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ABSTRACT

Kabir, Md Rysul, Effects of Saltatory Rewards and Generalized Advantage Estimation on Ref-

erence-based Deep Reinforcement Learning of Humanlike Motions. Master of Science (MS),

August, 2021, 53 pp., 7 tables, 21 figures, 50 references.

In the application of learning physics-based character skills, deep reinforcement learning

(DRL) can lead to slow convergence and local optimum solutions during the training process

of a reinforcement learning (RL) agent. With the presence of an environment with reward salta-

tion, we can easily plan to magnify those saltatory rewards with the perspective of sample usage

to increase the experience pool of an agent during this training process. In our work, we have

proposed two modified algorithms. The first one is the addition of a parameter based reward op-

timization process to magnify the saltatory rewards and thus increasing an agent’s utilization of

previous experiences. We have added this parameter based reward optimization with proximal

policy optimization (PPO) algorithm. What’s more, the other proposed algorithm introduces

generalized advantage estimation in estimating the advantage of the advantage actor critic (A2C)

algorithm which resulted in faster convergence to the global optimal solutions of DRL. We have

conducted all our experiments to measure their performances in a custom reinforcement learning

environment built using a physics engine named PyBullet. In that custom environment, the RL

agent has a humanoid body which learns humanlike motions, e.g., walk, run, spin, cartwheel,

spinkick, and backflip, from imitating example reference motions using the RL algorithms. Our

experiments have shown significant improvement in performance and convergence speed of DRL

in this custom environment for learning humanlike motions using the modified versions of PPO

and A2C if compared with their vanilla versions.
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CHAPTER I

INTRODUCTION

This present world is built upon the abundance of the data all around us. Data not only

inform us about our surrounding situations but also help us choosing a decision. Data can be

collected and presented to us in the form of numbers e.g. the time, date, temperature, and num-

ber of wins or losses of an NFL team. Data can also be presented as symbols such as sunny or

rain symbols of weather forecasts, or even pictographs. We may collect these data through our

own observations, photography, audio and video recordings, surveys, sensors, or from internet of

things. With the help of these data accumulated from the various sources, we can create statistical

models to figure out the patterns within those collected data. As the pattern is already known, it

can expedite and automate the procedure to solve problems in sectors like healthcare, manufac-

turing, marketing, business, security, education, and even on agriculture with the given values of

the independent variables. This way of utilizing the data to learn from experience and automate

human-like tasks with the help of machines is called Artificial Intelligence (AI).

Most AI examples we hear nowadays range from transportation in estimating the move-

ment of traffic and suggesting the fastest routes by Google Map, ETA’s of Uber, to fraud detec-

tion through the data gathered from transactions, and determining creditworthiness by FICO.

These AI examples use different machine learning methods and algorithms in order to predict and

help making a decision out of the acquired data. Machine learning is a section of artificial intel-

ligence which is established on the idea that a machine’s system can learn from collected data,

identify patterns inherent to those data, and eventually take decisions with least possible human

1



interference on the machine by creating statistical models. Early works related to AI started in

1950s with neural networks which stirred the excitement for the machines which can think. From

1980s machine learning started to become quite popular using different statistical models like

Linear Regression, Logistic Regression, Decision Trees, SVM, Clusturing, Random Forest. After

2010s deep learning became a trendy topic combining the aspects of both neural network and

machine learning. Through deep learning, a deep neural network can approximate any function

with the proper use of layers, nodes, and activation functions at the output of the neurons. On the

other hand, in the last few years, Reinforcement Learning (RL) has emerged to be a powerful tool

to solve complex sequential-decision making problems using Markov Decision Process (MDP).

Reinforcement Learning is a part of Machine Learning that talks about opting suitable

actions to maximize the output, in a sense the reward for taking that action, in a particular cir-

cumstance. Reinforcement learning differs from the supervised learning methods (e.g. linear

regression, decision tree, SVM) where the model has the input data and the corresponding labels

as a whole training data set whereas no such dataset exists for RL. On the other hand, reinforce-

ment learning is also different from unsupervised learning which actually finds out the hidden

pattern in the collected unlabeled data. Actually a reinforcement learning agent decides what to

do to perform a given task after learning from experience by itself. It initially performs poorly

because of the lack of experience. However, with time, as it learns from the experience while

exploring through different choices, the agent eventually learns to exploit the environment in

order to acquire the highest reward and reach its goal eventually. Therefore, we can say reinforce-

ment learning, in a way, simulates the learning process of a human being from his birth to the

adulthood. Similar to a newborn, the RL agent initially knows nothing and starts from zero. How-

ever, while growing up, the child gradually experiences different aspects of the world through

experience and eventually learns which steps to take to have a good consequence. Similarly, the

RL agent takes the very same path–learning with experience–to maximize the reward. There-

fore, we can say that reinforcement learning holds the true essence of artificial intelligence that
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we computer scientists are working for. One of the challenges in reinforcement learning is the

trade-off between this exploration to gather knowledge and exploitation maximize the prize. If an

agent wants to obtain a lot of reward, it must prefer to perform actions that it has tried in the past

and got good rewards as an outcome. However, in order to know which action provides better

outcome the agent must explore other actions as well. Therefore, the agent must try different

available actions to ensure all the possible states and actions available in the environment have

been explored. This will guarantee that the reinforcement agent is actually learning by balancing

the exploitation and exploration which is also required in human life.

There are abundant applications of reinforcement learning due to its non specific nature

of the problem definitions. This very same theory can be applied to different domain specific

problem with little to no effort. Practically, its application ranges from controlling robotic arms

to robotic navigation where the collision avoiding behavior can be learnt from negative rewards

if it bumps into obstacles. Logic games like Back-Gammon, Chess, Gomoku, Poker, and Go

are well suited to reinforcement learning as they require a sequence of appropriate decisions

to achieve victory. The world renowned AlphaGo created by a team of DeepMind was the first

computer program to defeat Ke Jie who was ranked as number 1 back at that time in 2017. This

AlphaGo program was trained by the reinforcement learning algorithm using a Monte Carlo

tree search and artificial neural networks to predict and help the AlphaGo program to select

appropriate moves to win a game [38]. On the other hand, reinforcement learning is also being

used in healthcare for finding out the suitable treatment for health conditions and drug therapies.

Moreover, most autonomous cars, trucks, and drones have been built upon having reinforcement

learning algorithms at the center.

1.1 Previous Works

There is a long history of modeling complex movements of humanoid or other articulated

models in fields like robotics, graphical animations, and even bio-mechanics. Researchers have

3



been working relentlessly to make movements of such models more natural and human-like and.

Previously there have been a lot of works such modeling using numerous kinematic methods

where others have been using physics-based methods. With the advent of machine learning,

nowadays machine learning community is getting more into taking part in improving control of

such models using various machine learning methods. Using machine learning, researchers are

improving upon the control of such models using reinforcement learning and different motion

imitation methods using reference motions.

1.1.1 Kinematic Models

Kinematic models are used for modeling complicated movements, specially in character

animation, when there is a huge number of data available. Kinematic models can generate better

quality models than simulation-based methods if we have high quality data. One way of using

kinematic models is to use motion clips and use them to build a controller which will execute the

relevant clip in a certain situation [2, 16, 33]. On the other hand, gaussian processes can also be

used to learn the inherent representations to create motions in different situations [17, 49]. Ex-

tending the gaussian process, deep neural networks like autoencoders and phase functioned net-

works have been used to build generative models to build a controller for human motion [11, 12].

One problem with kinematic models is that they have limited possibilities to synthesize motions

that the model can face for the first time in a situation. Moreover, if the goal and environment

become complicated, to get rid of this limitation in kinematic models, we have to gather enough

data to cover those possibilities. Collecting such high volume of data can become unattainable in

complex environments. To circumvent the this problem with limited number of input data we can

use prior knowledge from physical properties.

1.1.2 Physics-based Models

Physics-based methods help the models realize how physical properties will modulate

the motions depending on various kinds of changes and variations in the environment. There
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have been many works on developing controllers for locomotions of both human and non-human

characters [5, 48, 50] using physics-based methods. These methods are built upon on a baseline

model and an optimization process where the parameters of the optimization process are tuned

in to achieve desirable behaviors [1, 8, 46]. What’s more, such optimization can also be done

using quadratic programming for developing several locomotion controllers [6, 14, 15]. While

model-based methods built upon physics can find a way around to tackle the disadvantages of the

kinematics-based models, it can be difficult for them to build controllers for more contact-rich

and dynamical motions. One way of tackling this problem using model-based methods is using

trajectory optimization to synthesize physics coherent motions for various goals and characters

[24, 45]. This methods consider an extended horizon for an offline optimization process while

using the equations of motions from physics as constraints during that optimization process.

These methods can also be extended into model-predictive control methods [9, 43].

1.1.3 Reinforcement Learning

Most of the optimization of the simulated characters are done based on reinforcement

learning. As already mentioned, sequencing motion clips for kinematic controllers can be done

using value iteration, a reinforcement learning method, for a given task [16, 17]. In the similar

way. the optimization for physics-based models are done using different reinforcement lear-

ing methods [4, 27]. Kinematic and physics-based models both lack one important aspect in

building controllers for locomotions–generalizability. Evolution of deep reinforcement learn-

ing has added generalizability in building models that can perform numerous challengin tasks

[3, 7, 18, 28, 31, 44]. Besides, value iteration methods, policy gradients methods have emerged as

to solve many control problems in continuous space [34, 41]. Even though many reinforcement

learning algorithms have added generalizability in building controllers, the resulting behaviors

from them was found to be less fluid and natural than manually described motions [21, 35]. Op-

timization through reinforcement learning requires defining a reward function which is used to
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optimize an objective function. What’s more, defining a reward for making the motions natural is

difficult with the absence of biomechanical models and objectives [15, 46]. Simple objectives like

maintaining a certain velocity or like going in a straight path can optimize the model with gaits

and artifacts. To get rid of these gaits and artifacts some penalties can be given discourage these

unwanted extraneous limb movements. Crafting such objective functions can be quite challeng-

ing and requires a lot of human insight. On the other hand, current development of reinforcement

methods like GAIL [10] can circumvent this problem by updating a parameterized reward func-

tion and in turn induce an objective function that is based on the imitation of motion capture.

Even though this has shown significant improvements in the generated locomotion behaviors, the

quality is still not comparable to standard methods in computer animation [21].

1.1.4 Motion Imitation

Performing computer animation by imitation using reference motion started with the de-

velopment of controller for a bipedal locomotion with planar characters [37, 39] using policy

search method. Moreover, methods based on models for imitating motions in 3D humanoid char-

acters have also been introduced [14, 25, 50]. Reference motions can also be used in shaping the

reward function used for deep reinforcement learning to develop more fluid locomotion behavior

without any extraneous movements of limbs [29, 30]. One of the significant work in this field

is Sampling-based Controller (SAMCON) [20, 19]. It has displayed numerous numbers of very

dynamic and complex motions with simulated characters. The resulting controller can imitate

the actual reference motions but it lacks the possibility of extending it for different task objec-

tives. One of the most recent variations of SAMCON [20, 19] used DQN to train a policy that

selects already computed SAMCON [20, 19] fragments. This incorporates a significant amount

of versatility in the order of processing of controller fragments.
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CHAPTER II

THEORETICAL BACKGROUND

This chapter will introduce us with several theoretical concepts required to understand

and implement the basics of reinforcement learning in a scientific setting.

2.1 Reinforcement Learning

2.1.1 Theoretical Background

In reinforcement learning, an agent learns to control a process such that a long-term per-

formance criterion is optimized which is defined in terms of rewards. In most of the reinforce-

ment learning algorithms, this optimization problem is assumed to be a Markov Decision Pro-

cess (MDP) i.e the future depends only on the current state and action. It is defined by 5-tuple

(S,A,P,R,γ). Figure 2.1 describes the agent environment interaction in a Markov decision pro-

cess.

Agent

Environment

Action, atReward, rt+1 State, st+1

Figure 2.1: During a reinforcement learning process the agent and environment interact with each
other at discrete time steps.

The goal of a RL agent is to maximize the cumulative reward it ultimately receives. If

the sequence of rewards it received after time step t is denoted as rt+1,rt+2,rt+3, ..., and so on,

then we want to maximize the return Gt which can be defined as the sum of total rewards [41].
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However, in order to control how much further an agent focuses in future from a state in terms

of reward, we add a discounting factor (γ) within the range 0 ≤ γ ≤ 1. We can see that the if

γ = 0, then the agent emphasizes on the immediate reward. On the other hand, if it is 1, the agent

considers the whole sequence of the rewards with same importance.

Gt = rt+1 + rt+2 + rt+3 + ... (2.1)

Gt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
k=0

γ
krt+k+1 (2.2)

When the system model is available we either use dynamic programming methods (policy

evaluation to calculate or approximate value/action functions for a policy, value iteration and

policy iteration for finding an optimal policy) or resort to reinforcement learning. On the other

hand, when there is no model, our only option is to use reinforcement learning methods.Right

now, lets get familiar with some important terms frequently used in RL.

A state or action value function defines how good or bad a state or state-action pair is.

The state value function is the expected return for following the policy π(s|a) from state s.

vπ(s) = Eπ [Gt |st = s] = ∑
a∈A

qπ(s,a)π(a|s) (2.3)

An optimal state value function,

v∗(s) = max
π

vπ(s) (2.4)

which is the highest state value achievable by any policy for a certain state s which decomposes

into the Bellman equation.

vπ(s) = ∑
a∈A

π(a|s) ∑
s,s′∈S

P(s
′
|s,a)[r+ γvπ(s

′
)] (2.5)
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Moreover, the action value is the expected return for selecting an action a in state s while

following the policy π(s|a). On the other hand, an optimal action-value function can be obtained

in the same way.

qπ(s,a) = Eπ [Gt |st = s,at = a] (2.6)

q∗(s,a) = max
π

qπ(s,a) (2.7)

qπ(s,a) = ∑
s,s′∈S

P(s
′
|s,a)[r+ γ ∑

a′∈A

π(a
′
,s
′
)qπ(a

′
,s
′
)] (2.8)

Applying the optimal values into the Bellman equation, we can get the Bellman optimality back-

ups.

v∗(s) = max
a ∑

s,s′∈S

P(s
′
|s,a)[r+ γv∗(s

′
)] (2.9)

q∗(s,a) = ∑
s,s′∈S

P(s
′
|s,a)[r+ γ max

a′∈A
q∗(a

′
,s
′
)] (2.10)

2.2 Major Approaches and Classical Algorithms

2.2.1 Dynamic Programming

This is a method when the model is fully known i.e. dynamic programming assumes full

knowledge of the transition and reward functions of the MDP. Following the Bellman equations,

in dynamic programming, the policy iteration alternates between policy evaluation and policy

improvement. In policy evaluation, the value function for the current policy is obtained by using

Bellman expectation equation.

vn+1(s) = ∑
a∈A

π(a|s)[R(s,a)+ γ ∑
s,s′∈S

P(s
′
|s,a)vn(s

′
)] (2.11)

At each iteration n+ 1, for a state s, update vn+1(s) from value functions of its successor states

vn(s
′
). The value function will converge to vπ for the current policy π . For policy improvement, a
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better policy is generated π
′ ≥ π by taking action greedily with respect to the current value func-

tion vπ . Let’s say we have a policy π , then we can generate an improved version π
′
by greedily

taking action, π
′
(s) = argmaxa∈A qπ(s,a). This algorithm of iteratively evaluating and improving

policy is called Generalized Policy Iteration (GPI).

2.2.2 Monte Carlo Methods

Monte Carlo methods learn directly from the raw experiences gathered from the episodic

data. They do not need to model any environment dynamics (model free) but just computes

the observed mean return as an approximation of the expected return. Therefore, Monte Carlo

methods require to lo learn from the complete episodes s1,a1,r2, ...,sT to compute the return Eq.

2.2. The empirical mean return for state s is:

v(s) =
∑

T
t=1 1[st = s]Gt

∑
T
t=1 1[st = s]

(2.12)

Where 1[st = s] is a binary indicator function. This way of approximation can be easily extended to

the action-value functions by utilizing (s,a) pair.

q(s,a) =
∑

T
t=1 1[st = s,at = a]Gt

∑
T
t=1 1[st = s,at = a]

(2.13)

In order to learn optimal policy by Monte Carlo methods, we iterate the value functions by fol-

lowing the similar idea of GPI which are:

• Generating a new episode by following the policy π .

• Estimating the action-value function using the new episodes.

• Improving the policy greedily with respect to the current action-value function.
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2.2.3 Temporal Difference Learning

Similar to Monte Carlo methods temporal difference learning is also a model free method.

However, it can learn from incomplete episode which is different from Monte Carlo methods.

It is one of the most important central ideas of reinforcement learning. It learns the state-value

function v(s)

v(s)← v(s)+α[r+ γv(s
′
− v(s))] (2.14)

directly from the agent’s experience with TD error and bootstrapping, in an online, model free

way [40]. From Eq. 2.14, α is the learning rate and the term inside the square braces is the called

TD error. This idea can also be extended towards action-value function Q(s,a) which is called

Q-learning [47].

q(s,a)← q(s,a)+α[r+ γ max
a′∈A

q(s
′
,a
′
)−q(s,a)] (2.15)

Q-learning is an off-policy control method where the update is done greedily. On the other hand,

the on-policy control alternative of Q-learning is called SARSA [32].

q(s,a)← q(s,a)+α[r+ γq(s
′
,a
′
)−q(s,a)] (2.16)

In all of the above mentioned algorithms, the update was done using the data from the one step

look ahead only. However, those update rules (Eq. 2.14-2.16) can incorporate n-steps by updating

towards n-steps return defined as follows,

Gt ← rt + γrt+1 + ...+ γ
n−1rt+n−1 + γ

nv(st+n) (2.17)

2.2.4 Function Approximation

Previously mentioned methods have used a lookup table to store the value for the action-

value function or state-value function. Those methods are not optimal when it comes to large
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and continuous state-action spaces. Function approximation method approximates the value

and action-values functions using the data acquired from the experience of an agent which is

a concept similar to supervised learning. The most challenging part of this method is how we

define the policy. Linear function approximation is a popular choice due to its easily applicable

properties. However, deep neural network became the most popular choice after the work of deep

Q-network [23] where authors utilized the universal approximation property of the deep neural

network in their favor to approximate policy network. In this method the value functions become

a function of both state s and the function parameter w i.e. state value function is defined a v(s,w)

. Any optimization method can be used to get this parameter of the function. The most common

optimization method is gradient descent. The update for the parameter of TD learning is given

in the following formula where ∇v(s,w) is the gradient of the approximate value function with

respect to the function parameter vector w and α is the update rate.

w← w+α[r+ γv(s
′
,w)− v(s,w)]∇v(s,w) (2.18)

This can be implemented by applying gradient descent on minimizing the mean squared error

between the approximate value function v(s,w) and the true value function v(s).

2.2.5 Policy Gradient Methods

On the contrary to the value based methods like TD learning and Q-learning, policy based

methods optimize the policy π(a|s;θ) directly utilizing the function approximation method with

respect to the parameter vector theta. Policy based methods usually have better convergence

properties and highly effective in high dimension or continuous state-action spaces. Moreover,

we can also incorporate stochastic policies through policy gradient methods. However, this kind

of methods generally converges to local optimum and have high variances.
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If we define a policy objective function J(θ) for discrete and continuous state-action

space respectively as the expected return and train the model with the aim to maximize J(θ),

J(θ) = Eπθ
[v] (2.19)

J(θ) = ∑
s∈S

dπθ
(s)Eπθ

[v] (2.20)

we can follow the gradient ascent method to update the parameter θ to update the approximate

policy function πθ . Here, Eπθ
[v] for continuous space can be expanded as,

Eπθ
[v] = ∑

s∈S
(dπθ ∑

a∈A
π(a|s,θ)qπ(s,a)) (2.21)

According to the policy gradient theorem [42], the gradient of the reward function Jθ becomes(eq

18).

∇θ J(θ) = Eπθ
[∇θ lnπ(a|s;θ)qπ(s,a)] (2.22)

Jclip(θ) = Et [min(rt(θ)At ,clip(rt(θ),1− ε,1+ ε)At)] (2.23)

Here ∇θ lnπ(a|s;θ) is the score function or the likelihood ratio. In the similar way, by re-

placing J(θ) with π(a|s;θ), we can calculate the policy gradient analytically for a differentiable

policy when it is not zero.

∇θ π(a|s;θ) = π(a|s;θ)∇θ lnπ(a|s;θ) (2.24)

Policy gradient method has different forms according to different values of qπ(s,a).

• REINFORCE : ∇θ lnπ(a|s;θ)Gt

• Q actor-critic (AC): ∇θ lnπ(a|s;θ)q(s,a,w)
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• Advantage AC: ∇θ lnπ(a|s;θ)(q(a,s)− v(s))

• TD AC: ∇θ lnπ(a|s;θ)(r+ γv(s
′
)− v(s)))

• TD(λ ) AC: ∇θ lnπ(a|s;θ)(r+ γv(s
′
)− v(s)))e where e is the eligibility trace which is used

in the backward view TD online update.

If we subtract a learned function of state bt(s) which is also known as a baseline from

q(s,a) Eq. (2.6), the variances can be reduced while being unbiased in updating the gradients.

A learned value function v(st) is generally used a baseline. Therefore, the resultant gradient

becomes ∇θ lnπ(a|s;θ)(qπ(s,a)− v(st)). In that gradient, the quantity qπ(s,a)− v(st) is defined

as the advantage which tells us how much better an action a would be when compared to the

return acquired from an ’averaged’ action (from v(st)). This approach of updating the gradient

the policy gradient is called Advantage Actor(policy, π) Critic(baseline, bt)(A2C) [22]. There

are other policy optimization algorithms e.g. Trust Region Policy Optimization (TRPO) where

the update rule ensures monotonic improvement of policy using a constraint on KL divergence

[34] and Proximal Policy Optimization (PPO) in which a clipping function is used to restrain

the update of the policy gradients to a certain ratio [36]. These methods ensure fast convergence

while maintaining low variance in updating the policy.
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CHAPTER III

CONTRIBUTION

Our first contribution on this thesis is to benchmark the performance of the humanoid

AI agent on different state-of-the art reinforcement learning algorithm. In the previous study of

building humanoid AI agents by human motion transfer, benchmarking the performances of those

AI were neglected and proximal policy optimization (PPO) was used to measure the performance

of those agents. For our benchmarking process we are going to use vanilla PPO [36], vanilla

Advantage Actor Critic (A2C) [22], and A2C with generalized advantage estimation (GAE) [35]

which is our own implementation of a modified version of A2C. This benchmark study will help

us compare the performance of different famous reinforcement learning algorithms with regards

to the convergence speed and reaching global optimal solutions through variance reduction and

improved RL agent’s performance.

3.1 Vanilla Advantage Actor Critic

As mentioned in the chapter II, the advantage for an actor critics can be calculated by sub-

tracting a baseline bt(s) from the action value function q(s,a). This advantage forces the AI agent

to take an action at at state st which provides the maximum reward estimated from the state value

function. For the vanilla A2C, this action value function appears to be the normally discounted

reward whereas the baseline happens to be the parameterized value function v(st ,θ) which is

periodically updated using an objective function mentioned. Even though this subtraction of a

learned function of state ensures a bit of reduction in variance, the extent of reduction is not as

much as we observe from the addition of importance sampling into PPO.
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3.2 Advantage Actor Critic with Generalized Advantage Estimation

Policy gradient method is a very straightforward method of directly optimizing the re-

wards while using a neural network to approximate nonlinear value functions or action-value

functions. However, this approach requires a large number of samples to successfully go through

a consistent and steady training process for a RL agent. This makes the the training time high

and introduce large variance during training. One way of tackling this problem is to use an

exponentially-weighted estimator of the advantage function similar to the temporal difference

learning. This approach introduces some bias but dramatically reduce variance and improve

the performance of a trained RL agent. This approach is called generalized advantage estimator

(GAE) which have been previously used in policy estimates for PPO and TRPO. But it was never

used with A2C. GAE is an estimation scheme parameterized by discount factor, γ and, weight

decay factor λ .

GAE is concerned about producing an accurate estimate Ât of the discounted advantage

function Aπ,γ(st ,at) to construct a policy gradient estimator. This construction of Ât uses the

calculation of TD residual of V , the approximate value function. Therefore, we can define the TD

residual with discount γ as follows:

δ
V
t = rt + γV (st+1)−V (st) (3.1)

This δV
t can be considered as an estimate of the advantage of action taken at time t, at . If we have

the correct value function V π,γ , i.e., V =V π,γ , then δV
t is a λ -just unbiased estimator the advantage

V π,γ .

Est+1[δ
V π,γ

t ] = Est+1[rt + γV π,γ(st+1)−V π,γ(st)]

= Est+1[Q
π,γ(st ,at)−V π,γ(st)] = Aπ,γ(st ,at)

(3.2)
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This estimator is only γ discounted for the correct value function V π,γ(st). Now, let’s

consider taking the sum of k of these TD residual terms, which we will denote by Â(k)
t

Â(1)
t = δ

V
t =−V (st)+ rt + γV (st+1) (3.3)

Â(2)
t = δ

V
t + γδ

V
t+1 =−V (st)+ rt + γrt+1 + γ

2V (st+2) (3.4)

Â(3)
t = δ

V
t + γδ

V
t+1 + γ

2
δ

V
t+2 =−V (st)+ rt + γrt+1 + γ

2rt+2 + γ
3V (st+3) (3.5)

Â(k)
t =

k−1

∑
l=0

γ
l
δ

V
t+l =−V (st)+ rt + γrt+1 + γ

2rt+2 + ...+ γ
k−1rt+k−1 + γ

kV (st+k) (3.6)

Here we can see that Â(k)
t involves a k-step estimate of the returns, minus a baseline term −Vst .

We can consider Â(k)
t as an estimator of the advantage function, which is only γ−just when V =

V π,γ . When k→ ∞, the bias becomes negligible as the term, γkV (st+k) becomes negligible at that

case as it becomes more heavily discounted. As a result, we get the following expression of the

advantage estimate which is simply the empirical returns minus the value function baseline.

Â(∞)
t =

∞

∑
l=0

γ
l
δ

V
t+l =−V (st)+

∞

∑
l=0

γ
lrt+l (3.7)

The generalized advantage estimator GAE (γ , λ ) is defined as the exponentially-weighted aver-

age of these k−step estimators:

ÂGAE(γ,λ )
t = (1−λ )(Â(1)

t +λ Â(2)
t +λ

2Â(3)
t + ...)

=
∞

∑
l=0

(γλ )l
δ

V
t+l

(3.8)

Equation 3.8 shows that the construction of the estimate of the advantage function is closely anal-

ogous to the TD(λ ) definition from sutton and barto [41] where TD(λ ) estimates value function.
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3.3 Proximal Policy Optimization

The most significant contribution of PPO in terms of improving the learning process and

performance of a RL agent, was introduced by incorporating a clipped surrogate objective. For

PPO specifically the action value function q(s,a) term of the policy gradient objective eq. 2.6 is

replaced with probability ratio rt(θ), a ratio between the new policy and the old policy for taking

an action, multiplied with the advantage of that action.

Reinforcement learning algorithm proposed before PPO, such that A2C and TRPO,

lacked the fact that when during an update of the policy π it would create a huge deviation from

the previous policy, there was no constraint to avoid such kind of updates. PPO uses a clipping

factor to clip the gradients according to the probability ratio rt(θ). This ensures that when there

is a large change in the policy update, the action value function q(s,a) term of the policy gradient

objective eq.2.6 does not have a value which slows down the training process of the RL agent and

consistently updating the policy. As a result, this will help the agent reach its optimal solution

faster. Without this constraints maximization process of the objective function eq.2.6, there can

be an excessively large policy update which could deviate us from reaching the global optimal

result.

The idea of using the probability ratio between the new policy and the old policy is not a

original idea of PPO. It comes from the idea of importance sampling used in TRPO. Importance

sampling is an statistical estimation method where using a known probability density function

we can estimate an unknown probability density function. One of the important effects of using

importance sampling is it reduces the variance in estimation. Thus, by using it in the PPO, we

can also observe a narrower performance variation during the training process of a RL agent

if compared with other algorithms like A2C. Therefore, we can observe, PPO converges the

training process faster with lower about of variance.
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3.3.1 Importance Sampling

Importance sampling is a statistical technique which we can use for estimating properties

of a certain distribution using only the samples generated from a different distribution than the

distribution we are interested about. In one way, we can say importance sampling is an approxi-

mation method instead of a sampling method. Let’s consider a situation where we are trying to

calculate the expectation of function f (x) where we are sampling random variables x from the

distribution p(x). Then we have the following formula for estimating f (x):

E[ f (x)] =
∫

f (x)p(x)dx≈ 1
n ∑

i
f (xi) (3.9)

Normal Monte Carlo sampling method is just sampling i random variable x’s from the dis-

tribution p(x) and taking the average of all those i samples to get an estimate of the expectation.

However, what if the distribution p(x) is very hard to sample? In many cases when we want to

calculate the expectation E [ f (x)] where f (x) is almost zero outside region S for which p(x) is

very small. If we apply a normal Monte Carlo method in this case, samples from the distribution

of random variable x might fail to have ample points inside region S.

In this situation importance sampling comes in handy. This comes from a simple transfor-

mation of the formula of expectation.

E[ f (x)] =
∫

f (x)p(x)dx =
∫

f (x)
p(x)
q(x)

q(x)dx≈ 1
n ∑

i
f (xi)

p(xi)

q(xi)
(3.10)

From eq.3.10, we can estimate the expectation E[ f (x)] by sampling from the distribution q(x)

where q(x)/p(x) is called the sampling weight, which is used as the correcting factor to offset the

sampling from a different distribution q(x).
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In this way, importance sampling provides us a way with controlling the variance of the

estimation as we have the known policy distribution in our control. We know the definition of the

variance as follow,

Var(X) = E[X2]−E[X ]2 (3.11)

In eq.3.11, X is f (x)p(x)/q(x). Therefore, by selecting a proper q(x), the distribution to sample

from, we can effective control the variance and eventually infer a distribution with low variance.

3.4 Reward Saltation

In reinforcement learning an agent obtain reward rt at state st for taking an action at . In

general, if we compare this reward rt with the previous reward obtained rt−1 at the previous

state st−1 after taking action at−1, there can be a significant difference between the values of

rt−1 and rt , specially at the initial stage of the training process. This phenomenon is defined as

reward saltation. When rt > rt−1, we say we have encountered a positive saltation. This situation

happens when the agent finds a shortcut for reaching the goal. On the other hand, if rt < rt−1, the

phenomenon is called negative saltation. Negative saltation occurs when the agent encounters an

unexpected situation like facing a new obstacle in the road on which the agent is trying to walk.

This idea has been implemented with various vesions of DQN [13].

Similar to the above situation, during the lifetime of a normal human being when he/she

faces an unexpected situation that obstructs their success that he/she is aiming for, he/she tends to

become very cautious at that stage where they have faced unexpected turns before. That person

can even stay at that state out of fear because the cause of their response at that stage can be

disastrous for their goal. As the goal of AI is to make machine more humanlike, we would like to

transfer this idea of taking shortcuts when available to obtain very high rewards and be cautious

when there is a potential danger in future steps. This idea can be implemented by magnifying the

current reward, rt , when rt > rt−1. On the other hand, when rt < rt−1, narrow down the current

reward rt .
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This idea of saltation was never implemented with PPO specially with 3D locomotion

tasks before. Shaping a reward function for a RL problem is difficult for different environments.

However, this method we will use a parameter-adjustable optimization method for the reward

function only. This method will not interfere with the interaction between the agent and the

environment. What’s more, we will not need to modify the already defined reward functions for

human motion imitation [26]. Depending on the adjusted parameter, the current reward will be

positively salted, negatively salted, or not salted, and will be stored within the replay buffer for

constructing the policy gradient objective function.

3.4.1 Mathematical Formulation

The major concern to implement this idea of magnifying saltation is when,how, and to

what extent we should magnify the reward. If the reward is amplified significantly, the RL agent

might suffer from the low degree of exploration at those states. Therefore, the convergence pro-

cess of the neural network will lead to local optimal position instead of a global one. On the other

hand, if the extent of magnification is not enough, the experience of reward will not be realized

by the RL agent. For this reason we will define a parameter ρ which is defined as below:

ρ =
rt

rt−1
(3.12)

where rt is the reward for taking the current action at , whereas rt−1 is the reward for taking the

previous action at−1. When the value of ρ is greater than a certain parameter η , reward saltation

parameter, the reward will be magnified. However, this way of controlling the magnification

can cause two problems: i) if the current reward is zero, it will cause ρ to be meaningless and ii)

when rt−1 is too low, the value of the current reward will have non significant effect on ρ . As a

result, we can modify ρ as follows:

ρ =
r
′
t− r

′
t−1

min(r′t ,r
′
t−1)

(3.13)
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r
′
t = rt +σ (3.14)

r
′
t−1 = rt−1 +σ (3.15)

here, σ is a number that is close to zero. This provides the solution for the question of ’when’ to

perform reward saltation. The next question is to ’how’ and ’what’ extent we should magnify the

current reward.

For this, we are going to use a monotonically increasing bounded function arc tan func-

tion, i.e. f (x).= arctan(x), which ranges from −π/2 to π/2. Therefore, when ρ > η we wish to

magnify the current reward rt such that when ρ = η , f (ρ) = 1 and when ρ > η , f (ρ)> 1. With

the introduction of a sign function to incorporate both positive and negative saltation formula, we

obtain the final version of f (x) as follows:

f (x) = arctan(x∗ π

2
∗ 1

η
) (3.16)

where

x = ρ +λ (3.17)

λ = sgn(rt− rt−1) (3.18)

Finally, The magnified salted reward, r∗t will be

r∗t = r
′
t +( f (x)−λ )∗ |r

′
t | (3.19)
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CHAPTER IV

EXPERIMENTAL SETUP

The policies for our desired motions will be optimized using both proximal policy opti-

mization (PPO) [36] and advantage actor critic (A2C) [22] method. What’s more, there will be

two variations for both of these methods. PPO will have a modification of reward saltation to

compare its effect with the vanilla PPO. In both of those cases, the policy gradient advantages

will be calculated using (GAE) [35]. On the other hand, one version of A2C will compute the

advantages with GAE to compare with the vanilla version of A2C. All of these four versions will

train the value function in the same way, that is by using multi-step temporal difference learning.

The experiments use a humanoid model (Fig. 4.1) built by using the PyBullet physics

engine. Links comprising the humanoid model is described in Tab. 4.1 whereas the joints con-

necting those links and their types are described in Tab. 4.2. All the locomotions in consideration

for experiments have state and action dimension of 197 and 36 respectively Tab. 4.3.

The deep mimic pipeline receives a set of kinematic reference motions (demonstration)

along with the character model as inputs. It then uses reinforcement learning to optimize a con-

troller that will imitate the reference motion as well as task objectives by optimizing the rewards

which include imitation objective terms [26].

Each input reference motion is comprised of a set a of target poses {q̂t}. The controller

can be defined a policy π(at |st ,gt) where it provides action at when the character model is in a

state st .
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Figure 4.1: Humanoid model built using the PyBullet physics engine.

Table 4.1: Links and corresponding indices of the humanoid model used for the experiments.

Index Link Name Index Link Name
-1 Base 7 Right elbow
0 Root 8 Right hand
1 Chest 9 Left hip
2 Neck 10 Left knee
3 Right hip 11 Left foot
4 Right knee 12 Left shoulder
5 Right foot 13 Left elbow
6 Right shoulder 14 Left hand
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Table 4.2: Joints and corresponding joint types of the humanoid model used for the experiments.

Joint Name Joint Type Joint Name Joint Type
Root Fixed Right hand Fixed
Chest Spherical Left hip Spherical
Neck Spherical Left knee Revolute

Right hip Spherical Left foot Spherical
Right knee Revolute Left shoulder Spherical
Right foot Spherical Left elbow Revolute

Right shoulder Spherical Left hand Fixed
Right elbow Revolute

Table 4.3: State-action dimension of the motions in consideriation along with the indices of
allowed links of the humanoid model to contact the floor.

Motion State Dimension Action Dimension Fall Contact Links
Walk 197 36 5 and 11
Run 197 36 5 and 11

Backflip 197 36 5 and 11
Cartwheel 197 36 5, 8, 11 and 14
Spinkick 197 36 5 and 11

Spin 197 36 5 and 11

State st depicts the configuration/features of the character model at time t. This configu-

ration includes the relative position, rotations (quaternions), linear and angular velocities of the

links. What’s more there is a phase variable φ which becomes 1 when the link reaches the target

pose while it is 0 at the beginning of the motion. All of these state features are measured with

respect the pelvis (root) of the character model.

This action at specifies the target angles/orientations (spherical joints: axis-angle form

and revolute joints: scalar rotation form) of the proportional-derivative (PD) controller which in

turn computes the torques to be applied in the character’s link joints.

This controller policy is defined as a neural network where the network parameters are

updated by maximizing the rewards defined in terms of imitation and task-specific objective.

The updating process follows a state-of-the-art reinforcement learning algorithm PPO[36]. As
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Figure 4.2: Neural network structure for the policy network.

already mentioned in a generalized form of an RL objective function eq. (2.19), the ppo agent’s

goal is to learn the optimized θ ’s that maximized the expected return defined by the Bellman

equation. PPO uses policy gradient method where policy is updated using the gradient of the

objective function eq. (2.22), where qπ(s,a) is replaced with Rt − v(st). Here, Rt denotes the

return acquired by a trajectory when starting from state st at time t and v(st) is the value function

which estimate of average return when the agent starts from the state st and taking the subsequent

steps by following policy πθ . For the policy network (Fig. 4.2) output action is modeled as a

Gaussian (continuous, µ(s)) where the input features are processed with two fully connected

hidden layer with 1024 and 512 nodes respectively. All of the hidden layer nodes have ReLU

activation function while the output layer has linear activation function.

This value function v(st) will be trained using TD(λ ) while the advantage(qπ(s,a) of

(2.22) will be calculated using both GAE(λ ) [35] and from the difference of a learned function

from a baseline. Value function estimation process uses a network (Fig.4.3) similar to the policy

network but with only a single linear output unit.
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Figure 4.3: Neural network structure for the value network.

The overall process of reinforcement learning for updating the policy network objective

Eq. (2.22) requires calculation of the total return. On the other hand, the return is calculated on

the rewards an agent gets from taking a certain step. As the agent is forced to imitate reference

motions, the reward is defined in such a way that the update of the policy network happens in

such a way that it forces the agent to mimic the reference motion. This imitation reward, rt is

divided into four parts:

• Pose reward, rp
t : This motivates the agent model to the match joint orientation of the refer-

ence motions. This reward is calculated from difference between the jth joint quaternions

of the simulated agent model qt and those of the demonstrated motion (q̂t).

rp
t = exp

[
−2

(
∑

j
||q̂t

j	q j
t ||2
)]

(4.1)
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• Velocity reward, rv
t : This reward is calculated from the difference between the angular

velocities of the jth joint of the simulated agent character (q̇t
j) and the ones ( ˆ̇q j

t ) calculated

by finite difference method from the reference motion data.

rv
t = exp

[
−0.1

(
∑

j
|| ˆ̇q j

t − q̇t
j||2
)]

(4.2)

• End-effector reward, re
t : This forces the agent character end-effectors (pe

t ) to match with

the ones of the reference motion (p̂t
e). Left foot, right foot, left hand, and right hand are the

end-effectors of the character model.

re
t = exp

[
−40

(
∑

j
||p̂t

e− pe
t ||2
)]

(4.3)

• Center-of-mass reward, rc
t : This punishes the agent if its center-of-mass (pc

t ) deviates from

the reference motion (p̂t
c).

rc
t = exp

[
−10

(
∑

j
||p̂t

c− pc
t ||2
)]

(4.4)

These rp
t , rv

t , re
t , and rp

c together comprise the total reward at time t, i.e., rt . However, as

not all of the rewards have the same effects on the imitation tasks, we are going to use weights for

each of those separate rewards. Therefore, the total rewards for our imitation objective is defined

as follows:

rt = wprp
t +wvrv

t +were
t +wcrc

t (4.5)

where wp, wv, we, and wc have values 0.65, 0.1, 0.15, and 0.1 respectively. Higher weight for the

pose reward rp
t indicates that we are prioritizing on the humanoid model to match the reference

motion orientation. Maginification on the saltatory reward in our proposed method will occur at

time t, rt , if it satisfies the given condition when compared with the reward at time t−1, rt−1.
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4.1 Training

As we have already mentioned, our policies will be trained using both PPO and A2C. In

both of those cases, there will be two networks: one for the policy function πθ (a|s) and the other

one is for value function vψ(s) where we update the parameters θ and ψ periodically. The overall

training happens episodically where the the initial state s0 is chosen uniformly in a random man-

ner from the reference motion. On the other hand, the rollouts of the trajectory are acquired from

sampling the actions using the policy πθ (a|s) at each step. Each of the episodes continues until

the agent reaches a certain time horizon or until it reaches the termination conditions.

In our experiments, all of these are done in parallel using multiprocessing method. In this

multiprocessing method, we have used eight separate RL agents to run in eight different threads

of our processor to generate ample amount of rollouts to form a batch of data. From that batch

of data, minibatches are samples from the dataset to update the policy πθ (a|s) and value function

vψ(s). In this way, we can generate a lot of data from rollouts which leads the networks converge

quicker than the case when we run try to train our agent with single thread.The value function

vψ(s) is updated by target values calculated from TD(λ ) using mean square error. On the other

hand, the policy function πθ (a|s) is updated from the policy gradient objective function with

advantage calculated from both normally and using GAE.

Detailed pseudocodes of our implemented algorithms used for the experiments with

custom RL environment are depicted below:
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Algorithm 1: Vanilla Proximal Policy Optimization (PPO)
1 θ ← random weights
2 ψ ← random weights
3 while not done do
4 s0← sample initial state from reference motion
5 Initialize character to s0
6 for step = 1, ..., m do
7 s← start state
8 a∼ πθ (a|s)
9 Apply a and simulate forward one step

10 s
′ ← end state

11 r← reward
12 store (s,a,r,s

′
) into memory D

13 end for
14 θold ← θ

15 for each update step do
16 Sample from minibatch of n samples (s,a,r,s

′
) from memory D

// Update value function
17 for each (si,ai,ri,s

′
i) do

18 yi← compute target values using TD( λ )
19 end for
20 ψ ← ψ +αv(

1
n ∑i ∇ψVψ(si)(yi−V (si)))

// Update policy function
21 for each (si,ai,ri,s

′
i) do

22 Ai← compute advantage using Vψ and GAE
23 wi(θ)← πθ (ai|si)

πθold (ai|si)

24 end for
25 θ ← θ +απ(

1
n ∑i ∇θ min(wi(θ)Ai,clip(wi(θ),1− ε,1+ ε))Ai)

26 end for
27 end while
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Algorithm 2: Proximal Policy Optimization with Magnify Saltatory Reward
(PPOMSR)

1 θ ← random weights
2 ψ ← random weights
3 while not done do
4 s0← sample initial state from reference motion
5 Initialize character to s0
6 for step = 1, ..., m do
7 st ← start state
8 at ∼ πθ (a|s)
9 Apply at and simulate forward one step

10 s
′
t ← end state

11 rt ← reward
12 r

′
t ← rt +σ

13 ρ ← r
′
t−r

′
t−1

min(|r′t |,|r
′
t−1|)

14 x← ρ +λ

// Checking saltation
15 if x > η or x <−η then
16 r∗t ← r

′
t +(arctan(x∗ π

2 ∗
1
η
)−λ )∗ |r′t |

17 else
18 r∗t ← rt
19 end if
20 store (st ,at ,r∗t ,s

′
t) into memory D

21 end for
22 θold ← θ

23 for each update step do
24 Sample from minibatch of n samples (s,a,r,s

′
) from memory D

// Update value function
25 for each (si,ai,r∗i ,s

′
i) do

26 yi← compute target values using TD( λ )
27 end for
28 ψ ← ψ +αv(

1
n ∑i ∇ψVψ(si)(yi−V (si)))

// Update policy function
29 for each (si,ai,ri,s

′
i) do

30 Ai← compute advantage using Vψ and GAE
31 wi(θ)← πθ (ai|si)

πθold (ai|si)

32 end for
33 θ ← θ +απ(

1
n ∑i ∇θ min(wi(θ)Ai,clip(wi(θ),1− ε,1+ ε))Ai)

34 end for
35 end while
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Algorithm 3: Advantage Actor Critic (A2C)
1 θ ← random weights
2 ψ ← random weights
3 while not done do
4 s0← sample initial state from reference motion
5 Initialize character to s0
6 for step = 1, ..., m do
7 s← start state
8 a∼ πθ (a|s)
9 Apply a and simulate forward one step

10 s
′ ← end state

11 r← reward
12 store (s,a,r,s

′
) into memory D

13 end for

14 R←

{
0, if s is a terminal state
Vψ(s), otherwise

15 for each update step do
16 Sample from minibatch of n samples (s,a,r,s

′
) from memory D

// Update value and policy function
17 for each (si,ai,ri,s

′
i) do

18 Ri← ri + γRi−1
19 Ai← Ri−V (si)

20 end for
21 ψ ← ψ +αv(

1
n ∑i ∇ψVψ(si)(Ri−V (si)))

22 θ ← θ +απ(
1
n ∑i ∇θ lnπ(ai|si)Ai)

23 end for
24 end while
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Algorithm 4: Advantage Actor Critic with Generalized Advantage Estimation
1 θ ← random weights
2 ψ ← random weights
3 while not done do
4 s0← sample initial state from reference motion
5 Initialize character to s0
6 for step = 1, ..., m do
7 s← start state
8 a∼ πθ (a|s)
9 Apply a and simulate forward one step

10 s
′ ← end state

11 r← reward
12 store (s,a,r,s

′
) into memory D

13 end for

14 R←

{
0, if s is a terminal state
Vψ(s), otherwise

15 for each update step do
16 Sample from minibatch of n samples (s,a,r,s

′
) from memory D

// Update value and policy function
17 for each (si,ai,ri,s

′
i) do

18 Ri← ri + γRi−1
19 Ai← compute advantage using Vψ and GAE
20 end for
21 ψ ← ψ +αv(

1
n ∑i ∇ψVψ(si)(Ri−V (si)))

22 θ ← θ +απ(
1
n ∑i ∇θ lnπ(ai|si)Ai)

23 end for
24 end while
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CHAPTER V

RESULTS AND DISCUSSION

This chapter demonstrates the effects of generalized advantage estimation (GAE) and

magnifying salted rewards on the performance and training convergence speed of RL agents.

What’s more, it also compares the performance of the two state of the art RL algorithms PPO and

A2C [36, 22] with respect to those parameters as well. Snapshots of all the six locomotions are

available from Figs. 5.12 to 5.17. Theses simulated characters are trained using vanilla PPO and

the interface is from PyBullet physics engine.

5.1 Effects of Generalized Advantage Estimation

We can easily observe the performance difference due to the presence of GAE from Figs.

5.1-5.6. Those figures depict the comparison among PPO, A2C, and A2C with GAE with respect

to the average return we calculated during the training of the RL agents for six different motions:

i) backflip, ii) cartwheel, iii) spinkick, iv) spin, v) walk, and vi) run. These figures help us come

to a conclusion that except for the running motion, PPO is the most superior algorithm by a good

margin. In those except running, the RL agent learned the motions not only quicker but also

obtained higher average returns using the vanilla PPO algorithm. Table 5.1 displays the sample

required on the scale of 108 to converge the training for an agent. From Tab. 5.1 we can say

training of a RL agent to learn backflip converges 1.5 times faster (lesser amount of samples)

if compared with vanilla A2C. This amount is comparatively huge as we are calculating on the

scale of 108 and thus saving significant amount of computational time and power. On the other

hand, RL agents, using vanilla PPO, learn all other motions quicker as well if compared with

34



vanilla A2C. Similarly, if we consider the average returns of the last hundred episodes during

training (Tab. 5.3), PPO attains significantly higher average return for learning all of the motions

in concern when compared with A2C.

Figure 5.1: Comparison of the performance of a DRL agent of Backflip motion for Vanilla PPO,
Vanilla A2C, and A2C with GAE.

As vanilla PPO uses an objective function with constraints where the gradients are clipped,

the optimization does not use the gradient when there is an excessively large policy update which

can deviate the optimization from the global maximum. This results in a stable and quicker con-

vergence of the training of a RL agent. What’s more, as GAE provides an estimate of the advan-

tage by considering future advantages, that helps in deciding which action is the most advanta-

geous one while keeping possible future actions in consideration at a certain state thus reducing

the variances. This results in a significant overall gain in average returns as well as faster conver-

gence for the training.
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Figure 5.2: Comparison of the performance of a DRL agent of Cartwheel motion for Vanilla PPO,
Vanilla A2C, and A2C with GAE.

On the other hand, after the inclusion of GAE with vanilla A2C, modified A2C appears

to be performing well regarding average returns and convergence speed in comparison with

the vanilla A2C. However, the performance of the modified A2C could not reach to the level

of vanilla PPO in regards to learning the locomotions from references, Figs. 5.1 to 5.5, except

learning running motion where the modified A2C matches level of performance of vanilla PPO

displayed in Fig. 5.6. From Tab. 5.1 we can observe that the convergence speed of the training of

a RL agent using the modified A2C for learning backflip motion is 1.2 times faster than vanilla

A2C whereas it is a little bit slower than the agent using vanilla PPO. Similarly, while learning

the motions from references, agents using A2C with GAE outperforms the agents using vanilla

A2C (Tab. 5.3) with regards to the average returns of the last hundred episodes.
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Figure 5.3: Comparison of the performance of a DRL agent of Spinkick motion for Vanilla PPO,
Vanilla A2C, and A2C with GAE.

5.2 Effects of Magnifying Salted Rewards

Figures 5.7 to 5.8 display the effect of our proposed modified PPO with the presence

of a parameter based reward function optimization process. Figures 5.7 to 5.8 compares the

performance of the RL agent during training for different values of η along with the vanilla PPO.

It is clear from Fig. 5.7 that the RL agent using PPOMSR with η = 2 has obtained the best result

for learning backflip. From the values of Tab. 5.2, we can say, for all the values of η the training

process converges faster than the vanilla PPO but in a decreasing order with the increment of η .

However, that is different for cartwheel where only η = 2 obtains better convergence speed for the

RL agent and other values of η performs a little worse than vanilla PPO.

For backflip motion, similar to the convergence speed, the average returns of PPOMSR

(Tab. 5.4) decreases with the increment of η . For PPOMSR with η = 2 obtains a little higher

average return for the last hundred episode than the vanilla PPO. On the contrary, for cartwheel,
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Figure 5.4: Comparison of the performance of a DRL agent of Spin motion for Vanilla PPO,
Vanilla A2C, and A2C with GAE.

PPOMSR could not reach to a higher average return for any values of η than the vanilla PPO.

Snapshots of the humanoid at different time sequence for all the six motions are depicted from

Fig. 5.12 to 5.17.

Table 5.1: Required sample size (x108) for completing the training the DRL agent with Vanilla
PPO, Vanilla A2C, and A2C with GAE.

Motion Vanilla PPO Vanilla A2C A2C with GAE
Backflip 0.90 1.40 1.18

Cartwheel 1.30 1.39 0.80
Spinkick 0.37 0.54 0.52

Spin 0.39 0.85 0.61
Run 0.53 0.62 0.57
Walk 0.61 0.63 0.45
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Figure 5.5: Comparison of the performance of a DRL agent of Walk motion for Vanilla PPO,
Vanilla A2C, and A2C with GAE.

Table 5.2: Required sample size (x108) for completing the training the DRL agent with Vanilla
PPO and PPOMSR.

Motion Vanilla PPO PPOMSR PPOMSR PPOMSR
η = 2 η = 3 η = 4

Backflip 0.9 0.76 0.71 0.82
Cartwheel 1.30 1.20 1.39 1.39
Spinkick 0.37 0.55 0.70

Spin 0.39 0.28 0.40
Run 0.53 0.48 0.50
Walk 0.61
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Figure 5.6: Comparison of the performance of a DRL agent of Run motion for Vanilla PPO,
Vanilla A2C, and A2C with GAE.

Figure 5.7: Comparison of the performance of a DRL agent of Backflip motion for Vanilla PPO
and magnified saltatory rewarded PPO with η = 2, 3, and 4.
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Figure 5.8: Comparison of the performance of a DRL agent of Cartwheel motion for Vanilla PPO
and magnified saltatory rewarded PPO with η = 2, 3, and 4.

Figure 5.9: Comparison of the performance of a DRL agent of Spinkick motion for Vanilla PPO
and magnified saltatory rewarded PPO with η = 2, 3, and 4.
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Figure 5.10: Comparison of the performance of a DRL agent of Spin motion for Vanilla PPO and
magnified saltatory rewarded PPO with η = 2, 3, and 4.

Figure 5.11: Comparison of the performance of a DRL agent of Run motion for Vanilla PPO and
magnified saltatory rewarded PPO with η = 2, 3, and 4.
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Table 5.3: Average returns of the DRL agent during training for last 100 episodes for Vanilla
PPO, Vanilla A2C, and A2C with GAE

Motion Vanilla PPO Vanilla A2C A2C with GAE
Backflip 76.651 46.232 47.839

Cartwheel 58.134 43.477 48.292
Spinkick 70.983 62.315 62.726

Spin 33.995 20.438 22.438
Run 76.281 61.838 78.316
Walk 73.490 68.247 68.777

Table 5.4: Average returns of the DRL agent during training for last 100 episodes for Vanilla PPO
and PPOMSR.

Motion Vanilla PPO PPOMSR PPOMSR PPOMSR
η = 2 η = 3 η = 4

Backflip 58.134 58.562 56.934 55.244
Cartwheel 76.651 75.262 71.976 73.736
Spinkick 70.983 69.965 68.634

Spin 33.995 31.477 35.573
Run 76.281 72.759 74.118
Walk 73.490

(a) (b) (c) (d) (e) (f)

Figure 5.12: Snapshots of walking motion from the trained policies.
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(a) (b) (c) (d) (e) (f)

Figure 5.13: Snapshots of running motion from the trained policies

(a) (b) (c) (d) (e) (f)

Figure 5.14: Snapshots of backflip motion from the trained policies.

(a) (b) (c) (d) (e) (f)

Figure 5.15: Snapshots of cartwheel motion from the trained policies.
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(a) (b) (c) (d) (e) (f)

Figure 5.16: Snapshots of spinkick motion from the trained policies.

(a) (b) (c) (d) (e) (f)

Figure 5.17: Snapshots of spin motion from the trained policies.
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CHAPTER VI

CONCLUSION

In deep reinforcement learning, slow convergence of the training process and local opti-

mal results are the main concerns of improvement nowadays. Because, if an agent can learn an

environment with high-dimensional state-action space quicker, that will lead to a better way of

using computational power. On the other hand, reaching a global optimal solution will also help

the agent follow the perfect path to learn the environment. In our work, we have proposed two

modified algorithms, for faster convergence and better average return during the training of a RL

agent for learning high-dimensional continuous environments.

Policy gradient methods provides a way to approximate the policy gradients for policy

updates. For this process we require to calculate advantage of an action. Estimating that advan-

tage in a proper way can reduce the variance of the policy gradient optimization process and

thus result in a quicker convergence and better average return of the RL training process. As a

reusult, introducing generalized advantage estimation with vanilla A2C has proven to be improv-

ing the convergence speed and average return of the RL training process. In all of our experiment,

we have discovered when the advantage is calculated with multi-step returns, it provides better

performance than the vanilla A2C where the advantage is calculated using one-step return.

Adding the concept of magnifying salted reward with PPO adjusts the already defined re-

ward function of imitation from experience and enriches the experience pool with salted rewards.

This accelerates the convergence speed of the training and it also leads to the global optimal

solution, i.e., higher average return during the training process. Our experiments with learning
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different humanlike movements from reference motion have proven this. What’s more, as this

reward optimization is parameterized, this can also be adaptable to any other high dimensional

RL environements.
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