstrass elliptic function with e1 > e2 > e3 being three roots of the cubic polynomial

defined by:

p(µ) = 4µ
3−g2µ−g3 = 4µ

3− 1
3

D2
µ− 1

27
D3 +

1
4
= 4(µ− e1)(µ− e2)(µ− e3) (3.58)

Thus, we see that the following conditions must hold:

e1e2e3 =
1

108
D3− 1

16
(3.59)

e1e2 + e1e3 + e2e3 =−
1
12

D2 (3.60)

e1 + e2 + e3 = 0 (3.61)

Then, equation (3.56) becomes

w =
1

(2e3 +D/3)+2(e1− e3)ns2(
√

(e1− e3)z,k)
(3.62)
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In the limiting case of k = 1, we can solve for D = 3/2, e1 = e2 = 1/4, e3 =−1/2, so

w =
1− sech(

√
3z)

1+2sech(
√

3z)
=

cosh(
√

3/(−2c)η)−1

cosh(
√

3/(−2c)η)+2
(3.63)

Here we have used the formula

ns2(z,k) = (sn2(z,k))−1 =
1+dn(2z,k))
1− cn(2z,k))

→ 1+ sech(2z)
1− sech(2z)

(3.64)

We let
√

3/(−2c) = κ , then
√

3/(−2c)η = ξ = κy+ 3
2κ−1s. Consider the boundary conditions:

u→ 0, p−1 = w2→ 1 as y→ ∞. Then, we have:

u = c(1−w2) =− 9
2κ2

2coshξ +1
(coshξ +2)2 (3.65)

Also, we use dx/dy = w2 to solve for x. Setting s = 0 and c =−1, we get:

x =

∫ (
cosh(

√
3/(2)y)−1

cosh(
√

3/(2)y)+2

)2

dy =
2y−
√

6sinh
√

3
2y+ ycosh

√
3
2y

cosh
√

3
2y+2

(3.66)

The above results are consistent with those obtained by Matsuno in [6]. We use equations (3.65)

and (3.66) to plot u expressed in terms of x:
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Figure 3.8: The profile of u for b = 3
2 , c =−1, e3 =−0.5, e1 = e2 = 0.25, D = 1.5, k = 1, A =−1

at s = 0.

The above profile is consistent with our result from Chapter 2. One can use equation (3.62)

to get a numerical solution for x by solving the following first order ODE:

dx
dy

=

(
1

(2e3 +D/3)+2(e1− e3)ns2(
√

(e1− e3)z,k)

)2

(3.67)

Recall that uη =−2cwwη =⇒ u = A−cw2 where A is a constant of integration w.r.t. η . Therefore,

u = A− c

(
1

(2e3 +D/3)+2(e1− e3)ns2(
√

(e1− e3)z,k)

)2

(3.68)

Above two relations constitute the following parametric solution (at s = 0):
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Figure 3.9: The profile of u for b = 3
2 , c =−1, A =−1, e2→ e1, k→ 1 (k 6= 1).

We see that the solution takes the form of a cusped periodic wave when k < 1. The closer k

is to 1, the larger the period of the wave is. This is consistent with the fact that we get a cusp soliton

profile for u when k = 1.
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CHAPTER IV

CONCLUDING REMARKS

As we were primarily interested in the structure of the solutions to the β -family of equations,

we showed in Chapter 2 that the one-soliton solutions take the forms of loop and cusp solitons. In

Chapter 3, we showed that the loop and cusp shaped solutions are preserved for the periodic wave

solutions. As for the methods, we first used the traveling wave method along with direct integration

of the resulting "to-be-determined" function under solitary wave boundary conditions to determine

the structure of the solitary wave solutions to the β -family of equations. After that, to confirm

our results for the case of periodic waves, we applied a hodograph transformation to the β -family

equation in order to convert it into a form that could be integrated. We managed to find the right

form and express the solutions as Jacobi elliptic functions. Overall, we have presented parametric

solutions to the β -family of equations by means of a traveling-wave method combined with the

hodograph transformation and have shown that the β -family of equations has loop solitary as well

as periodic wave solutions when β = 1 and cuspon solutions when β = 2,4.
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