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ABSTRACT 

Islam, Md Mofakkirul,  Prediction of Tool Wear and Surface Finish using ANFIS modeling 

during  CNC turning of CFRP composites Master of Science in Engineering (MSE). May, 

2022, 95 pp, 58 figures, 9 tables, references, 72 titles.  

Carbon fiber-reinforced plastic (CFRP) is gaining wide acceptance in areas including 

sports, aerospace and automobile industry . Because of its superior mechanical qualities and lower 

weight than metals, it needs effective and efficient machining methods. In this study, the 

relationship between the cutting parameters (Speed, Feed, Depth of Cut) and response parameters 

(Vibration, Surface Finish, Cutting Force and Tool Wear) are investigated for CFRP composite. 

For machining of CFRP, CNC turning operation with coated carbide tool is used. An ANFIS model 

with two MISO system has been developed to predict the tool wear and surface finish. Speed, feed, 

depth of cut, vibration and cutting force have been used as input parameters and tool wear and 

surface finish have been used as output parameter. Three sets of cutting parameter have been used 

to gather the data points for continuous turning of CFRP composite. The model merged fuzzy 

inference modeling with artificial neural network learning abilities, and a set of rules is constructed 

directly from experimental data. However, Design of Experiments (DOE) confirmation of this 

experiment fails because of multi-collinearity problem in the dataset and insufficient experimental 

data points to predict the tool wear  and surface roughness effectively using ANFIS methodology.  

Therefore, the result of this experiment do not provide a proper representation, and result in a 

failure to conform to a correct DOE approach.
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CHAPTER I 

 

 

INTRODUCTION 

 

 

The manufacturing industry is regularly striving to reduce its cutting costs and increase the 

quality of the machined parts. The need for high tolerance manufactured goods is quickly 

increasing. The growing needs to boost productivity, to machine more complicated parts and to 

improve quality in high volume by the industry which are the driving force behind the development 

of cutting tool materials (Yoshio et al., 2007). The direct contact between cutting tool, work piece 

specimen, and the chips during machining operation impose thermal and mechanical stresses on 

the cutting tool. As a result, changes to the geometry, volume loss, and sharpness of the cutting 

tool can occur either gradually or abruptly. This change, which is known as tool wear, normally 

takes place at the rates dependent upon machining conditions, work piece material, as well as the 

cutting tool material and tool geometry. According to the standard ISO 3685:1993 for wear 

measurements, the major cutting edge is considered to be divided into four regions, as shown in 

Figure 1.1: 

▪ Region C is the curved part of the cutting edge at the tool corner. 

▪ Region B is the remaining straight part of the cutting edge in zone C. 

▪ Region A is the quarter of the worn cutting-edge length b farthest away from the tool corner

▪ Region N is notch type wear. It is the extended area between the mutual contact between the 

tool and work piece along the major cutting edge.  
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Fig. 1.1 Tool Wear According to Standard ISO 3685:1993 

Tool wear detection is an important topic for tool condition monitoring (TCM). The 

maximization of useful tool life is usually associated with the optimization of machining processes. 

The key issue is to search for a suitable trade-off between tool wear and productivity, considering 

the tool’s cost, its replacement cost, the cost of writing off the machine’s idle time, and so forth. 

Avoiding damage from excessive tool wear is another significant factor. The tool can be replaced 

after it breaks but it means increased costs since the post-breakage stage is one of the deceptive, 

most unpredictable times, aside from the harm that may be done to the part and, not unusually, to 

the whole machine itself (Gajate et al., 2012).  

 

Surface finish is the finer irregularities of surface texture which generally includes those 

irregularities that come out from inherent action of the production system. The average surface 

finish (Ra) quantifies the component’s of surface quality. The average finish can be defined as the 
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average value of the departures from its centerline which is taken over a sampling length of the 

surface (Dweiri et al., 2003). The finished product's quality is determined by its dimensional and 

surface quality. Surface finish and texture are used to describe and identify the surface quality. 

Surface finish is one of the most common indexes for determining the quality of surface (Chen 

and Savage, 2001). Manufacturing processes fail to achieve theoretical surface finish owing to 

flaws on machined surfaces caused by process inadequacies and imbalances. Measuring 

techniques are required to establish the true state of surfaces and manufacture components with 

greater precision. It is important to use theoretical models that allow for prediction of surface finish 

based on response characteristics (Sivaro et al., 2000).  

Carbon fiber manufacturing and processing are now driven by the civil aircraft sector, 

which benefits from the material's low weight, high strength, and corrosion resistance (Robarts, 

2007). Carbon fiber reinforced plastic (CFRP) contributes roughly 50 wt% of the weight of modern 

aircraft like the Boeing 787 and the Airbus A350 (Sheikh-Ahmad, 2009). Two or more elements 

are commonly found in fiber reinforced materials. They are matrix and fiber, in order to take 

advantage of their greatest qualities while avoiding their flaws. In general, the matrix is ductile, 

and the fiber is brittle. The matrix works as a load conveying medium in fiber reinforced composite 

materials, while the fibers act as a load carrying medium (Mohan et. al., 2005). Machining of 

CFRP components is critical for commencing serial manufacturing of high precision CFRP 

components. CFRP materials are difficult to machine due to their anisotropic and non-

homogeneous structure, and also due to the abrasive action by the reinforcing carbon fibers on the 

edge of the cutting tool when being machined (Chen, 1997). Metal machining processes like 

milling and drilling are also used frequently for the machining of CFRP parts.  
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Tool Wear in Turning Process 

Out of different forms of machining operations, boring, turning, milling, broaching, 

grinding, honing, and lapping are the key value-adding metal cutting processes required for the 

production of assembly components and final products. During turning process, the tool is 

subjected to tremendous mechanical stress, high temperatures, and corrosion from cutting fluids. 

Thus, edges gradually wear down, leading to premature catastrophic collapse. Plastic deformation, 

material fluency at high temperatures, fatigue, and brittle fracture due to coupled loads and low 

tool tenacity are key reasons of tool breakage (Sharma et al., 2008b). Cutting tools undergo several 

wear mechanisms during machining, namely abrasion, adhesion, diffusion, fatigue, and chemical 

wear (Altintas, 2000). Typical tool wear situations usually involve more than one of these kinds 

of wear. However, it is well understood that mechanical abrasion on the flank face of the cutting 

tool characterizes the primary tool wear mechanism.  It is mainly observed on the flank face of the 

primary cutting edge of the tool and thus is one of the primary reasons for the majority of the flank 

wear. Abrasion wear occurs because of hard particles interacting at the tool-work piece interface. 

For instance, when some part of the chips gets locked onto the work piece-tool interface and the 

machining operation is still continued, these particles get dragged. This causes abrasion wear on 

the tool surface. Abrasion wear exists for all the machining conditions. It cannot be avoided and 

can only be minimized. Abrasion wear prevails for all the conditions due to machining at high 

speed (Jie Gua et al., 1999). Abrasion wear causes the carbide elements in the tool to protrude out 

of the flank face and hence disturb the geometry of the flank face. Abrasion wear is undesirable 

because it can not only wear the tool quickly but also adversely impact the surface finish on the 

work piece. A typical graph of wear vs. cutting time or cutting distance includes three regions. The 

first region (region I in Figure 1.2) is the area of primary or initial wear. The comparatively 
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elevated wear rate (an increase of tool wear per unit time or length of the cutting path) in this 

region is described by accelerated wear of the tool layers damaged during manufacturing or re-

sharpening. The second region (region II in Figure 1.2) is the region of steady-state wear. This is 

the normal operating region for the cutting tool. The third region (region III in Figure 1.2) is known 

as the tertiary or accelerated wear region. Accelerated tool wear in this area is generally associated 

with high cutting forces, temperatures, and severe tool vibrations. Normally, the cutting tool should 

not be used in this region. The cutting tool life is either the cutting time/distance at the limit of the 

low wear rate region or the time to reach a given wear land value based on the material being cut 

(Shaw, 2005). Tool wear is a time-dependent stochastic process, so the time to reach the failure 

region can fluctuate greatly from tool to tool. 

 

Fig. 1.2 Tool Wear Vs Cutting Time Curve (Umaras et al., 2019) 

 

 

 

Tool 

Wear 
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Tool Wear Measurement Approaches 

For turning operation, continuous monitoring of the tool wear is imperative for the 

determination of a suitable time for tool replacement or reconditioning in order to alleviate any 

adverse effects of the worn tool on the machined surface. In general, the condition of the cutting 

tool can be determined through two possible methods, namely direct and indirect methods. Broadly 

speaking, (1) direct, where the actual tool wear is measured in-situ; (2) indirect, where a parameter 

correlated with tool wear is measured (Dan and Matthew, 1990). Direct measurement using optical 

devices has been extensively and effectively employed in studying the extent of tool wear as well 

as to understand its mechanisms. The optical measurement of tool flank wear has also been proven 

to be useful in estimating the tool’s useful life by employing the classical Taylor’s tool life 

equation. However, the drawbacks of this method are: (1) it is time consuming, and (2) the 

machining operation must be interrupted in order to determine the extent of tool wear. Taylor 

presented the following equation (Cook et al., 1989): 

                                                            Vc T
n = C                                                                             (1) 

where Vc is the cutting speed (m/min), T is the tool life (min) taken to generate certain flank wear 

(VBB), n is an exponent that relies on the cutting parameters and C is a constant. The parameters 

n and C depend on cutting speed, work material, tool material, etc. The constant C has units of 

fpm and is the speed at which the tool life continues 1 min. According to the basic Taylor tool life 

formula, the cutting speed is the only parameter that adversely affects the tool life. This is because 

this formula was obtained using high-carbon and high-speed steels as tool materials. With the 

further development of carbides and other tool materials, it was found that parameters like the 

cutting feed and the depth of cut (DOC) are also significant. As a result, Taylor’s tool life formula 

was rewritten to accommodate these changes as: 
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                                                           Vc Tn f
a db = C                                                                    (2) 

where d is the depth of cut (mm) and f is the feed rate(mm/rev). The exponents a and 

b are to be determined experimentally for each combination of the cutting conditions.  

Unlike direct measurement approaches are established by correlating suitable sensor 

signals to tool wear states. The tool condition is estimated from the measurable signal feature. 

Researchers have used measurement data of forces (Altintas, 1988; Altintas and Yellowley, 1989; 

Du et al., 1995; Byrne et al., 1995; Saglam and Unuvar, 2003; Nouri et al., 2012) vibrations (El-

Wardany et al., 1996; Berger et al., 1998; Dilma and Lister, 2012; Srinivasa et al., 2002) acoustic 

emission spindle motor and feed currents to estimate tool wear state. Several comprehensive 

surveys of these works have been published. Traditional models like statistical regression and 

response surface methodology approaches have been used previously by some researchers in 

modeling the cutting process. But these methods cannot overcome the nonlinearity of relationships 

between cutting conditions and the output response. On the other hand, soft computing, as the 

name suggests, refers to a collection of computational techniques developed from computer 

science research. The major aims are to model and analyze complex, nonlinear, and imprecise 

phenomena that may exist in the process variables. The techniques are usually robust and capable 

of yielding complete, accurate, and reliable solutions (Azmi, 2015). AI-based models are 

developed using non-conventional approaches such as Artificial Neural Network (ANN), Fuzzy 

Logic (FL), and Genetic Algorithm (GA) (Dweiri et al., 2003; Brezocnik et al., 2004; Cus & 

Zuperl, 2006). Recently, AI-based models have become the preferred trend, and these are applied 

by most researchers to develop a model for near-optimal conditions in machining. It is also 

considered as a successful approach to modeling the machining process for predicting performance 

measures through the development of an expert system. An expert system is an interactive 
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intelligence program with an expert-like performance in solving a particular type of problem using 

the knowledge base, inference engine, and user interface. A model based on ANN is able to learn, 

adapt to changes and mimic the human thought process with little human interaction. The FL 

model deals with linguistic variables rather than calculation based crisp values. The GA model, 

meanwhile, involves the coding of solution states in chromosomes as a series of binary elements 

zero and one. Similar to the conventional approaches which consist of various numbers of 

alternative techniques, AI also provides alternative techniques in modeling as mentioned above. 

Different techniques may be suitable for particular modeling problems in the machining process 

and may not be suitable for other ones (Zain et al., 2010). 

Surface Finish Measurement Approaches  

Machinability is about cutting the material with maximum removal rate, shortest time, 

maximum tool life, and best surface finish. In globally competitive market, high quality surface 

finish is a crucial factor. A lot of analytical methods were developed and used for predicting 

surface finish and an empirical model was also used for the prediction of surface finish during 

turning operation (Hadi and Ahmed, 2006). The empirical model is developed using nonlinear 

regression analysis and logarithmic data transformation. Experiments with metal cutting and 

statistical tests show that the model created in this study causes fewer errors and achieves a 

satisfactory result. In precision turning with a diamond cutting tool, mathematical models were 

utilized to model and analyze vibration and surface finish (Chen et al., 2011). Some preliminary 

studies in applying the fundamental artificial intelligence technique to model machining processes 

have recently been published in the literature, concluding that the modeling of surface quality in 

machining processes has primarily relied on Artificial Neural Networks and fuzzy set theory 

(Chaudhary et al., 2005). The impact of machining parameter combinations on achieving a good 
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surface finish in turning and utilizing fuzzy modeling to anticipate surface finish values is also 

presented (Rajasekaran et al., 2011). It is also worth noting that the neural network utilized in the 

study enabled the resolution of a difficult-to-define and mathematically described problem. This 

may be seen in the study where the neural network is used based on data from face milling 

machining processes, with the goal of producing a link between cutting force and instantaneous 

angle φ (Savković et al., 2013).  

Neuro-Fuzzy System 

A human operator can often anticipate the condition of the tool by auditing the machining 

conditions and by taking advantage of his sensory perceptions. However, in automated 

manufacturing, the relationship between process characteristics and tool wear state is difficult to 

capture. This is at least partly due to the relative obscurity of the relationship between tool wear 

and process characteristics, and partly due to lack of reliable means of sensing these characteristics 

via direct or even indirect sensing mechanisms. On the other hand, the capacity of artificial neural 

networks to capture complex nonlinear relationships in a relatively efficient manner has motivated 

several researchers to pursue the use of these networks in developing diagnostic models of tool 

wear and surface finish. The relative effectiveness of neural network-based models of tool wear 

and surface finish is, however at least partly, offset by their lack of transparency. In other words, 

the nonlinear interrelation between sensor readings and tool wear state embedded in a neural 

network remains hidden as connection weights, and unavailable to the user. In this work, the 

researchers attempt to remedy this situation by using the knowledge embedded in a pre-trained 

neural network to construct a fuzzy logic-based model of tool wear.  

Neuro-fuzzy inference techniques associate the paradigms of fuzzy logic and neural 

networks to benefit from both techniques, achieving the simplicity of modeling (neural networks), 
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while providing knowledge available in a set of if-then rules. Neuro-fuzzy systems have been 

broadly used in modeling, identification, and monitoring of complex systems. Since its origin in 

the early nineties, neuro-fuzzy systems have gone through various changes over the years, giving 

rise to various directions in research. For example, depending on the type of inference that the 

neuro-fuzzy system uses, or according to the structure of the neuro-fuzzy system, the neuro-fuzzy 

system can be differentiated into various sub-groups within the neuro-fuzzy approaches. Figure 

1.3 provides some perspectives.  

 

Fig. 1.3 Nero-fuzzy Spectrum (Gill et al., 2012) 

The adaptive-network-based fuzzy inference system (ANFIS) is one of the first neuro-

fuzzy systems to be developed (Jang, 1993). Its principle is founded on extracting fuzzy rules in 

each level of a neural network. Once the rules have been obtained, they provide the requisite 
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information on the global behavior of the system. ANFIS executes the Takagi-Sugeno model. 

ANFIS architecture is comprised of five layers, as shown in Fig. 1.4. The nodes illustrate with 

squares are nodes with adjustable parameters, whereas the nodes represented by circles are fixed 

nodes. The first layer represents fuzzy membership functions. The second and the third layer 

comprise nodes that form the antecedent parts in each rule. The fourth layer calculates the first-

order Takagi-Sugeno rules for each fuzzy rule. The fifth layer (output layer) calculates the 

weighted global output of the system. ANFIS uses error backpropagation as the learning strategy 

to obtain the antecedent parameters of the rules. The consequent parameters of each rule are 

decided using the least-squares method. A step in the learning procedure has two passes: in the 

first or forward pass, the input patterns are propagated, and the optimal consequent parameters are 

estimated by an iterative least mean square method, while the premise parameters are assumed to 

be fixed for the current cycle through the training set. In the second or backward pass, the patterns 

are propagated again, and in this epoch, backpropagation is used to adjust the premise parameters, 

while the consequent parameters remain fixed. This procedure is then iterated until the error 

criterion is satisfied (Denai et al. 2007). 

In this study, the cutting force (F), vibration (a), cutting speed (V), feed (f) and depth of 

cut (DC) are selected as input parameters because quite often the tool wear phenomenon is 

reflected by time-domain and frequency domain analysis of these variables. Cutting tool vibrations 

are caused by rubbing at the work-piece tool flank interface, the creation of a built-up edge, and 

the waviness of the work surface during machining. Acceleration is best measure of vibrations 

when they are occurring at high frequencies. Cutting force is an important variable that is relatively 

easy to be measured in real-time. Though numerous factors influence surface finish, including 

cutting tool and work piece qualities, tool geometry, and machine tool stiffness, machining  
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Fig. 1.4 ANFIS Structure  

parameters such as cutting speed, feed, and depth of cut are regarded the most important 

(Palanikumar, 2007).  

The objective of this study is to predict the tool wear and surface finish (Ra) and study the 

relationship between the cutting parameters (speed, feed rate and depth of cut) and the response 

parameters (vibration, surface finish, cutting force and tool wear) during the turning of CFRP 

composite. The research is focused on:  

▪ Analyze the relationship between cutting parameters and response parameters for continuous 

turning of CFRP composite.  

▪ Prediction of wear and surface finish with minimal error percentage using ANFIS method 
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This thesis first supplies a literature review as chapter II. Chapter III then provides the 

methodology, and chapter IV covers the result and discussion. Chapter V provides the conclusions, 

recommendations, and future work.  
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

The study of intelligent systems to predict tool wear in machining has been the subject of 

investigation for several decades.  Reviews of the literature include work by Byrne at al. (1995), 

Sick (2002) and Rehorn et al. (2005) and Al-Zubaidi et al. (2011).  Although these review papers 

are more exhaustive in their coverage of the literature, this thesis provides a more compact and 

focused discussion of prior work. 

Many of the applications have used artificial neural networks, fuzzy sets/logic, or 

combined neural networks and fuzzy sets/logic.  For example, Haber and Alique (2003) used a 

back propagation ANN to predict output for the milling of a slot.  In contrast, Ming et al. (1999) 

used fuzzy inference where the rules were trained by a genetic algorithm (GA).  Their process also 

used a time series autoregressive (AR) model of the feed directional acceleration to predict tool 

flank wear.  Other work by Sasanto and Chen (2003) used fuzzy logic with center of gravity 

defuzzication.  Their paper, however, does not explain how the rules are achieved or optimized.  

Iqbal et al. (2007) used fuzzy logic as a reasoning mechanism for a metal milling process.  They 

employed simulated annealing to optimize the fuzzy reasoning process. Fu and Hope (2006) 

reported artificial intelligence techniques used for milling operations with fuzzy membership 

functions represented by B-splines.  The load, force, acoustic emissions, and vibration were 

provided to a feature extraction system, which then ported information to a membership
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function calculation, followed by fuzzy calculations, and an artificial neural network.  Figure 2.1 

is taken from their paper.  In related work Mesina and Langari (2001) captured the acoustic 

emissions (AE), force, motor current and a CPI to train a ANN to produce a measure of tool wear.  

They then created a fuzzy linguistic mechanism to allow transparency for input and output 

relationships.  Figure 2.2 represents their system.  Similar work for end milling is described by 

Uros et al. (2009).  Each of these reported systems has involved milling processes on metal.  Other 

efforts have reported on work with turning processes 

 

Figure 2.1 Fuzzy Neuro Tool Wear Monitoring System (Fu and Hope, 2006) 



 

16 

 

 

Figure 2.2 Neuro and Fuzzy Tool Wear Monitoring System (Mesina and Langari, 2001) 

 

In addition to work done in milling operations, some investigations have involved turning 

operations.  Similar intelligent system architectures have been used with turning, fuzzy systems, 

artificial neural networks, and neuro-fuzzy approaches.  For example, Fang (1995) developed a 

fuzzy expert system from a “well established machining reference database, expert intelligence on 

logic reasoning and experimental results.”  In similar work, Achiche et al. (2002) developed a 

system for tool wear monitoring using fuzzy logic which is optimized by a genetic algorithm.  In 

contrast, Ko and Cho (1994) employed fuzzy pattern recognition with time series AR modeling to 

predict tool wear on a diamond tool edge for copier drum turning.  Others have used artificial 

neural networks or have used fuzzy neural approaches for estimating tool wear or other parameters 

in metal turning operations. 
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Examples of the use of artificial neural networks are plentiful for turning operations.  To 

predict flank wear in turning, Rangwala and Dornfeld (1990) describe using a feed forward ANN 

that predicts flank wear in turning at the 95% level.  In another example, Wang et al. (2008) 

employed an extended Kalman filter for input signals and compared this to ANN and analytical 

approaches.  In another paper, Purushothaman (2010) also used an extended Kalman filter and an 

ANN to predict tool wear in turning.  Further, Rahman et al. (1995) used a neural network based 

online fault diagnosis scheme to monitor the level of tool wear, chatter vibration and chip breakage 

in turning operations.  For turning ANSI 4340 steel, Masory (1991) used an ANN with back-

propagation training to determine tool wear, and Pal et al. (2011) used wavelet transforms and 

principal component analysis to predict flank wear on a hand lathe.  Niu et al. (1998) used an 

adaptive resonance theory (ART) neural network for feature recognition with wavelets.  This 

system was used in turning to extract fresh and worn states of a tool.  Warnecke and Kluge (1998) 

used an ANN for focusing on tolerances in a turning operation rather than tool wear.  In a different 

approach, Choudhury et al. (1999) added an optical sensor, as input to an artificial neural network 

to measure flank wear in turning.  See Figure 2.3.  Other approaches involved neuro-fuzzy systems. 

 

 

Figure 2.3 Schematic Diagram of Experimental Apparatus (Choudhury et al., 1999) 
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With most neuro fuzzy systems, the artificial neural network provides the ability to model 

numerical data sets from training sets, and the fuzzy inference provides the transparency of having 

human understandable rules.  So, neuro-fuzzy systems provide a significant advantage.  Neuro-

fuzzy systems were employed by Kuo (2000) who used fuzzy neural networks with Kohonen 

learning for feature mapping and error back propagation for determining premise and consequent 

parameters in turning.  In other work, Balizinki et al. (2002) provided a competitive study in which 

three fuzzy neuro systems were compared for turning: a feed forward back propagation neural 

network, a fuzzy decision support system, and a neural network based fuzzy inference system.  

Others have adopted the ANNFIS architecture, shown in Figure 2.4, to study flank wear in the 

turning of metals (Gill et al., 2012 and Gajate et al., 2009).  In fact, Gajate et al. state “the 

hybridization of fuzzy logic with neural networks is the most well established and best-known 

method.” 

 

Figure 2.4 ANFIS Architecture (Bodi, 2011) 

This review has discussed milling and turning of metals; however, there are examples of 

work with drilling operations.  For example, Sokolowiski (2004) used a Mamdani method fuzzy 
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logic and feed forward neural network to model tool wear.  Others have also modeled metal drilling 

operations to predict the tool wear. 

Apparently, from a diligent search by the author, the study of tool wear modeling using 

intelligent system techniques in milling, turning, and drilling predominantly focuses on the 

machining of metals.  However, there are examples in the literature of the machining of non-

metals.  For example, Azmi (2015) focused on tool wear prediction for glass fiber reinforced 

polymer composites (GFRP) using neuro-fuzzy modeling approaches.  He reports success with 

ANNFIS modeling for end milling.  In other work by Azmi and his collaborators (Azmi et al., 

2013) multiple regression analysis is compared to artificial neural network fuzzy inference systems 

for GFRP.  The neuro-fuzzy approach was found to be superior for modeling an end milling 

process.  Although there are other published studies of machining of non-metals, the limited 

number of papers found in this literature survey motivates additional research in this area, such as 

the present study. 

Although this literature survey is by force of constraints limited, the author argues that it 

is a fair summary and representative of the existing published work on soft computing (fuzzy, 

neuro, and fuzzy neuro) and the modeling of tool wear and related factors for machining 

operations.  Further, it is argued that the work contained in this thesis is a valuable contribution to 

existing knowledge for this subject.  
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CHAPTER III 

 

METHODOLOGY 

 

ANFIS Methodology 

The core concept behind neuro-adaptive learning approaches is straightforward. These 

methods allow the fuzzy modeling procedure to learn knowledge about a data set in order to 

compute the membership function parameters that best allow the associated fuzzy inference system 

to track the input-output data. ANFIS creates an input-output mapping based on simulated input-

output data pairs and human knowledge (in the form of fuzzy if-then rules). It is used to create a 

set of fuzzy if-then rules with appropriate membership functions to generate the input-output pairs. 

Figure 3.1 illustrates the neural network structure.  

 

Fig.3.1 Basic Structure of Neural Network 
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Neural Network  

In biological neurons, dendrites and axons work as input and output. Synaptic connections 

are formed when axons of neurons connect to dendrites of other neurons (synapses). The dendritic 

tree's input signals are weighted and added in the cell body before being produced in the axon, 

which generates the output signal. Different mathematical models of neuron were proposed in 

agreement with the biological model. A set of input signals x1, x2, x3………, xn (vector x) is 

received by neuron which are usually output signals of other neurons. Every input signal is 

multiplied by a connection weight, w, which is an analog of synapse efficiency. The summation 

module corresponding to the cell body receives weighted input signals and performs algebraic 

summing and the excitement level of neuron is determined; as shown in Figure 3.2.  

                                      𝐼 =  ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1                                 (3.1) 

 

Fig.3.2 Mathematical Neuron 

The output signal of a neuron is determined by conducting the excitement level through 

the function activation function, f as in equation 3.2 

                                                                𝑦 = 𝑓(𝐼)                                                                 (3.2)  
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The network receives the input vector by activating the input neurons. The vector of input 

activeness is a collection of input signals from a network's neurons. Neuron connection weights 

are represented as a matrix W, with element wij representing the connection weight between the    

ith and jth neurons. The input vector is processed into an output vector during the network's 

operation, implying that some information processing takes place.  The computational power of 

the network, thus, solves problems with its connections. Connections connect one neuron's input 

to another's output. Weight coefficients determine the strength of the connections. A bias term can 

also be included in a neural network (NN), which serves as an offset on a neuron. The bias's 

purpose is to set a threshold for the activation of neurons. All neurons in the network can be 

connected to the bias. 

Learning in Neural Networks 

Learning is the process through which a neural network adapts to a stimulus and finally 

provides the expected response. It is also a continuous categorization process for input stimuli: 

when a stimulus arrives at the network, it's either recognized or a new classification is created. In 

fact, in response to an input stimulus, the network adjusts its parameters, the synaptic weights, so 

that its actual output response converges to the desired output response. The network has finished 

the learning phase when the actual output response matches the desired one. Learning equations 

are mathematical formulas that explain network learning rules. Although the neurons in NNs can 

be connected in a variety of ways, the learning process is not the same for everyone. Various 

learning approaches fit different persons, as is well recognized. Different learning strategies fit 

different NNs in the same way (Kartalopoulos, 1996). Both the input and the actual response, as 

well as the anticipated response, are available in supervised learning and are utilized to build an 

error measure. If the actual response differs from the target response, the NN provides an error 
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signal, which is then utilized to determine how the network's weights should be adjusted so that 

the real output matches the target output (Jain, 1997). Unsupervised learning, unlike supervised 

learning, does not have a target output. During the training stage, the network gets a large number 

of diverse input patterns and divides them into categories arbitrarily. When a stimulus is later 

applied, the network responds with an output response identifying the stimulus's class. If a class 

for the stimulus cannot be located, a new class is created. Self-organizing learning is a term used 

to describe this form of learning. 

A learning algorithm is a mathematical tool that describes the approach and pace with 

which NN can effectively attain the steady state of its parameters, weights, and thresholds. It all 

begins with an error function (energy function) that is stated in weights. The goal is to keep the set 

of weights as error-free as possible. The network and the weights reach a steady state when the 

error function is zero or small enough. The error function reduces in value as learning progresses, 

and the weights are adjusted. Different optimization approaches, such as the delta rule, gradient 

descent, Boltzman's algorithm, backpropagation learning algorithm, hybrid algorithm and 

simulation annealing, can be used to achieve the reduction. The error function and optimization 

method that are chosen are critical because they can increase stability, instability, or find a solution 

caught in a local minimum.  

Adaptive Networks 

An adaptive network is a type of multilayer feedforward NN in which each node performs 

a specific function (node function) on incoming signals and has its own set of parameters. The 

node function formulas may differ from node to node, and the choice of each node function is 

determined by the total input-output function that the adaptive network must perform. An adaptive 

network's links only display the flow direction signals between nodes. The links have no weights 
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attached to them (Jang, 1993). The backpropagation learning rule is the most basic learning rule 

in adaptive networks. However, because it is slow and prone to being stuck in local minima, Jang 

presented a hybrid learning rule algorithm to speed up the learning algorithm in 1993, as reported 

in Figure 3.3. 

 

 

Fig.3.3 Adaptive Network (Jang, 1993) 

Backpropagation of Adaptive Networks (Castillo and Melin 2001) 

Assume that the adaptive network in Figure 3.3 is made up of N layers. The node in the ith 

position of the jth layer is (j,i), and the node output is O j,i. Because a node's output is determined 

by its incoming signal and parameter set which can be defined as follows:  

                                     𝑂𝑗,𝑖 = 𝑓𝑗,𝑖(𝑂𝑖
𝑗−1

… … . . 𝑂#𝑗−1
𝑗−1

, 𝑎, 𝑏, 𝑐, … . . )                              (3.3)  

The parameters for this node are a, b, c, and the node function is f. The total of the square 

errors can be used to establish an error measure for the pth (1≤ p ≤ P) entry of training data where 

P is the number of training entities, and it is equal to:  
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                                                    𝐸𝑝 =  ∑ (𝑑𝑘 − 𝑂𝑛,𝑘)2#𝑛

𝑘=1
          (3.4) 

On,k is the kth component of the actual output vector created by presentation of the pth input vector, 

and dk is the kth component of the pth target vector. As a result, the overall error measure can be 

written as follows: 

                                                                 𝐸 = ∑ 𝐸𝑝
𝑝

𝑝=1
                                                            (3.5) 

When Ep equals zero, the network can generate the intended output vector in the pth training data 

pair properly. Reduction of the overall measure is the goal and to do this first error rate 
𝜕𝐸𝑝

𝜕𝑂
 for pth 

training data and node output for each one should be calculated. The equation for error rate for 

output node at layer N can be stated as: 

                                                              
𝜕𝐸𝑝

𝜕𝑂𝑖,𝑝
𝑁 =  −2(𝑑𝑖,𝑝 − 𝑂𝑖,𝑝

𝑁 )                                                      (3.6) 

For internal node, the differential equation for error rate at the ith position of layer j can be 

derived as:  

                                                   
𝜕𝐸𝑝

𝜕𝑂
𝑖,𝑝
𝑗 =  ∑

𝜕𝐸𝑝

𝜕𝑂𝑘,𝑝
𝑗+1   

𝜕𝑂𝑘,𝑝
𝑗+1

𝜕𝑂
𝑖,𝑝
𝑗

#𝑗+1

𝑘=1

                   (3.7) 

Where (1 ≤ j ≤ N −1). An internal node's error rate at layer j can be described as a linear 

combination of the layer j+1 error rate. After applying Equation 3.6 and 3.7, all 1 ≤ j ≤ N and 1 ≤ 

i ≤ j error rates are found. Because the error rates are gathered consecutively from the output layer 

back to the input layer, the underlying method is called backpropagation. The derivative of the 

error measure with respect to is defined as the gradient vector α and equals to:  

                                                               
𝜕𝐸𝑝

𝜕α
=  ∑

𝜕𝐸𝑝

𝜕𝑂∗

𝜕𝑂∗

𝜕α𝑂∗𝜖𝑆          (3.8) 
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Here S is the set of nodes whose output depends on α. The derivative of overall measure E with 

respect to α is written as:  

                                                                  
𝜕𝐸

𝜕α
=  ∑

𝜕𝐸𝑝

𝜕α

𝑝
𝑝=1                                                      (3.9) 

The update formula for the generic parameter α is as follows:  

                                                                        ∆α = − η
𝜕𝐸

𝜕α
       (3.10) 

Where η is the learning rate which can be further expressed as:  

                                                                        η =  
𝑘

√∑ (
𝜕𝐸

𝜕α
)2

α

                                                   (3.11)  

where k is "step size," or the length of each transition. The gradient technique should nearly match 

the gradient path if k is small, but convergence can be sluggish because gradient must be calculated 

numerous times. If k is big, on the other hand, convergence is slow at first, but the algorithm 

fluctuates around the optimum. As a result, it is advised that if the error measure experiences four 

consecutive decreases, k be increased by 10%, and if the error measure experiences two 

consecutive combinations of one increase and one reduction, k be decreased by 10% (Jang 1993). 

Hybrid Learning Rule 

For adaptive networks, there are two learning paradigms: offline learning (batch learning) 

and online learning (pattern learning). The update formula parameter in offline learning is based 

on Equation 3.9 and the update action occurs only after the entire training data set has been given, 

i.e., after each epoch. Epoch is actually the number of iterations while training the ANFIS model. 

The parameters, on the other hand, are updated instantly upon the presentation of each input-output 
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pair in online learning, and the update algorithm is based on Equation 3.8 (Castillo and Melin 

2001).  

To identify the parameters, the hybrid learning rule combines the gradient method and the 

least square estimate (LSE). Assume the adaptive network just has one output and that can be 

expressed as:  

                           𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐹(𝐼, 𝑆)                                           (3.12) 

where I denote the input variables and S denotes the parameters. “If there exists a function H such 

that the composite function H o F is linear for some of the elements of S, these elements can be 

identified by the least square estimates (Jang, 1993)”. As a result, parameter set S may be split into 

two sets: S1 and S2, with H o F linear in the S2 elements. H o F is a composite function where the 

output of one function becomes the input of another function. Applying H to equation 3.12 as 

follows:  

                                                                𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻 𝑜 𝐹(𝐼, 𝑆)    (3.13) 

which is linear in the elements of S2.  A matrix equation is obtained by plugging in the given values 

of elements of S1 and P training data which becomes as follows:  

                                                                            𝐴𝑋 = 𝐵                                                        (3.14) 

where X is an unknown vector, whose elements are parameters in S2, and A is a m x n matrix. This 

is an over-determined problem since the number of training data pairs is frequently more than the 

number of linear parameters. There is no accurate solution for Equation 3.14. Jang (1993) 

developed a sequential LSE approach to deal with this challenge. X is determined iteratively using 

the sequential formulas used in the literature in this manner that can be expressed as:  
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𝑋𝑖+1 =  𝑋𝑖 +  𝑆𝑖+1𝑎𝑖+1(𝑏𝑖+1
𝑇 -𝑎𝑖+1

𝑇 𝑋𝑖)             ( 3.15)                                                                                

                                  𝑆𝑖+1 =  𝑆𝑖 −
𝑆𝑖𝑎𝑖𝑎𝑖+1

𝑇 𝑆𝑖

1+ 𝑆𝑖𝑎𝑖+1𝑎𝑖+1
𝑇 𝑆𝑖

, 𝑖 = 0,1, … … … . , 𝑃 − 1 

Where 𝑎𝑖
𝑇is the ith row vector of the matrix A defined in equation 3.14 and 𝑏𝑖

𝑇is the ith element of 

B and 𝑆𝑖 is called as covariance matrix.  

A forward pass and a backward pass are included in each epoch of the hybrid learning 

technique. In forward pass, input data and functional signals are sent forward to calculate each 

node's output until the matrices A and B in Equation 3.14 are found. The sequential least squares 

formulas are then used to identify the parameters in S2. The functional signals continue ahead after 

identifying parameters in S2 until the error measure is calculated. The error rates propagate from 

the output end to the input end in the backward pass, and the gradient method updates the 

parameters in S1.  

For systems with dynamic features, an online learning method is critical for online 

parameter identification. When new data pairs become available; a forgetting factor is applied to 

the original sequential formula to decay the effects of the previous data pairs. This method assigns 

larger factors to more recent data pairings, accounting for the time-varying properties of the 

entering data. The sequential formula for online learning is written as follows: 

                                                  𝑋𝑖+1 =  𝑋𝑖 +  𝑆𝑖+1𝑎𝑖+1(𝑏𝑖+1
𝑇 -𝑎𝑖+1

𝑇 𝑋𝑖) 

             (3.16) 

𝑆𝑖+1 =  
1

𝜆
[𝑆𝑖 −

𝑆𝑖𝑎𝑖𝑎𝑖+1
𝑇 𝑆𝑖

𝜆 +  𝑆𝑖𝑎𝑖+1𝑎𝑖+1
𝑇 𝑆𝑖

] 

Where the value of 𝜆 is between 0 and 1. The smaller the value is, the more quickly old data decays. 
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Fuzzy Logic Systems 

The outcome of fuzzy reasoning, also known as approximate reasoning, is a conclusion for 

a collection of fuzzy if-then rules. Input variables are compared with the membership functions 

(MFs) on the premise part to obtain the membership values of each linguistic label fuzzification. 

The membership values of each linguistic label are known as fuzzification. The membership values 

on the premise part are combined through specific fuzzy set operations such as: min, max, or 

multiplication to get firing strength (weight) of each rule. “The qualified consequent (either fuzzy 

or crisp) is generated depends on the firing strength. The qualified consequents are aggregated to 

produce crisp output according to the defined methods such as: centroid of area, bisector of area, 

mean of maximum, smallest of maximum and largest of maximum (defuzzification) (Jang 1993)”.  

Fuzzy systems are made up of a knowledge base and a fuzzy inference engine, which is a 

type of reasoning process. Figure 3.4 depicts the structure of the fuzzy inference engine. Using 

fuzzy reasoning methods, a fuzzy inference engine integrates fuzzy if-then rules into a mapping 

from the system's inputs to its outputs. Fuzzy systems, in other words, are nonlinear mappings with 

fuzzy if-then rules from the rule base. The local mappings are described by each of these rules. 

The rule base can be built by a human expert or by automatic generation, which involves extracting 

rules from numerical input-output data. 

 

Fig.3.4 Fuzzy Inference Engine 

Crisp Input 
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The following is an example of a fuzzy if-then rule (fuzzy rule, fuzzy implication, or fuzzy 

conditional statement): 

If x is A then y is B 

where A and B linguistic values defined by fuzzy sets. “x is A” is called “antecedent” or “premise”, 

while “y is B” is called the “consequence” or “conclusion” (Castillo and Melin 2000).  

Fuzzy inference systems include the Mamdani and Takagi-Sugeno fuzzy systems. A set of 

linguistic rules acquired from human operators was initially utilized to regulate a steam engine and 

boiler combination using the Mamdani fuzzy inference technique (Mamdani and Assilian, 1975). 

When given two numeric inputs x and y, Figure 3.5. shows how a two-rule Mamdani fuzzy 

inference system gets the overall output z. Takagi and Sugeno (1985) were the first to introduce 

the Takagi-Sugeno fuzzy inference system. The Takagi Sugeno model differs in that each rule has 

a distinct output, and the overall result is calculated as a weighted average of the individual rules' 

outputs. Figure 3.6 depicts Takagi-Sugeno fuzzy inference system. 



 

31 

 

 

Fig.3.5 Mamdani Fuzzy Inference System (Jang et al., 1997) 

 

Fig. 3.6 Takagi-Sugeno Fuzzy Inference System (Jang et al., 1997) 
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ANFIS Architecture  

In ANFIS, a Takagi-Sugeno type fuzzy inference system is used. The output of each rule 

can be a linear combination of input variables plus a constant term or can be only a constant term. 

The final output is the weighted average of each rule’s output. Basic ANFIS architecture that has 

two inputs x and y, and one output z is shown in Figure 3.7. 

 

Fig. 3.7 Basic Structure of ANFIS 

The rule base contains two Takagi-Sugeno if-then rules as follows: 

Rule1: If x is A1and y is B1, then 𝑓1 =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule1: If x is A2 and y is B2, then f2= p2x + q2 y + r2 

Where 𝑝1, 𝑞1, 𝑟1, p2, q2 , r2  are linear and A1, A2, B1, B2 are nonlinear parameters.  

In Figure 3.6, the circular shapes represent fixed nodes and square shapes represent 

adaptive nodes. The node functions in the same layer are the same as described below: 
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Layer 1 is the fuzzy membership layer in which the inputs of nodes A1, B1 and A2, B2 are 

x and y respectively. The linguistic labels A1, A2, B1, B2 are employed in the fuzzy theory to 

divide the membership functions. Every node i in this layer is square node so they are adaptive. 

The node function as follows:  

                                                          𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥)    𝑖 = 1,2        

              (3.17) 

𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑦)    𝑖 = 1,2 

In other words, the membership grade of a fuzzy set A is 𝑂1,𝑖 and it indicates how well the 

given input x meets the quantifier A. Any acceptable membership function, such as the triangular 

or gaussian, bell-shape can be used as membership function for A (or B). When the membership 

function's parameters vary, the chosen membership function changes as well, resulting in a variety 

of membership functions for a fuzzy set A. The "premise parameters" are the parameters in this 

tier. The adaptive-network-based fuzzy inference system uses hybrid learning to simulate and 

analyze the mapping relation between input and output data in order to identify the ideal 

membership function distribution. It is primarily based on the Takagi and Sugeno type's fuzzy "if-

then" principles. It has two parts: a premise and a result.  Figure 3.5 depicts the corresponding 

ANFIS architecture of Takagi and Sugeno's type. This inference system is made up of five levels. 

Each layer has a number of nodes, each of which is described by the node function. In this layer, 

the output signals from nodes in preceding levels are taken as input signals. The output is used as 

input signals for the next layer after being manipulated by the node function in the current layer. 

Every node in layer 2 is fixed node marked by a circle node whose output is the product of 

all incoming signals: 

                                                        𝑂2,𝑖 = 𝑡(𝜇𝐴𝑖(𝑥), 𝜇𝐵𝑖(𝑦))                                                     (3.18) 
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                                                                  = 𝜇𝐴𝑖(𝑥)𝑥𝜇𝐵𝑖(𝑦)                                                     

           = 𝑤𝑖 

Each node output, 𝑤𝑖 ,represents the firing strength of a fuzzy rule.  

Every node in layer 3 is a fixed node, denoted by a circle, with the node function computing 

the ratio of this node's firing strength to the sum of the firing strengths:  

                                                       𝑂3,𝑖 =  𝑤𝑖 =
𝑤𝑖

𝑤𝑖+𝑤2
,         𝑖 = 1,2                  (3.19) 

Every node in layer 4 is adjustable node marked by a square node with a function as:  

                                                              𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                                        (3.20) 

Where 𝑤𝑖 is a output from layer 3 and {pi ,qi ,ri} is the parameter set of this node. Parameters in 

this layer are referred to as the consequent parameters. 

Every node in layer 5 is a fixed node, marked by a circle node, with the node function to 

compute the overall output by:  

                                                                       𝑂5,𝑖 = ∑ 𝑤𝑖𝑓𝑖𝑖 =  
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
                                     (3.21) 

Explicitly, this layer adds the outputs of all the nodes in the previous layer to get the total 

output of the network. 
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Experimentation 

Work piece and cutting tool material 

Turning experiments were conducted using GANESH KSL-5210T CNC Turning Center. 

The turning machine was equipped with Fanuc 0i-TD series CNC Control, 10 Station Automatic 

Turret, A2-6 Spindle Nose and a maximum turning diameter of 11 inch. Carbon fiber reinforced 

plastic (Standard Modulus Carbon) has been used as work piece material. For the experiment, the 

work pieces were prepared in a dimension of 152.4 mm(length) and 3.81 cm (Outer Diameter). 

Carbide cutting insert was used as a cutting tool coated with TiCN/AI2O3/TiN. See Figure 3.8. 

 

(a)                                                                                   (b) 

Fig. 3.8 (a) Carbide Insert (b) Work piece 
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The carbide insert schematic diagram and specifications are given below. See Figure 3.9 and Table 

1.  

 

Fig.3.9 Carbide insert schematic diagram (MSC) 

Table 1: Specifications for Carbide Insert  

Property Specifications 

ISO Number DNMG 15 06 08-QM 2220 

Insert Size 442 

Material Carbide 

Coating TiCN/AI2O3/TiN 

Included Angle 55 

Corner Radius (Inch) 1/32 

Inscribed Circle (Inch) 1/2 

Cutting Direction Neutral 
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Design of Experiment using Takagi-Sugeno Method 

In this study, turning experiments of CFRP composite is designed using the Takagi-Sugeno 

type fuzzy inference system design of experiment. Cutting speed, feed rate, depth of cut, vibration 

and cutting force are considered as input parameters and tool wear and surface finish are 

considered as output parameters. Throughout the experiment, workpiece length was kept constant 

at 152. 4mm. Factors and corresponding levels are found in Table 2. Table 3 further defines neuro-

fuzzy algorithms.  

Table 2: Factors and Corresponding Levels 

Cutting Parameters Experiment 1 Experiment 2 Experiment 3 

Cutting speed (m/min) 125 100 75 

Feed rate (mm/rev) 0.05 0.1 0.075 

Radial depth of cut (mm) 0.2 0.1 0.15 

 

For each experiment, the constant work piece length (152.4 mm) has been machined 

sixteen times to the record data for sixteen measurements. After machining the work piece,  the 

value of force, vibration, surface roughness and tool wear have been measured for each 

measurement.  
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Table 3: Neuro-Fuzzy Algorithms for Modeling Tool Wear and Surface Finish 

Algorithm ANFIS 

System MISO 

Clustering Subtractive 

Structure Fixed 

Membership Function Type Gaussian 

Inference System Takagi-Sugeno 

Training Algorithm Hybrid 

Learning Rate 10-3 

Error Tolerence 0 

Training Data Set 36 

Testing Data Set 12 

 

Vibration, Cutting Forces, Surface Finish, and Tool Wear Measurements 

Extech 407860 Vibration Meter has been used to measure the vibration and Extech data 

acquisition software has been used to monitor and analyze the recorded data. 407860 Heavy Duty 

Vibration Meter has a Velocity range of 7.87 in./s or 200 mm/s; Acceleration range of 656 ft./s or 

200 m/s, and displacement range of 0.078 in. or 2 mm.  

The cutting forces were measured using a Kistler 9255C dynamometer. A charge amplifier 

is used to transfer the corresponding force signals, which are then processed using DynoWare 
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software. The dynamometer is comprised of four 3-component force sensors mounted between a 

baseplate and a top plate under high preload. Each sensor is made up of three pairs of quartz plates, 

one of which is sensitive to pressure in the z direction and the other two to shear in the x and y 

directions. The force components are virtually measured without any displacement. The four built-

in force sensors' outputs are coupled inside the dynamometer to allow multicomponent force and 

moment measurements to be done. The 9-conductor flange socket accepts the eight output signals. 

The four sensors are installed in a ground-isolated configuration. As a result, ground loop issues 

are virtually avoided. A charge amplifier is used to convey the corresponding force signals from 

the dynamometer to a specially constructed fixture for keeping the workpiece.   

The surface finish value of the machined workpiece surface was measured using a MahrSurf M 

300 C profilometer. For calibrating the profilometer, the Ra value was set on 2.4 µm and Rz value 

was set on 9.3 µm. A 8 mm traversing length was set according to ISO 12085 (MOTIF). Figures 

3.10, 3.11 and 3.12 provide photographs and diagrams of the experimental apparatus.  

 

Fig. 3.10 MahrSurf M 300 C Profilometer 
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Fig. 3.11 Experimental Apparatus 

The overall experimental set up is shown in Figure 3.11. A Keyence VHX-5000 optical 

microscope shown in Figure 3.12 was used to measure tool wear. 735 µm flank wear corresponds 

to the maximum tool life.. Micrographs of the surface of the machined samples from the 

multidirectional laminate were taken using Scanning Electron Microscope (SEM) imaging. These 

were utilized to determine effects of machining and response parameters on CFRP surface. 
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Fig. 3.12 Keyence VHX-5000 Optical Microscope 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

The ease or difficulty with which materials can be machined is referred to as machinability. 

Hardness, tensile strength, and ductility are all material properties, but machinability is not one of 

them. It is an evaluation of the material's response to a machining system, which comprises the 

cutting tool, machine tool, machining process, and cutting circumstances, in addition to the work 

material itself. Tool wear or tool life, cutting forces or power consumption, and surface finish are 

the three basic metrics or criteria used to evaluate machinability. As a result, good machinability 

entails less tool wear, minimal cutting forces, and a smooth surface finish (Ahmed, 2009). Fibre-

reinforced plastics (FRPs) have distinct features that affect machinability in ways that metals do 

not. The physical properties of the fiber and the matrix, fiber volume percentage, and fiber 

orientation or architecture are the primary determinants of the attributes of FRP materials. In the 

first part of this chapter, the relationship between cutting parameters (Speed, Feed, Depth of Cut) 

and response parameters (Vibration, Cutting Force, Tool Wear and Surface Finish) for continuous 

turning of CFRP composite and response parameters for continuous turning of CFRP composite 

are discussed. In the second part, the output for the prediction of tool wear and surface finish using 

ANFIS modeling is discussed.  

Several wear mechanisms may contribute to the total wear of the cutting tool when cutting 

fiber-reinforced composites. Gross fracture or chipping, abrasion, erosion, micro fracture or
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microchipping, chemical and electrochemical corrosion, and oxidation are some of the wear 

mechanisms. While severe fracture causes the cutting edge to fail suddenly or catastrophically in 

the early phases of cutting, other wear mechanisms cause gradual or cumulative wear. Surface 

finish and surface integrity in milling and trimming are determined by mechanical and thermal 

damage to the surface, as well as delamination of the top and/or bottom ply of the laminate 

structure. Feed rate, cutting speed, and tool wear all have an impact on surface finish (Ahmed, 

2009). 

In this study, after cutting 152.4 mm, Ra value has been measured from thirteen different 

places of the CFRP machined surface and an average value has been taken for every measurement 

shown in Table 4, 5 and 6. For measuring the vibration output, a data sample has been taken in 

every two second interval throughout the machining time. The response output shown for each 

experiment in Table 4,5 and 6 are the average values of data samples. Figures 4.1, 4.4, 4.5 and 4.6 

were drawn using the data in Tables 4, 5 and 6.  

Table 4. Response Table for Speed, v= 125 m/min, Feed, f= 0.05 mm/rev, DOC= 0.2 mm 

Measurement 

No. 

Cutting Force 

(N) Vibration(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

1 25.48 3.19 232 1.06 

2 25.89 3.35 294 1.08 

3 26.31 3.49 335 1.11 

4 26.63 3.64 367 1.12 

5 26.98 3.81 397 1.14 

6 27.27 3.99 427 1.14 
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Table 4, cont.  

Measurement 

No. 

Cutting Force 

(N) Vibration(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

7 27.55 4.16 451 1.15 

8 27.86 4.27 460 1.17 

9 28.12 4.39 469 1.16 

10 28.45 4.52 482 1.17 

11 28.78 4.68 501 1.19 

12 29.05 4.83 514 1.2 

13 29.6 5.01 529 1.22 

14 29.91 5.23 543 1.23 

15 30.13 5.31 558 1.25 

16 30.63 5.51 571 1.26 

 

Table 5. Response Table for Speed, v= 100m/min, Feed, f= 0.1 mm/rev, DOC= 0.1mm 

Measurement 

No. 

Cutting Force 

(N) Vibration(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

1 37.31 2.23 310 1.12 

2 37.82 2.41 321 1.13 

3 38.25 2.57 353 1.15 

4 38.66 2.72 389 1.16 

5 39.25 2.89 412 1.17 
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Table 5, cont.  

Measurement 

No. 

Cutting Force 

(N) Vibration(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

6 39.57 3.06 432 1.19 

7 39.92 3.28 479 1.21 

8 40.36 3.51 508 1.23 

9 40.89 3.69 541 1.24 

10 41.15 3.82 581 1.25 

11 41.67 3.98 605 1.26 

12 42.09 4.22 632 1.28 

13 42.56 4.47 669 1.29 

14 42.86 4.61 698 1.31 

15 43.39 4.78 718 1.33 

16 43.91 4.91 735 1.34 

 

Table 6. Response Table for Speed, v= 75m/min, Feed, f= 0.075 mm/rev, DOC= 0.15mm 

Measurement 

No. 

Cutting Force 

(N) 

Vibration(m/s2) Tool wear 

(µm) 

Surface Finish  

(µm) 

1 29.77 1.78 250 1.11 

2 30.23 1.92 302 1.13 

3 30.65 2.07 345 1.14 

4 30.98 2.22 376 1.16 
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Table 6, cont.  

Measurement 

No. 

Cutting Force 

(N) Vibration(m/s2) 

Tool wear 

(µm) Surface Finish (µm) 

5 31.26 2.37 408 1.16 

6 31.59 2.51 439 1.17 

7 31.89 2.68 463 1.19 

8 32.12 2.81 475 1.2 

9 32.49 2.97 484 1.2 

10 32.81 3.13 497 1.22 

11 33.09 3.29 516 1.23 

12 33.51 3.44 530 1.24 

13 34.01 3.6 543 1.26 

14 34.39 3.78 557 1.27 

15 34.82 3.86 573 1.27 

16 35.26 4.01 589 1.28 

 

Matrix chipping and small pits, fiber breaking, fiber pullout, fiber fuzziness (aramid fibers), 

cracks, delamination, and spreading of the matrix material are all common damages to the CFRP 

machined surface. Fiber orientation, feed rate, cutting speed, and fiber composition are all factors 

that cause surface damage. Surface roughness for CFRP increases with the increase in feed rate 

(Ahmed, 2009). According to Figure 4.1, cutting parameters with highest feed rate of 0.1 mm/rev 

provides highest values of surface roughness whereas cutting with feed rate 0.05 mm/rev shows 

lower values of surface finish. Kim et al. (1992) showed that when compared to the influence of 
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feed rate on CFRP surface finish, cutting speed has a minor impact. Figure 4.2 demonstrates the 

condition of CFRP surface machined at higher feed rate 0.1 mm/rev. A lot of fractured fibers is 

visible which indicates the poor surface finish. Figure 4.3 indicates that at lower feed rate of 0.05 

mm/rev, there are only a few fractured fibers to attribute the condition of good surface finish at 

lower feed rate.  

 

Fig. 4.1 Variation of Surface Roughness with Number of Measurement 
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Fig. 4.2 SEM Image at f =0.1 mm/rev (mag. 120X) 

 

 

Fig. 4.3 SEM Image at f=0.05 mm/rev (mag. 200X) 
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The relationship between cutting forces and cutting speed varies depending on the type of 

FRPs. The cutting force decreases with increase in cutting speed when machining CFRP 

composite. As the feed rate and depth of cut rise, the cutting forces increase as well (Ahmed, 2009). 

In Figure 4.4, for highest speed of 125 m/min and lowest feed rate, the lowest cutting force is 

found. From the speed of 100 m/min and highest feed rate of 0.1 mm/rev, highest cutting force is 

achieved. Higher cutting force leads to poor surface finish. Due to the magnitude of the cutting 

forces, the adhesion strength between fiber and matrix can be exceeded, so that fibers either peel 

(delamination) or are removed by the expansion of matrix parts (Ahmed, 2009).  

 

Fig. 4.4 Variation of Cutting Force with Number of Measurement 
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vibration. Balasundaram et al. (2020) found similar kind of correlations during investigation on 

turning parameters on machining time and vibration of carbon fiber reinforced laminates.  

 

 

Fig. 4.5 Variation of Vibration with Number of Measurement 
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decrease of depth of cut. Ramulu et al. (1989) showed that tool wear increases with the increase 

of feed rate. So, results found in this study are consistent with prior research. 

 

Fig. 4.6 Variation of Tool Wear with Number of Measurement 

Figure 4.7 shows the tool wear zone at 195X magnification where abrasion on cutting tool 

surface is visible. Figure 4.8 illustrates the lower tool wear condition at lower feed rate (0.05 
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Fig. 4.7 SEM of Tool Wear Zone 

 

Fig. 4.8 SEM of Cutting Tool after Machining at Speed, v= 125 m/min, Feed, f= 0.05 mm/rev, 

DOC= 0.2 mm 
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Fig. 4.9 SEM of Cutting Tool after Machining at Speed, v= 100 m/min, Feed, f= 0.1 mm/rev, 

DOC= 0.1 mm 

 

Fig. 4.10 Visible Presence of CFRP on Cutting Tool Surface 
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ANFIS Model for Tool Wear and Surface Finish Estimation 

One of the strategies for analyzing and improving the performance of any system is to use 

artificial intelligence. The functional combination of various sensors, signal analysis, and artificial 

intelligence algorithms results in a more promising strategy for meeting today's high-performance 

needs (Fang, 1995). ANFIS is a fuzzy inference system for adaptive networks that is integrated 

into the architecture and learning process. A feed forward neural network with supervised learning 

capabilities is referred to as an adaptive network. ANFIS can be used to optimize membership 

functions to generate specified input–output pairs, with the added benefit of being able to create 

fuzzy "if-then" type rules to express these optimized membership functions. In this study, an effort 

has been made to demonstrate the use the Adaptive Neuro-Fuzzy inference system (ANFIS) for 

estimation of the tool wear and surface finish during continuous turning of CFRP.  

The dataset used for ANFIS modeling is shown in Table 7. Seventy-five percent of all data 

points has been used for training the model and twenty-five percent has been used for testing the 

model. The data set has been normalized by dividing the individual maximum values of 

parameters. When the input properties of neural networks are scaled to the same range, they 

converge faster. They also benefit from it because it keeps their activations and, as a result, their 

weights low.  

For the estimation of tool wear and surface finish, speed, feed, DOC, force, and vibration 

has been used as inputs whereas tool wear and surface finish are used as output parameters. Figure 

4.11 shows the fuzzy logic designer for tool wear with inputs and outputs and Figure 4.12 presents 

the model for surface finish.  
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In this study, MATLAB R2021a is used for ANFIS modeling. Neuro-fuzzy designer, fuzzy 

logic designer, rule viewer, MATLAB surface plot, membership function editor and rule editor 

tools have been used to represent the inputs and outputs.  

 

Fig. 4.11 Fuzzy Logic Designer for Tool Wear 

 

Fig. 4.12 Fuzzy Logic Designer for Surface Finish 
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Hybrid training has been used to train the data set and the training root mean square error 

(RMSE) was 0.0052819 for tool wear and RMSE is 0.0025216 for surface finish. The error 

tolerance of 0 is used and the number of epochs is 200. The conditional statements that make up 

fuzzy logic are expressed using "if-then rule" statements. Figure 4.13 and 4.14 depicts the model’s 

rules; six rules have been found to be sufficient for matching the data's criteria. A single output 

membership function corresponds to each rule. Clustering is a technique for extracting natural 

groupings of data from a huge dataset to create a concise representation of a system's behavior. 

Clustering is used to overcome the problem of explosion in the number of rules. In this research, 

subtractive clustering was used to estimate the number of clusters and cluster centers in a set of 

data. 

 

Fig. 4.13 Rules Used for Tool Wear Model 

 

Fig. 4.14 Rules Used for Surface Finish Model 
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Table 7. Data set for ANFIS modeling  

Speed 

(m/min) 

Feed 

(mm/rev) 

DOC 

(mm) 

Cutting 

Force (N) 

Vibration 

(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

125 0.05 0.2 25.48 3.19 232 Tr 1.06 Tr 

125 0.05 0.2 25.89 3.35 294 Tr 1.08 Tr 

125 0.05 0.2 26.31 3.49 335 Tr 1.11 Tr 

125 0.05 0.2 26.63 3.64 367 Tr 1.12 Tr 

125 0.05 0.2 26.98 3.81 397 Tr 1.14 Tr 

125 0.05 0.2 27.27 3.99 427 Tr 1.14 Tr 

125 0.05 0.2 27.55 4.16 451 Tr 1.15 Tr 

125 0.05 0.2 27.86 4.27 460 Tr 1.17 Tr 

125 0.05 0.2 28.12 4.39 469 Tr 1.16 Tr 

125 0.05 0.2 28.45 4.52 482 Tr 1.17 Tr 

125 0.05 0.2 28.78 4.68 501 Tr 1.19 Tr 

125 0.05 0.2 29.05 4.83 514 Tr 1.2 Tr 

125 0.05 0.2 29.6 5.01 529  1.22  

125 0.05 0.2 29.91 5.23 543 1.23 

125 0.05 0.2 30.13 5.31 558 1.25 

125 0.05 0.2 30.63 5.51 571 1.26 

100 0.1 0.1 37.31 2.23 310 Tr 1.12 Tr 

100 0.1 0.1 37.82 2.41 321 Tr 1.13 Tr 
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Table 7, cont.  

Speed 

(m/min) 

Feed 

(mm/rev) 

DOC 

(mm) 

Cutting 

Force (N) 

Vibration 

(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

100 0.1 0.1 38.25 2.57 353 Tr 1.15 Tr 

100 0.1 0.1 38.66 2.72 389 Tr 1.16 Tr 

100 0.1 0.1 39.25 2.89 412 Tr 1.17 Tr 

100 0.1 0.1 39.57 3.06 432 Tr 1.19 Tr 

100 0.1 0.1 39.92 3.28 479 Tr 1.21 Tr 

100 0.1 0.1 40.36 3.51 508 Tr 1.23 Tr 

100 0.1 0.1 40.89 3.69 541 Tr 1.24 Tr 

100 0.1 0.1 41.15 3.82 581 Tr 1.25 Tr 

100 0.1 0.1 41.67 3.98 605 Tr 1.26 Tr 

100 0.1 0.1 42.09 4.22 632 Tr 1.28 Tr 

100 0.1 0.1 42.56 4.47 669 1.29 

100 0.1 0.1 42.86 4.61 698 1.31 

100 0.1 0.1 43.39 4.78 718 1.33 

100 0.1 0.1 43.91 4.91 735 1.34 

75 0.075 0.15 29.77 1.78 250 Tr 1.11 Tr 

75 0.075 0.15 30.23 1.92 302 Tr 1.13 Tr 

75 0.075 0.15 30.65 2.07 345 Tr 1.14 Tr 

75 0.075 0.15 30.98 2.22 376 Tr 1.16 Tr 

75 0.075 0.15 31.26 2.37 408 Tr 1.16 Tr 

75 0.075 0.15 31.59 2.51 439 Tr 1.17 Tr 
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Table 7, cont.  

Speed 

(m/min) 

Feed 

(mm/rev) 

DOC 

(mm) 

Cutting 

Force (N) 

Vibration 

(m/s2) 

Tool wear 

(µm) 

Surface Finish 

(µm) 

75 0.075 0.15 31.89 2.68 463 Tr 1.19 Tr 

75 0.075 0.15 32.12 2.81 475 Tr 1.2 Tr 

75 0.075 0.15 32.49 2.97 484 Tr 1.2 Tr 

75 0.075 0.15 32.81 3.13 497 Tr 1.22 Tr 

75 0.075 0.15 33.09 3.29 516 Tr 1.23 Tr 

75 0.075 0.15 33.51 3.44 530 Tr 1.24 Tr 

75 0.075 0.15 34.01 3.6 543 1.26 

75 0.075 0.15 34.39 3.78 557 1.27 

75 0.075 0.15 34.82 3.86 573 1.27 

75 0.075 0.15 35.26 4.01 589 1.28 

 

Tr Training data 

Figure 4.15 to 4.19 shows the membership functions of tool wear model and Figure 4.20 

to 4.24 shows the membership functions of surface finish for inputs (Speed, Feed, DOC, Force and 

Vibration) and outputs (Tool Wear and Surface Finish).  
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Fig. 4.15 DOC Membership Function for Tool Wear 

 

 

Fig. 4.16 Feed Membership Function for Tool Wear  

 



 

61 

 

 

Fig. 4.17 Force Membership Function for Tool Wear  

 

Fig. 4.18 Speed Membership Function for Tool Wear  
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Fig. 4.19 Vibration Membership Function for Tool Wear 

The average testing RMSE for tool wear was 0.022673 and for surface finish RMSE was 

0.0095623 shown in Figure 4.25 and 4.26. Here six cluster centers were located for force and 

vibration and for each cluster, a separate membership function and rule is created; whereas, for 

speed, feed and DOC, three cluster centers were located because of the data set showed in Table 

7. According to MATLAB rule viewer showed in Figure 4.27 and 4.28, for speed, feed and DOC, 

cluster 1 & 6, cluster 2 & 5 and cluster 3 & 4 have same value of MFs centre (c) and MFs width 

(σ). So, for speed, feed and DOC, cluster 1 & 6, cluster 2 & 5 and cluster 3 & 4 are producing a 

three cluster center in MF graph.  
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Fig. 4.20 DOC Membership Function for Surface Finish  

 

 

Fig. 4.21 Feed Membership Function for Surface Finish  
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Fig. 4.22 Force Membership Function for Surface Finish  

 

 

Fig. 4.23 Speed Membership Function for Surface Finish  
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Fig. 4.24 Vibration Membership Function for Surface Finish  

 

 

Fig 4.25 Testing Accuracy for Tool Wear 
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Fig. 4.26 Testing Accuracy for Surface Finish 

The MATLAB rule viewers for tool wear model and surface finish model are shown in 

Figure 4.28 and 4.29. 

 

Fig. 4.27 Rule Viewer for Tool Wear  
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Fig. 4.28 Rule Viewer for Surface Finish  

Table 8 shows the normalized actual and predicted tool wear data for tool wear and Figure 

4.29 is the graphical representation of Table 8.  

 

Fig. 4.29 Actual and Predicted Tool Wear with Number of Measurement 
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Table 8. Normalized Data for Actual and Predicted Tool Wear  

Actual Tool wear Predicted Tool Wear %Error 

0.315646259 0.317960606 0.733209303 

0.4 0.3975812 0.604699963 

0.455782313 0.452552749 0.708575862 

0.499319728 0.500592165 0.254834059 

0.540136054 0.543502139 0.623191898 

0.580952381 0.58195599 0.17275235 

0.613605442 0.611916778 0.275203549 

0.62585034 0.624220469 0.260424993 

0.638095238 0.640104515 0.314886668 

0.655782313 0.655794487 0.001856486 

0.681632653 0.678376574 0.477688312 

0.699319728 0.70156593 0.321198219 

0.719727891 0.728096641 1.162765854 

0.73877551 0.768545707 4.029667463 

0.759183673 0.78339435 3.189040692 

0.776870748 0.823817871 6.043105944 

0.421768707 0.416242625 1.310216399 

0.436734694 0.44995438 3.026937575 

0.480272109 0.482232942 0.408275401 

0.529251701 0.514991066 2.694490138 
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Table 8, cont.  

Actual Tool wear Predicted Tool Wear %Error 

0.560544218 0.559192854 0.241080663 

0.587755102 0.596013881 1.405139552 

0.65170068 0.643525157 1.254490469 

0.691156463 0.69772344 0.95014336 

0.736054422 0.74783233 1.600140948 

0.79047619 0.777566379 1.633168914 

0.823129252 0.820603866 0.30680303 

0.859863946 0.862829342 0.344868078 

0.910204082 0.900558636 1.059701395 

0.949659864 0.920637923 3.056035355 

0.976870748 0.950177917 2.732483464 

1 0.97660451 2.339549034 

0.340136054 0.342684704 0.749302914 

0.410884354 0.407814016 0.747251185 

0.469387755 0.467453199 0.412144519 

0.511564626 0.514591971 0.591781661 

0.555102041 0.554485221 0.111118326 

0.597278912 0.597431272 0.025509155 

0.629931973 0.629954937 0.003645482 

0.646258503 0.645915572 0.05306414 

0.658503401 0.658872382 0.056033154 
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Table 8, cont.  

Actual Tool wear Predicted Tool Wear %Error 

0.676190476 0.676440313 0.03694771 

0.702040816 0.701176526 0.123111053 

0.721088435 0.721548351 0.063780748 

0.73877551 0.742171703 0.459705695 

0.757823129 0.771110377 1.753344118 

0.779591837 0.775942298 0.468134525 

0.801360544 0.796277187 0.634340828 

 

The overall average error for tool wear model is 1.038%. Out of all data points for tool 

wear, only four data points cross the 3% individual error mark and highest individual error is 

6.043%. The equation used to determine percentage error is shown below:  

% error = |
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)−(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)

(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)
| × 100%          (4.1) 

The normalized actual and predicted surface finish data was shown in Table 9 and the 

graphical representation of Table 9 is Figure 4.30.  
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Fig. 4.30 Actual and Predicted Surface Finish with Number of Measurement 
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Table 9, cont.  

Actual Surface Finish Predicted Surface Finish Error (%) 

0.865672 0.869797 0.476523 

0.873134 0.876465 0.381492 

0.88806 0.885578 0.27947 

0.895522 0.895731 0.023239 

0.910448 0.912408 0.21529 

0.91791 0.929901 1.306283 

0.932836 0.937732 0.524904 

0.940299 0.956879 1.763316 

0.835821 0.834844 0.11692 

0.843284 0.845834 0.302401 

0.858209 0.856225 0.23122 

0.865672 0.865806 0.015571 

0.873134 0.873815 0.077985 

0.88806 0.887318 0.08355 

0.902985 0.90365 0.073625 

0.91791 0.917314 0.06496 

0.925373 0.925516 0.015392 

0.932836 0.93303 0.020784 

0.940299 0.940316 0.001823 

0.955224 0.955139 0.00892 

0.962687 0.970343 0.795329 
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Table 9, cont.  

Actual Surface Finish Predicted Surface Finish Error (%) 

0.977612 0.978527 0.093552 

0.992537 0.986874 0.57064 

1 0.992157 0.78426 

0.828358 0.828836 0.057703 

0.843284 0.841799 0.1761 

0.850746 0.853406 0.312605 

0.865672 0.861706 0.45815 

0.865672 0.869058 0.391235 

0.873134 0.874827 0.193896 

0.88806 0.884669 0.3818 

0.895522 0.892492 0.33839 

0.895522 0.900187 0.520862 

0.910448 0.909122 0.14564 

0.91791 0.919029 0.121833 

0.925373 0.924571 0.08673 

0.940299 0.929245 1.17556 

0.947761 0.938849 0.9403 

0.947761 0.936891 1.14697 

0.955224 0.941885 1.39646 
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The overall average error for surface finish model is 0.389%. Only four data points crosses 

the 1% individual error limit. The maximum individual error is 1.39%.  

Figures 4.31 and 4.32 show the interdependency of tool wear and surface finish on speed, feed, 

DOC, force, and vibration.  

 

 

Fig. 4.31 MATLAB Surface Plot Showing Inter Dependency of Tool Wear on a) DOC and 

Speed; b) Feed and Speed; c) Vibration and Speed; d) Force and Speed; e) Vibration and DOC; 

f) Vibration and Feed; g) Vibration and Force. 
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Fig. 4.31, cont.  
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Fig. 4.31, cont.  
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Fig. 4.32 MATLAB Surface Plot Showing Inter Dependency of Surface Finish on a) DOC and 

Feed; b) Force and DOC; c) DOC and Speed; d) Vibration and DOC; e) Feed and Speed; f) 

Vibration and Feed; g) Force and Feed; h) Force and Speed; i) Force and Vibration; j) Vibration 

and Speed. 
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Fig. 4.32, cont.  
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Fig. 4.32, cont.  
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Fig. 4.32, cont. 
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CHAPTER V 

 

 

ANALYSIS ON DESIGN OF EXPERIMENTS 

 

 

In this experiment, a total of 48 data point has been used. A regression analysis test has 

been performed in Minitab. Due to problem with multi-collinearity in the dataset, regression 

analysis could not establish any relation of DOC with tool wear, surface finish, speed, feed, cutting 

force and vibration. The Minitab Regression output is shown in Figure 5.1. 

 

Fig. 5.1 Minitab Regression Output 

A correlation analysis of five inputs has also been performed for the regression model. The results 

of the correlation analysis are shown in Figure 5.2.  

   

Fig.5.2 Correlation Analysis
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From the correlation analysis, the correlation coefficient between feed and DOC has been 

found to have a value of -1. This is a perfect negative correlation and implies that the variables 

feed, and DOC are not independent, and cannot both be included in statistical models which has 

been shown in a matrix plot in Figure 5.3.  

 

Fig.5.3 Matrix Plot of Input Variables 

According to the matrix plot, if the value of DOC or speed is known, the value of the other 

variables can automatically be known.   

A regression model has been developed without DOC values to find out the meaningful 

correlation between parameters. The regression model for cutting force is found statistically 

significant. The coefficients for speed and feed (rate) are both positive which makes sense. See 

Figure 5.4.  
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Fig. 5.4 Regression Model for Cutting Force 

A large amount of noise has been found during regression analysis of vibration model with 

R2 value of 37.74% which makes the model a poor one. The coefficient for speed is found positive 

whereas the coefficient of feed rate is found negative which means as the feed rate is increased, 

less vibrations are observed.  

 

Fig. 5.5 Regression Model for Cutting Force 
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Fig. 5.6 Scatterplot of Vibration Model  

The experimental dataset of 48 data points has been found insufficient to predict the tool 

wear and surface roughness effectively using ANFIS methodology. Further, it is not possible to 

build statistical models from this data. For this experiment, with the 48 data points appropriate 

modeling has failed. 
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CHAPTER VI 

 

CONCLUSIONS 

 

The relationship between the cutting parameters (Speed, Feed, DOC) and response parameters 

(Vibration, Surface Finish, Cutting Force and Tool Wear) has been investigated during turnng of 

CFRP composite. The ANFIS methodology has been used to predict the tool wear and surface 

finish with minimal error percentage. Based on the study's experimental findings, the following 

conclusions can be drawn: 

▪ The experimental dataset of 48 data points has been found insufficient to predict the tool wear 

and surface roughness effectively using ANFIS methodology.  

▪ During Minitab analysis, problem with multi-collinearity in the dataset has been found and 

regression analysis could not establish any relation of depth of cut with tool wear, surface 

finish, cutting speed, feed rate, cutting force and vibration.  

▪ The value of DOC has been found to have a value of -1 during correlation analysis in Minitab 

of five inputs (depth of cut, cutting speed, feed rate, cutting force and vibration). This is a 

perfect negative correlation and implies that the variables feed, and DOC are not independent, 

and cannot both be included in statistical models.  

▪ A large amount of noise has been found during regression analysis of vibration model with R2 

value of 37.74% which makes the model to be considered as a poor one.
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▪ According to the scatterplot in Minitab, it has been found that if the value of depth of cut or 

cutting speed is known, the value of other variables are also known autometically. 

In consideration of above conclusions, It is not possible to build statistical models from this 

data. The DOE approach for this experiment fails. 

Due to resource and time constraints, it was not possible to conduct the experiment again to 

get a meaningful data for this thesis. Future work can retake the data to get sufficient amount of 

data points with the same experimental setup and a proper DOE approach. This experiment is 

conducted with two MISO model. A multiple input multiple output (MIMO) modeling can also be 

done in future for similar kinds of problems.  

The result of this experiment is not a proper representation of what it should be because of the 

failure to conform to a correct DOE approach. Hence, this thesis does not contain publishable 

content.  
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