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ABSTRACT 
 
 

Rodriguez Vargas, Oscar Obed, Limits of Variationality in Full Configuration Interaction for the 

H2 Model System. Master of Science (MS), May, 2021, 37 pp., 1 table, 11 figures, references, 14 

titles.  

We proposed a framework for exploring the limits of variationality in full configuration 

interaction (FCI) calculation of molecular electronic structure. We performed FCI calculations 

on the minimal basis (STO-3G) H2  model for the energy, gradient, and derivative coupling. 

These calculations were validated by finite difference. These quantities were recalculated with 

controlled injection of error in the FCI coefficient. The gradient was observed to be highly 

sensitive to error, while the energy and derivative coupling were robust to errors in the 

coefficients of nearly 10%. This study lays the groundwork for calculation of other derived 

quantities, such as the Hessian, adiabatic correction, and spin-orbit couplings. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

I.1 Schrödinger equation 

The Schrödinger equation is the commanding equation of chemistry and an essential 

ingredient for many-electron systems in quantum field theory [1]. In its time-dependent form it 

states that 

!"($, &) = )ℏ !

!"
"($, &)                                                     (1.0) 

The Hamiltonian operator H includes the information of the motion of the system. Since 

the Hamiltonian is not a function of time, we can separate the wavefunction into a spatial and 

time-related part: 

"($, &) 	= "(&)	,($)		                                                      (1.1) 

Where the time dependent factor ,($) does not change. Meaning we can always solve this 

for time-independent problems with the spatial part and the )ℏ !

!"
 term can always be replaced by 

the eigenvalue E. Resulting in a eigenvalue equation for the Hamiltonian: the time-independent 

Schrödinger equation. 

!" = -"		                                                               (1.2) 
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This can be calculated for any number of particles in a time-independent potential. 

Solving this equation is paramount for this investigation. Generally, the Hamiltonian can be 

calculated with the following formula (in atomic units): 

! =	−∑ #

$
∇%$	

% +∑ #

'!"
	
'() − ∑ #

$*#
∇+$	

+ −∑ ,#
'!#

	
%,+ + ∑ ,#,$

.#$
	
+(/ 		                  (1.3) 

If we want to obtain a specific depiction of any chemical system, we must specify a state 

|"0⟩, build a Hamiltonian that describes the system in question and then solve Equation 1.0. 

However, if we increase the number of nuclei and electrons that we must account for the 

complexity of the solution increases significantly to the point of intractability. 

 

I.2 Born-Oppenheimer approximation 

A central and pertinent topic in quantum chemistry is the approximation from M. Born and 

R. Oppenheimer [2]. The Hamiltonian contains all potential and kinetic energies of the system, 

but if the distance between nuclei-nuclei or nuclei-electron changes with the natural momentum 

of the nucleus, so does its relative projected energies. Hence a desirable approximation to 

achieve simplicity is to consider the electrons of a molecule to be moving around fixed points or 

nuclei.  With this approach, the third term in the Hamiltonian in Equation 1.3 involving the 

kinetic energy of the nucleus (∇+$) could and will be ignored. Also, the internuclear repulsion 

term in Equation 1.3 will remain a constant. If we ignore these two terms and collect the 

remaining three, the Hamiltonian represents purely electronic quantities that depend 

parametrically on the nuclear positions. You can compute the entire potential energy surface by 

computing the electronic energy for different nuclear geometries.
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!electronic4electronic = -electronic4electronic                                 (1.4) 

The focus of this study revolves around the electronic problem, and we will use electronic 

Hamiltonians and wavefunctions while only adding the nuclear-nuclear repulsion term to achieve 

the total energy of the system in question.  

 
I.3 Variational method 

 

Here we discuss a method for approximating solutions to eigenvalue equations. This 

mathematical procedure can be used to calculate the energy levels of different quantum systems. 

More importantly, this can also allow the user to obtain the accuracy of the method by 

comparing the obtained approximations to known values. This method is most useful in systems 

with more than one electron as the Schrödinger equation cannot be solved exactly in such 

scenarios, and this will be most useful in our future discussion of the Hartree-Fock method.  

The variational theorem states that: Given a normalized wave function, we can predict its 

expectation value of the Hamiltonian to be an upper bound to the exact ground state energy. If: 

|"56 = ∑ 79|"9⟩9 =	∑ |"9⟩9 ⟨"9|"56                                     (1.5) 

and 

9"5:"56 = 1                                                         (1.6) 

Then 

9"5:!:"56 ≥ =0                                                        (1.7) 
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For proof we can take the definition: 

9"5:"56 = 1 = ∑ 	9"5:"969"9:":69"::"569: = ∑ 	9"5:"969"9:"569: = ∑ 	9"5:"96
$

9:    (1.8) 

Then  

9"5:!:"56 = ∑ 	9"5:"969"9:!:":69"::"569: = ∑ 	9"5:"96
$

9: =0 =	=0               (1.9) 

And since =9 ≥	=0	>?@	ABB	C then we get Equation 1.7 back: 

9"5:!:"56 ≥ ∑ 	9"5:"96
$

9: =0 =	=0                                           (1.10) 

This demonstrates that an energy approximation from a wavefunction will always be bigger 

or equal to the ground state energy of the system. The lower a resulting energy is, the “better” we 

regard the wavefunction. 

In short, we take a normalized wavefunction contraction "5 and alter or vary its parameters 

until the expectation value 9"5:!:"56 reaches a minimum. This minimum is the approximated 

variational ground state energy. 

I.4 Basis sets 

         A single multielectron atom with its nucleus centered at the origin, as instructed by the 

Born-Oppenheimer approximation, has electrons orbiting at coordinates @, D, 4.  To describe this 

system, we would need multielectron wavefunctions, but we approximate that with single 

electron orbitals that are hydrogenic in character and approximate those orbitals as a linear 

combination of Gaussian functions. 



5 
 

 

 

 

                                    

 

Figure 1: Spherical coordinate system; source image is in the public domain [3]. 

 

   Calculations in computational chemistry are performed using these basis functions [4], 

which represent the wavefunction as a vector and its components are included in the 

coefficients of the contraction of the basis set. Out of the many different basis sets available, 

we will focus on two of the most common ones. 

The normalized 1s Slater type function: 

E;<
=>(F, G − H?) = I@

%

A
J
&
' KB@	|DBE(|                                       (1.11)    

Centered nuclear position H?, where F is the slater orbital exponent. And the normalized 

1s Gaussian-type function: 

E;<
F>(L, G − H?) = IGH

A
J
%
) KBH	|DBE(|'                                           (1.12) 

where M is the orbital Gaussian exponent. The main difference between these two are shown at 

large values of r, where the Gaussian function KBHD' decays much more rapidly than the Slater 

function KB@D, however, this does not mean that Slater functions are our best choice.  

In an ideal world we would prefer to use the Slater functions, nevertheless, if we would use 

them, we would come across huge complex calculations of two-electron integrals involving 

x

y

z
(r, θ, φ)

φ

θ

r
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computations over four nuclear coordinates (NI, NJ, NK, NL). This makes Slater functions much 

more difficult and time consuming to compute. We mainly consider the Gaussian function 

because these types of complicated integrals are much easier to solve. The reason being that the 

product of two 1s Gaussian functions (on two different centers NI, NJ) is a third Gaussian 

function (at a new center NM). This effectively reduces a four-center integral into a two-center 

integral. Now to “fix” the problem of the inaccuracy of Gaussian functions at large values of r, 

we use parameterized linear combinations of primitive Gaussians E;<
F>. Also known as contracted 

Gaussian functions (CGF). 

EN
OF>(G − H?) = ∑ OPNEP

F>Q
PR;                                          (1.13) 

where OPN is the contraction coefficient. By proper choice of contraction parameters (L, OPN, 

and M) one can approximate Slater-type orbital (STO) functions, while still evaluating integrals 

only with primitive Gaussians. For our research we are using Slater-type orbitals with a 

contraction of L=3, hence the name STO-3G. It has been reported by Szabo and Ostlund [5] how 

the STO-LG approximates the Slater functions, as the contraction L increases in the following 

figure: 

 

 

 

 

Figure 2: Comparison of quality between a Slater 1s function (F = P)	generated with STO-

1G, 2G and  3G. Figure adapted from [5]. 
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I.5 Hartree-Fock method 

Here we will discuss a very important topic to solving the many electron problem in quantum 

chemistry, the Hartree-Fock method. This approximation method can also be used as a 

steppingstone for more accurate calculations. It was first proposed by D. R. Hartree in the early 

20th century [6] and he called this method the “self-consistent field” which approximates wave 

functions and energies of atoms. Shortly after, the method was reaffirmed by J. C. Slater and J. 

A. Gaunt by using the variational principle to a trial wave function.  

In broad terms, this theory is computed using single determinant theory where the 

wavefunction is given by a single Slater determinant of N-spin orbitals. 

" = #

√T!
Q				
"#(&#) ⋯ "#(&T)
⋮ ⋱ ⋮

"T(&#) ⋯ "T(&T)
	

	 	
Q                                           (1.14) 

It is important to note, that this wavefunction is antisymmetric and will change with the 

exchange of any two electrons as required by the Pauli exclusion principle [7]. 

"(&#, &$) = −	"(&$, &#)                                              (1.15) 

We postulate a set of spin orbitals so that our ground state determinant will look like: 

                                          |"0⟩ 			= 			 |X#X$…XVXW …XT⟩                                        (1.16) 

which is the most accurate approximation this method offers to the ground state of N-electrons 

described by the electronic Hamiltonian: 

              									⟨"0|WXYXZ|"0⟩ 				= 				-0                                               (1.17) 
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then by minimizing -0 with respect to the orbitals, we get a new eigenequation called the 

Hartree-Fock Equation:  

	>())X(&)) = Y	X(&))                                               (1.18) 

where >())	is called the Fock operator and is defined as: 

>()) = − #

$
∇%$ − ∑

,#
'!#

T
+R# + Z[\())                                   (1.19) 

where the Hartree-Fock potential Z[\()) term represents the average potential experienced by 

the i-th electron against all of the other electrons. This means that to solve the Hartree-Fock 

potential (and therefore the Hartree-Fock approximation) one must take an iterative approach. 

The method by which we solve this equation is called the self-consistent field and will be 

discussed momentarily.  

 

I.6 Roothaan equations 

Now we will look at how to calculate the restricted Hartree-Fock wavefunctions. All 

calculations in this procedure will be represented in a restricted (both spin up and spin down 

functions occupying the same spatial state) Hartree-Fock wave function. This is significant since 

doing so will limit our calculation to closed-shell systems with every electron paired with an 

opposite spin. To get an accurate result of the ground state for open-shell systems one could 

perform the calculation with the unrestricted formalism of the Hartree-Fock, and although we 

will talk about both, for now, we will start with the restricted version. If we take the standard 

Fock operator single electron semi-eigenfunction equation: 
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     >[% = =%[%                                                       (1.20) 

One of the main contributions of Roothaan [8] was to introduce a set of basis functions and 

expand the molecular orbitals: 

   [% = ∑ \]%4]^
]R#          i = 1, 2, 3… K                                    (1.21) 

From this point forward the problem of solving the Hartree-Fock equation revolves around 

calculating the coefficients \]%. This arithmetic is started by inserting the linear expansion. 

                 > ∑ \_%4__ = =% ∑ \_%4__                                            (1.22) 

We multiply by 4]∗  and integrate 

    ∑ \_% ∫^@ 4]∗ 	>	4__ = =% ∑ \_% ∫^@ 4]∗ 	4__                (1.23) 

In this representation of the equation, we define two matrices: the overlap matrix S and the 

Fock Matrix F. 

    _]_ = ∫^@ 4]∗ 	4_                                                        (1.24) 

]̀_ = ∫^@ 4]∗ 	>	4_                                                    (1.25) 

turning our Hartree-Fock equation into 

   ∑ \_% 	 ]̀__ = =% ∑ \_% 	_]__       i = 1, 2, … ,K                            (1.26) 

These are called the Roothaan equations which in its compact form looks like:   	

ab = cbd                                                       (1.27) 

where C is a square matrix with all the \_% values in the expansion, and = is a diagonal matrix or 

vector including the orbital energies. At this point we have everything we need to start solving 

the Hartree-Fock orbital energies and molecular orbitals.  
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I.7 Brillouin’s theorem 

Since now we know how the Fock operator looks like along with the Hartree-Fock 

ground state (|"0⟩), we can prove an important theorem that describes the interaction between 

said ground state with its singly exited state |"V'⟩, the Brillouin’s theorem [9]. 

The theorem states: In case of the Hartree-Fock ground-state determinant |"0⟩, the 

Hamiltonian matrix element between it and any singly excited determinant |"V'⟩	reduces to zero. 

⟨"0|WXYXZ|"V'⟩ 				= 0                                              (1.28) 

To justify this, we can simply take the definition of the eigenvalue equation in the Fock 

operator for state i and multiply in the left side by a generic ground state j. 

∫^@ [) 		(>%[% = =%[%)                                                     (1.29) 

9[):>%:[%6 	= =%9[%:[)6                                              (1.30) 

	9[):>%:[%6 = =%f%)                                                     (1.31) 

= 0	because	) ≠ n 

Equation 1.31 signals that in any post Hartree-Fock method, the singly excited state will mix 

only indirectly with the ground state as we will see it is clearly the case in the Full Configuration 

Interaction method solution.  

I.8 Self-consistent field procedure 

 To illustrate the intermediate steps of an iterative calculation of the ground state 

of any system we have detailed the general self-consistent field procedure [5] below. There 

are a total of 10 steps involved in this process: 
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1. Choose a molecule and basis set (In our case the molecule of interest is Hydrogen and 

basis set is STO-3G, however we won’t specify this system and keep our terms general in 

the introduction) 

2. Calculate the overlap matrix, !]_ab'c, and two-electron integrals. 

3. Use the following equations to diagonalize the overlap and obtain the transformation 

matrix X. 

 od_o = p                                                               (1.32) 

q = o	p
*
+	od                                                         (1.33) 

where U is a unitary matrix and we have chosen to show the symmetric 

orthogonalization.  

4. Guess the Density matrix P (usually a null matrix, zeros). 

5. Form the two-electron integrals and the density matrix, obtain the G matrix. 

r]_ = ∑ sefef t(uv|wx) − #

$
(uw|xv)y                                  (1.34) 

6. Obtain the Fock matrix by adding G to the core-Hamiltonian 

` = 	!ab'c + r                                                 (1.35) 

7. Calculate the transformed Fock matrix. 

`g = qd`q                                                       (1.36) 

8. Diagonalize F’ to obtain the respective coefficients and energies. 

 `g\g = =\′                                                        (1.37) 

9. Calculate the C coefficients by transforming C’ 

                     \ = q\g                                                          (1.38) 

10. From this C, calculate a new density matrix P 
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sef = 2∑ \ef\fe∗ef                                                     (1.39) 

At this step we should be able to check for convergence of the SCF procedure. A 

common way of doing this is to see if the density matrix is different from the one calculated 

before within a certain tolerance. If the calculation has not converged yet, use the produced 

density matrix in step 10 and repeat the steps from number 5 to 10 until converged. 

If the procedure has converged, the produced F, C, P, matrices can be used to compute 

post Hartree-Fock calculations or other quantities of interest.  

I.9 Pople-Nesbet equations 

The unrestricted Hartree-Fock equations need to be approached slightly differently when 

applying the SCF procedure. We must introduce a basis set linear expansion into the Fock 

operator for electrons of | spin: 

>:(1) = ℎ(1) + ∑ [�V:(1)
T:
V − ÄV:(1)] + ∑ �V9(1)T9

V                        (1.40) 

and the C spin counterpart: 

>9(1) = ℎ(1) + ∑ [�V9(1)T9
V − ÄV9(1)] + ∑ �V:(1)

T:
V                         (1.41) 

Both of these equations must be solved simultaneously, since the >9 operator depends on 

the occupied | orbitals, [V
:, through �: and >: operator depends on the occupied C orbitals, [V9, 

through �9. The equations are coupled and cannot be solved independently of eachother. 

Now, like in the restricted version (Equation1.21), we can introduce our unrestricted 

basis set linear expansions: 

"%9 = ∑ \]%94]^
]R# 							) = 	1, 2, . . . Ä                                 (1.42) 
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"%
: = ∑ \]%

:4]^
]R# 							) = 	1, 2, . . . Ä                                  (1.43) 

and insert them in the Hartree-Fock equations while following the procedure detailed in the 

“Roothaan equations” section of the introduction and produce the unrestricted generalization of 

the restricted Roothaan equations first given by Poble and Nesbet [11].  

aHbH = cbHdH                                                     (1.44) 

ahbh = cbhdh	                                                    (1.45) 

These two equations can be solved in a very similar fashion to the restricted version of 

the SCF procedure and will follow the 10 steps stated above. 

 

I.10 Configuration interaction 

We have discussed a method for creating the potential energy of a molecule using either 

Restricted Hartree-Fock or Unrestricted Hartree-Fock, however, these procedures have their own 

limitations. For the Restricted HF, it cannot be used to explain the dissociation of a molecule into 

open-shell fragments. For the Unrestricted HF, although it can represent such a dissociation, the 

results still differ from the exact known result. A common goal of many post-Hartree-Fock 

methods is to correct the error in the potential energy results. Specifically, for the Configuration 

Interaction it solves for the difference between the exact known energy of a system (Ɛ0	) and the 

Hartree-Fock energy (Eo). This value is called the correlation energy. 

  -ab'' =	Ɛ0	 − -0                                                          (1.46) 
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To perform the procedure, we must of course construct the molecular orbitals from the 

Hartree-Fock procedure as in any post-HF methodology. We then consider the structure of the 

full CI matrix, which is an expanded version of the Hamiltonian matrix with all possible 

excitations to the Hartree-Fock ground state. Usually this would mean having a potentially 

humongous amount of data as the excitations can grow exponentially with the number of 

electrons. This increases the complexity of the calculation and forces many to use truncating 

methods to control the computational cost of running such an algorithm. Nevertheless, our 

system of choice for this study is very tractable and does not require a complicated number of 

excitations.  

In general, the exact ground state wave function of our system |40⟩ in its intermediate 

normalized form: 

|40⟩ = |"0⟩ +	∑ 7a"|"a"⟩a" +	∑ 7a!"]|"a!"]⟩ai!
"i]

+	∑ 7a!c"]_|"a!c"]_⟩ai!ic
"i]i_

+⋯    (1.47) 

which is not a normalized wavefunction since:  

⟨40|40⟩ = 	1 +	∑ (7a")$a" +∑ (7a!"])$ai!
"i]

	+ ⋯                       (1.48) 

However, this can be fixed by multiplying each term in the expansion by a coefficient: 

|40′⟩ = 7′|40⟩                                                          (1.49) 

so that:  

⟨4′0|40⟩ = 1                                                                (1.50) 

As we had stated before, the variational principle allows us to calculate the ground state of such a 

wave function by: 
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Η|40⟩ = Ɛ0	|40⟩                                                       (1.51) 

Substracting  -0|40⟩ on both sides 

Η − -0|40⟩ = Ɛ0	 − -0|40⟩                                                 (1.52) 

Multiplying ⟨"0| on both sides 

⟨"0|Η − -0|40⟩ = ⟨"0|Ɛ0	 − -0|40⟩ = -ab''⟨"0|40⟩                  (1.53) 

It is very convenient that our state wavefunction has the property that  

⟨"0|40⟩ = 1                                                         (1.54) 

so 

⟨"0|Η − -0|40⟩ = -ab''                                                  (1.55)  

Expanding wave function 

⟨"0|Η − -0 Ö|"0⟩ +	∑ 7a"|"a"⟩a" +	∑ 7a!"]|"a!"]⟩ai!
"i]

+⋯Ü 		= -ab''                (1.56) 

At this point we have many combinations of different states. However, many terms in this 

summation will be neglected as stated by the Brillouin’s theorem and the fact that any state that 

differs by more than two spin orbitals cannot mix with "0. This ultimately narrows the 

expression into: 

∑ 7%)VW⟨"0|Η|4%)VW6ViW
%i)

= -ab''                                              (1.57) 
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I.11 Energy gradient derivation 

 Calculations of derivatives of molecular energies are a fundamental step toward the 

exploration of computational efficiency [12], which facilitates transition state searches, geometry 

optimizations and molecular dynamics simulations. Here we will present our own derivation of 

the full configuration interaction energy gradient for Hydrogen. The total energy calculated from 

the FCI state is: 

-\jk = 9"[+|Ηá|"[+6                                                                                    (1.58) 

= 7[\$94[\:Ηá:4[\6 + 2	7[\7l94[\:Ηá:4l6 + 7l$94l:Ηá:4l6         (1.59) 

Taking the derivative would yield 

m

mn
-\jk = 7[\$

m

mn
94[\:Ηá:4[\6 + 2	7[\7l

m

mn
94[\:Ηá:4l6 + 7l$

m

mn
94l:Ηá:4l6         (1.60) 

where the Hamiltonian Ηá has been defined as: 

Ηá = ∑ ℎopAo
dApop + #

q
∑ Πop'rAo

dAp
dA'Arop'r                              (1.61) 

where  

Πop'r =	 ⟨âä|@p⟩ − ⟨âä|p@⟩ = [â@|äp] − [âp|ä@]                            (1.62) 

  It is necessary now to rearrange each term and solve the derivatives one by one. We start 

with the Hartree-Fock ground state: 

94[\:Ηá:4[\6 = 			∑ 	op ℎop94[\:Ao
dAp:4[\6 +	

#

q
∑ 	op'r Πop'r94[\:Ao

dAp
dA'Ar:4[\6            

(1.63) 
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Taking the liberty to use the fact that AaA!
d = fa! − A!

dAa and AaA!
d = −Aa

dA! we can 

rearrange so that: 

94[\:Ηá:4[\6 = ∑ ℎop9	:A)A%Ao
dApA%

dA)
d:	6op + #

q
∑ Πop'r	9	:A)A%Ao

dAp
dA'ArA%

dA)
d:	6	op'r                                         

(1.64) 

= ∑ ℎopãf%of))f%p + f%%f)of)på	op + #

q
∑ Πop'rãf%of)p − f%pf)oåãf%rf)' − f%'f)råop'r                 

(1.65) 

= ∑ ℎopãf%of%p + f)of)på	op + #

q
∑ Πop'rãf%of)p − f%pf)oåãf%rf)' − f%'f)rå	op'r                                   

(1.66) 

Similar treatment of the doubles-doubles term yields: 

  94l:Ηá:4l6 = ∑ ℎop9	:AWAVAo
dApAV

dAW
d:	6	op + #

q
∑ Πop'rop'r 9	:AWAVAo

dAp
dA'ArAV

dAW
d:	6                                      

(1.67) 

= ∑ ℎopop ãfVofVp + fWofWpå +
#

q
∑ Πop'r	op'r ãfVofWp − fVpfWoå(fVrfW' − fV'fWr)                  

(1.68) 

and then the final off-diagonal terms: 

94[\:Ηá:4l6 = 0 + #

q
∑ Πop'r	op'r 9	:A)A%Ao

dAp
dA'ArAV

dAW
d:	6                                            (1.69) 

= #

q
∑ Πop'r	op'r ãf%of)p − f%pf)oå(fVrfW' − fV'fWr)                               (1.70) 

94l:Ηá:4[\6 = 0 + #

q
∑ Πop'r	op'r 9	:AWAVAo

dAp
dA'ArA%

dA)
d:	6                                          (1.71) 

= #

q
∑ Πop'r	op'r ãfVofWp − fVpfWoåãf%rf)' − f%'f)rå                              (1.72) 
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where the one electron term is neglected since they differ by more than two electrons. When we 

combine the results for the 

94l:Ηá:4l6 = ∑ ℎopãfVofVp + fWofWpåop   

 + #

q
∑ Πop'rãfVofWp − fVpfWoå(fVrfW' − fV'fWr)op'r              (1.73) 

= ℎVV + ℎWW +
#

q
(ΠVWVW + ΠWVWV − ΠVWWV − ΠWVVW)                (1.74) 

= ℎVV + ℎWW + ΠVWVW                                                                  (1.75) 

																									94[\:Ηá:4[\6 = çℎopãf%of%p + f)of)på
op

 

+ #

q
∑ Πop'rãf%of)p − f%pf)oåãf%rf)' − f%'f)råop'r                 (1.76) 

= ℎ%% + ℎ)) +
#

q
(Π%)%) + Π)%)% − Π%))% − Π)%%))                           (1.77) 

= ℎ%% + ℎ)) + Π%)%)                                                                    (1.78) 

94[\:Ηá:4l6 = 	
#

q
∑ Πop'rãf%of)p − f%pf)oåop'r (fVrfW' − fV'fWr)             (1.79) 

= Π%)VW = 94l:Ηá:4[\6                                                            (1.80) 

So out total energy gradient can be re-written as: 

-\jk =	7[\$(ℎ%% + ℎ)) + Π%)%)) + 2	7[\7lΠ%)VW + 7l$(ℎVV + ℎWW + ΠVWVW)         (1.81) 

To solve this, we must take the derivative of Equation 1.81, however, to finish the 

derivative terms we must perform a coupled-perturbed Hartree-Fock (CPHF) procedure [13]. 

m

mn
-\jk =	7[\$

m

mn
(ℎ%% + ℎ)) + Π%)%)) + 2	7[\7l

m

mn
Π%)VW + 7l$

m

mn
(ℎVV + ℎWW + ΠVWVW)      (1.82) 
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First let’s start with the doubles term ED 

	 m
mn
El =

m

mn
(ℎVV + ℎWW + ΠVWVW)                                                                    (1.83) 

= ℎs̅VV + ℎs̅WW + Πs̅VWVW 		+çhuvç
∂
∂x

auv

CuaCva			 

		+ #

$
∑ Πuevf ∑ (mw,-w.-

mna!uvef 	Cu!Cv! +	
mw,/w./

mn
	CuaCva)																														  

Here we take advantage of the fact that the system that we chose (Hydrogen) is 

symmetric just like the last term in the expression. We rearrange terms and labels to yield:  

ℎs̅VV + ℎs̅WW + Πs̅VWVW + ∑ huv ∑
m

mnauv CuaCva +∑ Πuevf ∑
mw,-w.-

mna!uvef 	Cu!Cv!            (1.84) 

= ℎs̅VV + ℎs̅WW + Πs̅VWVW +∑
mw,-w.-

mn
[huv + ∑ Πu!v!! ]uva                   (1.85) 

Then we can use the following equations from [14] to facilitate the derivation procedure 

of the coefficients  

mw,-w.-
mx01

= − #

$
ãPu9îC:aCva + Pv9îC:aCuaå = −∑ CuoC9oC:aCuao                   (1.86) 

mw,-w.-
my23

= δza(Cu{Cva + CuaCv{) = 2	δza 	Cu{Cva                              (1.87) 

Inserting the definitions into our expression 

∂El
∂x = ℎs̅VV + ℎs̅WW + Πs̅VWVW																																			 

																		− ç S9:s̅CuoC9oC:aCua óhuv +çΠu!v!
!

ò
uv9:
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+∑ θz{s̅	δzaCuaCv{öhuv + ∑ Πu!v!! õuv
az{

                         (1.88) 

= ℎs̅VV + ℎs̅WW + Πs̅VWVW − ∑ Soas̅ öhoa +∑ Πo!a!! õao + ∑ θa{s̅ [ha{ + ∑ Πa!{!! ]a{             (1.89) 

The orbital response term vanishes because the θa{s̅  term is antisymmetric while 

öhop + ∑ Πo!p!! õ is symmetric in c and k. With this result we can specify the sum of terms by 

applying this equation to our modeled Hydrogen system to this equation and produce the 

specialized result below: 

∂El
∂x = ℎs̅VV + ℎs̅WW + Πs̅VWVW − S%Vs̅ [h%V + Π%WVW]																																					 

−S)Ws̅ öh)W + Π)VWVõ − SVVs̅ [hVV + ΠVWVW] − SWWs̅ [hWW + ΠWVWV]													      (1.90)                                             

Here we can neglect terms that vanish because of spin and (since our calculation is 

restricted) we combined terms with the same spatial orbitals. The final term for the derivative of 

the doubles term is: 

|}4
|~

= ú	ù�ÄÅÅ + (ûû|ûû)�Ä − ú	üÇÅ�Ä [†ÇÅ + (°¢|°°)] − ú	üÅÅ�Ä [†ÅÅ + (°°|°°)]           (1.91) 

by a similar methodology we can conclude that the Hartree-Fock derivative is: 

|}56
|~

= ú	ù�ÄÇÇ + (££|££)�Ä − ú	üÇÇ�Ä (†ÇÇ + (¢¢|¢¢))                                 (1.92) 

then we can solve the remaining derivative term: 

Π%)VW =	 ([)A|n§] − [)§|nA]) = [)A|n§] = [A)|A)]                                            (1.93) 

m

mn
Π%)VW = [A)|A)]s̅ +∑ [•¶|wx]uvef 	(mw,7w.!

mn
	CeVCf% +	CuVCv%

mw87w9!
mn

	)          (1.94) 

= [A)|A)]s̅ + 2∑ [•¶|A)]uv 	mw,7w.!
mn

	                                                      (1.95) 
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Applying Equation 1.86 and 1.87 we get 

m

mn
Π%)VW = [A)|A)]s̅ − ∑ So:s̅ 	[â¶|A)]	(C:VCv% +	C:%CvV) +v:o 2∑ 	[•¶|A)]θa{ s̅	δaVCu{Cv% −uv

a{

2∑ [•¶|A)]θa{ s̅	δ{%CuVCvauv
a{

                                                                           (1.96) 

∂
∂xΠ%)VW =

[A)|A)]s̅ − SVVs̅ 	[A)|A)] − S%Vs̅ 	[))|A)] − SV%s̅ 	[AA|A)] 

												−S%%s̅ 	[)A|A)] + 2[))|A)]θV%
s̅ − 2[AA|A)]θV% s̅                             (1.97) 

m

mn
Π%)VW = [A)|A)]s̅ − (SVVs̅ + S%%s̅)	[A)|A)] − SV%s̅ 	([))|A)] +	[AA|A)]) + 2θV%

s̅([))|A)] +	[AA|A)])                                                                                            

(1.98) 

Finally, we plug in the three derived quantities from Equation 1.98, 1.92 and 1.91 into 

Equation 1.82 to get the case specific energy gradient derivative that we will use in the 

calculation of our energy gradient: 

∂
∂x-\jk =	7[\

$ö2	ℎs̅%% + (ii|ii)s̅ − 2	S%%s̅ãh%% + ())|)))åõ 

+2	7[\7lö[A)|A)]s̅ − (SVVs̅ + S%%s̅)	[A)|A)] − SV%s̅ 	([))|A)] +	[AA|A)]) + 2θV%
s̅([))|A)] +	[AA|A)])õ 

+7l$ t2	ℎs̅VV + (aa|aa)s̅ − 2	S%Vs̅ [h%V + (A)|AA)] − 2	SVVs̅ [hVV + (AA|AA)]y                                                                     

(1.99) 
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CHAPTER II 
 
 

RESULTS AND DISCUSSION 
 
 

        II.1 Data collection 
 

We now present a framework for investigating the degree to which error can be injected 

into the results of the full-configuration interaction calculation before the wavefunction and 

quantities derived from it no longer the match their variational values. To assess that, we chose a 

computationally tractable system (the hydrogen molecule) as a test bed for the implementation 

and testing of the full gradient and injections of arbitrary errors. Then, we will examine it to see 

how these anomalies affect the exact known answer.   

We tested and compared several different ways of obtaining derived quantities: First, a 

full traditional calculation of the system; and second, a finite-difference calculation that does not 

rely on any prior wavefunction information. If the errors we injected are negligible, these 

obtained quantities should be in reliable range of each other; the only error present should be the 

ones expected from the finite-difference method. If the errors we injected are not negligible, the 

full calculation and the finite-difference should match.  
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II.2 Choosing a molecule and basis set 

To begin the computation of the traditional calculation we decided to implement all the 

previously explained methodologies in a C++ code. All calculations discussed have been 

performed using this code. We can start the foundations of our test bed experiment by selecting a 

basis set. All calculations were performed using a STO-3G basis set containing three Gaussian 

functions approximating Hartree-Fock atomic Hydrogen functions. We used Equation 1.13 to 

construct the specific function below 

|40⟩ = 0.444635E;<
F>(0.168856) + 0.535328E;<

F>(0.623913) + 0.154329E;<
F>(3.42525)			    

 

II.3 Hydrogen STO-3G SCF 

From here it is straightforward to continue to perform the self-consistent field procedure 

to calculate our Hartree-Fock ground state energy. We begin by calculating all the necessary 

overlap (S), kinetic energy (K), potential energy (V1 & V2) and two-electron integrals. With 

them it’s simple to calculate the core-Hamiltonian, 

!ab'c = Ä + Æ1 + Æ2                                                (2.0) 

take an initial guess at the density matrix 

s = t0 0
0 0y 

To form the G matrix with the two-electron integral  

rÉv = ∑ sef[(Z¶|xw) −
#

$
(Zw|xZ)]eÉ 	                       (2.1) 
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Now we can add the core-Hamiltonian and the G matrix to form the Fock matrix. Using 

the calculated transformation matrix X from the SCF procedure, calculate the transformed Fock 

matrix and diagonalize to get the corresponding coefficients.  

` = ! + r                                                            (2.2) 

`g = qd`q                                                            (2.3) 

  `g\g = =\′                                                             (2.4) 

Use the transformation matrix X again to calculate C and the new density matrix with 

Equation 1.38 and 1.39 

\ = q\g 

sef = 2ç\eV\fV
ef

 

All of this will repeat until the last calculated density matrix differs by a factor less than 

1x10-8 from its last iteration. Once the SCF procedure converges, the energy is calculated using 

the formula 

- = #

$
∑ sef(!ef + èf)ef 	                                            (2.5) 

It is important to note that by using a general formula for the density matrix we have 

neglected any interaction between states with different spins, hence the factor of two outside the 

sum of the density matrix in Equation 1.39. This effectively obligates the calculation to be a  

restricted Hartree-Fock. For completion, we also performed the Unrestricted Hartree-Fock 

calculation following the procedure detailed by Poble-Nesbet [11]. Instead we use the nest 

equations to calculate the density matrix. 
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s9ef = ∑ \9eV\9fVef                                                   (2.6) 

s:ef = ∑ \:eV\:fVef                                                   (2.7) 

For the Fock matrix me must also distinguish for spin, creating two eigenvalue equations 

of the form 

                     aHbH = cbHdH	                                                         (2.8) 

ahbh = cbhdh	                                                         (2.9) 

This, in short, forces us to compute the self-consistent field procedure twice, once for 

alpha spin states and twice for beta spin states, however, the procedure is self-convergent, 

meaning both alpha and beta spin values must be calculated simultaneously before jumping into 

the new iteration. Nevertheless, besides some additional terms and redefining some factors, the 

Unrestricted Hartree-Fock (URHF) does not raise the complexity of our calculation in 

comparison to Restricted Hartree-Fock (RHF). We performed a SCF procedure for both RHF 

and URHF in Hydrogen STO-3G. Repeating the calculation at each interatomic distance from 

0.1 a.u. increasing the distance stepwise by +0.01 a.u. until 5.0 a.u. The obtained potential energy 

graphs are reported in Figure 3.  

At this point, we have successfully calculated the ground state energy (E0) through two 

different SCF procedures. We continue by applying the Full Configuration Interaction 

methodology to correct this energy using the correlation energy in Equation 1.57. The Hartree-

Fock ground state wave function for Hydrogen which includes four spin orbitals (1, 1Ø, 2, 2Ø) we 

can form, in addition to the ground state, five other and build the full CI wavefunction. 
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|40⟩ = 7##Ä|11Ø⟩ + 7$#Ä|21Ø⟩ 	+ 7#$Ä|12Ø⟩ + 7#$|12⟩ + 7$#ÑÑÑÑ|21ØØØØ⟩ + 7$$Ä|22Ø⟩                      (2.10) 

Using this wave function, we can construct the CI matrix and use the variational method 

to determine the lowest eigenvalue—which would be the corresponding correlation energy. The 

resulting matrix is: 

∞ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡⟨11

Ø|!|11Ø⟩ ⟨11Ø|!|21Ø⟩ ⟨11Ø|!|12Ø⟩ ⟨11Ø|!|12⟩ ⟨11Ø|!|21ØØØØ⟩ ⟨11Ø|!|22Ø⟩
	 ⟨21Ø|!|21Ø⟩ ⟨21Ø|!|12Ø⟩ ⟨21Ø|!|12⟩ ⟨21Ø|!|21ØØØØ⟩ ⟨21Ø|!|22Ø⟩
	 	 ⟨12Ø|!|12Ø⟩ ⟨12Ø|!|12⟩ ⟨12Ø|!|21ØØØØ⟩ ⟨12Ø|!|22Ø⟩
	 	 	 ⟨12|!|12⟩ ⟨12|!|21ØØØØ⟩ ⟨12|!|22Ø⟩
	 	 	 	 ⟨21ØØØØ|!|21ØØØØ⟩ ⟨21ØØØØ|!|22Ø⟩
	 	 	 	 	 ⟨22Ø|!|22Ø⟩⎦

⎥
⎥
⎥
⎥
⎥
⎤

         (2.11) 

where we have omitted the lower triangle of the matrix because of its symmetry.       

Although a 6x6 matrix is not the most complicated when speaking in terms of full CI, this 

matrix has been simplified further before [5] by realizing the symmetry of our system. In short, 

because the ground state from Hartree-Fock is a singlet, only configurations of singlet symmetry 

need to be included, namely the ground state and the doubly excited state. Both are closed shells 

and therefore singlets.  

As a result, Equation 2.10 reduces to: 

|40⟩ = |11Ø⟩ + 7|22Ø⟩                                                    (2.12) 

and our corresponding full CI matrix is: 

∞ =	 ∑⟨11
Ø|!|11Ø⟩ ⟨11Ø|!|22Ø⟩

⟨22Ø|!|11Ø⟩ ⟨22Ø|!|22Ø⟩
∏ = ∑

⟨4[\|!|4[\⟩ ⟨4[\|!|4l⟩
⟨4l|!|4[\⟩ ⟨4l|!|4l⟩

∏         (2.13) 
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The logical next step would be to evaluate the matrix elements in Equation 2.11. Having 

evaluated all the matrix elements, we can determine the lowest eigenvalue of the matrix using 

secular determinant or unitary transformation. We performed several calculations, the 2.11 

matrix including all possible spin combinations, the symmetry simplified spin excluding 2x2 

matrix and a calculation including the singlet state: 

            |#"#$⟩ = √2		(|12Ø⟩ + |21Ø⟩)	                                              (2.14) 

Yielding the Hamiltonian: 

∞ = ∫	
⟨11Ø|!|11Ø⟩ ⟨11Ø|!| "#$	

# ⟩ ⟨11Ø|!|22Ø⟩
⟨ "#$	
# |!|11Ø⟩ ⟨ "#$	

# |!| "#$	
# ⟩ ⟨ "#$	

# |!|22Ø⟩
⟨22Ø|!|11Ø⟩ ⟨22Ø|!| "#$	

# ⟩ ⟨22Ø|!|22Ø⟩
ª                                   (2.15) 

After performing the calculations, we found that all three FCI procedures using Equation 

2.15, 2.13 or 2.11 agreed with the potential energy graph reported in Figure 4.  And although in 

Figure 3 we can see the difference in accuracy between the RHF and URHF, the FCI potential 

energy is independent of which version of Hartree-Fock we use as a reference. In other words, in 

a RHF-FCI calculation Equation 1.46 perfectly corrects the ground state energy to match that of 

an URHF-FCI. When performing a FCI calculation, a restricted representation of the 

wavefunction (Equation 2.12) is sufficient. 

 From here we have completed the traditional calculation of the system that will be our 

point of reference. Now we must inject some error into the important coefficients c in the FCI 

methodology (Equation 2.12).  
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Figure 3: The potential energy from the Restricted Hartree-Fock (green) and Unrestricted 

Hartree-Fock (purple) using the self-consistent field procedure from 0.1 a.u.-5.0 a.u. increasing 

by +0.01 at every step. 

Figure 4: Full configuration interaction potential energy. The energies recorded here are an 

addition of the SCF ground state energy and the correlation energy from 0.1 a.u.-5.0 a.u. 

increasing by +0.01 at every step. 
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Figure 5: Potential energy graph of the total energy obtained with the RHF-FCI procedure with 

an extra dimension in the x-axis measuring the perturbation of the FCI coefficient (0.5-1.5). 

 

Figure 6: Fractional Error graph of the potential energy graph in Figure 3. Internuclear distance 

in x-axis (0 to 6 a.u.), perturbation to the coefficient in y-axis (0.5-1.5) and percent error in the z-

axis. 
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In the FCI procedure, we scaled the exact known coefficient of the doubles term which 

includes information about the HF and Doubles state simultaneously. The errors injected in this 

coefficient took the form of a scale factor on the coefficients such that normalization is 

maintained. This experiment should reveal places in our potential energy surface that are more 

sensitive to error, giving us better understanding of the global behavior of our system.  

In Figure 5 is the potential energy graph presented in Figure 4 without the repulsion energy 

(since the correlation energy is solely electronic), but with an extra dimension that measures the 

perturbance applied into the coefficient of the FCI procedure from -50% to +50%. 

  

 

 

Figure 7: Energy gradient results with changing internuclear distance and perturbation of the 

FCI coefficients the reported perturbations and the known accurate value.  
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Figure 8: Derivative coupling results with changing internuclear distance and perturbation of the 

FCI coefficients 

 

 

Table 1: Sensitivity of the energy, gradient, and derivative coupling terms in ppt in targeted 

percent error.  

 

Target Error (%) Energy Gradient Derivative
0.001 6.858 0.000 0.154

0.00316 12.299 0.000 0.773
0.01 21.954 0.038 2.618

0.0316 39.098 0.368 8.515
0.1 69.609 1.430 27.209

0.316 123.866 4.749 86.622
0.562 165.103 8.529 134.777
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Figure 9: Minimum vs Maximum scale of the perturbation of the correlation energy results 

 

Figure 10: Minimum vs Maximum scale of the perturbation of the energy gradient results. 
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Figure 11: Minimum vs Maximum scale of the perturbation of the derivative coupling results. 

 

II.4 Conclusion 

                We performed and compared three different calculations, a classical computation, a 

finite difference calculation, and a calculation with perturbation against different terms. With this 

we were able to find the total energy of the system as the least sensitive to the perturbation of the 

FCI coefficient as reported in Table 1. While the gradient and derivative coupling are more 

sensitive to error than the energy, it still displayed a relative sensitivity in the point of 

unrestriction in the potential energy curve. Its also important to notice the behavior of the 

quantities when questioning the relative maximum or minimum perturbation allowed. Both the 

gradient and correlation energy showed a decrease in sensitivity to error as the internuclear 

distance goes beyond the Coulson-Fischer point. 
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 II.5 Future work 

                  Several derived quantities remain to be examined for their sensitivity to our error-

injecting scale factor, including the Hessian matrix (and thus the vibrational frequencies of the 

molecule), the adiabatic correction (aka the diagonal portion for the second-order derivative 

couplings), and the spin-orbit coupling between the singlet and the triplet states. In addition to 

implementing and computing the error sensitivities of these quantities, we will also examine the 

effect of having omitted the analytic response terms that describe the loss of variationality in the 

Hartree–Fock coefficients. To the extent that the response calculations can be avoided, then the 

derived quantities can still be at least partially variational. 
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