
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

5-2022 

Railcar Wheel Impact Detection Utilizing Vibration-Based Wireless Railcar Wheel Impact Detection Utilizing Vibration-Based Wireless 

Onboard Condition Monitoring Modules Onboard Condition Monitoring Modules 

Marco A. Barrera 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Barrera, Marco A., "Railcar Wheel Impact Detection Utilizing Vibration-Based Wireless Onboard Condition 
Monitoring Modules" (2022). Theses and Dissertations. 826. 
https://scholarworks.utrgv.edu/etd/826 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.utrgv.edu%2Fetd%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/826?utm_source=scholarworks.utrgv.edu%2Fetd%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


RAILCAR WHEEL IMPACT DETECTION UTILIZING VIBRATION-BASED WIRELESS 

ONBOARD CONDITION MONITORING MODULES 

A Thesis 

by 

MARCO A. BARRERA 

Submitted in Partial Fulfillment of the  

Requirements for the Degree of 

MASTER OF SCIENCE IN ENGINEERING 

Major Subject: Mechanical Engineering 

The University of Texas Rio Grande Valley 

May 2022 



 

 

 

  



 

 

 

RAILCAR WHEEL IMPACT DETECTION UTILIZING VIBRATION-BASED WIRELESS  

 

ONBOARD CONDITION MONITORING MODULES 

 

A Thesis 

by 

MARCO A. BARRERA 

 

 

 

 

COMMITTEE MEMBERS 

 

 

 

Dr. Constantine Tarawneh 

Chair of Committee 

 

 

Dr. Heinrich Foltz 

Committee Member 

 

 

Dr. Arturo Fuentes 

Committee Member 

 

 

Dr. Stephen Crown 

Committee Member 

 

 

 

 

 

May 2022 

  



 

 

 

 



Copyright © 2022 Marco A. Barrera 

All Rights Reserved 



 

 

 

  



iii 

ABSTRACT 

Barrera, Marco A., Railcar Wheel Impact Detection Utilizing Vibration-Based Wireless Onboard 

Condition Monitoring Modules. Master of Science in Engineering (MSE), May, 2022, 113 pp., 

20 tables, 52 figures, references, 51 titles. 

The current limitations in established rail transport condition monitoring methods have 

motivated the UTCRS railway research team at UTRGV to investigate a novel solution that can 

address these deficiencies through wired, onboard, and vibration-based analytics. Due to the 

emergence of the Internet of Things (IoT), the research team has now transitioned into 

developing wireless modules that take advantage of the rapid data processing and wireless 

communication features these systems possess. This has enabled UTCRS to partner with Hum 

Industrial Technology, Inc. to assist them in the development of their “Boomerang” wireless 

condition monitoring system. Designed to revolutionize the way the railway industry monitors 

rolling stock assets; the product is intended to provide preemptive maintenance scheduling 

through the continuous monitoring of railcar wheels and bearings. Ultimately, customers can 

save time, money, and avoid potentially catastrophic events. The wheel condition monitoring 

capabilities of the Boomerang were evaluated through various laboratory experiments that 

mimicked rail service operating conditions. The possible optimization of the system by 

incorporating a filter was also investigated. To further validate the efficacy of the prototype, a 

pilot field test consisting of 40 modules was conducted. The exhibited agreement between the 

laboratory and field pilot test data as well as the detection of a faulty wheelset demonstrates the 

functionality of the sensor module as a railcar wheel health monitoring device.  
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CHAPTER I 

INTRODUCTION & BACKGROUND 

1.1 Railway Industry Impact 

The railway industry serves as one of the most efficient and principal modes of bulk 

commodity and passenger transport in the world. It enables consumers and businesses to connect 

to destinations and goods in a cost-effective, safe, and reliable manner. In 2019, nearly 28% of 

all freight was transported via rail [1]. This highlights the dependability and productivity that has 

therefore empowered the industry to transcend over the years into a socio-economic pillar for 

various countries. One distinguishable beneficiary is the United States, which has approximately 

140,000 miles of operating rail networks nationwide that employ both freight and passenger lines 

[1], [2]. In 2018, an article was published by the Regional Economic Studies Institute of Towson 

University that analyzed the economic and fiscal impact of Class 1 railroads (i.e., the largest rail 

network in the U.S.) in 2017 for the United States [3]. The study delineated that Class 1 railroads 

supported approximately 1.1 million jobs which corresponded to about $71.3 billion in wages. In 

addition, the total economic output was of about $219.5 billion, generating a combined state, 

local, and federal tax revenue of about $25.9 billion. The total job, wage, and economic output 

alone accounted for 0.8%, 0.9%, and 1.1% of the U.S economy for 2017, respectively [3]. As 

census statistics demonstrate an increase in U.S metropolitan areas, the reliance on rail transport 

is anticipated to continue to alleviate the probable increase in intercity traffic congestion, to meet 

product volume demand, and to combat fuel emission effects [4], [5].
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1.2 Rolling Stock Wheels 

Around 1.6 million freight rail cars operate in North America offering a variety of 

shipping solutions including: auto-rack cars, boxcars, gondolas, flatcars, hoppers, covered 

hoppers, and tanks [6], [7]. In turn, the principal element affording these rail service units their 

transporting capability is their wheels. Based on the estimated amount of freight cars in service, 

approximately 12.8 million wheels are currently in operation.  

 
Figure 1. Railcar bogie in field operation (left) and railcar wheel diagram (right) [8], [9] 

 

To have the robustness for continuous cargo hauls, railcar wheels are forged and hot 

rolled out of carbon steel. Element content percentages, material purity, and care in temperature 

gradient regulation are crucial as any inhomogeneity in the wheel forming procedure can lead to 

internal defects that can prematurely compromise the integrity of the component. After being 

formed, the wheel rims are heat treated and quenched to reach a specific hardness for their 

intended operations. Table 1 displays five common wheel classes that conform to specific carbon 

content and hardness. The wheels are also peened with steel shot creating beneficial residual 

stresses within the wheel to improve fatigue and stress cracking resistance. The final step, before 

going into service, includes the inspection of wheel batches by ultrasonic and magnetic particle 

Wheel 

Track 

Side-frame 

Bearing 
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techniques to determine whether there are any internal incongruencies with Association of 

American Railroads (AAR) specifications. [10] 

Table 1. Common railcar wheel classes and their recommended manufacturing standards [10] 

Wheel Class 
Carbon Content 

[%] 

Recommended Brinell 

Hardness 

[HBW] 

Class L 0.47 Max 197-277 

Class A 0.47-0.57 255-321 

Class B 0.57-0.67 302-341 

Class C 0.67-0.77 321-363 

Class D 0.67-0.77 341-415 

 

Once in operation, however, wheelsets become prone to defect propagation associated 

with wheel-rail induced wear [11], [12]. Their exposure to diverse operating conditions such as 

train velocity, railcar load, track profile, climates, and even manufacturing flaws can further 

augment their susceptibility to degradation. Wheel deterioration manifests in three main forms. 

One involves those defects that are visually evident. Some examples of these defects, as seen in 

Figure 2, include wheel flats, spalls, shelling, and thermal cracks.  

 
Figure 2. Wheel skid flat (left) and wheel shelling originating from skid flat (right) [13], [14] 
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The second type of defects, although recognizable by a trained eye, are those that require 

geometric validation of the external profile of the wheel with gauges to determine the presence 

of a fault. As depicted in Figure 3, examples of these defects include thin flanges, worn roots, 

hollow flanges, and deep flanges. The last defect classification is reserved for subsurface flaws 

which require techniques such as ultrasonic inspection to be detected . These defects include 

subsurface porosity and internal cracking which can lead to more catastrophic faults such as 

vertically split rims (VSR) or shattered rims (SR) [13],[15]. 

 
Figure 3. Deep flange (left) and hollow tread (right) [16] 

 

In 2000, Nielsen and Johansson [17] conducted a preliminary study that adopted root 

causes for common wheel irregularities, setting the framework for understanding defect initiation 

mechanisms. Since then, continued wheel defect studies have enabled the creation of wheel 

defect practice codes that elaborately classify wheel defects and their causes. Table 2 categorizes 

condemnable wheel defects and their origin. 
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Table 2. Wheel defects and their leading causes [13] 

Defect Type Defect Cause 

Thermal Cracks, Shelling, and 

Tread Checks 
Surface Rolling Contact/Thermal Fatigue  

Spalling, Wheel Flats, Scaled Wheels Sliding Heat Generation 

Flange Defects, Hollow Treads, 

Rolled Edges 
Wear, Flow, and Improper Steering of Bogies 

Cracked or Broken Web/Plates, 

Wheel Rims, Flanges, and Shattered 

Rims 

Subsurface Originating Fatigue 

Dented Flanges, Wheel Distortion, 

Out of Round Wheels 
Impacts 

Overheated Wheels, Wheel Flats, 

and Misaligned Break Gears 
Braking 

 

Overall, the described wheel defects can be significantly detrimental as they can affect 

the wheel-rail interaction causing high impact forces on the rail as the railcar navigates on the 

track, inflicting damage to the rail network, the cargo, and the rail vehicle’s suspension system 

[11], [12], [18], [19]. This raises safety concerns for railway transport while also creating 

potentially superfluous expenditures due to delays, derailments, and increased maintenance 

costs. According to a 2006 article by Progressive Railroading, it can cost about $25,000 to 

$250,000 an hour for a railroad to clean up a derailment [20]. In the past decade, specifically 

from January 2010 to July 2021, the American railway industry has faced over 23,000 train 

accidents resulting in approximately 14,000 derailments and an overall financial toll of 

approximately $3.4 billion [21]. Of these accidents, both wheel and track related mishaps have 

accounted for roughly 29% of accident occurrences equivalent to about 40.9% in damage 

affiliated expenditures (i.e., approximately $1.4 billion in total costs) [21]. 

1.3 Maintenance Practices 

The wide array of liabilities that wheel defects can impose demand for the 

implementation of appropriate countermeasures. Therefore, maintenance guidelines have been 

established by lead agencies governing the industry such as the Federal Railroad Administration 
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(FRA) and the Association for American Railroads (AAR). Table 3 displays a set of 

recommended practices for certain impact force signatures. As stated in Section 1.2, a notable 

characteristic of a defective wheel is the high impact forces that it inflicts on the track. Under 

current guidelines, 290 kN (65 kip) triggers a window for repair while 623 kN (140 kip) or more 

indicates a mandatory halt in operation [22]. However, the recurrence and gravity of these events 

promote that the industry should proclaim more proactive practices. Therefore, a study made by 

FRA suggests adjusting the established thresholds as presented in Table 4 [23]. If these 

amendments were to be enforced, 270 kN (60 kip) would signal the initial maintenance advisory 

and any wheel emitting 534 kN (120 kip) or more requires immediate inspection and removal 

from service.  

Table 3. Contemporary WILD guidelines for freight services [22] 

Impact 

Force 

[kip] 

Impact 

Force 

[kN] 

Contemporary Recommended Practices 

65-79 290-351 Owner can choose to shop car for repair 

80-89 356-396 
If car is shopped for non-wheel repairs, then repair facility is 

allowed to conduct wheel related repairs as well 

90-139 400-618 Operating railroad is required to shop car upon arrival to destination 

140+ 623+ 
Operating railroad is required to inspect train and move it at speeds 

under 48 km/h (30 mph) to set out affected car 

 

Table 4. FRA suggested WILD guideline amendments [23] 
Impact 

Force 

[kip] 

Impact 

Force 

[kN] 

New Recommended Practices 

60 270 Issue maintenance advisory for affected car 

70 311 Change wheel at the car’s next visit to repair shop 

80 356 Condemn the wheel and replace at 1st opportunity 

120+ 534+ 
Stop train immediately for inspection and remove car from 

service at 1st opportunity 

 

When the wheels are removed, reprofiling procedures can be conducted to salvage the 

wheel for continued use. For this to occur, the wheel profile attributes must still be within 



 

7 

 

tolerances. Contrarily, if the wheel profile already exhibits excessive wear, the wheel is declared 

condemnable and the wheel is scrapped. To gauge condemnable wear, another standard targets 

the size of the defect rather than the effects it may radiate. A summary of these regulations can 

be found in Table 5. Any wheel displaying geometric characteristics that meet or exceed these 

limits are subject to interchange. An article published in April 2012 by Progressive Railroading 

recapped the events of TTCI’s 17th annual AAR research review. One of the main topics of 

interest was renewal costs. According to Scott Cummings, TTCI’s principal investigator at the 

time, an estimated 582,000 wheelset replacements are performed annually, equaling to roughly 

$828 million per year. On his behalf, this expenditure accounts for more than half of all repair 

costs [24]. 

Table 5. Wheel defect geometric limits [25] 

Defect Type or Area Wear Limit 

Flat spots 2½ in. or more in length 

Gouges or chips in flange 1½ in. in length and ½ in width 

Shelled-out spots 2½ in. or more in length 

Hollow worn treads 5/16 in. or more in depth 

Flanges 1½ in. or more in height 

Rims Less than 1 in. in thickness 

 

Most of these repairs are prompted by traditional wheel inspection techniques such as 

drive-by visual inspections and wheel profile measuring by trained personnel. But even if 

conducted by an experienced individual, these approaches lack accuracy and efficiency. For this 

reason, condition-based maintenance is a crucial asset for the railway industry as they signal 

maintenance based on the relayed wheelset condition data from either onboard or wayside health 

monitoring sensors. For wheels, the most prevalent condition monitoring hardware is known as 

the Wheel Impact Load Detector (WILD) which can be seen in Figure 4. These wayside 

detecting systems were first implemented in the early 1980s as a project funded by Amtrak and 
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the Federal Railroad Administration (FRA) to detect defective wheels in the Northeast Corridor 

(NEC) of the U.S. rail system for the prevention of potential rail system and railcar suspension 

damage [22]. Using strategically track-mounted strain gauge sensors, WILDs monitor and detect 

the dynamic load behavior of passing railcar wheels by measuring the wheel to rail contact force. 

Wheels exceeding the predefined high impact load thresholds seen in are flagged for 

corrective/preventive maintenance.  

This wheel monitoring method, however, is limited by the strategic placement of these 

sensors along the track. Progression of a pre-existing defect or the propagation of a new anomaly 

within the wheel profile will not be monitored nor detected until the next WILD location. 

Unfortunately, because continuous monitoring of the wheels is unachievable, a wheel can 

unexpectedly fail between WILD sites without warning. According to an implementation guide 

for wayside monitoring systems issued by the FRA in 2019, only about 185 WILD systems were 

operational nationwide as of 2017 [22].  

 
Figure 4. Wheel impact load detector (WILD) [22] 
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Concerns with the reliability and accuracy of the system also arise. If the system is not 

operated within the specifications of the manufacturer, the accuracy and reliability of the WILD 

can be affected. Although varying from manufacturer to manufacturer, some of the most critical 

requirements to achieve optimal performance from these detectors include site size, incoming 

rail vehicle speed, peak wheel impact load, and the number of integrated WILD systems that can 

verify the readings of other WILDs. For example, a WILD system by MermecTM requires a site 

size of about 11 m (35 ft) and a minimum incoming railcar speed of 40 km/h (25 mph). A WILD 

system by L.B. FosterTM requires a site size of about 15 m (50 ft) and a minimum passing railcar 

speed of 48 km/h (30 mph). As seen in Table 3, peak impacts of at least 290 kN (65 kip) are 

required to hold the railcar owner responsible for the affected rail unit for all AAR regulated 

railroads. There are currently no WILD data regulations for impact forces that progressively 

reach this limit. 

Other traditional wheel monitoring systems include wheel profile measuring systems or 

WPMS. These wayside systems utilize laser-based scanning and high-speed digital cameras to 

detect worn wheel features which include high and thin flanges, thin rims, and hollow treads. But 

like WILDs, they are also limited by their absence along the rail track. As of March 15, 2017, 

only 15 WPMS were in operation nationwide [22]. An example of these systems is demonstrated 

in Figure 5. 
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Figure 5. Wheel profile measuring system (WPMS) by MermecTM [26] 

 

Even though WILD and WPMS systems have been used for decades to warn rail service 

operators of potential failures, they also possess the inherent characteristic of misdiagnosing 

components. The uncertainty of an imminent threat and lack of continuous condition feedback 

provokes urgency for a superior wheel health monitoring device. 

1.4 Derailment Case Studies 

The following two case studies were selected from detailed investigation reports by the 

Transportation Safety Board of Canada. The presented cases portray two derailment episodes 

where defective wheels were found to be the primary culprit of the accidents. These synopses 

highlight the gravity of such events and the poor judgement of current early detection measures. 

1.4.1 Railway Investigation Report R14M0002 [27]  

On January 7, 2014, Canadian National Railway Company (CN) freight train M30831-06 

was travelling around 47 mph when 19 railcars and one distributed power locomotive derailed 
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near Plaster Rock, New Brunswick. The derailed cars were transporting about 230,000 L of 

hydrocarbons including butane and crude oil. Ethanol and acid residue were also being 

transported. The accident caused the tanks to spill their cargo which triggered a fire that led to 

the evacuation of 150 residents within a 1.6 km radius of the area -- no injuries were reported. A 

diagram of the accident is shown in Figure 6. The investigation delineated that the primordial 

cause of the incident was a shattered rim (SR) from wheel L3 of railcar CRDX 15109. The 

fracture had originated from a fatigue crack triggered by subsurface porosity in the wheel tread. 

As seen in Figure 7, the crack propagated until reaching the wheel hub. After the crack caused 

part of the wheel tread to fall, wheel L3 then shifted from its axle seat inboard towards its mate 

(R3). In the process, derailment of CRDX 15109 inflicted repeated wheel impacts on the track 

causing the rail infrastructure to fail as well. About 350 feet of track were destroyed, creating a 

gap in the rail system which derailed the other 18 railcars. 

 
Figure 6. Diagram of freight train M30831-06 derailment [27] 
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According to the investigators, CRDX 15109 had passed a WILD on January 6, 2014 

(i.e., the day before the accident) under fully loaded conditions and no abnormality was reported. 

Previous inspections of the wheel profile had also been compliant with Class C AAR wheel 

standards. As the root cause of the SR was due to subsurface porosity, the report stated that 

ultrasonic testing (UT) had been performed when the wheel was manufactured in 1991, but the 

defective zone had gone undetected. In 2006, the wheel was removed from service for 

reprofiling, and another UT was conducted. The post-derailment metallurgical analysis of the 

component denoted that the porous region was about 3.2 mm (1/8 in) long and should have 

technically been detected. However, at the time, data logging of UT results was not a 

requirement. 

 
Figure 7. Cracked wheel L3 of railcar CRDX 15109 [27] 

Subsurface porosity-

induced crack 
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1.4.2 Railway Investigation Report R18W0007 [15] 

On January 6, 2018, Canadian National Railway Company (CN) freight train M31731-04 

presented a train-initiated emergency brake stop in Rennie, Manitoba. After an inspection down 

the rail line was conducted by the operators, it was determined that 23 railcars had derailed. Out 

of these 23 railcars, 8 contained hazardous cargo including: liquid hydrocarbons, petroleum 

distillates, corrosive liquids, liquefied petroleum gas residue, and nickel sulfides -- no spills to 

the environment or injuries were reported.  

 
Figure 8. Derailed railcar ATW400515 [15] 

 

A vertically split rim (VSR) on wheel R4 of railcar ATW400515 was pronounced the 

cause of the derailment. Wheel R4 had broken off its wheel seat and translated inboard towards 

L4. As presented in Figure 9, post-derailment examination of the wheel concluded that the wheel 

failure began with three interconnecting wheel pieces of 15.2 cm, 33.0 cm, and 35.6 cm (6 in, 13 
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in, and 14 in) in length. Closer inspection of the components revealed oxidation within the 

adjoining borders of the 33.0 cm and 35.6 cm (13 in and 14 in) pieces, meaning that defects were 

present well before the failure occurred. The 15.2 cm (6 in) piece was never recovered, but the 

investigators hypothesize that this is where the fracture initiated. 

 
Figure 9. Failed wheel R4 of railcar ATW400515 [15] 

Interestingly, the affected railcar wheel had passed 18 times through a WILD in the lapse 

of a month from December 6, 2017, to January 6, 2018 (i.e., the day of the failure). At an 
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unloaded state, no wheel impacts exceeded 356 kN (80 kip) until four days before the accident 

(January 2, 2018) when the unit was loaded. Two days prior to the derailment, five WILD impact 

recordings demonstrated wheel impacts over 400 kN (90 kip). In AAR standards, these impact 

force readings are condemnable [22], yet CN standards dictate that anything between 400 and 

623 kN (90-140 kip) is grounds for an opportunistic repair at the next Certified Car Inspection 

(CCI) port. Thus, the railcar remained in service and about 4½ hours later after emitting a peak 

impact of 485 kN (109 kip), the wheel catastrophically failed. Nevertheless, even by following 

AAR rules, the car would have traveled unmonitored until the next repair shop. Without 

knowledge of a worsening wheel condition, the car might have registered an impact worthy of an 

immediate halt in service. More suitable measures could have been taken with improved 

equipment and guidelines. 

1.5 Transitioning Toward an Onboard Wheel Health Monitoring Device 

The aforementioned incidents exemplify the limitations in present maintenance methods. 

With the current technological innovations, the introduction of a pioneering technology that can 

address these deficiencies to enable constant, reliable, and precise onboard component health 

monitoring is highly feasible. Over the past decade, the absence of continuous and effective 

monitoring solutions in the rail industry have motivated the University Transportation Center for 

Railway Safety (UTCRS) at the University of Texas Rio Grande Valley (UTRGV) to conduct 

research regarding the development of a vibration-based onboard health monitoring device for 

railcar bearings. Years of study have materialized into promising wired modules that can provide 

accurate and timely bearing health diagnostics that can characterize the condition of tapered-

roller bearings and identify defects smaller than 6.45 cm2 (1 in2) [28]. Furthermore, current 

research practices at UTCRS have evolved into wirelessly transmitted bearing analytics via 
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wireless modules and energy-harvesting devices that can support these systems using rail 

operation conditions [29], [30]. The significance of this work has recently captivated the 

attention of Hum Industrial Technology, Inc. (HUM), a private rail industry company that has 

patented the technology and developed an onboard monitoring system known as the Boomerang. 

The device can transmit real-time bearing condition metrics, enabling immediate prognostic 

feedback to railcar owners and operators. HUM entrusted UTCRS with the task of evaluating the 

sensor to optimize it for industrial integration. Comprehensive laboratory and field assessments 

were conducted that established the bearing monitoring efficacy of the system. However, 

because the module was still in its development stage, a margin of opportunity was available to 

evaluate any additional abilities the device might possess. Therefore, a concurrent investigation 

was enacted to investigate whether the module was also capable of detecting high wheel impacts 

with its instrumented accelerometers.  

This thesis will present the work conducted to determine the wheel condition monitoring 

capabilities of the Boomerang. Chapter II provides a literary review on studies that have been 

conducted to propose novel wheel monitoring solutions or enhance current methods. Chapter III 

describes the equipment and methodologies used to arrive at a laboratory and field evaluation of 

the sensor. Chapter IV shows the laboratory response of the device under different scenarios the 

device might encounter in the field. In Chapter V, supplemental testing results are presented that 

can provide insight towards the optimization of the module in a foreseeable future. Field 

assessment results are discussed in Chapter VI and Chapter VII will focus on the encountered 

limitations, conclusive remarks, and proposed future work. 
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CHAPTER II 

 

 

LITERARY REVIEW 

 

 

The potential benefits the railway industry could reap with the development of a reliable 

wheel condition monitoring system make the subject a recurrent field of study. Certain research 

practices focus on developing novel wheel condition monitoring alternatives while others have 

tried to enhance established methods such as wheel impact load detectors (WILDs) or wheel 

profile measuring systems (WPMS). The following literature review exhibits a selection of these 

visionary wheel monitoring concepts. 

2.1 WILD Enhancement Attempt [31] 

As mentioned in Section 1.3, WILD systems are the dominant wheel monitoring method 

in the rail industry, but they lack reliability and rail line ubiquity. Nevertheless, a study made by 

Stratman, Liu, and Mahadevan in 2007 tried augmenting the potential of the WILD system by 

assessing the inefficiency of visual inspection, premature wheel removal, and the absence of 

WILD data standards regarding impact force progression into levels of concern. The strategy 

involved constructing two quantitative railcar wheel removal criterions by exploiting high impact 

and failed wheelset data collected from WILD systems. 

The first criterion (C1) dealt with high impact data for wheels that exhibited 

condemnable 400 kN (90 kip) loads along with rapid increases in dynamic impact over time. 

Three consecutive impact readings with an increase of 67 kN (15 kip) or more between each
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reading needed to occur within a 50-day lapse or less with a peak dynamic impact of at least 311 

kN (70 kip). By referencing a wheel failure database from a major North American railroad, they 

determined that at least 10.53% of the failing modes had this successive impact reading increase. 

This meant that if C1 were to be implemented along the time frame these failures occurred, then 

10.53% of those failures could have been prevented. Furthermore, the data also revealed that 

approximately 200 wheels operated under this criterion per year in North America. A deeper 

analysis of this data for previous years revealed that the criterion could have detected 78.2% of 

affected wheels before traditional methods. This meant 156 damaged wheels were left in service 

causing additional rail infrastructure damage. Moreover, the wheelsets would have been 

removed, on average, 31.7 days prior to the day of failure. Thus, 31.7 days of additional rail unit 

and line potential damage could have been prevented. Figure 10 displays a wheel operating 

under this criterion. 

 
Figure 10. First criterion example (rapid increase in impact readings) [31] 



 

19 

 

The second criterion (C2) was developed with respect to normal impact reading wheels 

with a sudden increase in impact over a short period of time. Under this wheel removal strategy, 

the wheel needed to have a dynamic impact of at least 177.9 kN (40 kip) with three consecutive 

and incrementing impact readings of 8.9 kN (2 kip) or more between readings with an average 

increase of at least 44.5 kN (10 kip) between the three readings. This behavior needed to occur 

within a 20-day time frame. Furthermore, no impact reading 30 days prior to the initial impact 

deviation reading could be greater than 22.2 kN (5 kip) or less than 67 kN (15 kip) of the initial 

impact deviation value. Like the wheel failure database analysis of the first criterion, about 

5.26% of the failures followed this trend. This indicated that implementation of this wheel 

removal methodology could have been prevented 5.26% of the failures. The data also illustrated 

that annually about 1400 wheels in North America follow this criterion. Based on previous year 

data, 47.5% of those wheels could have been detected early. Thus, 665 damaged wheels were left 

in service risking property and safety. Further analysis of the data in this database demonstrated 

that the wheels could have been removed about 66.6 days earlier, preventing unnecessary 

detriment along that time frame. Figure 11 demonstrates an example of a wheel displaying this 

behavior. 
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Figure 11. Second criterion example (sudden increase in impact reading) [31] 

Application of the two criteria would significantly benefit railcar owners as 15.9% of 

wheel failures, on average, could have been prevented. Yet, although instrumental in further 

enhancing WILD inspection, the basis of this analysis is hindered by its reliance on the WILD 

itself. The sparsity of these sites inhibits continuous monitoring; therefore, wheel failure can still 

occur without warning. Nonetheless, the latter information can serve as the foundation for future 

wheel monitoring approaches that can employ machine-learning.  

2.2 Investigated Alternatives 

As established wheel methods pose significant deficiencies, researchers around the world 

continuously investigate novel methodologies for the detection of wheel defects in rolling stock. 

These solutions involve both wayside and onboard technologies. Their functionalities are devised 

from various techniques such as: vibrations, acoustics, ultrasonics, laser and high-speed camera, 

and fiber-optics, among others. 
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2.2.1 Vibration-Based Alternatives 

Vibration-based methods take advantage of the mechanical perturbations produced by 

operating components to signal faults within the system. Generally, a non-normative increase in 

a vibration signature suggests the presence of component degradation [28]. Koenig et. al [32] 

published an article to address baggage cart-wheel failure in airports with the use of a vibration-

based condition monitoring system. Although not intended for use in the railway industry, 

similar wheel-track dynamics were involved as in rail service. To evaluate the system and 

establish bad and good wheel thresholds, a pilot test was deployed in which vibration sensors 

were placed on each side of a baggage cart track to record baggage-cart wheel vibrations. As 

seen in Figure 12, photo sensors were also used to identify the passing cart by reading a binary 

code on the unit, facilitating data analysis by matching the cart to the data. The baggage-cart 

wheel data was collected and sent to a server for analysis for six months. The results revealed an 

increase in vibrations with increased age and use of the baggage-cart wheels establishing the 

method as a viable predictive model for condition-based maintenance. The study highlighted the 

capability of vibration-based usage for condition monitoring, yet an airport track system is less 

complex and environmentally exposed than the rail network. Accelerometers can be spaced out 

accordingly without conjuring prolonged interludes in data acquisition and the sensors can be 

protected with minimum efforts. In the rail industry, however, aside from having to construct 

ruggedized sensors for field installation, spacing out accelerometers for continuous monitoring 

could prove expensive and impractical. 
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Figure 12. Koenig et. al. experimental setup [32] 

Like Koenig, Barman and Hazarika [33] proposed a vibration-based wayside alternative 

but for the possible condition monitoring of trains of the Northeast Frontier Railway sector in 

India. An accelerometer, ADXL335, was placed on a rail joint fish plate to obtain dynamic 

railcar conditions to monitor five trains that operated at different speeds. Their respective 

vibration signals were collected and then analyzed in both time and frequency domains. While 

the authors claimed the time and frequency domain provided predictive conditions of different 

railcar components such as wheels, health monitoring could only be executed at the location 

where the accelerometer was placed. Data transfer and storage also required direct cable 

connections from the accelerometer to a laptop. The methodology resembles the mechanics of a 

WILD detector, meaning continuous monitoring is unachievable. For continuous asset 

monitoring to occur, the rail network must be instrumented by accelerometers at each stretch. 

Furthermore, the environment can rapidly jeopardize the integrity of the unprotected equipment. 

Without the introduction of an improved manner of data acquisition, the approach is unfeasible. 
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Another recent vibration-based method was presented by Sun et. al. [34] in a study that 

targeted polygonal wear of railway wheels (PWRW) in high-speed rails. A “sensor-less” fault 

detection framework was proposed where vertical axle-box vibration acceleration data would be 

used to detect the polygonal faults by employing an angle domain synchronous averaging 

technique (ADSAT). Models were constructed based on both simulations and field data, 

revealing that the method had better PWRW detection capabilities than traditional methods (i.e., 

those employing discrete time Fourier transforms). Noise suppression was also achieved under 

ideal conditions (i.e., simulations). However, the time to obtain and examine axle-box data from 

each railcar was not disclosed, making the real-time prognosis capability of the framework 

unknown. Furthermore, the fault detection algorithm has only been studied on PWRWs; 

detection of other defects was not discussed. Cancellation of noise from the field data also 

proved to be challenging due to the uncertainties in the operating environment. 

2.2.2 Acoustic-Based Alternatives 

The acoustic emissions from working components have also been used to signal non-

normative operations. In 2010, Anastasopoulos et. al. [35] studied whether rail mounted acoustic 

emission (AE) sensors could detect faults on an on-line dynamic railcar to avoid the accessibility 

issues presented from traditional methods that relied on immobile railcars or off-track inspection. 

Extensive acoustic emission testing was conducted on both trams and trains with healthy and 

defective wheel conditions. Digital signal processing of hit-driven data (HDD) determined that at 

lower speeds, the AE sensors presented better resolution in terms of wheel defect detection than 

at higher speeds. For the tram data analysis, long waveform signals (WFS) were mainly used. 

Wheel flat detection was linked to voltage spikes and root mean square calculations of the data in 

the time-domain demonstrated that the time difference between axles could be monitored, 
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allowing for the possible macroscopic observation of the signal levels that could lead to the 

detection of periodic (wheel flats) or continuous (bearing) noise. To put the findings into 

practice, a third field experiment was performed using a locomotive with one healthy and one 

defective wagon. The defective wagon contained artificial 2.5 cm (0.98 in) and 5 cm (1.97 in) 

wide flats running horizontally across the wheel rim surface. The results supported the theory of 

the tram-data analysis, as the defective car depicted periodic spikes in the average signal level 

versus time graphs, whereas the reference car displayed a smooth signal output. The results also 

demonstrated that the 5 cm (1.97 in) defect had higher signal amplitudes than the 2.5 cm (0.98 

in) defect which highlights that the method could possibly gauge the severity of the wheel 

condition. However, because the AE sensors relied on wayside mounting and direct cable 

connections for data acquisition, the methodology was deemed unfit for continuous health 

monitoring. Complex digital signal processing is also required which further delays the relay of 

wheel health diagnostics. Another major drawback of this approach is its inability to detect the 

exact wheel in distress. The AE sensors can distinguish a healthy wheel from a defective one, yet 

they can only determine that a wheel on a railcar travelling along the instrumented track segment 

is defective but not the specific wheel in question. 

A 2019 study by Bondarenko et. al. [36] also focused on wheel condition monitoring 

using the acoustic emissions of dynamic railcars. A field test was conducted using professional 

sound recording equipment coupled with an international standard that specified the conditions 

for obtaining reproducible acoustic emissions of railway transport units. The field measurements 

focused on five distinct sounds including: (1) rolling noise of wheels, (2) the wheel-rail impact 

interaction, (3) curve screeches, (4) brake-block and wheel interaction, and (5) the air release 

from the air brake control valves. After acquiring the data and conducting preliminary signal 
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processing, spectrograms were used to illustrate the characteristic response for each acoustic 

signal of interest. Hilbert transforms were then used to construct envelopes of the acoustic 

signals to theoretically represent the field data. Using the field and theoretically obtained 

acoustic data, a microcontroller device, as seen in Figure 13, was devised and tested. The 

experiment entailed playing a videorecording of a moving train with a wheel flat on a smart 

phone.  

 
Figure 13. Acoustic-based microcontroller for wheel monitoring [36] 

 

The controller successfully detected the wheel flat, demonstrating a slight improvement 

to Anastasopoulos’ method as the proposed system could promptly communicate the presence of 

a wheel flat on the railcar. Unfortunately, it is unknown whether added noise can affect the 

functionality of the device. That is, when the researchers were obtaining the field data, ideal 

environment conditions were required as various elements could disrupt the results. Sound 

reflecting objects such as hills, bridges, or houses in the vicinity of the recording unit could 

disturb the noise field. Even wind speeds could not be greater than 5 m/s (16 ft/s) as they could 

affect data acquisition. In addition, like Anastasopoulos’ method, although the device can detect 
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wheel flats, the microcontroller cannot pinpoint which wheel contains the defect. This is an issue 

as additional resources must be allocated to identify the location of the defect for maintenance. 

2.2.3 Ultrasonic-Based Alternatives 

In ultrasonic-based methods, high frequency ultrasonic pulses of short wavelengths are 

introduced onto objects. Deviations in the incident waves or varied attenuations in the introduced 

pulses indicate the possible existence of surface or subsurface defects. This method has been the 

preferred non-destructive testing (NDT) method by the AAR in manufacturing and maintenance 

procedures of wheelsets, yet researchers have also tried developing solutions based on this 

technique. In 2008, Pau and Lebon [37] conducted a series of ultrasonic testing (UT) 

experiments to see to what extent wheel wear could affect wheel-rail contact and associated 

pressure distributions. At the time, the technique could be adopted to optimize established 

methods. A realistic wheel-rail system was used to conduct the tests where the regular flanged 

wheels would be abraded to resemble different degrees of tread wear (0.1-0.5 mm). The contact 

regions were mapped out with the use of a 15 MHz immersion probe partially submerged in 

water with the wheel. Different levels of wear were captured by using coefficient of reflection to 

graphically map contact, but UT data conversion into contact pressure was not immediate as 

various parameters needed to be assessed such as: surface roughness, incident wave frequency, 

and material type. A calibration procedure was needed to create the contact pressure matrix from 

the coefficients of reflection of the wheel tread interface. Nevertheless, counter formal (no wear 

exposure) to conformal (wear-exposed) transition was successfully obtained, leading to the 

knowledge that the abrasion procedure led to the decrease in 36% of the contact pressure. Yet, 

the researchers disclosed that the experimental setup was not feasible in field conditions, but 
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with the advancements in technology the next studies would focus on the development of a 

prototype that could monitor rail traffic. 

 In 2018, Cavuto et. al. [38] expanded on the use of ultrasonics for wheelset flaw 

detection with laser ultrasonic testing (LUT). The study investigated whether common fatigue 

cracks in wheelsets could be detected without dismounting them from the railcar. The ultrasonic 

method used an air coupled ultrasonic probe that could detect the high energy emission of the 

pulsed laser. The unneeded contact from both the measurement and excitation devices promoted 

rapid testing. To conduct the study, wheelsets with fatigue cracks located in frequently 

manifested areas (i.e., axle and region between axle and wheel) were tested. A dismounted 

railcar wheelset was set onto a special fixture that harnessed the LUT system and allowed the 

rotation of the axle for full circumferential scanning by the laser. The results proved the ability of 

the LUT in detecting the cracks, but the study only proved that using the special laboratory 

setting. Field tests are needed to further validate its efficacy, yet, even if effective in the field, 

continuous wheel monitoring is improbable. The equipment setup needed to achieve the results is 

too bulky and suited for testing only one wheel at a time. Additional research is required to 

develop a more compact fixture that allows multiple wheels to be diagnosed wirelessly and 

continually. 

2.2.4 Laser and High-Speed Camera-Based Alternatives 

Laser and High-Speed Camera Techniques, such as the established Wheel Profile 

Measurement Systems, have also been subject to research. A thermal imaging study was 

conducted by Yamamoto [39] to investigate wheel-rail contact points as they are key contributor 

to vehicle dynamic characteristics. The experiment involved placing a thermal imaging camera 

on the truck frame close to the rail head. The test results confirmed that the contact points could 
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be accurately identified under suitable thermographic conditions and that, in case of a 

derailment, the flange and gauge locations could be accurately detected. Yet, an adequate 

environment, finding a cost-efficient thermal imaging system, and vast computational power for 

image processing prevent this solution from becoming adopted as a continuous wheel health 

monitoring solution. This rationale can be extended onto other laser and high-speed camera-

based solutions. Achieving continuous and qualitative surveillance of wheel-rail is highly 

unfeasible. The act can be achieved at strategic locations in a rail network, but to constantly 

monitor wheel-rail behavior would involve high-end imaging systems on each wheel of a railcar 

fleet. The heavy reliance on computing power and cooperating environment conditions excludes 

the approach from being a continuous monitoring contender. 

2.2.5 Fiber-Optic-Based Alternatives 

Attempts at using fiber optics as viable wheel monitoring alternatives have also been 

explored. Fiber optics are dielectric and passive meaning they need no electrical power [40]. 

They have low loss and their wide use in telecommunications allows them to be readily available 

and inexpensive. They are also immune to electromagnetic interference which can alter signals. 

Anderson [40] presented a multimode fiber sensor for wheel flat detection in the Joint 

Rail Conference proceedings of 2006. His investigation revolved on using optical interferometry 

in which light is modally dispersed through the optic cable and mixes at the fiber end producing 

a phenomenon known as the speckle. If the fiber is immobile, then the speckle will be stable. 

However, if the cable experiences vibrations, then the speckle will flicker. For this sensor to 

work, the time dependence of the speckle must be measured. This entails applying digital signal 

processing and fast Fourier transforms to the time-domain of the signal. Based on the costly 

acquisition of detecting arrays, Anderson also proposed a simple detector measuring the time 
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variance of the speckle pattern. To test the design, a single mode fiber was linked with a 

multimodal fiber which was then fixed to the detector assembly. The system was deployed for a 

field test by placing the fiber near a track. Healthy wheel and flat wheel data were collected and 

compared, demonstrating promise in the sensor for detecting wheel flats. The device, however, 

was susceptible to the environment such as ground vibrations unrelated to the rail traffic. The 

system also exhibited the inability of tracking which wheel was damaged. 

In 2011, Chuliang Wei et. al. [41] studied the real-time monitoring capability of Fiber 

Bragg Grating (FBG) sensors in a field test in the East Rail line of the Hong Kong Mass Transit 

Railway (MTR). Immune to electromagnetic interference (EMI), these sensors are basically an 

optic filter with a response driven by mechanical and thermal perturbations. With the use of an 

interrogator, wavelength changes within the FBG are measured which can be used to measure 

the magnitude of the perturbations. For this study, the mechanical perturbations involving the rail 

strain response upon wheel-rail interaction and the frequency component, that solely revealed the 

quality of the interaction, were used to assess the condition of the passing wheels. Four sensors 

were mounted adjacent to each other on the track; two for a northbound train and two for a 

southbound train. The sensors were then linked to an interrogator through 2 km (1.24 mi) of 

outdoor optic cable. Radio frequency identification (RFID) and cameras were also employed to 

identify the passing trains. The strain results indicated that the FBG sensor could detect all 48 

axles of the passing trains of which train weight and speed effects could also be observed. 

Furthermore, it was determined that railcars with bad wheels had noisier strain responses than 

those of railcars with good wheels. However, as the methodology is a developing technique, 

continued studies are required to assess the accuracy and reliability of the method. 
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Like Anderson, Kepak et. al. [42] proposed another fiber-optic based solution that would 

involve a trackside detection method based on a Mach-Zehnder fiber-optic interferometer that 

was powered by a distributed feedback laser diode. The method was tested on a track running 

through a railway bridge with the use of a 200 m (219 yd) long fiber link to connect the detection 

elements. The test was conducted on a four-hour interval which detected 18 dynamic trains. The 

results indicated that the train operation could be detected, and that the sensor was able to detect 

trains even on the other track which promotes an indirect installation of the components. 

Challenges that were encountered were polarization fading, drift in the signal, and other signal-

based problems. The researchers emphasized that these issues must be addressed before 

deploying the system and that they will be the next focus of their research to ensure future 

deployment. The capability of the method in detecting defective wheels, however, was vague. 

Like other wayside mounted methods, it is unlikely that a specific wheel can be linked to a 

defective wheel signal. In addition, the fact that other trains were indirectly detected can be 

problematic due to possible signal overlapping. 

2.2.6 Other Researched Alternatives 

Researchers have also diverged from traditionally studied techniques, such as vibrations 

and acoustics, to discover novel wheel monitoring methods. The application of polyvinylidene 

fluoride (PVDF) piezoelectric sensor technology was studied by Wang et. al. [43] in 2012 to 

monitor wheel-rail contact forces of out of round wheels (OOR) and tackle the shortcomings of 

strain-gauge methods such as WILDs. The proposed PVDF sensor would be employed as a 

wayside detector attached to the rail web. A 3-D simulation of wheel-rail contact dynamics was 

conducted on a simulation software known as ADAMS/Rail and the characteristics of wheel-rail 

impacts due to OOR wheels were also studied. To compare the performance of the PVDF strain 
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sensor to traditional strain gauges, an experiment was performed to test for dynamic sensing, 

electromagnetic interference, zero drift, and repeatability. The results of this experiment revealed 

that the PVDF sensor was superior to the strain gage in these parameters, and it also showed 

better frequency response. Sinusoidal, square, and random load inputs were accurately reflected 

as well. The results promoted the device as capable of performing in dynamic strain conditions 

providing real-time monitoring with long-term stability. Nonetheless, the outlined experimental 

procedure is enough to reveal that the methodology is far from being ready for industrial 

applications. 

In 2020, Turabimana and Nkundineza [44] investigated the detection of wheel flange 

wear with an inductive displacement sensor. The proposed system was intended to work in both 

static and dynamic railcar states with the capability of using an embedded data drive to map the 

wheel flange thickness history of an operating wheel. To determine the wear on the flange, the 

voltage output of the sensor would be converted into a distance measurement. If a flange 

thickness would reach its wear limit, the operator would get notified of the hazardous status of 

the wheel. The study also presented a CAD model design of the sensor holder for placement on 

the bogie frame to which a finite element analysis was also executed. To test the measurement 

accuracy of the proposition, an inductive sensor (with a 0-5 mm measuring capability) in 

combination with a rotating disk in contact with a grinder (mimicked flange on rail) were used. 

The measurements were manually calibrated with a digital voltmeter and a micrometer. The 

system was able to record the flange thickness versus time with an error of about 0.03 mm. 

However, the researchers did state that the sensitivity of the device demonstrated change after 

use, meaning that frequent calibration is needed to prevent inaccurate measurements by the 
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device. Aside from calibration issues, additional experiments need to be conducted to investigate 

whether the system is capable of monitoring rail service conditions. 

2.3 The Internet of Things 

Each identified solution proposes a creative wheel defect detecting alternative, but the 

potential of most is extinguished by the inability of constant monitoring, the complexity of 

obtaining data, or the lead time on research to establish a reliable solution. As technology 

continues to advance, however, remote data management has increasingly become more 

accessible through internet-based devices. Application of these “internet of things” systems has 

revolutionized the methods in which many industries have optimized system performance and 

component defect detection, providing real-time feedback through the implementation of rapid 

data processing and wireless communication. Despite these advancements, the rail industry has 

lingered stagnant in adopting these advanced prognostic strategies. However, some companies 

have already started to mobilize their incorporation. A subsidiary of Amsted, Amsted Digital 

Solutions, has been promoting an “internet of things” (IOT)-based, ultra-low power onboard 

sensor that enables continuous condition monitoring for wheels [45]. Some additional claims the 

company has regarding the railcar information the device can communicate are load statuses, 

hatch securement, temperature statuses, brake statuses, and predictive wheel and bearing 

analytics. The system transmits data via satellite to a cloud where the data is stored and analyzed 

via machine learning. Customers can then access information of their assets utilizing an online 

portal. There is, however, no supporting evidence available regarding the accuracy of the system 

in identifying atypical wheel conditions. 
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Figure 14. Amsted Digital Solutions TM Communication Unit (left) and Sensing Unit (right) [45] 

 

Perpetuum is another wireless technology capable of rolling stock wheelset monitoring. 

Both wheels and bearings health metrics are diagnosed by a three-axis accelerometer and a 

temperature sensor. The device is mounted onboard rail units and powered through a “battery-

less” system that uses an electromagnetic energy harvester with a claimed life expectancy of up 

to 100 years. The functionality of the device has been proven with over one billion miles of 

study, and as of December 2016, about 7000 units have been installed in over five countries. Yet, 

despite the solid track record, there is uncertainty regarding the installation compatibility of the 

system. That is, the device, as seen in Figure 15, is designed to fit specific railcar wheel hubs. 

Based on the information given in the company website, it is unknown whether these sensors are 

capable of being mounted onto other railcar wheel configurations [46], [47], [48]. 
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Figure 15. Perpetuum system mounted on railcar wheel hub [46] 

 

Viezo, a company that specializes in sensor technology development, has also taken 

interest in developing a railcar wheelset monitoring system. Their device, Powerail, is intended 

to monitor the condition of freight railcar bearings and wheels through vibration and temperature 

data [49]. With that said, Powerail utilizes a single vibration and temperature sensor with 

respective measurement ranges of 0 to 16g and -40 to 85℃ (-40 to 185℉). Plus, with the use of 

GPS, wagon locations can also be tracked. Powerail is mounted through a single bolt on the axle 

box of railcars and powered through a patent pending PVDF-based energy harvester known as 

PolyFilm™. The system is composed of eight sensors and a gateway, communicating via 

Bluetooth, and using LTE to transmit data. Both devices (i.e., the sensor and gateway) have an 

expected lifetime of about 10 years and data transmission is encrypted end to end, permitting 

only the customer to view asset statuses. The company is already accepting pre-orders; with the 

first field installation to be set for Q1 of 2022 [50]. Nevertheless, although wheel flat detection is 

expected, no explanation is provided as to how bearing and wheel metrics will be differentiated 
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using the embedded sensors. The operating range of the accelerometer is also concerning. Lower 

tier operating ranges for accelerometers are associated with a higher sensitivity to motion. Their 

incorporation in devices such as cell phones allows features like step counting or changes in 

screen orientation to be achieved. However, in a service environment like the railway industry, a 

high sensitivity to vibration can cause the sensor to saturate in normal operations, creating 

reliability issues for the device. 

 Joining the railway technology race, Hum Industrial Technology presents a wireless 

sensor ensemble that capitalizes on GPS, LoRa technology, and years of supporting research to 

monitor rolling stock wheelsets. The wireless condition monitoring system consists of: (1) the 

Hum Boomerang: a wheel-bearing health monitoring module that mounts to railcar bearing 

adapters, and (2) the Hum Gateway: a railcar wall-mounted and solar-powered communication 

unit, used to process and transmit acquired data to an online dashboard for clients.  

 Two accelerometers and a temperature sensor assess the real-time health condition of 

rolling stock bearings and wheels. The pair of accelerometers manage vibration sensing for 

bearings, wheels, and other miscellaneous railyard activities while the temperature sensor serves 

as an additional bearing health monitoring aid. Data transmission can be achieved at custom time 

intervals, tailoring automated safety to the needs of the user. Like other emerging rail monitoring 

technologies, the GPS feature permits fleet location visibility. However, aside from providing 

critical event location pins, key insights into deviations from expected behavior, such as aberrant 

running conditions of the track, or yard impacts can also be mapped. Driving device 

communications, LoRa technology enables low-power and long-range wireless connectivity 

between the onboard devices. The onboard mounting capabilities of the devices deliver other 

significant advantages such as facilitating continuous monitoring, reducing exposure to wearing 
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elements, and track condition monitoring. As of Q2 of 2021, three field deployments have been 

mobilized. Their success, highlighted in part in this thesis, has been influential in showcasing the 

product, accelerating product demand worldwide. 
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CHAPTER III 

 

 

EXPERIMENTAL SETUP AND PRELIMINARY ASSESSMENTS 

 

 

To properly evaluate the efficacy of the onboard module in detecting high wheel impacts 

associated with wheel profile irregularities, the Boomerang prototype must be tested in an 

environment that closely mimics rail service operations and atypical wheel behaviors. Hence, 

this chapter presents the experimental setup and equipment as well as the methodologies used to 

systematically evaluate and validate the performance of the prototype Boomerang device. 

3.1 Single Bearing Test Rig 

The University Transportation Center for Railway Safety (UTCRS) dynamic single 

bearing tester (SBT) pictured in Figure 16 was employed for this investigation to simulate the 

load and speed operating conditions a railcar experiences in the field. The SBT is designed to 

closely mimic rail service conditions of individual railcar tapered roller bearings of AAR classes 

E (6 in ×11 in), F (6½ in ×12 in), G (7 in ×12 in), or K (6½ in ×9 in). Listed in Table 6 are the 

dimensions and AAR rated load capacities of these four bearing classes.
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Table 6. Bearing classes with dimensions and AAR rated load capacities 

Bearing Class 
Size 

[mm] 

Size 

[in] 

Load 

[kN] 

Load 

[lbf] 

Class E 152×278 6×11 117  26300 

Class F 165×305 6½×12 153  34400 

Class G 178×308 7×12 169  38000 

Class K 165×229 6½×9 153  34400 

 

In the field, a total of eight bearings equally support the load of a railcar, exerted 

vertically on them by the bogie side frames. Once in service, the railcar mainly operates under 

fully loaded or unloaded conditions. When fully loaded, the bearings support 100% of the load 

while at an unloaded state, the bearings only support about 17% of the full load. For example, if 

a railcar is equipped with class F or K bearings, then each bearing would support 153 kN (34.4 

kip) and 26 kN (5.85 kip) at fully loaded (100%) and unloaded or empty (17%) states, 

respectively. On the SBT, the fully loaded and unloaded conditions a bearing experiences in rail 

service are achieved by positioning the test bearing at the end of a specialized axle cantilever 

style. Here, a load cell, driven by a hydraulic cylinder, vertically exerts load onto the bearing. 

The hydraulic cylinder can load bearing classes accommodated by the tester with up to 150% of 

their rated capacity. An Arduino-based load controller is also used to adjust and maintain desired 

pressure/load outputs manually or automatically. 
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Table 7. Single bearing tester (SBT) speed conversion table 

Axle Speed 

[rpm] 

Equivalent Track Speed 

[km/h] 

Equivalent Track Speed 

[mph] 

234 40 25 

280 48 30 

327 56 35 

374 64 40 

420 72 45 

467 80 50 

498 85 53 

514 89 55 

560 97 60 

618 106 66 

700 121 75 

796 137 85 

 

The SBT is also equipped with a 22 kW (30 hp) variable frequency motor that can 

simulate train traveling speeds of up to 137 km/h (85 mph). This permits the test bearing to be 

subjected to various test speeds. Commonly tested SBT speeds can be found in Table 7. 

Industrial-size fans producing an average airflow of 6 m/s (13.4 mph) are used to simulate the 

convection cooling conditions experienced by bearings in freight rail service. 
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Figure 16. Single bearing testing rig (SBT) 

3.2 Condition Monitoring Systems 

To quantify the vibration levels in the performed railcar simulations, two onboard sensor 

modules were affixed to a specially machined class F bearing adapter. Namely, the two sensor 

modules were the HUM Boomerang prototype and the UTCRS wireless module (UWM). The 

modifications to the bearing adapter were methodically performed to allow both sensor modules 

to align their accelerometers radially with the bearing center in the loading zone as shown in 

Figure 17.  
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Figure 17. Boomerang and UTCRS wireless modules fixed to a bearing adapter for laboratory 

testing 

 

3.2.1 Boomerang and Gateway Ensemble 

As mentioned in Section 2.3, the HUM Boomerang prototype is part of an ensemble of 

wireless systems in which the condition monitoring module or Boomerang functions in 

combination with a solar-powered central communication unit known as the Gateway. The 

Gateway, presented in Figure 18, acts as the data relay bridge between the onboard condition 

monitoring module and the railcar owner. Specifically, the Gateway retrieves the attained data by 

the Boomerang utilizing LoRa technology. In field operations, rolling stock bearing information 

is then wirelessly transferred via cellular data transmission services and stored into HUM’s 

online dashboard. Here, the software interface of the server assumes control over data analysis, 
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generating automated notifications for the end user when a bearing health index surpasses 

established thresholds. The Gateway is necessary for flashing the Boomerang with the latest 

software updates. Sampling time interval modifications, Boomerang-Gateway linking, and other 

programming procedures are also enabled by the Gateway. 

 
Figure 18. HUM central communication unit (i.e., Gateway) 

 

The Boomerang prototype, displayed in Figure 19, employs two accelerometers and one 

temperature sensor to provide timely bearing health conditions. For the purposes of this thesis, 

however, only the data output of the two accelerometers will be used, and they will be denoted as 

Accelerometer 1 (A1) and Accelerometer 2 (A2) for the rest of this thesis. A1 is a single-axis 

accelerometer with a data sampling capability of 5,200 samples per second. A2 is a three-axis 

accelerometer that can collect a maximum of 780 data samples per second for each axis. A1 and 

A2 have unique g-acceleration operation ranges. Accelerometer 1 has an operating capacity up to 

100 g’s while Accelerometer 2 can collect g-accelerations at a maximum of 200 g’s. 
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Additionally, A2 has an integrated attribute that enables the maximum operating range to be 

adjusted to either 100 or 200 g’s based on modifications to the main code that can be pushed to 

the Boomerang by flashing its main circuit board. Note that, once a measured value exceeds 

these disclosed ranges, the sensor will “saturate”, and the exact g-reading will be undefined. If 

this occurs, the data will simply demonstrate values at the maximum limit of the sensor.  

 
Figure 19. HUM Boomerang prototype 

 

Both accelerometer vibration readings are acquired by the AC voltage fluctuations 

produced when they are mechanically stimulated. To harness the vibrational output in “g”, a root 

mean square (RMS) operation must be performed to the voltage output. Hence, the Boomerang 

accelerometers provide bearing health metrics in two main ways: (1) root mean square (RMS) 

and (2) maximum acceleration [g]. The RMS index indicates the average bearing operating 

status, and it has been the preferred bearing diagnostic tool by UTCRS due to its successful 

predictive and accurate bearing health assessments over years of studies [28]. Any deviations 

from established thresholds signal the presence of an internal flaw either in the cup (outer ring), 

cones (inner rings), or rollers of the bearing. On the other hand, the maximum acceleration [g] 

signifies the absolute maximum vibration signature the accelerometer captured within an allotted 

data acquisition interval. The latest version of this sensor only allows both parameters to be 

obtained as numeric characters, yet they can be downloaded in a time-stamped manner through 

“.csv” files for further analysis. Current efforts are being conducted to allow downloadable raw 

vibration data for a more complete insight on component performance. 
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As this thesis is intended to present the high wheel impact sensing capabilities of the 

Boomerang, one of these parameters must be utilized to accomplish this feat. Although RMS has 

been vital in bearing condition monitoring for UTCRS, a different approach might be required 

for diagnosing a high impact wheel. This is due to how wheel impacts are instantaneous and 

acute in nature. In past studies, a periodic display of signal spikes within a data set have been 

proven to indicate their presence [35]. As an RMS operation involves taking an average of the 

acquired AC voltage data, this process could conceal these singularities. That is, a continuous 

signal can nullify any periodic episodes as more “average” data points are available. Considering 

this logic, the empirical data collected and presented for this thesis will be based on the 

maximum g output of the Boomerang. 

3.2.2 UTCRS Wireless Module 

The UTCRS wireless module (UWM), seen in Figure 20, is a battery-powered, onboard 

health monitoring sensor capable of collecting data at a sampling rate of 5,200 Hz. It is 

instrumented with a single-axis accelerometer, a temperature sensor, and a Bluetooth transmitter. 

With these features, the device can transmit bearing temperature and vibration data via Bluetooth 

to a Raspberry Pi 3 Model B+. The embedded accelerometer is the same as Accelerometer 1 

(A1) of the Boomerang. However, instead of having the same 100g maximum, a modification in 

the UWM expands the operating range to a maximum of 123g. A PythonTM-based platform was 

used to perform data acquisition tasks. For this thesis, data acquisition was dependent on two 

main codes: (a) Multiwirelessfourseconds.py and (b) Multiwirelessfullbits.py.  

Multiwirelessfourseconds.py (a) collects four seconds of RMS, maximum acceleration 

[g], and temperature data. These metrics can be transmitted in as fast as 15 seconds or at any 

time interval of interest thereafter, yet they can only be obtained as numeric characters. 
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Conversely, Multiwirelessfullbits.py (b) can only collect one second of RMS, maximum 

acceleration [g], and temperature data at a minimum transmission rate of one minute and 45 

seconds. However, unlike (a), (b) can log both numeric characters and raw voltage values. For 

both codes, the values can be saved and downloaded as “.txt” files. In case of the numeric 

characters, their “.txt” file can be used to create Excel spreadsheets where the data can be 

organized and analyzed. The raw voltage values can be plugged into MATLAB® where three 

levels of vibration analysis can be performed: Level 1: converts the raw voltage data into RMS to 

indicate bearing health, Level 2: uses RMS to classify defect type with a specified degree of 

certainty, and Level 3: discloses the approximate size of the defect in terms of surface area [28].  

 
Figure 20. UTCRS wireless module (UWM) 

 

3.3 Impact Mechanism Configuration 

The impact system depicted in Figure 21 and Figure 22 was used to simulate the high 

wheel impacts a defective wheel would experience in rail service. The mechanism is assembled 

within the single bearing tester (SBT) frame, and it consists of five key components: an impact 

head, a spring-driven impact hammer, a lever, a cam, and an inverter drive motor. The inverter 

drive motor is a 7.46 kW (10 hp) variable frequency drive (VFD) motor. By configuring the 
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input frequency or voltage on the VFD, the speed of the motor can be adjusted, allowing for 

different impact frequencies to be tested. Connected to the motor is a solid steel shaft retrofitted 

with a custom-made cam that sits between two journal bearings. The cam creates a rotational to 

translational energy conversion in the system as it is connected to a lever that sits on a small 

shaft between two smaller-size journal bearings. This lever, which is 21.51 cm (8.47 in) in 

length, has a Delrin homopolymer roller at the cam-lever interacting end to reduce friction and 

wear between the components. It connects to the impact hammer via a linkage housed within the 

impact mechanism frame securing the impact hammer and lever together using two clevis pins 

locked with cotter clips. Because the lever is connected to the impact hammer, the energy 

transfer between the cam and lever gets transferred to the impact hammer as well. This energy 

transfer, however, is limited to the rotation of the cam. Thus, to maximize the energy output of 

the impact hammer, a spring with a specified constant is fitted on top of the impact mechanism 

frame. The spring is secured into position under a square plate that is part of the impact 

hammer’s structure. 

 



 

47 

 

 
Figure 21. Impact mechanism CAD drawing (dimensions in inches) 

 

 Hence, to illustrate the operation of the impact mechanism, as the lever is pushed 

upwards by the rotation of the motor driven cam, the impact hammer is pulled down and the 

spring now has a substantial amount of potential energy from its deformation. As the cam keeps 

rotating, the geometry of the cam allows for the lever to be released causing the  stored potential 

energy of the spring to become kinetic energy, catapulting the impact hammer into motion. Yet, 

to simulate a wheel impact, this mechanism needs to hit an area on the test axle that emulates a 

railcar wheel position on an actual railcar suspension frame. For this reason, a circular slot within 

the SBT frame is strategically positioned underneath a steel impact ring assembled onto the SBT 

axle. The geometry of the slot allows the impact hammer to protrude through the SBT frame, 
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enabling an impact head to be fastened onto the protruding end of the impact hammer . 

Reanalyzing the behavior of the mechanism, as the impact head jolts upwards from the potential 

energy release of the spring, the impact ring, which simulates a railcar wheel on the test axle, 

provides a medium for this impact head to hit, replicating a high wheel impact. 

 
Figure 22. Impact mechanism components 

 

The impact head, pictured in Figure 23, is fabricated from a solid steel cylinder that has 

been machined to provide a hollow end that permits the impact head to be fastened to the impact 

hammer via a pressure fitted Delrin homopolymer sleeve. Moreover, the impact head is 

retrofitted with an L-shaped steel bracket and a press-fitted brass pinned disk. The L-shaped 

bracket is used to equip the impact head with a shock accelerometer that can acquire acceleration 

data during impact testing. This bracket is affixed to the impact head via two threaded holes and 
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screws. To suppress the wear that would be generated from the high-speed impact and axle 

rotation contact between the impact ring and head, a brass pinned disk was machined and press-

fitted on top of the impact head. The disk has a diameter of 6.22 cm (2.45 in) and a thickness of 

0.65 cm (0.26 in). The stem or pin section of the disk is 1.27 cm (0.50 in) in diameter with a 

length of 1.27 cm (0.50 in). The impact head was machined to house the entirety of the brass 

disk pin and about 0.32 cm (0.13 in) of the disk thickness. By pressure fitting the pinned disk, the 

piece is stabilized and primed to withstand frequent high impacts. Simultaneously, friction at 

impact contact is reduced, minimizing premature fractures associated with the harsh impact tests. 

 
Figure 23. Impact head (left) and CAD drawing of impact head and hammer assembly (right)  

 

3.3.1 Impact Mechanism Frequency Evaluation 

 The functionality of the impact system is based on several transfers of energy. In turn, 

these exchanges create mechanical losses that impede the VFD input frequencies from being 
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true. In other words, a VFD input of 10 Hz will not equal a 10 Hz impact frequency output. To 

this end, an experiment was constructed using the SBT and impact system to determine the 

precise input to output frequency yield. The test involved 60 seconds of continuous impacts with 

a 67 N/mm (384 lb/in) spring for each VFD input frequency (i.e., 1-60 Hz). The reciprocal of the 

time between successive impacts for each input would then be used to calculate the actual output 

frequency. To acquire those impacts, a shock accelerometer with a 20,000g measuring range and 

a 0.2681 mV/g sensitivity (factory calibrated) was affixed to the L-shaped bracket of the impact 

head.  

 
Figure 24. Brüel & Kjær shock accelerometer (20,000g measuring range) 

 

A cable with a gold-plated BNC connector was then used to hook up the accelerometer to 

a National Instruments (NI) 9234 data acquisition cartridge that was attached to a National 

Instruments (NI) Compact Chassis (cDAQ-9174). Using the technical parameters of the 

accelerometer and the DAQ, a LabVIEW code was built to generate an Acceleration [g] vs. Time 

plot. After performing the tests, the g-acceleration per input frequency data was analyzed using 

MATLAB™ and the respective output frequencies were calculated. In effect, the analysis 

determined that the input to output capability of the VFD was skewed. The maximum output 
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frequency that could be achieved was 3 Hz, or the equivalent of a 91.44 cm (36 in) railcar wheel 

containing a single anomaly traveling at roughly 31 km/h (19 mph). In addition, to get output 

impact frequencies of 1, 2, and 3 Hz, VFD frequency inputs of 19, 38, and 57 Hz are required, 

respectively. This relationship is presented in Table 8. 

Table 8. VFD input to impact frequency output relationship for UTCRS impact mechanism 

VFD Input [Hz] Impact Frequency Output [Hz] 

19 1 

38 2 

57 3 

 

3.3.2 Impact Force Evaluation 

To develop a sensible understanding of what impact forces the UTCRS impact 

mechanism can generate, another methodical experiment needed to be devised. Since the only 

viable approach of adjusting impact forces on the impact mechanism was by swapping springs, 

four additional springs with distinct spring constants were acquired to produce a spring to impact 

force correlation. In particular, the spring constants were 18, 26, 44, 51, and 67 N/mm (i.e., 104, 

147, 249, 289, and 384 lb/in, respectively). Each selected spring was sequentially mounted onto 

the impact mechanism and tested for 30 seconds using the maximum impact frequency output of 

3Hz. To gauge the resulting impact accelerations, the same 20,000g accelerometer setup 

mentioned in Section 3.3.1 was employed. After completing the tests, the acquired g-acceleration 

profiles for each spring were analyzed using MATLAB™. 
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Figure 25. Selected springs with distinct spring constants 

 

To demonstrate the MATLABTM analysis process, an impact acceleration profile plot of 

one of the tested springs can be observed in Figure 26. The data callouts depicted in the plot 

signal some of the maximum g-accelerations collected for a tested spring (67 N/mm or 384 

lb/in). Overall, each successive and absolute maximum peak in the plot was used to compute the 

average g-acceleration peak and was repeated for each tested spring. The respective value was 

inserted into Equation 1 to calculate the impact force (FN) in Newtons [N], where m is the 

combined mass of impact hammer and head in kilograms [kg] (i.e., 4.06 kg or 8.95 lb), g is the 

gravitational constant in [N/m2], and G is the calculated average peak impact force acceleration 

in [g]. Then, by using Equation 2, the impact force in Newtons was converted into a pound force 

[lbf] value and denominated as Flbf. The resultant impact forces for each spring are found in 

Table 9. Notably, the highest impact force that could be exerted was by the 67 N/mm (384 lb/in) 

spring which provided a force of about 320 kN (72 kip). To illustrate the relationship between 

the spring constants and the obtained impact forces, the data from Table 9 was used to derive 
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Figure 27. The plotted data was fitted with a linear regression model that corresponded to a 

goodness-of-fit (R2) value of 99%.  

FN = m× g × G (1) 

Flbf = FN × 0.2248 (2) 

Table 9. Spring constant to impact force relationship for UTCRS impact tester 

Spring Constant 

[N/mm] 

Spring Constant 

[lb/in] 

g-acceleration 

[g] 

Impact Force 

[kN] 

Impact Force 

[kip] 

18 104 1661 67 15 

26 149 2063 85 19 

44 249 6063 240 54 

51 289 6646 267 60 

67 384 8026 320 72 

 

 
Figure 26. MATLAB generated plot for 67 N/mm (384 lb/in) spring impact acceleration profiles 



 

54 

 

 
Figure 27. Linear regression fit correlating the spring constant [lb/in] to the impact force [lbf] 

 

3.4 Boomerang Maximum Acceleration [g] to Impact Force Correlation 

An effective wheel impact force criterion needed to be implemented to support future in-

field wheel monitoring. As the high wheel impact detection capability of the Boomerang will be 

assessed through its maximum acceleration [g] output, an experiment was designed to determine 

the correlation between maximum g’s and impact force. The experiment entailed the dynamic 

operation of a class F control (healthy) bearing on the SBT under the influence of 3 Hz impacts 

by each spring presented in Section 3.3.2. The control bearing was subjected to both unloaded 

(empty) and fully loaded railcar scenarios under dynamic operations of 40 and 85 km/h (25 and 

53 mph). A total of 10 maximum g data points were collected per spring. Once the testing was 

completed, the average maximum g-acceleration output for the selected railcar conditions were 

calculated and organized in Table 10. It is important to state that the devised correlation was 
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based on the maximum acceleration output of Accelerometer 2 (A2) only. Although 

Accelerometer 1 (A1) was functional in this experiment, a manufacturing error prevented A1 

from being active for a field test that will be presented later in this thesis. Therefore, A1 data was 

excluded from this correlation. In addition, the results of this experiment were acquired utilizing 

the 200g setting of A2 to maximize the response of the device. With this in mind, an impact 

force of 72 kip resulted in an average maximum g-value of about 144g, while the lowest impact 

force of 15-kip corresponded to roughly 46g.  

Table 10. Boomerang average maximum acceleration [g] output to impact force relationship (no 

filter) 

Average Maximum 

Acceleration 

[g] 

Impact Force 

[kN] 

Impact Force 

[kip] 

46 67 15 

49 85 19 

66 240 54 

100 267 60 

144 320 72 

 

Since the Boomerang currently does not possess a feature that promptly informs railcar 

load conditions, it was redundant creating a maximum acceleration [g] to wheel impact force 

model that required both 17% (empty railcar) and 100% (full railcar) load conditions. 

Furthermore, railcar speed is variable and may change frequently especially in rail segments 

where the train passes through urban areas. Introducing an impact force index for each railcar 

speed would also prove to be unnecessarily complex. Hence, the devised relationship presented 

in Table 10 provides a simple provisional model for wheel condition tracking. Combined with 

FRA wheel impact guidelines, the latter could optimize maintenance intervention by following a 
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series of thresholds that signal different levels of concern at each wheel impact force. This 

framework is bound to change with any modifications to the design of the Boomerang circuitry 

or with continued in-service acquisition of data. Nevertheless, the simplicity of the proposed 

model allows for swift enhancements. 

3.5 Pilot Field Test Setup 

A pilot test was conducted in cooperation with HUM and a private railroad to investigate 

the ability of the wireless module to detect high wheel impacts in field service operations. The 

study involved the assembly and installation of 40 wireless onboard condition monitoring 

devices on the bearing adapters of five randomly selected railcars of an active rail transport 

route. Over the course of two months, the installed Boomerangs transmitted wheelset health 

metrics to HUM’s server where the data was downloaded and scrutinized. Upon observation, the 

data from two Boomerangs began indicating maximum acceleration values coincident to a 

laboratory simulated high wheel impact. The finding was presented to HUM, and a mutual 

agreement among all parties involved was reached to remove three wheelsets from service for 

examination. Specifically, the removed wheelsets would target the flagged wheelset and two 

apparently normal wheelsets to allow for a suitable comparison. 

3.5.1 Field Installation 

Prior to railcar installation, a total of 40 Boomerangs and five Gateways were assembled 

at UTCRS. Eight Boomerangs were programmed to communicate with a specific Gateway unit 

(i.e., eight Boomerangs per Gateway). This entailed prescribing each Gateway with a unique 

channel number to avoid communication interference between the modules as well as for future 

data organization practices. For example, “Gateway 1” was programmed to channel 10 and each 
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of the eight Boomerangs pertaining to that Gateway were labeled in sequential order (i.e.,11, 12, 

13, etc.). 

 
Figure 28. Assembled Gateway and Boomerang units at UTCRS 

 

Once fabricated and programmed, HUM then performed the onsite installation 

procedures. A single gateway was fixed per railcar while ensuring proper positioning of the 

fixture for optimal solar exposure and communication with the condition monitoring modules. 

Next, after modifying the railcar bearing adapters using basic drill and tap techniques, the 

Boomerangs that were programmed to the respective Gateway were secured onto the bearing 

adapter frontal plane via screws. This procedure was repeated for all five randomly selected rail 

transport units. 
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Figure 29. Installed HUM Gateway unit (left) and HUM Boomerang installation (right) 

Subsequently, using their fixed positions, the Boomerangs were registered on the HUM 

server in conformity to the Association of American Railroad (AAR) wheel identification layout 

seen in Figure 30 to facilitate the identification of the sensors when conducting their data output 

analyses. As a note, AAR wheel identification states that railcar axle order begins at the hand 

brake end of the railcar which is denoted as the B-end. By using the B-end as a reference point, 

the left and right sides of the railcar can also be located. 

 

 

HUM 

Gateway Unit HUM 

Boomerang 
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Figure 30. Railcar side and end identification diagram 

 

3.5.2 Axle Removal Process and Inspection 

Based on the event of two Boomerangs signaling high impact loads for a particular railcar 

wheelset, the UTCRS team convened with HUM representatives to notify them about the 

wheelset status. This information resulted in HUM requesting from the railcar owner the removal 

of the possibly atypically performing wheelset along with two apparently healthy wheelsets. 

Essentially, this request would allow for validation of the capability of the Boomerang to 

distinguish between standard and substandard wheelsets in rail service operation. 
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Figure 31. Wheelset removal process 

 

After coordinating with the private railroad and the wheelset removal party, the UTCRS 

team traveled to the rail depot to oversee the removal and interchange process depicted in Figure 

31. Once removed, the wheelset removal entity conducted careful inspection of the three 

wheelsets. This led to the identification of wheel flats and spalls on both wheel treads of the axle 

of interest, verifying the high wheel impact prognosis given by the Boomerangs. The other two 

wheelsets, used for comparison, demonstrated conformity to AAR wheel profile standards. An 

example of one the removed healthy wheelsets and the defective wheel set can be observed in 

Figure 32 and Figure 33, respectively. Following the AAR wheel identification diagram of 

Figure 30. Railcar side and end identification diagram, “L2” and “R2” indicate the left and right 

locations of the railcar while the “2” is the wheelset position. 
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Figure 32. Axle 2 low-concern wheelset (healthy) 

 

 
Figure 33. Axle 2 high-concern wheelset (defective) 

 

To illustrate the maximum g behavior of the three removed wheelsets, the pre-and post-

wheel changeout maximum g indices of these removed axles was used to create maximum 

acceleration [g] versus speed [km/h] plots. These plots will be presented in Chapter VI and they 

will be supported by the maximum g and impact force correlations presented in Section 3.4.

L2 

L2 R2 

R2 
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CHAPTER IV 

 

 

LABORATORY EVALUTION OF BOOMERANG PROTOTYPE 

 

 

Although the purpose of this thesis is to assess the capability of the Boomerang in 

detecting high wheel impacts, it is important to restate that the other intended function of the 

device is to provide bearing health metrics for railcar owners. Therefore, if the module were to 

be employed for the relay of both wheel and bearing conditions, then the vibration sensors within 

the Boomerang should be capable of simultaneously diagnosing both components. This raises the 

question of whether the Boomerang can detect bearings with defects given the presence of high 

wheel impacts and vice versa. For this reason, this chapter demonstrates the how the Boomerang 

can identify high wheel impacts under the influence of three distinct and common bearing 

conditions which include: (1) all healthy bearing components, (2) a bearing with a defective cup 

(outer ring), and (3) a bearing with a defective cone (inner ring).  

4.1 Laboratory Boomerang Evaluation Methodology 

The high wheel impact detection efficacy of the Boomerang was evaluated by analyzing 

the maximum acceleration [g] data collected for impact and no-impact tests carried out on select 

class F bearings. The impact testing was conducted by employing the single bearing test rig 

(SBT) and impact mechanism described in Sections 3.1 and 3.3, respectively. Based on the 

results shown in Section 3.3.2, the 67 N/mm (384 lb/in) spring was installed on the impact 

system, replicating the highest attainable impact force of 320 kN (72 kip) by the mechanism. 

Furthermore, as the Boomerang is intended to identify wheel impacts at a wide range of railcar
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speeds, the device was tested under dynamic bearing operation of 40, 65, and 85 km/h (i.e., 25, 

40, and 53 mph). For each tested speed, both fully loaded (153 kN or 34.4 kip per bearing) and 

unloaded (26 kN or 5.85 kip per bearing) railcar conditions were imposed on the selected 

bearings. These unloaded and loaded conditions will be represented as 17% and 100% load, 

respectively. The defective bearings were strategically placed on the SBT axle, allowing the 

defect to be on the outboard position. By doing so, the defect was adjacent to the condition 

monitoring module as seen in Figure 17, creating a worst-case scenario for the device. If the 

Boomerang can detect the wheel impact even under these conditions, then its functionality can 

be further validated. To mitigate component deterioration in the impact mechanism, only ten 

maximum g data points were collected for each impact condition. The average of the ten data 

points was then used to produce the figures and tables in Sections 4.2, 4.3, and 4.4. As field 

operations are transient, testing was performed without waiting for the SBT to reach steady-state 

conditions. In addition, Accelerometer 2 of the Boomerang was set to its 100g setting as a 

concurrent field test was being conducted with this variation. The 100g setting would also allow 

for a more suitable comparison with Accelerometer 1. 

4.2 Laboratory Experiment 244: Wheel Impact Detection with a Control Bearing 

 In Experiment 244, a class F control (healthy, defect-free) bearing was used to investigate 

whether the Boomerang prototype could detect high wheel impacts while a bearing was 

operating with healthy components. Using the collected data from this experiment, the average 

maximum g output of both Boomerang accelerometers (A1 & A2) was calculated and is 

displayed in Table 11. Using these values, Figure 34 and Figure 35 were then generated to 

graphically represent the average maximum g response by the Boomerang for unloaded and fully 

loaded railcar conditions, respectively. 



 

64 

 

Table 11. Experiment 244 Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) impact 

(I) and no-impact (NI) average maximum acceleration [g] results – control (healthy) bearing 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17% 100% 17% 100% 17% 100% 

A1 – I [g] 98 96 98 94 97 95 

A1 – NI [g] 3 3 5 4 7 6 

A2 – I [g] 99 81 98 86 99 90 

A2 – NI [g] 2 2 3 3 5 4 

 

Both accelerometers demonstrated an evident detection of the 320 kN (72 kip) impacts in 

terms of maximum g’s. After the impact was introduced, both Accelerometer 1 (A1) and 

Accelerometer (A2) exhibited an average maximum acceleration near the 100g limit for all 

tested speeds and loads. For A1, the average maximum g output under impacts was about 96g for 

both loading conditions, while for A2, the average maximum g’s registered under impacts was 

roughly 92g. On the other hand, under no-impact conditions, the highest registered maximum g 

output was 7g at 85 km/h and 17% load by A1. The gradual increase in maximum g’s seen for 

the no-impact condition is a direct result of the increase in operating speed. Comparing the 

average maximum g output of A1 between all impact and no-impacts results yielded a difference 

of about 91g. For A2, the average difference between impact and no-impact maximum g’s was 

approximately 89g. 

Both accelerometers mostly presented higher maximum g’s at an unloaded state (17% 

load) than under a full load (100% load). Furthermore, at 17% load, the maximum g values for 

A1 and A2 accelerometers neighbored each other with a difference of about ±2g. This 2g offset 

was also present in the no-impact results of each tested speed and load condition. Once the 
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bearing was loaded and under impact, the maximum g proximity between sensors changed to a 

difference of about 9g on average. With that said, A1 registered higher maximum g’s than A2 

once a full load and impacts were introduced.  

 
Figure 34. Experiment 244 unloaded control bearing impact (I) and no-impact (NI) Boomerang 

Accelerometer 1 (A1) and Accelerometer 2 (A2) average maximum [g] results 
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Figure 35. Experiment 244 loaded control bearing impact (I) and no-impact (NI) Boomerang 

Accelerometer 1 (A1) and Accelerometer 2 (A2) average maximum [g] results 

 

4.3 Laboratory Experiment 245: Wheel Impact Detection with a Cone Defect 

In laboratory Experiment 245, a class F bearing with a defective cone area of 11.16 cm2 

(1.73 in2), pictured in Figure 36, was used to explore whether the Boomerang could detect a high 

wheel impact while a bearing with a cone defect was in operation. Like Experiment 244, the 

bearing ran under both loaded and unloaded conditions as well as at the same chosen railcar 

speeds of 40, 65, and 85 km/h (25, 40, and 53 mph). The data from the Boomerang 

accelerometers was collected and the average maximum g response was computed. These results 

are summarized in Table 12. Figure 37 and Figure 38 were then plotted to present a visual 

perspective on the unloaded and loaded response of the Boomerang, respectively. 
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Figure 36. Experiment 245 cone containing a raceway spall of 11.16 cm2 (1.73 in2) 

 

Table 12. Experiment 245 Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) impact 

(I) and no-impact (NI) average maximum acceleration [g] results – bearing with cone defect 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17% 100% 17% 100% 17% 100% 

A1 – I [g] 91 94 95 97 97 95 

A1 – NI [g] 12 23 19 29 28 42 

A2 – I [g] 67 82 77 75 78 89 

A2 – NI [g] 8 39 13 38 19 48 

 

Like the maximum g behavior seen in Section 4.2 (i.e., the control bearing experiment), 

both Boomerang accelerometers displayed a notable spike in maximum g’s after an impact was 

introduced for all test conditions as seen in Figure 37 and Figure 38. Under impacts, 

Accelerometer 1 (A1) presented an average maximum g’s of 95g while Accelerometer 2 (A2) 

exhibited an average maximum g’s of 78g. All A2 maximum g values, with an impact, were 

lower than those of A1 by an average difference of about 17g. Since both accelerometers were 

programmed to acquire vibrations up to 100g, a possible rationale for this maximum g disparity 

Defect Area = 

11.16 cm2 (1.73 in2) 
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is the lower sampling rate of the A2 accelerometer. Recall that A1 has a significantly higher 

sampling rate than A2 (i.e., 5,200 Hz versus 780 Hz, respectively). The higher sampling 

frequency may allow enhanced impact recognition as more data points are being collected per 

sampling interval, thus increasing the probability of detecting the full vibration signature of the 

impact.  

 
Figure 37. Experiment 245 unloaded bearing with cone spall impact (I) and no-impact (NI) 

Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) average maximum[g] results 
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Figure 38. Experiment 245 loaded bearing with cone spall impact (I) and no-impact (NI) 

Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) average maximum [g] results 

 

Further inspection of the no-impact results revealed other trends. A1 exhibited higher 

maximum g’s than A2 under unloaded conditions with an average difference of 6g between 

accelerometers. However, once a full load was exerted, A2 displayed higher maximum g’s than 

A1 with an average difference of 10g between accelerometers. In comparison to the results of 

Section 4.2 (i.e., control bearing experiment), both accelerometers registered an increase in no-

impact maximum g values. In turn, this caused the maximum g gap between impact and no-

impact to decrease. The average maximum g output difference between the impact and no-

impact results of A1 and A2 was now around 69g and 50g, respectively, as opposed to the 91g 

and 89g difference for A1 and A2, respectively, in the control (healthy) bearing results. This 

discrepancy is likely due to the roller interactions with the spalled raceway which create higher 

vibration signatures compared to the rollers rotating against the smooth (defect-free) cone 

raceway of the control bearing. Nevertheless, even though there was an increase in the maximum 
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g values under no-impacts, the Boomerang could still plainly detect the presence of the 72-kip 

impact.  

4.4 Laboratory Experiment 246: Wheel Impact Detection with a Cup Defect 

As shown in Figure 39, laboratory Experiment 246 involved impact testing while 

simultaneously running a class F bearing containing a cup defect of 10.13 cm2 (1.57 in2) in area. 

The purpose of this experiment was to determine whether the Boomerang could detect a high-

wheel impact while a bearing with a cup defect was in operation. The cup defect was positioned 

directly under the full load to amplify the vibrational output of the bearing, thus creating a worst 

scenario. Table 13 provides the results for all the test conditions described in Section 4.1. The 

average maximum g output of the Boomerang accelerometers at 17% and 100% applied load are 

plotted in Figure 40 and Figure 41, respectively.  
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Figure 39. Experiment 246 cup containing a raceway spall of 10.13 cm2 (1.57 in2) 

 

Table 13. Experiment 246 Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) impact 

(I) and no-impact (NI) average maximum acceleration [g] results – bearing with cup defect 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17% 100% 17% 100% 17% 100% 

A1 – I [g] 92 96 87 91 95 90 

A1 – NI [g] 15 35 19 46 40 55 

A2 – I [g] 62 88 55 93 71 99 

A2 – NI [g] 9 70 25 78 51 97 

 

Defect Area = 10.13 cm2 (1.57 in2) 
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In contrast to the maximum g behavior displayed by the Boomerang in Sections 4.2 (i.e., 

control bearing experiment) and 4.3 (i.e., defective cone experiment), where both accelerometers 

were able to detect the 320 kN (72 kip) impact at all speed and load combinations, Experiment 

246 revealed an opposing outcome.  

Observing the unloaded results of Figure 40, both Accelerometer 1 (A1) and 

Accelerometer 2 (A2) were able to detect the simulated high wheel impact, albeit with A1 having 

better reliability. The average maximum g output with impacts was 91g and 63g for A1 and A2, 

respectively. On average, A1 displayed an average maximum g difference of 67g between 

impact and no-impact, while A2 exhibited a difference of only 34g. However, it can be observed 

that as the test speed increased, the maximum g output between impact and no-impact started to 

converge for A2.  

 
Figure 40. Experiment 246 unloaded bearing with cup spall impact (I) and no-impact (NI) 

Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) average maximum [g] results 
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Figure 41. Experiment 246 loaded bearing with cup spall impact (I) and no-impact (NI) 

Boomerang Accelerometer 1 (A1) and Accelerometer 2 (A2) average maximum [g] results 

 

For the fully loaded tests, the detectability of the 72-kip impact, while a bearing with a 

cup spall was in operation, was compromised, especially for the A2 accelerometer. In fact, once 

the highest test speed of 85 km/h (53 mph) was employed, the impact and no-impact maximum g 

data almost completely converged for the A2 accelerometer, as seen in Figure 41 and Table 13. 

Although both accelerometers were able to detect the 72-kip impact for the lower test speeds, A2 

was already demonstrating signs of susceptibility towards the mechanical noise being generated 

by the cup spall. The average difference between impact and no-impact maximum g for A2 was 

about 11g with the difference at the highest tested speed diminishing to a meager 2g. Thus, the 

A2 accelerometer was incapable of effectively diagnosing whether the maximum g output was 

representative of a high wheel impact or a defective bearing. On the other hand, the A1 

accelerometer demonstrated a better capability of recognizing the wheel impacts with an average 
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difference of 47g between impact and no-impact results, and a 35g minimum difference at the 

highest speed tested.  

The converging behavior between impact and no-impact maximum g data for the A2 

accelerometer, seen in both the loaded and unloaded (to a lesser extent) results which was not the 

case in the cone defect experiment (i.e., Experiment 245), can be explained by the direct loading 

condition imposed on the cup defect. Unlike the cone defect which cycles in and out of the load 

zone, the cup defect is in constant engagement with the applied load, intensifying vibration 

emissions as the rollers pass through the defect area. Increases in speed or load tend to amplify 

the vibration levels within the bearing, which explains why the maximum g values for the impact 

and no-impact conditions start to converge. Furthermore, the Boomerang was also positioned in 

direct alignment with the defective region of the cup, thus increasing the susceptibility of the 

device to the test conditions. Note that the A1 accelerometer was still able to distinguish between 

the defective bearing with a cup spall and the wheel impact even at these operating conditions. 
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CHAPTER V 

 

 

SUPPLEMENTAL TESTING USING UTCRS WIRELESS MODULE 

 

 

When in transit, the components of a railcar bogie inherently generate mechanical noise. 

Service environments, operating conditions, and accrued component wear are some factors that 

can increase the output of this byproduct. In turn, the presence of these aftereffects can interfere 

with signal clarity by increasing the noise to signal ratio, thus, affecting the performance of 

signal processing devices (i.e., sensor devices). Because the HUM Boomerang (a signal 

processing device) is destined to be a component of these rail vehicles, it is crucial to explore 

feasible solutions that can neutralize aliasing and other possible signal susceptibilities that the 

device may sustain in field service. An active signal processing practice at the University 

Transportation for Railway Safety (UTCRS) has been the use of electronic filters, rendering 

effective noise suppression. Therefore, this chapter showcases the possible integration of an 

electronic filter in the HUM Boomerang by featuring results obtained from a laboratory 

assessment. Specifically, since the electronic hardware of the tested Boomerang model was 

tailored to function as is, any alterations within the circuitry could cause the device to 

malfunction. Incorporating a filter in the module would require HUM to redesign and 

manufacture a new version of the Boomerang device, entailing an unknown lead time that could 

potentially affect the testing schedule. As the UTCRS wireless module (UWM) utilizes the same 

accelerometer as the HUM Boomerang (i.e., Accelerometer 1) and possesses manageable
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component interchangeability, an 8th order elliptical filter with a high frequency cut-off of 2.1 

kHz was integrated into the UWM and systematically tested Additionally, aside from 

demonstrating the effects of an added filter on high wheel impact detection and noise 

cancellation, the ability of the UWM in detecting bearing defect type, even with the introduction 

of an impact, was also evaluated by using the UTCRS Level 2 algorithm. This effort would 

provide additional understanding of simultaneous dynamic bearing and wheel signal interactions 

and facilitate a future feature in the HUM Boomerang that would allow bearing defect type 

identification in terms of percentage-based confidence levels. 

5.1 Filter Testing Methodology 

Filtered and unfiltered wireless module impact tests were conducted simultaneously 

within Experiments 244, 245, and 246 seen in Sections 4.2, 4.3, and 4.4, respectively. Therefore, 

the same class F bearings, single bearing test rig (SBT), impact system setup, and operating 

conditions were used as described in those sections. Namely, the testing conditions included 320 

kN (72 kip) impact and no-impact trials under dynamic bearing operations of 40, 65, and 85 

km/h (i.e., 25, 40, and 53 mph) at 17% and 100% load. Again, 17% load represents an unloaded 

(empty) railcar (i.e., 26 kN or 5.85 kip per bearing) while 100% load represents a fully loaded 

railcar (i.e., 153 kN or 34.4 kip per bearing). It is also important to state that, as the main goal of 

this thesis was to assess the high wheel impact detection efficacy of the HUM Boomerang and 

not the UTCRS wireless module (UWM), the filtered sensor was affixed angularly on the 

bearing adapter as seen in Figure 17. This allowed the HUM Boomerang to be secured vertically 

on the bearing adapter, adopting the same mounting position as in a field setup. Since this was a 

supplemental test, performing an additional experiment with a vertical orientation of the filtered 

sensor could impose unnecessary and unwanted wear on the components of the impact tester.  
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Two data acquisition procedures were enacted for this test. To adequately compare filter 

response for all bearing conditions, the first procedure involved using code (a) defined in Section 

3.2.2. Ten maximum acceleration [g] data points were collected for both impact and no-impact 

conditions under both filtered and unfiltered UWM settings. An average maximum g calculation 

was performed after the results were obtained and used to delineate the UWM response for each 

tested condition as represented in the figures and tables shown in Sections 5.2, 5.3, and 5.4.  

The second procedure was conducted only for the tests involving the bearings with a 

defective cone and cup. Four instances of one second raw voltage data were collected for both 

filter settings using code (b) defined in Section 3.2.2. This last procedure would enable the 

execution of the UTCRS Level 2 analysis algorithm in MATLAB® to determine whether bearing 

defect type could be recognized despite the elevated noise and vibration levels generated by the 

high-wheel impacts. A Level 2 analysis was not performed on the control bearing experiment as 

no defect was present. As a note, UTCRS defect classification protocol for the Level 2 analysis 

requires at least a 50% confidence level to indicate a valid defect type designation. 

5.2 Laboratory Experiment 244: Filter Impact Test with a Control Bearing 

The data on Table 14 demonstrates the average maximum acceleration [g] response by 

the UTCRS wireless module (UWM) with and without a filter on the control (defect-free) 

bearing test of Experiment 244. Using the data from this table, Figure 42 and Figure 43 were 

plotted to give the empty (17%) and fully loaded (100%) railcar results, respectively.  

For each tested speed and load combination, the UWM was able to detect the 320 kN (72 

kip) impacts under both filtered and unfiltered settings in terms of maximum g output. However, 

the filter did alter the maximum g magnitude that was collected by the UWM as filtered 

maximum g values were lower than the unfiltered throughout the extent of the experiment. 
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Unfiltered results for both loading conditions indicated that the UWM was saturating at the 65 

km/h (40 mph) and 85 km/h (53 mph) test speeds as the maximum operating range of 123g was 

reached while, on average, the filtered data remained consistently under that threshold. The 

effect of the filter on the maximum g output of the wireless module was subtle for tests 

conducted under a no-impact setting. On average, the maximum g difference between the filtered 

and unfiltered no-impact condition was roughly 3g. However, the effect of the filter on the 

maximum g output was more pronounced when impacts were introduced. Bearing loading 

conditions were also a significant factor in the filtered response of the UWM when impacts were 

introduced. 

Table 14. Experiment 244 UTCRS wireless module filter (F) and no filter (NF) average 

maximum [g] results for impact (I) and no-impact (NI) – control (healthy) bearing 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17% 100% 17% 100% 17% 100% 

F – I [g] 81 41 106 54 102 55 

F – NI [g] 2 2 4 3 7 6 

NF – I [g] 112 99 123 122 123 122 

NF – NI [g] 3 3 7 7 11 12 

 

For the unloaded impact test results, the average maximum g response with a filter was 

96g while the average maximum g response without a filter was about 119g. Comparing the 

maximum g behavior between impact and no-impact, the average difference was 92g and 112g 

for the filtered and unfiltered conditions, respectively. This difference is highlighted by the data 

plotted in Figure 42. The gradual increase in maximum g output seen in the unloaded no-impact 

condition data is directly related to the increase in operating speed.  
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Figure 42. Experiment 244 unloaded control bearing impact (I) and no-impact (NI) UTCRS 

wireless module filter (F) and no filter (NF) average maximum [g] results 

 

The fully loaded railcar impact results demonstrated a higher sensibility towards the filter 

compared to the unloaded impact results as seen in Table 14 and by comparing Figure 42 and 

Figure 43. Under impacts, the filtered average maximum g output was now 50g compared to the 

96g of the unloaded results. Without a filter, the average maximum g response was 114g, 

remaining close to the average response of 119g for the unloaded results. Although the loaded 

impact results were more affected by the filter, the difference between impact and no-impact was 

still evident. On average, at 100% load, the difference between impacts and no-impacts was 46g 

for the filtered setting. Without a filter, the average maximum g difference between impact and 
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no-impact conditions was 107g. Like the unloaded results, a gradual increase in maximum g can 

be seen for the no-impact data indicative of an increase in test speed. 

 
Figure 43. Experiment 244 loaded control bearing impact (I) and no-impact (NI) UTCRS 

wireless module filter (F) and no filter (NF) average maximum [g] results 

 

5.3 Laboratory Experiment 245: Filter Impact Testing with a Cone Defect 

The average maximum g output for the filtered and unfiltered impact data of Experiment 
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accelerometer to exhibit signs of saturation as the maximum g values acquired through the 
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Table 15. Experiment 245 UTCRS wireless module filter (F) and no filter (NF) average 

maximum acceleration [g] results for impact (I) and no-impact (NI) – bearing with cone defect 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17% 100% 17% 100% 17% 100% 

F – I [g] 83 46 84 50 99 72 

F – NI [g] 6 10 12 21 19 51 

NF – I [g] 106 115 116 121 122 122 

NF – NI [g] 11 57 23 63 26 87 

 

The average maximum g output results for the 17% load condition (empty railcar) are 

plotted in Figure 44. Increases in test speed caused a decrease in the maximum g gap between the 

impact and no-impact data sets, mimicking the behavior seen in Figure 37 of Section 4.3 (i.e., 

Boomerang and cone spall test results). Although this effect was present, the difference between 

an impact and no-impact condition could still be appreciated. In reference to Table 15, the 

average maximum g output by the UWM, under the influence of impacts, was 89g and 115g 

between the filter and no filter setting, respectively. Correspondingly, the impact and no-impact 

maximum g difference was 77g and 95g for the filtered and unfiltered results, respectively. 
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Figure 44. Experiment 245 unloaded bearing with cone spall impact (I) and no-impact (NI) 

UTCRS wireless module filter (F) and no filter (NF) average maximum [g] results 

 

Figure 45 presents the fully loaded test results. Like the behavior seen in the fully loaded 

control bearing experiment results of Section 5.2, the filter also caused the maximum g output of 

the UWM to be lower than that of the unloaded results when an impact was introduced. On 

average, the maximum g output read by the UWM, under the influence of impacts, was 56g and 

119g for the filtered and unfiltered results, respectively. Correspondingly, the average difference 

between impact and no-impacts was about 29g and 50g between filtered and unfiltered results, 

respectively. The increase in load also had a more noticeable effect on the UWM maximum g 

output compared to the unloaded results. As the operating speed increased, the maximum g 

difference between impact and no-impact conditions decreased, causing the maximum g values 

to converge for both filter settings until the final test speed of 85 km/h (53 mph) was executed. 
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This behavior can be attributed to the cone spall in the operating bearing. As previously 

mentioned in Section 4.3, the increase in speed and load trigger higher vibrational output from 

the spalled raceway and the rollers interaction. Nonetheless, regardless of filter setting or loading 

condition, the UWM was still able to register maximum g values that permitted high wheel 

impact and no-impact conditions to be distinguished. Yet, the filter provided a more collected 

maximum g output. 

 
Figure 45. Experiment 245 loaded bearing with cone spall impact (I) and no-impact (NI) UTCRS 

wireless module filter (F) and no filter (NF) average maximum [g] results 

 

Table 16 and Table 17 present the Level 2 analysis results for Experiment 245 for both 
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average confidence level of 91%. For the unfiltered results, the 4 affirmed cases presented an 

average confidence level of 71%. These results demonstrate that despite a high-wheel impact 

being present, the algorithm can still accurately and reliably determine the bearing defect type. In 

addition, the functionality of the filter was validated as it allowed for increased confidence levels 

and accurate defect type detections by the developed algorithm. 

Table 16. Experiment 245 Level 2 analysis results using UTCRS Wireless Module (UWM) 

impact data with active filter 

Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence 

Level [%] 
92 75 90 63 98 98 

Defect Type Cone Cone Cone Cup Cone Cone 

 

Table 17. Experiment 245 Level 2 analysis results using UTCRS Wireless Module (UWM) 

impact data without active filter 

No Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence 

Level [%] 
79 71 51 90 67 76 

Defect Type Cup Cone Cone Cone Cone Cup 

 

5.4 Laboratory Experiment 246: Filter Impact with a Cup Defect 

The average filtered and unfiltered maximum g response by the UWM for Experiment 

246 (i.e., cup spall test) are provided in Table 18. Like the control bearing (Experiment 244) and 

the defective cone bearing (Experiment 245) test results, the filter was able to minimize 

mechanical noise in terms of maximum g, maintaining all filtered maximum g values lower than 

the unfiltered values for each tested condition. The UWM also presented signs of saturation as 
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maximum g values near the 123g threshold operating range were met when unfiltered impacts at 

the 100% load condition were being conducted. 

Table 18. Experiment 246 UTCRS wireless module filter (F) and no filter (NF) average 

maximum acceleration [g] results for impact (I) and no-impact (NI) – bearing with cup defect 
Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17% 100% 17% 100% 17% 100% 

F – I [g] 43 51 52 61 64 62 

F – NI [g] 4 5 7 9 11 14 

NF – I [g] 99 122 104 122 112 121 

NF – NI [g] 19 66 41 111 71 115 

 

Figure 46 presents the unloaded test results for this experiment. As shown in the graph, 

both filter settings were able to distinguish the 320 kN (72 kip) impacts for all tested speeds. 

With impacts, the average maximum g output by the UWM with an active filter was around 53g. 

In contrast, the unfiltered UWM setting produced an average maximum acceleration of about 

105g. Without impacts, the average maximum g output by the UWM was 7g and 44g for filtered 

and unfiltered data, respectively. These values correspond to an impact condition difference of 

46g and 61g between filtered and unfiltered data, respectively, at 17% load (i.e., empty railcar 

load). Furthermore, for the unfiltered test results, it can also be observed how the maximum g 

difference between impact and no-impact progressively lessens as operating speed increases. On 

the other hand, the maximum g difference for the filtered results exhibited a slight increase with 

the operating speed. 
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Figure 46. Experiment 245 unloaded bearing with cup spall impact (I) and no-impact (NI) 

UTCRS wireless module filter (F) and no filter (NF) average maximum [g] results 

 

The fully loaded test results, represented by Figure 47, exhibit different trends than those 

of the unloaded results. Although the filter helped maintain a consistent difference between the 

maximum g values for the impact and no-impact results, the unfiltered results displayed similar 

behavior to the Boomerang results for the defective cup test discussed in Section 4.4. That is, for 

the unfiltered results of the final two test speeds, the UWM could not distinguish the difference 

between the 320 kN (72 kip) impact and the cup spall in terms of maximum g. For the filtered 

impact results, the average maximum g output was about 58g while all the unfiltered impact 

results remained saturated at 122g. Now, without an impact, the average maximum g output was 

around 9g and 97g with and without an active filter, respectively. Using these results to calculate 

the difference between an impact and no-impact maximum g response still yields a significant 
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maximum g difference of about 49g for the filtered results. However, for the unfiltered data, the 

relative proximity in maximum g between the impact and no-impact results at 65 km/h (40 mph) 

and 85 km/h (53 mph) is concerning, equaling to differences of 11g and 6g, respectively. Hence, 

these results suggest that for bearings containing relatively large cup spalls, the filter feature is 

crucial to being able to differentiate between a high wheel impact and the defective bearing. The 

Level 2 analysis results for this experiment support this latter conclusion. 

 
Figure 47. Experiment 246 loaded bearing with cup spall impact (I) and no-impact (NI) UTCRS 

wireless module filter (F) and no filter (NF) average maximum [g] results 
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cup defect in all the fully loaded railcar operating conditions with a confidence level of at least 

83%. However, without a filter, the algorithm was unable to distinguish the defect in each of the 

tested operating conditions. Specifically, the algorithm indicated a cone defect in all six tested 

scenarios. Therefore, the filter feature in the wireless sensor modules proves to be essential in 

providing accurate and reliable defect type detection in the presence of high wheel impacts. 

Table 19. Experiment 246 Level 2 analysis results using UTCRS Wireless Module (UWM) 

impact data with an active filter 

Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence 

Level [%] 
86 83 72 86 53 98 

Defect Type Cone Cup Cone Cup Cup Cup 

 

Table 20. Experiment 246 Level 2 analysis using UTCRS Wireless Module (UWM) impact data 

without an active filter 

No Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence 

Level [%] 
80 79 61 80 51 82 

Defect Type Cone Cone Cone Cone Cone Cone 
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CHAPTER VI 

 

 

PILOT FIELD TEST RESULTS 

 

 

The following chapter presents the maximum acceleration [g] data collected over a two-

month period for the pilot field test conducted on an active service route referenced in Section 

3.5. Pre- and post-changeout maximum g indices for the removed healthy axles (Axle 1 and 2) 

and the defective axle (Axle 2) are provided to allow for a direct comparison between typical and 

atypical wheel condition maximum g outputs.  

6.1 Field Test Data Analysis Methodology 

To support the results and characterize certain maximum g ranges, a preliminary nominal 

operation maximum g threshold and experimentally established thresholds were introduced. The 

first limit, at 20g, was introduced in relation to the dominant maximum acceleration behavior 

seen in the pre- and post-changeout data of the removed healthy axles. That is, within both 

healthy axle data sets, the maximum g levels remained generally under 20g for all operating 

speeds. At 55g, the second threshold is the equivalent of a 133 kN (30 kip) wheel impact 

determined from the experimental data referenced in Table 10 of Section 3.4. As this limit is half 

the 267 kN (60 kip) threshold at which the FRA has advised maintenance for wheels, it prompts 

that any wheels operating within the 20g and 55g boundaries should be observed closer but are 

of low concern. Lastly, a 267 kN (60 kip) limit was set at 100g. This maximum g to kip threshold 

can be referenced back
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to Table 10 in Section 3.4. As previously discussed, a wheel presenting this impact is deemed 

worthy of a maintenance advisory. Hence, any wheels displaying maximum g values within the 

133 kN (30 kip) and 267 kN (60 kip) limits enter a state of high concern where railcar owners 

should attentively monitor their vehicles for any 100g indications. Once at 100g, railcar owners 

should follow the appropriate measures dictated by the FRA.  

 Although these implemented thresholds are established from conducted experiments, they 

are not an official wheel monitoring standard. Nonetheless, their role sets the foundation for 

understanding the behavior of normal and abnormal wheel dynamics. With continued research 

efforts, these thresholds can be optimized and additional maximum g to kip indices can be 

created to improve wheel health classifications for the HUM Boomerang condition monitoring 

device. 

6.2 Field Data Analysis 

Figure 48 and Figure 49 represent the collective maximum g behavior for the healthy 

axles (Axles 1 and 2) before and after their wheelset interchange, respectively. Despite the 

occasional outlier, which could be the result of bad track segments, there were no significant 

deviations in the maximum g output caused by the changeout operation, establishing that the 

original wheelsets were indeed performing under nominal conditions. The pre- and post-

changeout predominant maximum g values that fall within the 20g threshold further justify the 

introduction of the preliminary nominal wheel operation threshold. 



 

91 

 

 
Figure 48. Healthy Axle 1 and 2 maximum acceleration [g] values pre-changeout 

 

 
Figure 49. Healthy Axle 1 and 2 maximum acceleration [g] values post-changeout 
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Unlike the healthy Axle 2, a smaller set of data was acquired for the defective Axle 2 

wheelset post-changeout, as seen in Figure 51. This impeded a robust analysis to be performed 

between the exchanged axles of the Axle 2 position. Yet, comparing Figure 50 and Figure 51, it 

can still be observed that, at the 30 to 40 km/h (19 to 25 mph) speed range, the maximum g 

values decreased below the proposed nominal wheel health index of 20g.  

Nonetheless, by juxtaposing Figure 48 and Figure 49 onto Figure 50, the non-normative 

wheelset behavior for Axle 2 is clear. Furthermore, superposition of the previously discussed 

maximum g thresholds onto Figure 50 clearly map the transition of the wheelset into all the 

denoted maximum g limits until reaching the FRA advised maintenance stage around 50 km/h 

(31 mph). The behavior of the data in Figure 50 also shows that the effects of wheel irregularities 

are amplified with increases in operating speed. 

 
Figure 50. Defective Axle 2 maximum acceleration [g] values pre-changeout 
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Figure 51. Defective Axle 2 maximum acceleration [g] values post-changeout 

 

Ultimately, Figure 52 provides visual evidence of the wheel flats and spalls found on the 

defective Axle 2. These defects further justify the maximum g values seen in Figure 50. 

Reconditioning of the faulty wheelset was deemed improbable as the geometric tolerances of the 

wheels, in accordance with AAR standards, had met their wear limit. A railcar wheel rim 

requires a minimum thickness of 1 inch and the defective Axle 2 wheelset was found to have 

reached this condemning limit [25]. Therefore, the wheelset was discontinued from service. 
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Figure 52. Defective Axle 2: wheel R2 defects (left) and wheel L2 defects (right) 
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CHAPTER VII 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Test Limitations and Encountered Challenges 

 Throughout this study, a series of challenges were encountered in the process of 

evaluating the wheel health monitoring capability of the HUM Boomerang. For instance, the 

maximum impact frequency output by the impact mechanism was 3 Hz (i.e., 3 hits per second). 

This impact frequency is the equivalent of a  railcar traveling at roughly 31 km/h (19 mph) on a 

91.44 cm (36 in) wheelset containing a single defect. Following this dynamic railcar scenario, a 

railcar will experience a unique impact frequency at each speed it operates. For the  experiments 

performed on the single bearing tester (SBT), wheel impact simulations were conducted at 

operating speeds of 40, 65, and 85 km/h with a 3 Hz impact. However, in order to exactly mimic 

the behavior seen in field service, the imposed impact frequencies at each tested speed should 

have consisted of 3.9, 6.2, and 8.3 Hz, respectively, for a 91.44 cm (36 in) diameter wheel. Even 

though the experimental approach was conservative in nature, the laboratory testing 

demonstrated that the accelerometer sensor embedded in the HUM Boomerang was able to 

detect the maximum impact frequencies associated with a potential defective wheel even when 

operating at speeds as low as 31 km/h. 

The impact tester also posed some limitations. The original design was previously used 

utilizing a maximum impact frequency setting of 1 Hz (i.e., 1 hit per second). With the 

introduction of a 3 Hz impact frequency, the mechanism presented some structural design flaws
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that prevented prolonged impact testing. Therefore, three re-engineering practices were carried 

out to remediate the observed deficiencies.  

 The first involved the redesigning of the impact head to maintain the brass pinned disk 

from ejecting while in operation. The solution was to bore the top of the impact head into two 

bore levels: (a) one to secure the pin, and (b) the other to secure a portion of the disk. Only a 

fraction of the brass disk structure would protrude from the impact head, which was sufficient for 

contact with the axle impact ring when in operation.  

 Second, the impact rod incorporated a threaded end where the impact head would be 

fastened like a nut on a bolt. However, after a few seconds of sustained impacts, the threads 

would deteriorate and cause the impact head to slide which affected the consistency and 

repeatability of the impacts and, thus, the data output. To solve this issue, the impact rod 

threaded end was relieved of its threads and machined to a diameter of 14 mm (9/16 in). The 

threads at the connecting end of the impact head were also eliminated to create a cylindrical 

cavity of 19 mm (3/4 in) in diameter and 22 mm (7/8 in) in depth. Based on the successful 

implementation of Delrin plastic in a past UTCRS study involving cyclic loading and the 

mechanical properties of the material [51], the acetal homopolymer was used to create a sleeve 

that coupled the impact rod and head in a pressure-fitted fashion. This design modification 

eliminated the thread deterioration issue and enabled prolonged data acquisition procedures.  

 The third design modification performed on the impact mechanism involved the lever and 

cam contact point. Before the upgrade, the end of the lever in contact with the cam included 

three steel yoke roller bearings. The bearings would facilitate the transfer of energy between the 

components once the system was in operation. However, because the cam was also machined 

steel, the bearings, being less robust, would shatter after a few test trials. Like the impact thread 
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fix, Delrin plastic was used to resolve the issue by replacing the bearings in their function. A 25 

mm (1 in) long roller with a 25 mm (1 in) diameter was machined, including a 6 mm (1/4 in) 

hole bored out of the cylinder to allow the rotation of the roller on a stainless-steel hex bolt on 

which the yoke bearings previously rotated. 

Nevertheless, even though the design modifications implemented on the impact 

mechanism significantly improved the functionality and life of the mechanism, the concern of 

unforeseeable delays due to a possible structural malfunction were still present. This led to the 

next and final encountered challenge -- data acquisition duration. Both the HUM Boomerang and 

the UTCRS wireless modules have an internal clock that enables both systems to transmit data at 

specific time intervals. The duration of these data relay cycles can be tailored to convey 

information at reduced stretches, yet only to a certain degree. As some of the data inquiry codes 

used for the experiments required prolonged intermissions, the severity of the impacts elevated 

apprehension as to whether their hammering intensity could cause unintended maintenance 

interludes within a test. For this reason, the course of action was to optimize the amount of data 

collected, thus, minimizing the wear on the impact system while still permitting sufficient data 

sets to be acquired for an adequate validation of the wireless condition monitoring modules. 

7.2 Conclusions 

 Despite the experienced hurdles, the high wheel impact detection capability of the HUM 

Boomerang was successfully validated. The prototype sensor module distinguishably detected 

high wheel impacts in the laboratory even with the presence of defective bearings at both 

unloaded and loaded railcar operating conditions. Wheel impact detection was also achieved at 

various railcar speeds (i.e., 40 to 85 km/h). However, Accelerometer 2 in the HUM Boomerang 

could not reliably detect the impacts at the highest test speed for a fully loaded bearing 
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containing a cup defect (i.e., cup spall). Nonetheless, with the notional adoption of this sensor 

and the implementation of current rail industry maintenance protocols, the abnormal behavior of 

either wheel or bearing would warrant the removal of the entire wheelset for later disassembly 

and visual inspection. In other words, regardless of the component in distress as identified by the 

wireless onboard sensor module, whether it be the bearing or the wheel, continued operation of 

either could propose a potential risk for property and safety. Furthermore, as diverse entities 

coordinate these wheel removal procedures, established protocols constrain individual wheelset 

components to be interchanged on-site.  

In Chapter VI, the inclusion of an electronic filter for future HUM Boomerang 

optimization was also investigated. The results of this assessment demonstrated noise reduction 

in the acquired data as maximum g levels were suppressed. The latter did not affect wheel 

impacts from being detected, rather, the suppressed signal offered a better distinction between 

impact and defective bearing conditions. Overall, the results promoted that the possible 

mechanical noise susceptibility of the Boomerang in the field could be mitigated. Another matter 

of interest within Chapter VI was assessing the capability of the UTCRS Level 2 algorithm in 

determining defect type despite the presence of wheel impacts. The algorithm successfully 

detected the cone spall defect of Experiment 245 under both filter and no filter conditions, but 

the application of a filter displayed appreciably better results. For the cup spall defect test of 

Experiment 246, the algorithm was not able to correctly diagnose the defect without a filter while 

the filtered trials realized proper diagnoses of the cup defect. The aforementioned results further 

justify the importance of an integrated signal processing filter as noisier signal outputs may result 

in false positives. Other possible factors that may lead to an erroneous defect type diagnosis 

include the sampling rate and the position of the defect in respect to the sensor location. 
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Sampling at higher rates can provide increased accuracy in defect type recognition as more data 

is available for the algorithm to analyze. Positioning the wireless module to vertically align with 

the bearing center may have improved resolution to capture cup defects. For cone defects, sensor 

alignment is not a factor in defect recognition as the defect is not fixed like in the case of a cup 

defect but is rotating with the cone assembly. The slight imprecision of the wireless module in 

detecting bearing defect type, nevertheless, highlights why the incorporation of an electronic 

filter to the HUM Boomerang prototype is highly recommended.  

Moreover, the conducted pilot field study correspondingly verified the efficacy of the 

HUM Boomerang as an abnormal wheel performance prognosis led to the removal of a faulty 

wheelset. After inspection, the flagged axle was deemed as unfit for service operation as the 

wheel profiles lacked adherence to AAR standards. In turn, this provided physical evidence of 

the capability of the HUM Boomerang in providing accurate and critical wheel health metrics. 

Although additional field and laboratory tests are needed to continue optimizing the module for 

its official integration into the railway industry, the presented findings support the HUM 

Boomerang as a prospective onboard wheel health monitoring tool for rail service operations. 

7.3 Future Work 

Testing of additional springs with varied spring constants would allow for optimization of 

the preliminary predictive wheel health indices delineated in this work. Ideally, maximum g to 

kip correlations could serve as embedded wheel health gauge thresholds in the HUM Boomerang 

to provide optimized wheel life expectancy feedback for future field deployments. In addition, 

the inclusion of wheel impact vibration signatures into the UTCRS Level 2 algorithm database 

can also be grounds for future work, creating another tier of defect recognition within the 

algorithm.  
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Although the wheel detection efficacy of the HUM Boomerang was validated, pilot field 

tests in which the railcars retrofitted with the HUM Boomerang technology pass through 

multiple WILD sites during their service operation can be greatly beneficial. Validation of the 

maximum g to kip correlations seen in the laboratory could improve the agreement between the 

field and laboratory results. Moreover, pilot tests involving the employment of both 

accelerometers (i.e., A1 and A2) for the HUM Boomerang are also needed. As seen in the 

laboratory evaluation, Accelerometer 1 (A1) had superior wheel impact detection capability as 

compared to Accelerometer 2 (A2). However, unlike A1 which has a maximum acceleration 

range of 100g, A2 has a maximum range of 200g, which means that it can capture higher 

vibration levels of  generated by wheel impacts. Hence, deployment of both A1 and A2 

accelerometers would guarantee the accuracy in wheel analytics being transmitted. Overall, 

combining WILD data with the outputs from both A1 and A2 accelerometers can lead to a better 

understanding of wheel dynamics in field service. The latter information can be used for 

additional refinements and optimizations of the HUM Boomerang condition monitoring 

technology. 

Lastly, the limitations created by the variable frequency drive (VFD) and the impact 

mechanism call for a redesign in the way high wheel impacts are simulated in the laboratory. An 

ideal design would include an integrated user interface (UI) where impact force and frequency 

selection would be dependent on the testing interests of the user instead of spring substitutions 

and VFD limited frequency inputs. 
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Figure A1. MATLAB generated plot for 51 N/mm (289 lb/in) spring impact acceleration profiles 

Figure A2. MATLAB generated plot for 44 N/mm (249 lb/in) spring impact acceleration profiles 

APPENDIX A



 

108 

 

 
Figure A3. MATLAB generated plot for 26 N/mm (149 lb/in) spring impact acceleration profiles 

 

 
Figure A4. MATLAB generated plot for 18 N/mm (104 lb/in) spring impact acceleration profiles
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No Impact -- Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence Level 

[%] 
50 47 86 96 100 100 

Defect Type Cone Cone Cone Cone Cone Cone 

No Impact – No Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence Level 

[%] 
52 63 76 75 82 58 

Defect Type Cone Cone Cone Cone Cone Cone 

Table B1. Experiment 245 Level 2 analysis results using UTCRS Wireless Module (UWM) no 

impact data with and without an active filter  

No Impact -- Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence Level 

[%] 
70 99 80 99 100 100 

Defect Type Cup Cup Cup Cup Cup Cup 

No Impact – No Filter 

Speed 

[km/h] / [mph] 
40 / 25 65 / 40 85 / 53 

Railcar Load 17 % 100% 17% 100% 17% 100% 

Algorithm Confidence Level 

[%] 
46 53 62 72 56 85 

Defect Type Cup Cone Cone Cone Cone Cone 

Table B2. Experiment 246 Level 2 analysis results using UTCRS Wireless Module (UWM) no 

impact data with and without an active filter 
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C1. Brüel & Kjær shock accelerometer (20,000g measuring range) calibration chart 
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