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ABSTRACT

Baul, Abhijit, Learning to Detect Pedestrian Flow in Traffic Intersections from Synthetic Data.

Master of Science in Engineering (MSE), May, 2021, 47 pp., 6 tables, 25 figures, 48 references.

Pedestrian flow Detection at a traffic-intersection has always been a challenging task.

Challenges include different weather conditions, different pedestrian density, occlusions, lack

of available data and so on. Emergence of deep learning and computer vision algorithms has shown

promises to deal with these problems. Most of the recent works only focus on either detecting

combined pedestrian flow or counting the total number of pedestrian. In this research work, we are

proposing an end-to-end Deep Learning framework to detect not only combined pedestrian flow but

also pedestrian flow in different directions. For this purpose, we have created a synthetic dataset

from a video game. Our GTA-Intersection dataset has 75 cross-road pedestrian scene with different

pedestrian density and camera height. Also, we have collected several videos from the street to

evaluate our proposed method. After that, we proposed a Pedestrian Flow Inference Model (PFIM).

Our contributions are, 1) we are introducing a synthetic pedestrian dataset that we have created

using a video game and a real-world dataset we have collected from the street. Our dataset has small,

medium and high density pedestrians crossing a crossroad, captured from different camera height, 2)

We have proposed a Pedestrian Flow Inference Model (PFIM) that is trained on the synthetic dataset

first and then is tested extensively on our real-world dataset. While testing on real-world dataset, we

have embraced domain adaptation to reduce the domain gap between synthetic data and real-world

data. Our proposed Pedestrian Flow Inference Model (PFIM) can detect pedestrian density and flow

regardless the height of the camera in three different directions - from left to right direction, from

right to left direction and total. Combining all, It has successfully tackled the challenges mentioned

above and achieved state-of-the-art performances.
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CHAPTER I

INTRODUCTION

Pedestrian flow detection has been a real-world challenge since 1960 or before that. In

the beginning, there were many mathematical models that tried to estimate the pedestrian volume

and density from previously collected data. With the advances of technology, there are many

camera-based surveillance system available that try to detect pedestrian flow in a traffic intersection.

But the challenge of detecting pedestrian flow by an automatic system is still unresolved. There are

some algorithms that extracted features from an input image frame and tried to detect pedestrian

flow without human-supervision. With the recent success of Deep learning and Computer Vision in

solving real-world problems, this research work tried to find out how much this new approach can

contribute to automatic pedestrian flow detection.

1.1 Pedestrian Flow

The term Pedestrian Flow can be defined as the number of pedestrian passing through a

certain area, in a certain amount of time. More elaborately [14],

V =
S
M
. (1.1)

Where V is the volume of flow, S is the average speed of the pedestrians and M is pedestrian

area module, M = 1
Density . In real-world condition, we can easily estimate the pedestrian area.

However, estimating the pedestrian density is a challenging task. It changes with daytime, weather

and many other factors.
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1.2 Applications

Detecting Pedestrian Flow has many applications including crowd analysis [34, 41], video

surveillance, traffic flow monitoring, planning for future infrastructure development near roads and

so on. Crowd analysis tries to interpret data on the natural movement of groups or object, more

elaborately, human movements. Video Surveillance tries to detect aberrant behavior in a certain

place. All these can be benefited from detecting pedestrian flow accurately. Traffic flow monitoring

is the base case where pedestrian flow detection can play the most important role. Also, developing

an infrastructure near roads require analysis of pedestrian flow near that area.

1.3 Overview of the Proposed Framework

One of the main challenges in pedestrian flow detection is the lack of a high-resolution

dataset. To resolve that issue, at first, we tried to create a synthetic dataset. For this purpose, we

selected the GTA V (Grand Theft Auto V) game. The motivation behind selecting this game are, 1)

The game is open source and available for research, 2) There are some game plug-ins and libraries

available that can be used for creating an ideal crossroad-pedestrian scenario. These libraries also

allows to capture videos from different height and angle and create different weather pattern. For

simplicity, we have only considered day time and clear environment in this research. However, it

can be extended for different day times and weather conditions. 3) As the number of pedestrians

in each scene is preset by us, we are fully aware of the number of pedestrian in each scene, hence

there is no chance of annotation error. In addition to that, the resolution is very high which is not a

general case for most of the available datasets mentioned above. Detailed explanation is provided in

chapter VI.

After creating the synthetic dataset, we generated optical flow from each pair of consecutive

video frames. Optical flow [17] is a state-of-the-art algorithm for analysing different types of motion

and velocity in a specific image frame. Our research has shown that the addition of optical flow

with video frames combined improved the accuracy for detecting the flow.

Our proposed Pedestrian Flow Inference Model (PFIM) consists of a deep CNN architecture,
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Pedestrian Counting Net (PCNet). It is a two-branch deep CNN architecture where a pretrained

AlexNet [21] was used for feature extraction. Initially, we divided our synthetic dataset into train and

validation set and trained the PCNet which has shown tremendous success in counting pedestrian

numbers in each frame. The output from PCNet goes into PFIM that determines the pedestrian flow

and density. Then, we began our evaluation on real-world datasets. But unfortunately, we have only

found two real-world dataset that is similar to our synthetic dataset - [8, 45]. We have selected some

video frames that are close to our synthetic dataset but still the resolution was not good and there

was severe occlusion especially the frames adopted from [45]. Hence, we decided to collect some

real world cross-road scene from the street. We have also included the description of the real-world

dataset with our synthetic dataset.

In order to reduce the gap between virtual domain and real-world domain, we embraced

domain adaptation methods like Cycle GAN [48] and measured the quality of the reconstructed

images using Structuaral Similarity Index Measure (SSIM) [47]. Both of them have been used

by some recent works [39, 23, 37] for crowd analysis and counting and has shown promising

performance in reducing the domain gap. We have evaluated the performance of our proposed

two-branch Pedestrian Counting Net (PCNet) in two ways- without and with fine-tuning using

real-world data. Our goal was to observe the introduction of synthetic data - whether it can

successfully resemble the real-world scenario or not. To accomplish that, initially we observed

PCNet performance only trained on 1) Synthetic data or trained on 2) Synthetic data and then

fine-tuned on cross-domain frames achieved by Cycle GAN. We then evaluated the performance of

both 1) and 2) method by directly detecting the pedestrian flows on real-world datasets. In addition

to that, we choose a small percentage of real-world dataset to fine-tune both 1) and 2) method and

then measured the performance. Our proposed framework achieved state-of-the-art performances in

detecting the pedestrian flow. More detailed evaluation is available in section VI.

Fig. 1.1 demonstrates our complete framework. Briefly, this research’s contributions are:

1) We have created a synthetic annotated dataset named GTA-Intersection dataset using the

GTA V video game.

3



Figure 1.1: Proposed deep learning framework to detect the pedestrian flow parameters: firstly, the
proposed Pedestrian Counting Network (PCNet) predicts the pedestrian counting numbers moving
from left to right, moving from right to left, and total as NL,NR,NT ; secondly, based on the predicted
NL,NR,NT , an Pedestrian Flow Inference Model (PFIM) is designed to estimate the pedestrian flow
parameters: a) pedestrian flow and density from left to right direction, b) pedestrian flow and density
from right to left direction, and c) combined pedestrian flow and density in both direction.

2) We have proposed a Pedestrian Flow Inference Model (PFIM) that is able to detect

pedestrian flow and density in three different directions - from left to right, from right to left and the

total flow and density.

3) We have embraced domain adaptation techniques like Cycle GAN and image reconstruc-

tion metric Structural Similarity Index Measure(SSIM) and achieved state-of-the-art performances

using our PFIM framework.

1.4 Outline of Thesis

In chapter II, there is discussion about the previous and relevant research works in pedestrian

flow detection. The chapter III contains the description of GTA-Intersection dataset. Chapter IV

describes our proposed Pedestrian Counting Net (PCNet) and Pedestrian Flow Inference Model

(PFIM). In chapter V, we discussed domain adaptation. We discussed the experiments and results in

section VI.
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CHAPTER II

REVIEW OF LITERATURE

The literature review regarding pedestrian flow detection consists of three sections - The

first one is about the algorithms that require hand-crafted features and the second section is about

algorithms that used Deep Convolutional Neural Network framework. Since, one of the purposes of

this research work focused on the utilization of synthetic dataset in pedestrian flow detection, the

third section discusses related work to that.

2.1 Feature-based Detection

In the beginning, the researchers focused on extracting hand-crafted features from the images

and train a classifier to detect pedestrian flow. The prominent research work in this genre is [11]

which extracts integral channel features with respect to oriented gradient (HOG), color features

(LUV) and gradient magnitude. Then it uses boosted decision forest as classifier. Due to the success

of this algorithm, later it was extended by many research [10, 5, 40]. Also, different variants of [11]

are available. Beside the feature-based methods, There are some sensor-based pedestrian flow

detection method ( [18, 33]. These types of methods use WiFi and Bluetooth to gather essential

information about surrounding pedestrians and try to estimate the pedestrian flow.

2.2 Deep CNN-based Detection

Due to the success of deep learning and computer vision algorithms in various imaging

task, recent research in pedestrian flow detection mainly focused on deep CNN-based algorithms.

Initially, some researchers modeled pedestrian flow detection similar to object detection task. Since,

Faster R-CNN ( [28] is a hugely successful algorithm, it was widely used for pedestrian detection.

Later, some research work [22, 6] extended fast and faster R-CNN with multi-scale network to deal
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with scale variations. Scale variation means, the size and positions of pedestrian varies with respect

to camera, occlusion and many other factor. A multi-scale network tries to deal with the scaling

issue. In addition to detect the whole pedestrian, there are also part-based detectors ( [38, 46, 25, 13]

available. The reason behind this is, it is hard to detect the whole-body of a pedestrian in a crowded

scene. Hence, part-based detectors are very useful. These part-based detectors tried to detect

different human parts, more specifically heads, arms in an occluded scene. There are also some

crowd counting algorithms [44, 42, 35, 36, 24, 19] which tried to estimate the number of pedestrians

in an occluded scene. [42, 35] employed multi-task learning to take advantage of the relation of

different task in a pedestrian scene. [7, 26] employed multi-scale or multi-stage network to improve

the detection. [36] tried to learn from long-range contextual information while [32] applied deep

negative co-relation to tackle over-fitting and estimates the number of people.

2.3 Pedestrian Datasets

Deep Convolutional Neural Network (CNN) requires huge amount of data to train success-

fully. This section discusses mainly on the available datasets for pedestrian detection. Also, there

are some synthetic dataset available which were previously used for crowd counting and can be

extended for pedestrian detection as well.

2.3.1 Real-World Datasets

The available pedestrian datasets are INRIA [9], Caltech [12], KITTI ( [15], CityPerson [43]

and so on. The limitations of these datasets are - they did not focused on traffic-intersections and the

camera height is very close to the pedestrians. For example, the INRIA [9] dataset has pedestrians

from all different backgrounds. The Caltech [12] dataset focused on mainly pedestrians. One

limitation of [12] dataset is that the camera is parallel to the pedestrians which makes it difficult for

monitoring pedestrian flow at a traffic intersection. The KITTI [15] (Fig. 2.1) benchmark captured

frames from a car and mainly focused on detecting objects for assisting self-driving cars. So, it is

not suitable for pedestrian flow detection either. The CityPerson [43] (Fig. 2.2) is similar to [12]

which focused on pedestrian detection but the camera height remains parallel to the pedestrians
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and not suitable for surveillance at a traffic-intersection. Also, the number of pedestrians in the

available datasets are not very high and variation in the pedestrian flow is small. There are some

datasets [8, 45] for crowd counting which can be used for pedestrian detection as well. This research

adopted suitable frames from both [8, 45] to evaluate the proposed algorithm’s performance on

real-world scenario.

Figure 2.1: An image frame from Kitti [15] dataset

Figure 2.2: An image frame from Cityperson [43] dataset

2.3.2 Synthetic Datasets

Creating a huge human-annotated dataset for pedestrian flow detection requires a lot of

time. There is also chance of annotation error which will cause problems while training a deep

CNN network. One way to solve this problem can be - creating a simulated pedestrian scenario and

extracting frames from there. Using video games can be very useful for this purpose. There are
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some available datasets [30, 20, 29, 31] available which have successfully extracted image-frames

and ground truth from video games. Among them, [30, 20, 29] collected scenes from GTA V. [30]

extracted annotation from the rendering pipeline. [20] proposed a method to explore the internal

engine buffer and get the depth information which can produce accurate object-masks. [29] used

open source game engines and used them to collect six different types of ground truth from the GTA

V game. [31] intended to create a dataset for autonomous driving and employed unity game engine

to construct synthetic street scenes.
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CHAPTER III

GTA-INTERSECTION DATASET

Grand Theft Auto (GTA V) was released by Rockstar games [1] in 2013. It is an action-

adventure open world game, where the characters and the environment are very much similar to

real-world scenario. Based on a fictional city - Los Santos, the game has used Rockstar Advanced

Game Engine(RAGE) to improve it’s rendering details. The game has high quality texture details,

different weather conditions, pedestrian and vehicle movements which are very similar to real-world

conditions. The company also allows players to develop non-commercial mod which also helped to

create our intended dataset. There is a C++ library, Script Hook V [2] (Fig. 3.1) which can be used

to develop game plug-in. The GCC Crowd Counting Dataset [39] has successfully exploited the

features of Script Hook V and created a crowd counting dataset. The difference between the [39]

dataset and ours is, we have developed specific video scenes at the traffic-intersections and focused

only on pedestrians who are crossing the roads. On the other hand, GCC dataset focused on creating

random crowd scenarios at different crowded locations like beach, parking lots and so on. In our

dataset, the pedestrians crossing the traffic-intersection is very similar to the real-world and there

were cameras at different height to capture each scene simultaneously. To accomplish this task, we

took the advantage of another game mod, scene director [3] in addition to Script Hook V.

3.1 Creating Traffic-Intersection Scenes

Scene Director [3] (Fig. 3.2) for GTA V is intended to create a movie by choosing suitable

characters, controlling their movements, recording the scene from different camera angles. We have

utilized all the available features of Scene Director. Our dataset contains three different pedestrian

density levels - small (0-10), medium (10-20) and high (20-40). In the beginning, we created
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Figure 3.1: Script Hook V [2]

pedestrians with different body shapes, colors, genders and so on and saved them in the Scene

Director directory. We then utilized these pedestrians according to the density of each scene. We

chose five different traffic-intersections which are very similar to real-world traffic-intersections.

We decided to record the pedestrian scene from three different heights, low, medium and high. So,

after selecting a traffic intersection, we placed the pedestrians with intended density and recorded

their movements. As the pedestrians were different from each other, each scene is very similar

to real-world pedestrian scenario. In total, we have generated 75 videos, the frame-rate is 60

frame/second. Then we down-sampled 30 suitable frames from a single second of each video and

trained our two-branch Pedestrian Counting Net (PCNet). The resolution of our GTA-Intersection

dataset is 1080x720p.

Some samples from our GTA-Intersection dataset are provided in Fig. 3.3.
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Figure 3.2: Scene Director V [3]

Figure 3.3: GTA-Intersection dataset: 1st row: small pedestrian density (0-10), 2nd row: medium
pedestrian density (10-20), c) 3rd row: high pedestrian density (20-40); each column corresponds to
different camera height.
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3.2 Examples from GTA-Intersection Dataset

Below, there are some examples, Fig 3.4, 3.5, 3.6, 3.7 from the GTA-Intersection dataset. It

can be observed that the images frames have high-resolution (1080x720p) and well-defined to train

a deep CNN framework. Also, the scenario is very similar to a real-world pedestrian scene.

Figure 3.4: Examples from GTA-Intersection dataset.

3.3 Real-Intersection Dataset

To evaluate our proposed framework, we tried to find out some real-world dataset. Unfortu-

nately, we did not find any real-world crossroad-pedestrian scenario similar to our synthetic dataset.

We collected some video frames from [45, 8] and labeled them as Subset-1 and Subset-2 respectively.

As we did not find many traffic-intersection images similar to our GTA-Intersection dataset, we

have collected some similar videos from the street. We have then extracted 80 suitable frames from

each of these videos. As some videos contained very high density traffic in the background, we

have removed those regions. Fig. 3.8 contains some exapmle from the Real-Intersection dataset.

Here is a summary, Tab. 3.1 contains information about both GTA-Intersection and Real-

12



Figure 3.5: Examples from GTA-Intersection dataset.

Figure 3.6: Examples from GTA-Intersection dataset.
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Figure 3.7: Examples from GTA-Intersection dataset.

Figure 3.8: Real-Intersection dataset: 1st row: frames collected from [45], 2nd row: frames collected
from [8], c) 3rd row: frames collected from the street from us.

Intersection dataset.
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Table 3.1: Details of the datasets used in this experiment: image numbers, pedestrain density, and
image resolution. There are 75 videos in the GTA-Intersection and 3 videos in Real-Intersection.

Dataset Name Training Validation Testing Pedestrian Density Resolution
GTA-Intersection 1,522 218 435 4 to 36 1,080x720
Real-Intersection 130 - 658 6 to 76 720x560
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CHAPTER IV

METHODOLOGY

4.1 Generating Optical Flow

As our goal was to detect the pedestrian flow, our initial experiments using only video

frames shows that video frames alone was not sufficient enough to achieve that goal. We decided to

use both video frame and corresponding optical flow [17] to train our framework. An Optical flow

measures the relative motions of objects between two consecutive frames and assigns them into

different groups with respect to their directions of motions. As our research focused on detecting

the flow of pedestrians in two different directions, the addition of optical flow proved to be very

useful. In order to generate a optical flow, we chose two consecutive video frames and generate the

corresponding optical flow.

Figure 4.1: Optical flow generation

Optical flow is the motion of objects between consecutive frames of sequence. Let us
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consider the location an object is (x,y) in the first frame and it’s displacement in the second frame

can be described as (x+dx,y+dy). Let’s assume that I(x,y, t) is the image intensity of the first

frame and by moving I to (dx,dy) direction over time dt, we obtain the new image intensity,

I(x+dx,y+dy, t +dt). If we assume that the pixel intensities of an object is constant between two

consecutive frames, we achive that,

I(x,y, t) = I(x+dx,y+dy, t +dt). (4.1)

Figure 4.2: Optical flow generation (Collected from Internet)

Optical flow can be obtained by solving the equation,

dI
dx

u+
dI
dy

v+
dI
dt

= 0. (4.2)

where u is dx
dt and v is dy

dt . From Fig. 4.1, we can observe that the group of people moving

from left to right are assigned red color, on the other hand, the group of people moving from right to

left are assigned blue color. Optical flow is assigning groups according to their direction of velocity

between two consecutive frames.
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4.2 Pedestrian Counting Net

As our input consists of both video frame and corresponding optical flow, traditional single

branch CNN framework was not suitable for that. We decided to use a pretrained AlexNet [21] as

the CNN backbone and modified it so that it can take two inputs. Here, the AlexNet mainly works

as a feature extractor, which extracts features (4096) from both video frames and optical flows.

Combining them we have got 8192 one-dimensional features. We then added three fully-connected

layers and our final layer predicts three outputs - 1) number of pedestrians moving from left to right,

2) number of pedestrians moving from right to left and 3) the total number of pedestrians. As there

is inter-dependency in the flow of pedestrians in different directions, we have tried to extract that

advantage. Fig. 4.3 describes our proposed two branch Pedestrian Counting Net (PCNet).

Figure 4.3: The proposed Pedestrian Counting Net (PCNet). The two branches with the inputs of
original image and motion(optical flow) image share the weights and the outputs are the NL,NR,NT
which stands as pedestrian counting numbers moving from left to right, moving from right to left,
and total respectively.

The input is a pair of images - video frames and their corresponding optical flow. Each input

dimension is 227x227x3 (a color image with size 227x227). The original AlexNet architecture

has 5 convolutional layers, used for creating a feature map that indicates locations and strengths

of detected features in the input, 3 max pooling layers for down sampling the data size and 3
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fully-connected layers which hold the composite information from all layers before it. We have

removed the final layer and then concatenated the features from both video frame and optical flow.

We then added 3 more fully-connected layers. The final layer gives output of a 3 dimensional vector

- the interpretation is mentioned above.

4.2.1 Review on AlexNet

AlexNet [21] has brought huge improvement in object recognition using deep CNN layers.

It was the first successful attempt in large-scale training of deep CNN framework on thousands of

object class. The performance of AlexNet is state-of-the-art. AlexNet has total eight layers - five

Convolutional layers and three fully-connected layers. first and second CNN layer has a kernel size

of 11x11 and 5x5 respectively. The rest of the CNN layers have a 3x3 kernel size. The CNN layers

are fused in the end which provides a feature vector of length 4192. The output layer gives a output

vector of size 1000. We replace the output layer with three more fully-connected layer. In total,

AlexNet has 60 million parameters.

Figure 4.4: AlexNet framework. Image credit [21].

4.2.2 Review on YOLOv3

Since, we have evaluated the performance of Pedestrian Counting Net (PCNet) with

YOLOv3, this section provides a review about that. Yolov3 [27] is currently a state-of-the-art

framework in object detection. Since, pedestrians can be treated as objects, we utilized YOLOv3

as a human detector.YOLOv3 uses DarkNet-53 [27] as a feature extractor. It has 53 convolutional
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layers with residual connections. YOLOv3 has 53 more layers on top of the DarkNet, hence it has

total 106 layers.

Figure 4.5: DarkNet framework. Image credit [27]

The output from the detection kernel is 1x1x(B x (5 + C)) where B stands for the number

of bounding boxes a cell can predict, 5 is to represent four bounding box attributes and one object

confidence and C is the number of classes. YOLOv3 makes prediction at three stages, where the

output dimensions in each stage is 32, 16 and 8 respectively. To calculate the pedestrian flow in

left to right and right to left direction using YOLOv3 framework, we chose to use two consecutive

frames, calculate the displacement of bounding boxes in both x and y dimension and measured the
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relative motions.

4.3 Loss Function for the training of Pedestrian Counting Net

We used Mean Square Error (MSE) loss function to train the proposed Two-Branch Pedes-

trian Counting Net (PCNet). As we have preset the number of pedestrians in each video, the ground

truth for the numbers of pedestrians moving from left to right, from right to left and combined

were readily available to us. Then we calculated the mean square difference between the predicted

number of pedestrians by PCNet and ground truth. The equation for MSE is described below:

MSE = (
1
N
)

n

∑
i=1

(ŷi− yi)
2. (4.3)

Where N is the number of total samples, ŷ is the predicted number of pedestrians by

PedestrianNet and y represents the ground truth.

4.4 Pedestrian Flow Inference Model

In our proposed method, one Pedestrian Flow Inference Model (PFIM) is designed to

estimate the pedestrian flow parameters based on the output of PCNet. Pedestrian flow on a

crosswalk or sidewalk can be described by the mathematical model provided by [14]:

V =
S
M
. (4.4)

Where V is the volume of flow (p/h), S is the average speed of the pedestrians (km/h) and

M is pedestrian area module (km/p), M = 1
Density . In our experiments, the crosswalk has an length

of ≈ 30m. At first, PCNet detects the number of pedestrians in each frame. The output from

PCNet goes into Pedestrian Flow Inference Model (PFIM) that calculates the pedestrian density,

Density = Number o f Pedestrians
Area . According to the [4], the average pedestrian crosswalk walking speed

is 1.2m/s(4.32km/hr) for most conditions. We utilized this speed as the average pedestrian speed.

Our proposed PFIM multiplies the average pedestrian speed with the density to compute the desired

pedestrian flow/volume. For example, if 10 people are crossing a crossroad of 20 meter length with
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the average speed of 4.32 km/h, the pedestrian volume using eq. 4.4 will be, 2160 p/h.
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CHAPTER V

DOMAIN ADAPTATION

In many cases, it is very difficult to annotate a real-world dataset because of severe occlusion,

low image resolution, bad weather condition or other relevant problems. So, if we can reduce the

domain gap between our synthetic dataset and real-world pedestrian scene, we will no longer require

a human-annotated real-world dataset and hence there will be no chance of annotation error or other

errors. Because, we can preset the number of pedestrians in each scene. More elaborately, we tested

our proposed framework on real-world datasets, Subset1 [45], Subset2 [8] and on our collected

videos from the street. They were all taken from different camera height and angle and different

daytime. So, it is difficult for a single framework to perform well in all these different conditions

without considering the domain gap. Recently, [39] showed promising result in reducing domain gap

between synthetic and real-world images by using Cycle GAN [48] and Structural Similarity Index

Measure (SSIM) [47] as a loss to assess the quality of the reconstructed image produced by Cycle

GAN. Hence, we have embraced this technique into our work, performed extensive experiments

and achieved state-of-the-art performance.

5.1 Cycle GAN

Cycle GAN [48] is a state-of-the-art algorithm for unpaired image-to-image translation that

preserves the contents of the input images. As there is significant domain gap between synthetic

pedestrian image and real-world pedestrian image, Cycle GAN can be utilized to reduce the domain

gap and to translate the synthetic image into a photo-realistic image. Traditional Cycle GAN

consists of two generator, GSyn→Re and GRe→Syn. In our research work, GSyn→Re learns the mapping

function to translate synthetic images to photo-realistic images and vice-versa for GRe→Syn. Each
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generator is associated with a Discriminator DSyn and DRe respectively. They try to distinguish

between real image and generated image from their corresponding generator.

Figure 5.1: CycleGAN [48] framework

The Cycle Consistency Loss [48] enables the generators to learn the mapping function

between two different domain. Suppose, Syn denotes synthetic domain and Re denotes real-world

domain. Now, we have a pair of samples is ε ISyn and ir ε IRe from domain Syn and domain Re,

respectively. So, the objective of cycle consistency loss will be, is → GSyn→Re(is)→Re (is)→

GRe→Syn(Re(is))≈ is and vice versa for ir.

The objective ensures that translation from one domain to another preserves the local and

global patterns and contents of the input image. In another word, cycle consistency loss can be

described as L1 penalty,

LCycle(GSyn→Re,GRe→Syn,Syn,Re) =

Eis∼ISyn[||GRe→Syn(GSyn→Re(is))− is||1]

+Eir∼IRe [||GSyn→Re(GRe→Syn(ir))− ir||1].

(5.1)

In addition to the cycle consistency loss, we have adversarial loss [16] for two discriminator

that detects whether the image is original or the image is generated from the generator. The
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adversarial loss for discriminator DSyn can be described as,

LGAN(GRe→Syn,DSyn,Syn,Re) =

Eis∼ISyn[log(DSyn(is))]

+Eir∼IRe [log(1−DSyn(GRe→Syn(ir))].

(5.2)

Hence, the loss function for the training of Cycle GAN,

LCycleGAN(GSyn→Re,GRe→Syn,DSyn,DRe,Syn,Re)

= LGAN(GSyn→Re,DSyn,Syn,Re)

+LGAN(GRe→Syn,DRe,Syn,Re)

+αLCycle(GSyn→Re,GRe→Syn,Syn,Re).

(5.3)

where α is the weight factor for cycle consistency loss.

5.2 Structural Similarity Index Measure Loss

Structural Similarity Index Measure (SSIM) [47] is used widely as an image reconstruction

assessment metric. [39] showed that SSIM can be used as a loss function to train Cycle GAN while

performing domain adaptation from synthetic to real-world. As there is large difference in texture

quality and pattern between synthetic image and real-world image, synthetic image lost many of

its properties while performing domain adaptation. Hence, we have decided to include SSIM as a

loss function in our work to ensure that our translated images hold its basic contents. Here, the goal

is similar to cycle consistency loss, GSyn→Re(GRe→Syn(ir))≈ ir. The range of SSIM is [−1,1] and

when our input image and reconstructed image from the Cycle GAN generators are identical, the

SSIM value will be 1. The equation can be described as,

LSSIM(GSyn→Re,GRe→Syn,Syn,Re)

= Eis∼ISyn[1−SSIM(is,GRe→Syn(GSyn→Re(is)))]

+Eir∼IRe [1−SSIM(ir,GSyn→Re(GRe→Syn(ir)))].

(5.4)
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Figure 5.2: Structural Similarity Index Measure (SSIM) between Synthetic Images and Recon-
structed Synthetic Images from CycleGAN

5.3 Losses for Domain Adaptation

Combining both CycleGAN loss and SSIM loss the complete loss function for domain

adaptation is described below which is similar to [39],

LComplete(GSyn→Re,GRe→Syn,DSyn,DRe,Syn,Re)

= LGAN(GSyn→Re,DRe,Syn,Re)

+LGAN(GRe→Syn,DSyn,Syn,Re)

+αLCycle(GSyn→Re,GRe→Syn,Syn,Re)

+βLSSIM(GSyn→Re,GRe→Syn,Syn,Re).

(5.5)

Here α abd β are associated with Cycle Consistency Loss and SSIM Loss, respectively. We

set α equals to 10 and β equals to 2 during training.
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5.3.1 Some Examples of Structure-Aware Domain Adaptation

Below, there are some examples of translated synthetic images using CycleGAN in combi-

nation with SSIM. It is noticeable that the translated images retains most of it’s properties regardless

of the style-transfer.

Figure 5.3: Domain adaptation example
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Figure 5.4: Domain adaptation example
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CHAPTER VI

EXPERIMENT

6.1 Experimental Setting for Pedestrian Counting Net

We have implemented the two branch Pedestrian Counting Net on Pytorch and our training

and testing were performed on a workstation with 3.8 GHz CPU and 12GB memory with a NVIDIA

2080 ti GPU. We used the pre-trained AlexNet to initialize the CNN backbone and randomly

initialize other layers of our model, and then we fine-tuned the initialized model using our training

set. The setting for the training: batch size of 16, an initial learning rate of 10−6, and a momentum

of 0.9. We have applied a learning rate scheduler with a factor of 0.1 and step size 16. We applied

mini-batch gradient descent to the optimization during the back propagation and the number of

training epoch is 100.

6.2 Experimental Setting for Cycle GAN

We used the generators described in [48] but we have modified the discriminators. We have

found a proportional relationship between the degree of domain transfer and the size of discriminator.

Using a discriminator too deep can completely transform the domain of the input image and translate

it completely to the intended domain which is undesirable. Hence, we only kept two convolution

layers in the discriminator, first one with 64 filters of size of 5x5 and second one with 32 filters

with size of 3x3. We have used random initialization to initialize both generators and discriminator.

The original Cycle GAN has used 200 epoch but we have found 50 epoch is more effective for our

project. The initial learning rate was fixed 0.0002 for initial 25 epoch then reduced to zero linearly

with each other epoch, similar to the [48]. We have used a replay-buffer similar to the original

Cycle GAN to feed the discriminator from outputs of previous epochs.
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6.3 Comparison Methods

In the beginning, we evaluated the performance of our proposed PCNet. Our goal of this

research project was to explore how much synthetic data can contribute to pedestrian flow detection

at a traffic intersection. Hence, in our PCNet+SYN method, we have trained our proposed PCNet

only on GTA-Intersection dataset and then tested directly on Real-Intersection dataset mentioned

at Table 3.1. In PCNet+SYN+DA method, we have performed domain adaptation using Cycle

GAN, fine-tuned the existing PCNet+SYN, on photo-realistic synthetic data. After fine-tuning, we

again tested our proposed algorithm directly on Real-Intersection dataset. In our proposed method

named as PCNet+SYN+SDA, we performed domain adaption using Cycle GAN and SSIM loss,

fine-tuned the existing PCNet+SYN, and tested directly on Real-Intersection dataset because we

wanted to demonstrate that the addition of SSIM loss improved the domain adaptation quality. In

addition to the above experiments, we chose a small fraction of frames (20%) from Real-Intersection

dataset randomly, finetuned the existing PCNets from the PCNet+SYN, PCNet+SYN+DA and

PCNet+SYN+SDA methods and perform testing on the rest of the Real-Intersection datasets.

The PCNet+REALS method was not trained on our synthetic datasets but trained directly on

the Small portion of Real-Intersection dataset. The reason is, we wanted to find out whether

training on synthetic data improved the pedestrian counting or not. The results are described in

Table 6.1, 6.2, 6.3, 6.4, 6.5. We have compared our proposed PCNet with a pre-trained YOLOv3 [27]

as a human detector. The YOLOv3 remained pre-trained in all the experiments described below. The

results have demonstrated that synthetic datasets can improve pedestrian flow detection significantly

without being trained on a huge amount of real-world dataset.

6.4 Experimental Results

Table 6.1 and 6.2 describes our results on our Real-Intersection datasets. Table 6.1 describes

the results where the PCNet was only trained on synthetic dataset (PCNet+SYN) or synthetic

dataset and then fine-tuned on translated images from Cycle GAN (PCNet+SYN+DA and PC-

Net+SYN+DA). Table 6.2 describes results where a small portion of real-world image frames
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were used for fine-tuning PCNet+SYN, PCNet+SYN+DA and PCNet+SYN+SDA methods. In this

case, PCNet+REALS method was not trained on our synthetic datasets but on the small portion of

Real-Intersection Dataset.

Table 6.1: Performance on the Real-Intersection dataset of the proposed method without using any
real-data for fine-tuning.

Method NL MAE NL MSE NR MAE NR MSE NT MAE NT MSE
YOLOv3 [27] 22.48 505.35 18.71 350.06 35.95 1292.67
PCNet + SYN 19.74 389.77 17.83 317.95 37.04 1372.54

PCNet + SYN + DA 18.86 356.47 17.03 290.2 35.32 1248.0
PCNet + SYN + SDA 18.41 339.06 17.23 296.9 35.03 1227.27

Table 6.2: Performance on the Real-Intersection dataset of the proposed method using a small
portion of real-data for fine-tuning.

Method NL MAE NL MSE NR MAE NR MSE NT MAE NT MSE
YOLOv3 [27] 22.48 505.35 18.71 350.06 35.95 1292.67

PCNet + REALS 6.07 36.9 5.22 27.3 5.82 34.66
PCNet + SYN 1.73 3.00 1.70 2.91 3.1 10.21

PCNet + SYN+ DA 1.63 2.67 1.59 2.55 3.01 9.08
PCNet + SYN+ SDA 1.3 1.69 1.2 1.44 2.3 5.29

From both Tables 6.1 and 6.2, we can draw conclusion that domain adaptation using Cycle

GAN and SSIM loss (PCNet+SYN+SDA method) has improved the pedestrian counting results.

Though using a small portion of real data (Table 6.2) achieved the best MAE and MSE, methods

that were only trained and fine-tuned on synthetic data (Table 6.1) also showed promising results.

We also did an analysis on each subsets of Real-Intersection dataset. At first, we are going to discuss

the performance on the Subset1 [45] of Real-Intersection dataset. We have chosen 298 suitable

frames from [45] that were similar to our GTA-Intersection dataset. As adding a small portion of

images from Real-Intersection dataset significantly improves the performance, we only focused on

the methods described in 6.2. The results on Subset1 are described in Table 6.3.

We can see at Table 6.3 that the performance of our proposed methods is significantly better

than the pre-trained YOLOv3 although not very close to the ground truth. The discrepancy is
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Table 6.3: Performance of our proposed method on the Subset1 [45] using a small portion of
real-data for fine-tuning.

Method NL MAE NL MSE NR MAE NR MSE NT MAE NT MSE
YOLOv3 [27] 23.33 544.45 24.91 620.93 46.94 2204.01

PCNet + REALS 7.57 57.4 6.18 38.3 6.92 47.9
PCNet + SYN 2.43 5.94 2.53 6.42 4.67 21.90

PCNet + SYN + DA 2.31 5.37 2.36 5.58 4.63 19.68
PCNet +SYN + SDA 2.07 4.30 2.70 7.29 3.50 12.26

explainable. First, the range of pedestrians in our GTA-Intersection dataset was 4 to 36 while in the

Subset1 [45], the range of pedestrian was 61 to 76. Hence, training on GTA-Intersection dataset was

not sufficient enough. Second, there was severe occlusion in the Subset1 [45] as it was quite dificult

even for the human-eye to count the number of pedestrians in each frame. Third, the resolution

of the Subset1 [45] was too low compared to our GTA-Intersection dataset. Hence, even domain

adaptation was not enough to reduce the domain gap. Still, domain adaptation and addition of

SSIM loss (PCNet +SYN + SDA) got improved result than PCNet trained on a small portion of

Real-Intersection data only (PCNet + REALS).

Next, we have tested the performance on Subset2 [8] of Real-Intersection dataset. In Subset2,

we chose 120 suitable frames from [8]. The performance of our proposed method on Subset2 is

described at Table 6.4.

Table 6.4: Performance of our proposed method on the Subset2 [8] dataset using a small portion of
real-data for fine-tuning.

Method NL MAE NL MSE NR MAE NR MSE NT MAE NT MSE
YOLOv3 [27] 9.22 85.17 4.22 17.86 6.08 36.97

PCNet + REALS 2.70 7.31 1.41 1.99 1.75 3.06
PCNet + SYN 1.09 1.20 0.47 0.22 1.31 1.72

PCNet + SYN + DA 1.03 1.07 0.47 0.22 1.22 1.51
PCNet + SYN + SDA 1.26 1.60 0.60 0.36 1.09 1.20

We can see improved performance on Subset2 [8] than Subset1 [45] but still there is

difference between the ground truth and our predictions. The reason is that the frames we have

adopted from [8] were in black and white format instead of RGB format. Hence, since our GTA-
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Intersection dataset was typical RGB image, when we perform testing on black and white formatted

frames, it has lost a significant amount of information as it has only one channel. Hence, the

prediction was not accurate. As we did not find anymore dataset that is similar to our GTA-

Intersection dataset, we have collected three videos from the streets. We then chose 80 suitable

frames from each of these video, in total 240 frames. We removed the background partially as

there was heavy flow of cars and vehicles with the flow of pedestrians which could degrade the

performance. The results are shown at Table 6.5.

Table 6.5: Performance of our proposed method on Subset3 (we have collected from the street)
using a small portion of real-data for fine-tuning.

Method NL MAE NL MSE NR MAE NR MSE NT MAE NT MSE
YOLOv3 [27] 4.78 22.84 3.51 12.55 4.63 21.48

PCNet + REALS 2.48 6.18 2.93 8.60 2.31 5.31
PCNet + SYN 0.72 0.53 0.51 0.27 1.08 1.17

PCNet + SYN +DA 0.65 0.43 0.524 0.275 0.94 0.89
PCNet + SYN + SDA 0.55 0.31 0.67 0.45 0.77 0.60

Here, in Table 6.5, we can see the performance of our proposed methods trained only

on synthetic data is very close to the methods that were fine-tuned on a small portion of Real-

Intersection dataset. The dataset we have collected from the streets has similar resolution and

background to our GTA-Intersection dataset. Also, the range of pedestrian in both street dataset was

GTA-Intersection dataset quite similar. Hence, applying domain adaption was helpful to improve the

performance as well. We can see that our PCNet trained on GTA-Intersection dataset and fine-tuned

on translated synthetic images (PCNet + SYN + SDA) is capable of detecting pedestrian better than

traditional human detector algorithm like YOLOv3. Fig. 6.1 shows our predictions on each subsets

from Real-Intersection dataset using PCNet +SY N +SDA method.

After our PCNet Detects the number of pedestrians in each frame, the output goes into our

Pedestrian Flow Inference Model (PFIM). At first, PFIM calculates the pedestrian density in each

frame using the output from PCNet. After that, it multiplies the pedestrian density and pedestrian

speed [4] to get the desired pedestrian flow/volume. Fig. 6.2 shows both pedestrian density and
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Figure 6.1: Pedestrian counting results by our proposed PCNet framework: (a) Detection (NL: 33,
NR: 34, NT : 68), Ground Truth (NL: 35 , NR: 37, NT : 72), (b) Detection (NL: 34, NR: 36, NT : 71),
Ground Truth (NL: 36, NR: 38, NT : 74), (c) Detection (NL: 5, NR: 4, NT : 10), Ground Truth (NL:
6, NR: 5, NT : 11), (d) Detection (NL: 6, NR: 8, NT : 15), Ground Truth (NL: 7, NR: 9, NT : 16),
(e)Detection (NL: 19, NR: 5, NT : 24), Ground Truth (NL: 18, NR: 5, NT : 23), (f) Detection (NL: 20,
NR: 5, NT : 25), Ground Truth (NL: 20, NR: 6, NT : 26).

pedestrian volume in three different directions detected by our proposed Pedestrian Flow Inference

Model.
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Figure 6.2: Detected pedestrian flow and density on different directions by our proposed PFIM
framework : a) flow and density from left to right, b) flow and density from right to left, and c)
combined pedestrian flow and density in both directions.
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CHAPTER VII

DISCUSSION

It can be observed that the pedestrian counting accuracy is state-of-the-art, very close to

the ground-truth which is a indication that the synthetic dataset can be used to train a deep CNN

network and it can perform pedestrian flow detection successfully on the real-world data. Also,

using domain adaptation makes it possible for using synthetic image in training without the need

of human-annotated real-world data which saves valuable time and resources and also reduces the

chance of annotation error.

The above examples Fig. 7.1, 7.2, 7.3 is achieved using PCNet+Syn+DA method and using

20% of Real-Intersection dataset for fine-tuning. The detection from PCNet is very accurate. It

has to be considered that the above performance is done on three different Subset of real-world

dataset. All of them have different density of pedestrian, different camera height. Hence, the

utilization of structure-aware domain adaptation has been proved to be very useful. One of the main

contribution of this research was the synthetic GTA-Intersection dataset. Here, PCNet was trained

on GTA-Intersection dataset first. So, the above results clearly showed that synthetic dataset can

successfully replace real-world dataset for training. Other prospects of using synthetic dataset are -

it can used to create different weather conditions, it can control pedestrian movement speed. All

these are very impactful factor in pedestrian flow detection.

7.1 Summary of Findings

From Tab. 6.1, the best MAE and MSE is obtained using PCNet+SYN+SDA method. The

MAE and MSE is higher than expected in all the methods. Hence, we have performed study on each

subset of dataset separately to find out the issue. From Tab. 6.2, we can notice that fine-tuning using
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Figure 7.1: Performance of PCNet
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Figure 7.2: Performance of PCNet
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Figure 7.3: Performance of PCNet

a small portion of real-world data significantly improves the performance of each method. This

indicates the necessity of successful domain adaptation. Translating an image from synthetic to real

domain is a challenging task. There is significant difference in lighting, characters, color intensity

between a real image and a synthetic image. From Tab. 6.3, we can observe that the total MAE using

PCNet+SYN+SDA method is 3.50 while the MAE using YOLOv3 is 46.94. The subset-1 [45] is

heavily occluded, hence human detector like YOLOv3 fails to detect pedestrians, on the other hand

our proposed PCNet is capable. From the Tab. 6.4, we observe that PCNet+SYN+DA achieved

the best MSE and MAE for detecting pedestrian flow from left to right and right to left direction

while PCNet+SYN+SDA achieved the best MSE and MAE for detecting the total pedestrian flow.

The performance of YOLOv3 lags behind here as well. The reason of improved performance

from subset-1 [45] to subset-2 [8] is that, in subset-2, the pedestrian scenes are not much occluded.

Tab. 6.5, the detection of pedestrians using PCNet+SYN+SDA is almost accurate, the combined

MAE is 0.77. This is because, the subset-3 image frames has high resolution and pedestrian density

similar to the GTA-Intersection dataset. Hence, the performance is state-of-the-art.

From Chapter VI, it is apparent that calculating the pedestrian density with respect to time

is the most important parameter. For comparison, we have used YOLOv3 as a human detector. It is

needless to say that current object detectors failed to detect in occluded scenes or when the camera
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height is too high. From the results, it can be concluded that our Pedestrian Flow Inference Model

(PFIM) is highly effective in detecting pedestrian flow in real-world scenario.
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CHAPTER VIII

CONCLUSION

In this project, we have generated a synthetic pedestrian dataset at traffic-intersection using

a video gane. After that, we have proposed a two branch Pedestrian Counting Net (PCNet) for

pedestrian counting and a Pedestrian Flow Inference Model (PFIM) for pedestrian flow detection.

We embraced domain adaptation technique like Cycle GAN and Structural Similarity Index Measure

(SSIM) loss as reconstruction assessment and achieved state-of-the-art result. This is the first

approach to create an end-to-end deep CNN framework to detect pedestrian flow based on synthetic

pedestrian scenes. One thing we were lacking - a good quality real-world traffic intersection dataset.

In future, our work will focus on acquiring more real-world data. Also, we want to explore different

domain adaptation technique to reduce the domain gap between synthetic domain and real-world

domain.

8.1 Conclusion from the results

In conclusion, we see that the proposed two-branch PCNet achieved the best MSE and

MAE in comparison to traditional human detector like YOLOv3. The best MAE and MSE is

obtained on subset-3 of Real-Intersection dataset using PCNet+SYN+SDA method where PCNet

was first trained on synthetic dataset, then fine-tuned on translated synthetic images obtained from

structure-aware domain adaptation. This suggests that domain adaptation is very effective. Also,

the addition of Optical Flow as well as two-branch CNN framework proved to be very effective.

The best performance was found in a pedestrian density of 0-20 where the performance reduced

drastically in subset-1 where pedestrian density is 60-76. This is a limitations of pedestrian detection

framework since, they perform poorly on heavily occluded scenes.
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8.2 Future Work

Using a human detector like YOLOv3 [27] often fails to detect pedestrians in an occluded

scenes. One limitation of our proposed Pedestrian Flow Inference Model (PFIM) is that we failed

to evaluate it’s performance on diverse real-world conditions due to lack of available datasets. To

get rid of this limitations, we will collect more real-world pedestrian scenes in future. Another

important aspects is the domain adaptation method. Here, we have used Cycle GAN with Structural

Similarity Index Measure (SSIM). In the beginning of domain adaptation, it proved to be very

sensitive. A little change in the Discriminator of the Cycle GAN tend to reduce the translated image

quality drastically. So, finding a better domain adaptation method is another scope of improvement.

Also, the two Pedestrian Counting Net (PCNet) uses AlexNet as a feature extractor. There are many

other powerful deep CNN framework available which can be used as well.
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