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EDITORIAL COMMENT

Bioenergetics and neuroimaging research: a
neuropathophysiological linkage in the setting of

cocaine use amongst persons with HIV

Cory J. Whitea and Karl Goodkinb,c

AIDS 2023, 37:1001–1003

Keywords: cocaine, depression, dopamine, glucose metabolism, HIV,
neurocognitive impairment, neuroimaging, neuroinflammation, oxidative stress,

PET

Despite innovations in antiretroviral therapy (ART) that
have transformedHIV infection from an acute illness with
high mortality risk into a chronic, largely manageable
disease, the viral reservoir that persists in brain continues
to pose a risk for neurocognitive impairment and other
deleterious clinical outcomes. ART regimens can inhibit
viral integration and suppress replication to nondetectable
levels in plasma and cerebrospinal fluid (CSF) but do not
eliminate viral reservoirs, including that in brain [1].
Moreover, HIV transcripts within CSF cells have been
associated with brain injury despite suppressive ART [2].
Comorbid HIVand cocaine use exacerbates brain atrophy
and neurocognitive decline despite viral suppression
[3–5]. Intersecting factors disrupted by chronic cocaine
use among people with HIV (PWH) contribute to HIV-
associated neuropathology, including neurotransmitter
signaling (particularly dopamine), neuroinflammation,
blood–brain–barrier (BBB) integrity, and energy metab-
olism. Further, the neuropathological severity associated
with HIV and cocaine is spatially heterogenous [6–8].
The healthy brain is energetically expensive and complex
with region-specific, unique functional roles [9–11].
Further, compartmentalization of HIV infection in brain
contributes to this heterogeneity [12]. Mechanistic links
between HIV and cocaine require additional characteri-
zation to assess region-dependent contributions to
develop therapeutic interventions for cocaine use disorder
comorbid with HIV.

Mamidi et al. [13] focused on associations between
chronic cocaine use and HIV on glucose uptake. Using
18F-FDG PET/CT in a 2 � 2 experimental design with
HIV (present/absent) and cocaine (present/absent)
(N¼ 63), they showed the lowest uptake with both
HIVand cocaine. One factor – HIVor cocaine – showed
intermediate uptake, and neither factor showed the
highest uptake. The pronounced impact of cocaine on
HIV-associated neuropathology is, in part, due to
disruption of dopaminergic neurotransmission. The
dopamine system is linked to inflammation and
immunological function. Brain regions with high basal
dopamine levels, such as the striatum and substantia nigra,
are amongst the most vulnerable to HIV [14]. Dopamine
exposure to human macrophages results in elevated
production of pro-inflammatory cytokines and chemo-
kines [14]. Acutely, elevated dopamine concentrations
due to cocaine use increase oxidative stress, exacerbated
by Tat [15,16]. Chronically, cocaine use is associated with
dopamine depletion, demonstrated by PET scanning
research [17]. In addition, HIV itself is associated with
dopamine depletion as well as neurocognitive impairment
and depression [18] not investigated here. This constella-
tion suggests a synergistic effect of HIV and cocaine on
dopaminergic transmission. To the extent that dopami-
nergic neurotransmission impacts glucose uptake, only
additive effects of HIV and cocaine were reported here.
No interaction of HIV and cocaine was observed.
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A major hallmark of chronic HIV is elevated pro-
inflammatory cytokine and chemokine production.
Suppressed PWH still have elevated neuroinflammation
in the parietal and occipital cortex and the globus pallidus.
Neuroinflammation is associated with decreased neuro-
cognitive performance and increased white matter
damage supported by a PET study with [11C] PBR28
and neuropsychological testing [8]. Viral proteins, Tat and
gp120, both facilitate the production of pro-inflamma-
tory cytokine and chemokines that decrease BBB
tight junction protein expression and are directly
neurotoxic [19]. Loss of BBB integrity allows free virus
and HIV-infected monocytes to enter brain, exacerbating
neuronal damage [20]. Similarly, cocaine increases
neuroinflammatory markers by activating microglial cells
and disrupting BBB integrity – decreasing tight junction
protein expression in human pericytes [21]. When
measuring chronic cocaine-induced microglial activation
in vivo, rhesus macaques displayed increased TSPO PET
expression in dopamine-rich regions via [3H] PK-11195
[6,7]. However, humans with a history of chronic cocaine
use assessed with TSPO PET via [11C] PBR28 displayed
no significant changes [6,22]. Of note, increased TSPO
expression using current tracers does not distinguish
between microglial and astrocytic activation. Further,
there are other limitations with the utility of both PK-
11195 and PBR28 tracers. Hence, PET scanning studies
are currently inconclusive, though studies using other
methodologies support neuroinflammatory effects asso-
ciated with cocaine. Cocaine has been linked with
increased TNF-a expression and is well known to
stimulate HIV replication through induction of NF-kB
and activation of transcription through the HIV LTR.
The increased expression of TNF-a induced by HIV
might exacerbate that by cocaine. Pro-inflammatory
cytokine production has been associated with dopamine
depletion outside of HIV infection. This suggests an
intrinsic link between chronic HIV despite suppression,
ongoing neuroinflammation, and persistent dopamine
depletion, which is associated with depression and
neurocognitive symptoms. This linkage may also reflect
the results reported here and suggests the possible clinical
utility of TNF-a inhibitors and dopaminergic agonists for
the treatment of depressive and neurocognitive symptoms
in virally suppressed PWH, supporting normalization of
brain glucose uptake.

In adults, the brain’s immense energetic demands require
roughly 20% of all glucose and constitute approximately
the same proportion of total oxygen consumption during
resting conditions [23,24]. Maintenance of brain meta-
bolic homeostasis is particularly sensitive to metabolic
coupling between types of brain cells that contribute to
clinical disorders when disrupted [25–27]. Viral–host
interactions after an infection like HIV shift bioenergetics
for incompletely understood reasons. Changes in
energetic metabolism have been reported to occur
in vitro using cultured astrocytes, neurons, and microglia

due to Tat and gp120 [28–30], cytokines and chemokines
[31], oxidative stress [32], and ART [33]. In vivo, virally
suppressed PWH display decreased glucose uptake in the
frontal cortex and the anterior cingulate cortex via FDG-
PET [34,35]. Altogether, these changes suggest a shift
from metabolism of primarily glucose to other oxidative
substrates. Moreover, in vitro, cocaine is associated with a
similar metabolic shift [29].

As suggested above, energetic demands vary across
brain regions. Recent studies suggest that the brain
also uses other substrates, such as fatty acids, lactate,
pyruvate, glutamate, glutamine, and ketone bodies,
more frequently than previously considered [10,11,36].
The composition of substrates used may shift under
various factors such as age, diet, brain activity or injury,
cognitive reserve, and the presence of viral infections like
HIV [26,37]. Hence, future studies should expand from
the general study of glucose uptake as the primary
substrate to other substrates and associated changes in
oxidative stress and mitochondrial function. Clinical
research suggests the importance of associated interact-
ing comorbidities, such as cardiovascular disease, with
HIV [38] and cocaine [39]. It should be noted that age,
ethnicity, and education and concomitant opioid use
were not able to be separately analyzed here. Of note,
older age is also associated with dopamine depletion,
suggesting a more prominent effect amongst older
PWH.

In addition to future studies examining other energy
substrate outcome measures; improved control of
extraneous factors; and integration of clinical outcomes
of cocaine use among PWH, neuroimaging studies can be
particularly helpful in examining spatial heterogeneity in
energetic effects induced by toxic HIV protein and
transcript burden as well as pro-inflammatory cytokine
secretion associated with cocaine use. Yet, these methods
incompletely capture metabolic changes in brain. It can
be concluded that there remains much to explore as
to how the bioenergetic shifts occurring due to HIV
and cocaine may be mechanistically linked to clinical
outcomes.
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