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Abstract
Crystallized silicon carbide (SiC) wafers are widely used in the field of integrated circuits as well as essential in the epitaxial 

growth of graphene and are one of the promising materials for applications in electronics at future high capacity. The surface quality 
of the required ultra-fine crystalline silicon wafer is the most essential factor in achieving graphene’s desired electronic properties. 
Aiming to produce superfine surface quality SiC wafers, in this study, a new algorithm is developed to solve optimization prob-
lems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective 
global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. 
A new algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and 
high convergence was established in optimizing surface quality when polishing the SiC wafers. To show the effectiveness of the 
proposed OCMNO algorithm, the benchmark functions were analyzed together with the established SiC wafers polishing optimi- 
zation process. To give the best-machined surface quality, polishing experiments were set to find the optimal technological parame-
ters based on a new algorithm and straight electromagnetic yoke polishing method. From the analysis and experimental results when 
polishing SiC wafers in an electromagnetic yoke field when using a magnetic compound fluid (MCF) with technological parameters 
according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 2.306 nm. The study aims to provide an excellent 
reference value in optimizing surface polishing SiC wafers, semiconductor materials, and optical devices.
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1. Introduction
With the rapid development of computer science in recent years, the research and applica-

tion of AI in optimization have attracted considerable research attention and development [1–3]. 
However, these studies are still largely based on evolution or intelligence of creatures on earth.  
In general, these algorithms start with some initial solutions, and are repeated to create new solu-
tions following certain principles and finally provide the parameters to identify the best solution 
during the search process [4, 5]. To overcome this issue, let’s introduce a new optimization al-
gorithm called optimise cooperation many nonlinear systems (OCMNO). In contrast to previous 
algorithms inspired by evolutionary phenomena in nature, the proposed algorithm is based on AI. 
The advantages of the proposed algorithm compared with those obtained by previous studies are 
expressed through the following characteristics: 1. The new operators are different from those 
presented by previous algorithms. 2. The convergence quality of OCMNO depends on a control 
parameter and is limited to a short period, thereby minimizing the familiar methods related to set 
control parameters. 3. The position of the elite solutions used in the revision method helps maintain 
the diversity of solutions, and demonstrate strength and high convergence.

In the future, with the continuous development of semiconductor technology, the semicon-
ductor industry will be promising in the third generation of semiconductor materials. Even so, today,  
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the chip and semiconductor materials industry-based silicon still dominates, so it is necessary to 
introduce advanced technological processes for silicon semiconductor materials [6, 7]. With inte-
grated circuit manufacturing processes, SiC wafer surface machining processes are under strict 
quality control. Polishing powder mixtures and methods play a very important role in SiC wafer 
polishing. Many studies have been conducted to obtain an ultra-smooth surface when polishing 
SiC wafers [8–10]. However, these processes give low surface quality, which is not suitable for 
the manufacturing process with the ultra-fine surface of the chips and semiconductor technology. 
To achieve an ultra-smooth product surface in most finishing processes, a polishing process is 
required to remove scratches and residual stresses above or below the surface layer. Among the 
existing machined surface finishing techniques, grinding or polishing by abrasive particles is com-
monly used. However, producing super-flat surfaces in machining processes is difficult without 
leaving residual stress or scratched surfaces [11–13]. In order to meet the requirements of machin-
ing ultra-precise and ultra-gloss surfaces, electromechanical polishing processes can be achieved 
but these processes have been shown to be less effective when applied to some materials [14, 15]. 
A method is being studied in recent years for surface finishing by elastic emission machining, but 
the material removal capacity of this method is not high [16, 17]. To overcome the disadvantages 
of previous methods and to produce ultra-smooth surfaces with undamaged surfaces obtained with 
proven efficiency and plausibility by magnetic polishing processes [18, 19]. In magnetic polishing 
processes, the magnetic liquid mixture under the action of a magnetic field produces a non-New-
tonian liquid that exists as a hard liquid strip that serves as a flexible polishing tool [20, 21]. The 
shape and hardness of the magnetic fluid strip can be controlled through procedures that modulate 
the strength of the magnetic field thereby enhancing the performance of the magnetic polishing 
processes. In polishing processes with magnetic liquid mixtures, performance and operability are 
significantly influenced by the method and manner of magnetic field application [21–23]. When 
subjected to a constant magnetic field during machining processes with constant geometry and 
magnetic force distribution, it forms a fixed, inflexible magnetic polishing tool in finishing pro-
cesses. Under the influence of a constant magnetic field, the ferromagnetic particles and abrasive 
particles present in the magnetic combination liquid (MCF) do not evenly disperse under the influ-
ence of the magnetic field, thereby not creating the expected polishing process. Finishing processes 
under the effect of an electromagnetic yoke field were established to overcome this phenomenon. 
The flux density can be changed within the electromagnetic yoke field and creating geometric 
shapes with much improved and more uniform distribution of abrasive particles under the influ-
ence of an electromagnetic yoke field.

Based on the above-mentioned characteristics, aim to create a polished model with the ultra- 
smooth surface of SiC wafers. In this study, the authors analyzed and developed a new mathe-
matical model in optimization for nonlinear systems generated by machining processes. A hybrid 
model proposed based on the combination of the high convergence and flexibility of the proposed 
OCMNO algorithm with the newly developed magnetic polishing process with the electromagnetic 
yoke field in order to find the technological parameters for the ultra-smooth surface quality of SiC 
wafers. The optimized model along with the proposed electromagnetic yoke polishing process aims 
to further improve the surface quality, thereby providing excellent reference values for the manu-
facturing processes ultra-precision and the chips and semiconductor technology.

2. Materials and methods
The structure of the proposed algorithm is described based on the coordination of nonlinear 

objects in the group aim to find out the optimal parameters. The algorithm diagram is shown in Fig. 1. 
From here shown that just like other evolutionary optimization algorithms. The first step of the 
algorithm must set up the initial nonlinear objects (NLO) for the group. Based on the signal ob-
tained from the NLOs, the NLO that acquires data larger than those collected by other NLOs in the 
group will act as the main NLO. The main NLO will then set up optimal situations for the group. 
Meanwhile, the other NLOs in the group must follow the control signal of the main NLO, which 
are called dependent NLO. When a dependent NLO reaches a location with a better data source 
than that obtained by the main NLO, the dependent NLO will become the main NLO and will act  
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as a guide to the group in the next part of the optimization task. Simultaneously, the previous main 
NLO will play the role of a dependent NLO. When implementing cooperation and optimization 
tasks, there is always an exchange of information between NLOs. Thus, the rank of the NLOs  
in the group is completely related to the location and capability to track important signals emit-
ted from the target.

Fig. 1. Proposed OCMNO diagram

In the mission of cooperation and optimization, with the leadership of the main NLO, the 
following operators are formed: 1 – collection operator (concentrating NLOs depending on the 
position of the main NLO), 2 – exploration operator (setting search distance between main and 
dependent NLOs) and 3 – local search operator (establishing some dependent NLOs on the task of 
searching around the location of the main NLO). Compared with individuals in natural swarms, the 
NLOs in the group can record restrictions by previous steps. This feature allows NLOs to return  
to previous locations if they cannot find a convenient location during task completion.

2. 1. Set up the original NLO for the group
Optimization problems are determined by vectors of NV decision variables to identify 

the position of NLOs in the search area, and the initial solution is set by an array of size 1×NV.  
The position of the i-th NLO is determined by the following equation:

 P x x xNLO
i

NV
= [ ],1 2, ,...,  (1)

where i = 1, 2,…, N.
The parameters of x1, x2, …, xNV variables are determined by location. The value that dis-

plays the optimal target parameter (DTP) is determined by the equation:

 DTP f P f x x xNLO
i

NV
= =( ) ( , ,...,[ ]),1 2  (2)

where f PNLO
i( ) is called optimization function. Given that N is the number of NLOs in the group, 

the N×NV matrix is created as an initial NLO population. The initial position of the NLOs is de-
termined by the equation:

 P Ur V V VNLO MAX MIN side= ( ), , , (3)
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where Ur creates a sequence of random points from a continuous uniform distribution with the 
lowest and highest endpoints determined by VMIN, VMAX and Vsize = 1×NV; VMAX and VMIN are  
the largest and smallest limit of decision variables, respectively.

After creating the solutions and evaluating the initial parameters, the main and dependent 
NLOs are determined on the basis of the DTP index. 

2. 2. Collection operator
After the initial setup for the main and dependent NLOs, all dependent NLOs move to the 

position near the main NLO position. The collection by NLOs based on the main NLO position is 
conducted by random movements by the Gauss distribution function with the probability distribu-
tion density function determined as follows:

 y f x e
x

=   =
⋅

− −( )
h σ

σ π

h
σ, ,

1

2

2

22  (4)

where h is the average parameter, s is the standard deviation and s2 is the variance. Fig. 2 shows 
the probability density function for normal distribution with different parameters. During coope-
ration and optimization tasks, parameters h  and σ are used  to  identify  the main and dependent 
NLOs, respectively.

Fig. 2. Probability density function with different parameters

2. 2. 1. Calculation of parameters h and d for main and dependent NLOs
When the optimization tasks, the main NLO gathers dependent NLOs to its current location 

to direct them on the location with the highest resource. After the dependent NLOs gather close to 
the position of the main NLO, the local search process is initiated. The main NLO attempts to im-
prove its information gathering ability to implement this search method, whilst other NLOs move 
to the location with the highest DTP. Considering P1 as the first control point, the parameters h and 
s for the main NLO are respectively determined by the following equation:

 σNLO M k[ ,] =  (5)

 h
σ

NLO M

E
NLO M

E

T

T P
[

[( )

max , ( )
]

]=
+ − ⋅

−( )



( ) ⋅ − +








+

+

1 1

0 1 1 1

1

1
1









⋅ PNLO M[ ,]  (6)

where k is a random number in the range [0,1], ET is the time taken by the search task of OCMNO 
and PNLO[M] is the location of the main NLO.

Parameters h and s for dependent NLOs are respectively determined by the following equation:

 σNLO D
i

NLO M NLO D
i

NLO M
i

P j P
DF P P k P j

NLO M N
[ ] = × −( ) + × ( )[ ] [ ] [ ] ( )−[ ]

2
LLO D

i j[ ] ( )( )<0 05. , (7)

 

jh,d2(x)

x
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 hNLO D
i

NLO M NLO D
iP P P P[ ] [ ] [ ]= × + −( ) ×1 11 , (8)

where i = 1, 2,…, ND; j = 1, 2, …, NV and DF i is the parameter correction factor s for the i-th de-
pendent NLO.

2. 2. 2. Creation of new locations for main and dependent NLOs
The new position of the main and dependent NLOs is determined using parameters h and s 

corresponding to each NLO:

 NewP GrNLO i NLO i NLO i( ) ( ) ( )= ( )h σ, , (9)

where the Gr function generates random points from Gauss function with parameters h and s 
obtained in the previous section. The following formulas below are applied to create a relationship 
between the new positions obtained in the search space:

 NewP j Max V j NewP jNLO i Min NLO i( ) ( )( ) = ( ) ( )( ), , (10)

 NewP j Min V j NewP jNLO i Max NLO i( ) ( )( ) = ( ) ( )( ), , (11)

 NewDTP f NewPNLO i NLO i( ) ( )= ( ). (12)

2. 2. 3. Determination of DF collection parameters
When the new position of the NLOs is set, the DF parameter will be updated and modified 

after every minute of the search task based on changes by DTP parameters of the NLOs in the 
current iteration (there is reference by the previous iteration). The calculation of DF parameters is 
shown in Table 1.

DTPmovement
i  is determined in Step 3 before making progress assessment. Some NLOs will 

return to their previous position if the new locations have inappropriate DTPNLO parameters.

Table 1
Calculation of DF parameters

Step Set up and calculate parameters Note
1 DIF = 6 Set initial parameters (modified after repetition)
2 DF DIF ki i= × Calculation

3 DTP DTP NewDTPmovement
i

NLO
i

NLO
i= − Calculation

4 Select the i-th NLO NLO has the largest DTPmovement

5 DIF V V k DTP= + −( ){ } ×



 ×1 max max min max DTPmax is selected in step 4

6 DIF is obtained in the previous step 0,max maxV( )



 The limit value comes from the principle 6d

7 Switch back to step 2 to repeat the new round –

2. 3. Exploration operator
The exploration process is where dependent NLOs are allowed to search in their surround-

ings when heading to the main NLO or vice versa. The location of dependent NLOs according to 
this policy is determined by the following equation:

 NewP k P RB P P MENLO D
i

NLO D
i

NLO M NLO D
i

[ ] [ ] [ ] [ ]= × + × −( ) × , (14)

where RB = ±1 variable is randomly selected with motion factor (ME) determined by 
max( ,| |)1 P PNLO M NLO WD

i[ ] [ ]−  at the end of each iteration. The WD index refers to the dependent 
NLO with the lowest DTP. The ME parameter can control the convergence rate and the accuracy of 
the search process in different execution time intervals.
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2. 4. Local search operator
In this operator, some NLOs with the lowest quality of information obtained work as wor-

ker NLOs. These NLOs are assigned to search around the location of the main NLO. However, 
the residence of worker NLOs at the new location only occurs when an improved position of the 
second-ranked NLO is realized. Otherwise, the worker NLOs will return to their previous location 
after the search fails. The new position of the worker NLO is determined by the following formula:

 NewP sign Rd PNLO W NLO M
NLO M[ ]

+ [ ] [ ]
= ( )





1 , (15)

 NewP sign Rd PNLO W NLO M
NLO M[ ]

− [ ] [ ]
= ( )





2 , (16)

where Rd x+( ) and Rd x−( ) are the nearest integers closest to x , and sign[F]Y reflects the signs of 
element Y by element F:

 NewP sign RI P RF PNLO W NLO M NLO M
e

NLO M

[ ] [ ] [ ]
[ ]

= ( ) + ( ){ }












3

1

1 ,, (17)

 NewP sign RI P RF PNLO W NLO M NLO M

e

NLO M
[ ] [ ] [ ]

[ ]
= ( ) + ( ){ }





4 2

, (18)

where RI(β) and RF(β) are return functions of the integer and the dimensionless part of the β ele-
ments, respectively; the parameters e1 and e2 are two random integers in the interval [2, 4]. 

In this operator, the cross policies of the GA algorithm are applied. In particular, the new 
position of the fifth worker NLO is a combination of position NewPNLO W[ ]

3  and NewPNLO W[ ]
4  with 

random components R1 and R2, respectively (with R1+R2 = 100 %):

 NewP R NewP R NewPNLO W NLO W NLO W[ ] [ ] [ ]= ( ){ } ( ){ }





5
1

3
2

4% % . (19)

This process is performed with certain variables to prevent sudden and chaotic changes in 
the locations where solutions are obtained.

2. 5. Convergence and optimization solution of OCMNO algorithm
The proposed algorithm is applied to non-modal functions (Fun. 1 to Fun. 9) and multimo-

dal (Fun. 10 to Fun. 12) with small (B1), medium (B2) and large (B3) scales. These functions are 
described in Table 2.

The stop criteria of the algorithm are determined by the following formula:

 f Ro M Glo S CAEnd [ ]( ) − ≤ . , (20)

where fEnd(RO[M]) is the value corresponding to the solution, which is best obtained at the last 
iteration of the algorithm, and S.CA is the stop criterion of the algorithm. This criterion will con-
verge with tolerances 10−6 and 10−3 corresponding to non-modal and multimodal functions, res-
pectively. The standard deviation with the obtained results is shown as follows:

 S AD
n

x xi
i

n

. ,= − 





=
∑

1 2

1

1
2

 (21)

where xi is the solution result vector run by the algorithm and x  is the average value of solutions 
determined by the following formula:

 x
n

xi
i

n

=
=
∑

1

1

. (22)
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Table 2
Benchmark functions

Func. Description
Scale

Range Global minimum
B1 B2 B3

Nonmodal functions

Fun. 1 Xi
i

N
2

1=
∑ 10 50 200 −[ ]100 100, 0

Fun. 2 100 12
1

2 2

1

× −( ) + −( )



+

=
∑ X x Xi i i
i

B

2 50 200 −[ ]10 10, 0

Fun. 3 1 1 2 4. sin( ) sinX Y X Y+ ( ) × 2 – – −[ ]10 10, –19.8625

Fun. 4 10 10 22

1

N X Xi i
i

N

+ − ( ) 
=
∑ cos π 3 50 200 −[ ]5 12 5 12. , . 0

Fun. 5 − ⋅
∑

−
∑−













− ( )











= =20
0 2

1

30
0 2

1

30
22

1 1e e
X Xi

i

B

i
i

B

. . cos π
 10 50 200 −[ ]30 30, 8 8818 16. e−

Fun. 6 cos X X Xi
i

n

i i( )⋅ + 
=
∑

1

2 2 50 200 −[ ]10 10, –100.22365*B

Fun. 7 X Xi i
i

N

− ⋅ 



( )

=
∑ 10

1

cos 10 50 200 −[ ]10 10, –10*B

Fun. 8 0 5

1
2

0 001 1

2
1
2

2
2

1
2

2
2

.
sin

.
+

+( )





−

+( ) +

X X

X X
2 – – −[ ]10 10, 0

Fun. 9 1
4000

2

1 1

+ −










= =
∑ ∏

X X

i
i

i

N
i

i

N

cos 10 50 200 −[ ]10 10, 0.29289

Multimodals Range Global minimum Global peak

Fun. 10 X
X

X X X X X1
2 1

4

1
2

2
2

2
2

1 23
4 2 1 4 1× + −









 + × −( ) × +.

x1 1 9 1 9Î −[ ]. , .
x2 1 1 1 1Î −[ ]. , .

–1.105 2

Fun. 11 X X X X1
2

2
2

1 2
2 2

11 7+ −( ) + + −( ) x1 10 10Î −[ ],
x2 10 10Î −[ ],

0 4

Fun. 12 i i X i j j X j
i j

× −( ) +{ }







 × ⋅ −( )⋅ +{ }











= =

∑ ∑cos cos1 11
1

5

2
1

5 x1 10 10Î −[ ],
x2 10 10Î −[ ],

–176.542 18

The parameters in Tables 3–5 of the proposed OCMNO algorithm are compared with TLBO, 
GSA, PSO, and ABC after 50 times of independent implementation with the best and S.AD results 
obtained, which correspond to scales B1 to B3. Table 3 shows the proposed OCMNO for the best 
performance. The proposed OCMNO algorithm shows that the efficiency through S.AD is lower than 
the mentioned algorithms. Tables 4, 5 show the superiority of OCMNO to the other algorithms by 
medium- and large-scale benchmark functions. Hence, with benchmark objective functions, in terms 
of solutions and quality, OCMNO shows superiority to other well-known algorithms.
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Fig. 3. Convergence capability with different  
optimization algorithms: a – Fun. 3; b – Fun. 5; c – Fun. 6; d – Fun. 7;  

e – Fun. 8; f – Fun. 9
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Table 3
Small scale (B1) with non-modal functions benchmark functions

No. Parameter
Algorithms

TLBO GSA PSO ABC OCMNO

Fun. 1
Best 3.25⋅e−6 5.8265 4.15⋅e−14 0.0369 0

S.AD 1.81⋅e−4 4.0362 2.69⋅e−11 0.3498 0

Fun. 2
Best 6.82⋅e−5 0.0085 3.14⋅e−16 5.62⋅e−7 0

S.AD 0.0325 0.2915 1.04⋅e−8 0.0036 0

Fun. 3
Best −19.8625 −19.7734 −19.8625 −19.8624 −19.8625

S.AD 5.72⋅e−04 0.5189 1.9550 4.46⋅e−10 1.68⋅e−06

Fun. 4
Best 0 1.0313 0 1.98⋅e−6 0

S.AD 8.79⋅e−13 1.5538 1.3154 0.4332 0

Fun. 5
Best 0.0028 4.8954 5.33⋅e−8 0.1133 8.88⋅e−16

S.AD 0.1333 0.5293 0.4348 0.2695 0

Fun. 6
Best −200.4473 −200.4396 −200.4476 −200.447 −200.4474

S.AD 1.56⋅e−12 1.3388 42.3978 2.6665 1.07⋅e−04

Fun. 7
Best −80.2418 −45.7485 −76.7760 −76.2008 −100

S.AD 2.8902 3.5163 4.2107 3.4835 0

Fun. 8
Best 1.23⋅e−4 3.61⋅e−5 0 0 0

S.AD 0.0105 0.0065 0.0218 6.66⋅e−9 0

Fun. 9
Best 6.35⋅e−5 0.3206 0 4.38⋅e−4 0

S.AD 0.0165 0.1002 0.0314 0.1068 0

Table 4
Medium scale (B2) with non-modal functions benchmark functions

No. Parameter
Algorithms

TLBO GSA PSO ABC OCMNO

Fun. 1
Best 0.0771 201.0651 85.7738 20.9615 0

S.AD 1.1830 65.5293 95.5022 238.9055 0

Fun. 2
Best 49.0557 7.15⋅e4 158.6456 432.4415 48.5065

S.AD 0.8573 4.90⋅e4 152.5239 1.76⋅e4 0.1061

Fun. 3
Best 24.8026 478.2613 65.4385 0 0

S.AD 42.8524 17.3122 22.4825 85.3015 0

Fun. 4
Best 0.0619 8.2536 2.7345 5.9036 8.88⋅e−16

S.AD 0.0934 0.3456 1.0962 2.1066 0

Fun. 5
Best −4694.7 −1182.8 −2882.1 −4235.6 −4813.5

S.AD 81.2471 134.3851 285.16 183.5909 62.75

Fun. 6
Best −299.1726 −115.5256 −350.1128 −316.7345 −500

S.AD 11.4561 11.6326 8.5081 15.6361 0

Fun. 7
Best 3.25⋅e−5 0.9831 0.0032 0.0286 0

S.AD 2.35⋅e−4 0.0126 0.0216 0.1193 0

Fun. 8
Best 0.0771 201.0651 85.7738 20.9615 0

S.AD 1.1830 65.5293 95.5022 238.9055 0

Fun. 9
Best 49.0557 7.15⋅e4 158.6456 432.4415 48.5065

S.AD 0.8573 4.90⋅e4 152.5239 1.76⋅e4 0.1061
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Table 5
Large scale (B3) with non-modal functions benchmark functions

No. Parameter
Algorithms

TLBO GSA PSO ABC OCMNO

Fun. 1
Best 0.6035 4.89⋅e3 10114 1.36⋅e5 0
S.AD 1.4665 1.97⋅e3 2378.4 2.43⋅e4 0

Fun. 2
Best 200.1315 4.24⋅e5 41084 3.48⋅e6 198.5726
S.AD 2.8213 1.39⋅e5 18630 1.55⋅e6 0.0602

Fun. 3
Best 18.5444 1.89⋅e3 777.5746 1.47⋅e3 0
S.AD 29.4734 63.1346 65.0408 96.1149 0

Fun. 4
Best 0.0858 10.2015 9.7025 18.4186 8.88⋅e−16

S.AD 0.0642 0.3714 0.7685 0.2469 0

Fun. 5
Best −17853 −3206.5 −7706.1 −11734 −18014
S.AD 226.7121 273.3312 1638.1 505.3369 407.7908

Fun. 6
Best −636.733 −489.083 −789.643 −957.402 −2000
S.AD 68.1022 51.9533 50.7421 133.2738 0

Fun. 7
Best 4.05⋅e−5 1.1069 0.5448 1.3414 0
S.AD 1.28⋅e−4 0.0168 0.0936 0.523 0

Fun. 8
Best 0.6035 4.89⋅e3 10114 1.36⋅e5 0
S.AD 1.4665 1.97⋅e3 2378.4 2.43⋅e4 0

Fun. 9
Best 200.1315 4.24⋅e5 41084 3.48⋅e6 198.5726
S.AD 2.8213 1.39⋅e5 18630 1.55⋅e6 0.0602

When applying algorithms for multimodal functions (Fun. 10, Fun. 12) based on time, the 
average value (mean value of all algorithm runs) and the optimal average value (average number 
of peaks found above 50 times with S.CA = 1000) are shown in Table 6. Based on the results, the 
possibility of multimodal functions is not as high as that of non-modal functions. The complexi-
ty of the benchmark functions from Fun.10 to Fun. 12 increases, thereby realizing the reduction 
of the quality of solutions. This process is expressed via analysis. The average optimization va-
lue (AO) corresponding to the Fun. 10 function is 2 (100 % success rate). However, the AO value 
with Fun. 12 function achieved by OCMNO is 16.98 (94.3 % success rate). The results show that 
the quality obtained by OCMNO is superior to the algorithms mentioned in most cases. There-
fore, OCMNO has high applicability on target identification with nonlinear systems and various  
optimization problems.

Table 6
Optimal solution with multimodal functions

Func. Characteristics
Optimization algorithms

GSA PSO ABC TLBO OCMNO

Fun. 10
Time reached 33 46 48 49 8.03
Average value −0.9784 −1.0175 −1.02803 −1.03151 −1.03162

OA value 1.69 1.89 1.93 1.98 2

Fun. 11
Time reached 3 37 40 43 47
Average value 4.5215⋅e−3 5.7579⋅e−6 3.2535⋅e−6 4.2859⋅e−7 4.6293⋅e−8

OA value 2.67 3.49 3.55 3.63 3.79

Fun. 12
Time reached 18 29 32 34 40
Average value −152.2436 −169.5681 −170.8427 −173.8542 −175.7125

OA value 8.01 11.79 12.67 13.39 16.98
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3. Results and discussion 
Fig. 4 describes the polishing principle of SiC material using an MCF in an electromagnetic 

yoke field. The MCF composite is placed above the electromagnet and a distance of H from the 
magnet using an aluminium carrier disc. The principle of creating an electromagnetic yoke field by 
an electromagnet placed with a distance R below the rotating disk. Straight clearance increased the 
contact area between the MCF and the workpiece. Axis 2, during rotation, will transmit n2 rotation 
to the MCF. Under the rotating action of the MCF, the polishing force is acting on the workpiece, 
and the MCF polishing is established when the workpiece is placed under the MCF carrier plate  
at a distance of K.

Fig. 4. Polishing SiC material in electromagnetic yoke field:  
a – schematic diagram; b – experimental setup

When an electromagnetic yoke field is applied, the shape and geometrical position of the as-
semblies will always form a straight MCF band due to the magnetic attraction. In the MCF polishing 
setup, an electromagnetic yoke field is generated based on an electromagnet made with electromag-
net with adjustable magnetic field strength. The composition of the MCF is shown in Table 7.

Table 7
MCF components set up

Description Parameters Relative permeability Material
Electromagnets current 5, 7, 9, 11 A 1.09977 Ferromagnetic

Percentage of components in MCF

CIP (Carbonyl iron particles)

1 µm 44 %

Ferromagnetic
3 µm 44 %
5 µm 44 %
8 µm 44 %

AP (Abrasive particles)

5 µm 8 %

Diamond
3 µm 8 %
1 µm 8 %

0.5 µm 8 %

Under the effect of the magnetic field when the MCF polishing processes are established, 
micrometre-sized magnetic particles are formed in the magnetic induction directions. Under 
the effect of magnetic particles combined with cellulose fibres present in the MCF during ope-
ration, the magnetic abrasive particles will follow the action of the magnetic induction line un-
der the effect of the magnetic field. When the n1 motor rotates, it will transmit motion to the  

   
a b
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aluminium disc, through which the MCF polishing mixture will transmit rotation to the abrasive 
particles thereby creating a cutting action with a very small depth of cut by micro-sized abrasive 
particles. The experimental parameters to find the optimal factor for the best surface quality is  
described in Table 8.

Table 8
Technological parameters when polishing SiC material under electromagnetic yoke field

Level Working distance AP diameter CIP diameter Current
1 0.8 mm 5 µm 1 µm 5 A
2 1 mm 3 µm 3 µm 7 A
3 1.5 mm 1 µm 5 µm 9 A
4 3 mm 0.5 µm 8 µm 11 A

The SiC workpieces after polishing were averaged for surface roughness at three dif-
ferent locations by the Zygo 7100 roughness measuring device. Polishing parameters conduc-
ted according to Taguchi L16 experimental analysis after 90 minutes of polishing are described  
in Table 9 and Fig. 6. 

Table 9
Experimental results when MCF polishing with electromagnetic yoke field for SiC material

No.
Polishing mode Roughness mean 

Ram (nm) S/N ratio
Working distance CIP diameter AP diameter Current

1 0.8 mm 1 µm 0.5 µm 5 A 10,093 –20,08
2 0.8 mm 3 µm 1 µm 7 A 8,427 –18,51
3 0.8 mm 5 µm 3 µm 9 A 8,557 –18,65
4 0.8 mm 8 µm 5 µm 11 A 11,081 –20,89
5 1 mm 1 µm 3 µm 9 A 20,716 –26,33
6 1 mm 3 µm 5 µm 11 A 7,376 –17,36
7 1 mm 5 µm 0.5 µm 5 A 8,445 –18,53
8 1 mm 8 µm 1 µm 7 A 16,119 –24,15
9 1.5 mm 1 µm 1 µm 11 A 18,643 –25,41
10 1.5 mm 3 µm 0.5 µm 9 A 11,063 –20,88
11 1.5 mm 5 µm 5 µm 7 A 7,460 –17,45
12 1.5 mm 8 µm 3 µm 5 A 12,149 –21,69
13 3 mm 1 µm 1 µm 7 A 22,784 –27,15
14 3 mm 3 µm 0.5 µm 5 A 10,732 –20,61
15 3 mm 5 µm 3 µm 11 A 9,951 –19,96
16 3 mm 8 µm 5 µm 9 A 10,221 –20,19

The results in Fig. 5 show the ANOVA analysis of surface quality with experimental para-
meters described in Table 9 for the S/N ratio corresponds to the working distance, CIP diameter, 
AP diameter, and current are (–16.71), (–12.84), (–16.12) and (–16.90) levels for 1311 levels (corre-
sponding workpiece distance 0.8 mm; AP diameter 0.5 mm; CIP diameter 5 mm; Current 6 A).

The surface quality results obtained before and after polishing as described in Fig. 6 show 
that the surface has been significantly improved by the proposed electromagnetic yoke field po-
lishing method. With the experimental results obtained in Table 9 and Fig. 6, when applying the 
proposed optimization algorithm OCMNO and ANOVA analysis to further improve the surface 
quality, the technological parameters are obtained when optimizing for the polishing process of SiC 
materials by electromagnetic yoke field as described in Table 10.
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Fig. 5. Results of experimental analysis of ANOVA  
for polishing material SiC

Fig. 6. Surface quality before and after polishing MCF with an electromagnetic yoke  
for SiC material

Table 10
Optimal polishing parameters according to ANOVA and OCMNO analysis

Optimize polishing mode Working distance CIP diameter AP diameter Current

ANOVA 0.8 mm 5 µm 0.5 µm 5 A

OCMNO 0.85 mm 3.5 µm 1 µm 5.8 A

From the optimal results through ANOVA analysis and the proposed OCMNO algorithm, 
experimental verification processes are established. 

The verification experimental results depicted in Fig. 7 after 90 minutes of polishing show 
that with the experimental analysis according to ANOVA for surface quality (Ra = 6.135 nm), the 
results show that the surface quality is improved better than the experimental according to Tagu-
chi L16 as given in Table 5. However, the surface under optimal conditions with experimental 
analysis of ANOVA still appears a few very small scratches. The ultra-smooth surface with no 
scratches on the surface obtained experimentally according to the polishing parameters proposed 
by the OCMNO optimization algorithm. 

Experimenting according to the technological mode proposed by OCMNO gives the su-
perfine surface quality with Ra = 2.306 nm, along with  that,  the surface quality  is  improved by 
62.41 % compared to the optimization according to the experimental analysis ANOVA. 

The obtained results show that the optimization algorithm and the proposed polishing model 
are capable of creating an ultra-smooth surface for SiC material without any scratches.

    
a b
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Fig. 7. Surface morphology when polishing verified under optimal cutting modes

In this work, the optimization model of the polishing process with MCF slurry under the 
effect of a straight electromagnetic yoke field has been studied and given the optimal set of techno-
logical parameters. The ultra-fine surface quality obtained from the proposed optimization model 
shows the high industrial applicability of the proposed model. However, in the present study, the 
authors have not investigated the working life of MCF slurry. In addition, the effect of the magnetic 
field on the structure of MCF slurry and the material removed rate has not been analyzed. Future 
work should be done to clarify the service life of the MCF slurry. Along with that, it is necessary 
to systematically study the effects of magnetic forces on abrasives and magnetic particles in MCF 
polishing processes. Based on the characteristic removal function, MCF polishing is capable of 
finishing free-form surfaces by designing a certain polishing path.

4. Conclusions
A new OCMNO algorithm is proposed based on NLO. The analytical procedures include 

benchmark functions to evaluate the performance of the presented optimization algorithms in terms 
of solution, quality and speed of convergence. The analysis results show that the quality obtained by 
the proposed OCMNO algorithm is superior to the mentioned algorithms in most cases. Therefore, 
the proposed OCMNO algorithm exhibits high applicability for nonlinear systems and other opti-
mization problems.

Experimental results of polishing with a straight electromagnetic yoke field for SiC material 
capable of creating an ultra-smooth surface with surface roughness obtained in nanometer form 
when following the technological parameters by the algorithm OCMNO suggested. The verification 
experiments obtained a superfine surface with Ra = 2.306 nm according to the working distance, 
AP diameter, CIP diameter, and current with polishing parameters 0.85 mm, 1 µm, 3.5 µm and 
5.8 A, respectively. The optimized surface quality has been increased by 62.41 % when choosing 
technological parameters according to the OCMNO optimization algorithm compared to the results 
of the experimental optimization analysis. The proposed polishing and optimization model is capa-
ble of obtaining a superfine surface in nanometer form for SiC material from inexpensive polishing 
materials such as commercial CIP, and AP particles. Thereby creating great potential in ultra-pre-
cision machining of SiC wafers in particular, as well as semiconductor materials and optical lenses.
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