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ABSTRACT 

 

Digital Twin Modeling and Optimal Control of Soft-bodied Robotics using 

Reservoir Computing 

(May 2023) 

Jovan Cain, B.S., Prairie View AM University, Prairie View, Texas Chair of 

Advisory Committee: Dr. Xiangfang Li 

Soft-bodied robots have become increasingly popular due to their ability to 

per- form tasks that are difficult or impossible for traditional rigid robots. 

However, accurately modeling and controlling the movement and behavior of soft 

robots are very challenging due to their complex and dynamic nature. In recent 

years, Reservoir Computing has emerged as a promising approach to modeling and 

controlling soft robots. In this thesis, reservoir computing was used to create a 

digital twin of soft-bodied robots. Specifically, a digital twin of a spring-mass 

system was created using echo state network, a popular reservoir computing 

model. Furthermore, an optimal controller was trained using reservoir computing to 

drive the spring-mass system to follow a desired trajectory. Extensive simulations 

were carried out to validate the proposed methods. The results demonstrate the 

effectiveness of the proposed approach. For example, the digital twin model achieved 

2% MAPE and the optimal controller achieved 8.7% MAPE for a 20-node 54-

spring system. 

Index Terms:  Deep Learning, Digital Twin Modeling, Echo State Network, 
Optimal control, Soft Bodied Robotics, Time series prediction 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background Overview 

Soft-bodied robotics is a subfield of robotics that focuses on the design, 

fabrication, and control of robots made of soft, flexible materials. Unlike 

traditional robots, which are typically made of hard materials such as metal and 

plastic, soft robots are made of materials that can bend, stretch, and deform, 

allowing them to interact with their environment in unique ways. The use of soft-

bodied robots can be beneficial for several reasons. Soft robots can be more 

adaptable and versatile than traditional robots. Because they can deform and 

change shape, they can navigate through tight spaces, squeeze through small 

openings, and interact with delicate objects without causing damage. This makes 

them suitable for a range of applications, including medical procedures, search and 

rescue operations, and exploration. Also, soft-bodied robotics has the potential to 

improve the safety of robots. Because soft robots are less likely to cause harm to 

humans or damage the environment, they can be used in settings where traditional 

robots would be too dangerous. Due to the potential innovation and benefit, this 

has become increasingly popular in interest due to its complexity in modeling and 

dynamics. 

_________________ 

This thesis follows the Journal IEEE Style Manual 
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Soft robots are highly nonlinear. This means that their behavior can be 

difficult to predict and model. This is due to the complexity of structures and 

spring stiffness can change depending on external forces and pressure, thus 

changing the robot’s movement and behavior. Also, soft robots are often 

subjected to multiple external physical forces and interactions. To model these 

forces and potential interaction instances accurately require advanced modeling 

techniques and lots of computational resources. Another challenge is that soft 

robots often require complex control strategies to achieve desired mechanics, such 

as locomotion. To greatly perform modeling performance, developing optimal 

control strategies can reduce the impact of nonlinear behavior. 

To model this nonlinear behavior, I propose the use of various Deep 

Learning and Machine Learning techniques. Deep learning is a powerful tool for 

modeling highly nonlinear dynamics because it is capable of automatically learning 

complex patterns and relationships in large datasets without requiring explicit 

knowledge of the underlying physics. This makes it particularly well-suited for 

modeling complex systems with nonlinear behaviors, such as soft robots. 

Generally, deep learning models, such as Recurrent Neural Networks, are 

composed of multiple layers of internal memory and processing units, each 

performing nonlinear transformations. In using different layers and approaches, deep 

learning models can learn to represent highly nonlinear and complex functions. 

1.2 Levels of Complexity 

Overall, deep learning is a powerful tool for modeling highly nonlinear 
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dynamics in a wide range of applications, including soft robotics. By leveraging the 

power of deep learning, we can develop more accurate and robust models of soft 

robot behavior, which can help to advance the field and enable new applications. 

However, such robust tasks can be difficult to model and tune. In addition, more 

complex tasks require more computational power which can provide another level 

of hardware complexity. There are different levels of complexity in regard to 

modeling and control of soft robotics discussed below. 

 

1.2.1 Digital Computer. The specific dynamical system (hardware) for 

computing depends on the application, requirements, and constraints. The digital 

computer is the most common among all the available artificial hardware systems. A 

standard digital computer has decent enough computing power to run various 

applications and model various complex tasks. They are characterized by the trans- 

mission of information by discrete and binary signals. This makes them less susceptible 

to noise while maintaining good data transmission bandwidth with efficient data 

storage and high scalability [6]. However, for soft robots, this approach may not be 

feasible as the digital computer does not have enough computing power and 

hardware capabilities is to efficiently and effectively control robots. For purposes of 

modeling robots, this approach can be beneficial as decent computers can provide 

enough computing power and speed. 

1.2.2 Analog Devices. Systems implemented with electronic circuits 

and devices have been actively studied for developing machine learning devices 

with low training costs. Generally, existing neural networks and circuits are available 
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as reservoirs in the form of an analog device. However, simpler configurations have 

been explored to reduce energy consumption, speed up computation, and handle 

noise in hardware [5]. More specifically, field-programmable gate arrays (FPGAs) 

and graphics processing units (GPUs) can be used to accelerate the training and 

prediction of machine and deep learning models used for controlling robots. By 

leveraging the parallel processing capabilities, it is possible to train more complex 

and accurate models in less time [7]. This can help to improve the performance 

and adaptability of soft robots in a variety of applications. 

FPGAs have often been used to implement neural networks as their 

architecture is well suited for complex processing and adaptive weight updating [8][9] 

which can be very beneficial for the adaptability of soft robots. Many FPGA 

implementations have been studied to improve reservoirs and/or readouts [10]. This 

implementation can be very good for certain tasks as GPUs and FPGAs have 

valuable computational resources that can be innovative and important for speed 

and accuracy. 

1.2.3 Biological Systems. The system responsible for the computing 

ability of the brain is vastly studied and researched, due to its ability to affect AI. 

Considerable efforts have been made to explain the computing function using a link to 

computational models in artificial neural networks (ANN) and machine learning. In 

attempts to understand the relationship between temporal information processing in 

the brain and RC, researchers have speculated about which part of the brain can be 

regarded as a reservoir or a readout as well as about how sub-networks of the brain 
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work in the RC framework. 

1.3 Reservoir Computing 

Reservoir Computing (RC) is a computational framework that is well-suited 

for sequential data processing. This framework can be used in parallel with 

recurrent neural network models, including echo state networks (ESN) and long 

short-term memory networks (LSTM). The key advantage of reservoir computing 

is that the ’reservoir’ is a fixed set of nodes and connections and does not need to be 

trained. In this sense, reservoir computing can be much faster and more efficient 

than traditional RNNs. The ability to perceive the environment and receive 

feedback from the system, also makes RC a great approach for the purpose of 

embodied mechanical intelligence. Reservoir computing [11] can be used in soft 

robotics to process sensory input from the robot’s environment and control the 

robot’s movements. Soft robots often have many degrees of freedom, which can 

make traditional control techniques difficult to implement. However, reservoir 

computing can provide an effective way to control the complex and nonlinear 

dynamics of soft robots [12].   Mechanical systems, such as soft and compliant 

robots, are possible options for reservoirs. Soft and compliant robots with flexible 

bodies are difficult to control due to their complex body dynamics compared with 

rigid robots with stiff bodies. From the general principle of reservoir computing, 

modeling dynamical systems with relatively simple adaptive controls can be 

implemented for complex systems. A mass–spring network can be used as the 

reservoir where mass points are randomly connected to neighboring mass points with 
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nonlinear springs was proposed in [13], providing a foundation for reservoir 

computing as I can model the dynamics of the system. As shown in Fig. 1.1 , 

reservoir computing principles can be used to effectively control dynamic robot 

bodies as the system can sense feedback through 

the body. 

 

 

 

Fig. 1.1. A Reservoir Computing Architecture on a Physical Body [1] 

 

1.4 Digital Twin 

A digital twin is essentially a virtual simulation of a physical object or 

system. It uses real-time data and modeling to create a digital representation of the 

object, which can be used for analysis, testing, and optimization. By creating a 

virtual replica of a system, digital twins can be used to optimize the performance 

and control of the system. Digital twins are becoming increasingly utilized in 

many industries, including manufacturing, aerospace, and healthcare. For the 

purposes of soft-bodied robotics, this concept can be very beneficial as I can 

model the robot and certain features virtually. Studies have shown [14] how this 
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concept can be used for very complex models in AI applications. The potential to 

simulate dynamic systems makes digital twins a very powerful concept for 

modeling soft- bodied robots. 

The proposed digital model can be used to simulate the behavior of the 

system in real-time, providing data to optimize its design. The ability to model 

highly dynamic systems comes with various challenges, however. Modeling 

complex dynamics requires a lot of data, and that data often comes from multiple 

sources, especially for more complicated structures. Also, complex dynamics often 

involve many variables and nonlinear interactions between those variables. This can 

make modeling and simulation computationally intensive, requiring significant 

processing power and memory. Last, in order to be truly useful, a digital twin 

model needs to be able to simulate the behavior of the physical system in real-

time. Achieving real-time simulation requires a highly optimized model and a 

powerful computing infrastructure. 

To achieve great performance given these challenges, various machine and 

deep learning concepts have been applied. Digital twins can be enhanced using 

reservoir computing. Reservoir computing can be used to create a dynamic model 

of the system that is simulated, which can improve the accuracy of the digital twin 

over time. In the RC framework, the reservoir can be used to capture the complex 

and nonlinear behavior of the physical system, which can then be used to simulate 

behaviors like locomotion [15]. The model can then be trained to allow it to learn 

and adapt to changing conditions. Reservoir computing can also be used to optimize 
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the parameters of the digital twin, such as the structure of the object being modeled 

and the architecture of the RC model itself. This can be beneficial in cases where 

the robotic system is complex or has many degrees of freedom, making it difficult 

to control using traditional techniques. 

1.5 Problem Statement 

In recent years, the power of artificial intelligence (AI) and machine 

learning (ML) has been leveraged to solve many complex problems and 

scenarios, such as natural language processing and even weather forecasting. As 

technology is constantly changing to solve emerging and complex problems, 

utilization of this technology is imperative. The goal of soft robotics is the design 

and construction of robots with physically flexible bodies and electronics. Robots 

with entirely soft bodies have tremendous potential. Compared to standard robots, 

soft robots have specific characteristics which bring multiple benefits. Soft robots 

can go places and do things those hard-body robots cannot. Also, soft robotics also 

provide a more delicate approach as robots are less rigid. Modeling these systems 

helps us understand soft robots better as they can be recreated with more real-life 

movements. 

It has been proved in recent works that Reservoir Computing is a viable 

method for modeling highly complex and dynamic systems [16]. Instead of a 

conventional recurrent structure, various systems that utilize their nonlinear 

dynamics to work as computational resources have been discussed extensively. In 

fact, any dynamical system has the potential to be a reservoir for information 
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processing [17]. It has been observed in [18] how the concept of Reservoir 

Computing can be used to simulate various systems efficiently. While the 

embodiment of physical systems can be beneficial, it does come with its problems. 

In completing such tasks explained, the models have long training times and high 

computational costs. In addition, there is not an abundance of data available on 

the topic. In order to produce a highly effective model, many data points are 

needed for analysis. The levels of complexity, mentioned in Section 1.2, in solving 

these issues also provide a challenge. 

This study aimed to alleviate these issues by developing an architecture to 

build a Reservoir Computing model with good predictive ability using simulated 

data, leveraging the capability of machine learning and deep learning approaches. 

This will potentially allows for use in many real-time physical applications in which 

high accuracy, low training time and computational costs are crucial. 

1.6 Significance of Work 

In the study of Reservoir Computing, developing an accurate and robust 

model using simulated data can have many benefits: 

1. Many physical systems can be simulated, modeled and evaluated with less time and 

high predictive capability, mitigating the need for potential real- time data. 

2. Tests carried out can be utilized across different levels of complex tasks, allowing for 

more complex structures. 

3. Leveraging AI and ML to design an approach using various machine and deep learning 

models to model and evaluate structures effectively. 
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1.7 Outline of the Thesis 

The remaining part of this study is structured as follows: Chapter 2 

contains the Literature Review where some relevant research works in the recent past 

are discussed. Chapter 3 discusses the methodologies and practices utilized in this 

study. This focused on the process of creating the model and how to potentially 

improve it. Chapter 4 gives a detailed description of the data and of all the 

experiments carried out in this research, ranging from the data generation and 

collection process to model development and training processes. The results from 

these experiments are also discussed in this chapter. Chapter 5 concludes this study 

by summarizing the contributions of this work and highlighting potential research 

areas as future work.
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Background 

Soft robotics is a field that is rapidly growing in research and design as it 

can provide many advancements in technology. In contrast to hard-body robots, 

the softer material makes these robots more flexible and well-suited for tasks 

such as exploring uneven terrain and navigating tight spaces. Overall, the 

increasing popularity of soft robotics is driven by a combination of technological 

advancements, growing demand for flexible and adaptable robots, and a desire to 

create safer, more durable, and cost-effective robotic systems. Over the years, more 

study has gone into explaining the learning abilities of natural agents through 

reference to their bodily structure, and also to make extended use of this 

morphology for the learning of natural agents to simulate the same physics and 

interactions in artificial agents [11]. The control of this morphology has been studied 

for soft robotics to make them more optimal for challenging tasks. Modeling these 

control dynamics can provide great insight into physical structures and how they 

interact with environments. 

For the purpose of control, many ideas and approaches have been applied 

to receive the desired locomotion and dynamics. Deep learning is widely utilized 

due to its effectiveness in data processing in a variety of fields. With respect to 

soft robotics, some studies have been also conducted based on deep learning 
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methods. In previous works [19][20][21], deep neural networks have proven to have 

the ability to accurately model features such as touch and gait recognition. 

However, more complex methods may require a different combination of techniques. 

The RC framework has been widely utilized and researched in the field, using various 

digital and physical architectures as the sensing body. In addition, other essential 

techniques were studied and implemented in this research. 

2.2 Deep Learning 

Modeling and control of soft robots may allow systems to operate in a 

fashion where it can accomplish tasks that are otherwise impossible for people and 

hard- bodied robots. Unfortunately, developing accurate models for complex 

dynamics may be high in cost, prediction error, and training time. Due to this, 

researchers have utilized deep learning as it presents an alternative modeling 

approach that only requires a sequence of the system’s inputs and states, which 

can be easily measured or estimated. However, [22], explains how fully relying on 

learned models involves collecting large amounts of data from a prototype robot 

in order to model its complex dynamics. As explained by the authors, their 

approach is to use a simplified model to train multiple deep neural networks (DNN) 

to represent trends in state dynamics while also reducing errors in prediction. To 

accomplish this, they initially trained a DNN to learn a simplified model of 

general trends. Then they trained a second DNN to learn the complex physics of 

the simulation to map to reality. Furthermore, DNNs are able to learn the 

general form of the dynamics from simulation with much less hardware and 



13  

 

training data. This leads to increased accuracy by roughly 52%, while also decreasing 

the amount of training time and data needed. The researchers in [23] used a 

similar approach as they used a convolutional neural network, to analyze the bone 

marrow stem cells in rats. While it did not directly map to movement, they were 

able to effectively investigate the cell activity within systems at roughly 94% 

accuracy. The authors in [21] took a different approach as they used a combination 

of deep learning frameworks. In related studies, supervised deep learning models 

are mainly employed. Given that these algorithms are generally employed for 

classification, they can be used to distinguish different objects in contact. For the 

calibration of current soft sensors, a recurrent neural network (RNN), a deep 

learning algorithm specialized in time- series data, is frequently used. For sensors 

that have complex data types, such as skin, a convolutional neural network (CNN), 

an effective deep learning algorithm for image processing, has been used for tasks 

such as the classification of objects or forecasting. Overall, deep learning has 

shown a great ability to model complicated tasks with great accuracy and 

flexibility, thus providing an outlook into the capabilities of showing efficiency for 

soft-robotic tasks. 

2.3 Reservoir Computing 

Reservoir computing is a deep learning technique that uses a fixed and 

randomly initialized “reservoir” of neurons to process data. The reservoir is 

typically a randomly connected network of recurrent processing units, such as 

recurrent neural networks. These networks can be trained to model highly 
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complex dynamics. In the general framework of reservoir computing, input signals 

are transformed through the reservoir, then dynamics of the reservoir map the 

inputs into internal states. These states can then be transformed by a trainable 

readout layer to produce an output. 

Reservoir computing has been shown to be used in soft robotics to control 

the behavior of the robot’s actions. Soft-bodied robots are challenging to control 

because they can exhibit complex, nonlinear dynamics. Reservoir computing provides 

a way to quickly and accurately learn the dynamics of the robot and generate 

control signals that can produce desired behaviors. Studies such as [24][25] observe 

the navigation behaviors for mobile robots in simple and complex environments. 

The RC model provides an efficient way to train recurrent neural networks by letting 

the reservoir be fixed while only a linear readout output layer is trained. This 

allows for training to be so simple it enables the reservoir to emulate multiple 

nonlinear dynamics, perform pattern generation, and modulate outputs. 

Studies such as [17][26] explain how the basic concept of RC is exploiting 

the dynamics of the reservoir by learning, which requires some parameter tuning, to 

the readout part. In this architecture, reservoirs do not have to be an RNN 

anymore but can be any dynamical system. This idea naturally leads us to exploit 

the dynamics as a reservoir instead of using the simulated dynamics inside the 

system. One example of the use of reservoir computing in soft robotics is the 

control of a soft robotic arm [27]. The reservoir network was trained to learn the 

dynamics of the arm as it grasped onto different objects of multiple sizes. The 
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learned dynamics were then used to generate control signals for the robotic arm that 

could adjust the grip strength and adapt to the object. This adaptation shows the 

potential use for RC within optimal and accurate robotic control algorithms. 

Overall, reservoir computing provides a powerful tool for controlling soft 

robots. Using this method to effectively model and control a robotic structure could 

have a significant impact on the future of robotics and technology. 

2.3.1 Physical Reservoir Computing. It has been studied how the 

reservoir does not have to be a digital system, but instead, the physical body does 

the sensing and acts as the reservoir. This notion of the physical body acting as the 

reservoir is observed as Physical Reservoir Computing (PRC). The reservoir can 

now mimic all kinds of animal motions, like octopus locomotion, insect flying, and 

fish swimming. These robots share many similarities with animals regarding their 

structure and kinematics [12]. However, their underlying actuation and control 

kinematics may be different. These sensing, actuation, and control features are all 

analyzed through PRC, wherein a physical body performs the computations. The 

researchers in [12] were able to utilize an origami structure as the physical 

reservoir body. They proved that modeling and a combination of compressions, 

extensions, and folds can generate the patterns for autonomous locomotion gait 

generation. In works such as [5][28], a reservoir model of a spring mass network 

was numerically evaluated to model the link between the property of the 

mechanical reservoir and its computational ability in learning. By replacing point 

masses in a mass–spring net- work with stiff bars, a tensegrity-like structure is 
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obtained. Tensegrity [29] (tension integrity) indicates a structural framework that 

uses isolated compression elements loaded in a continuous network of tension 

elements, such as springs and masses, leading to a physical structure combining 

strength and flexibility. Other works [30][31] explain how animals like structures 

such as the octopus and fish have been one of the major sources of inspiration for 

scientists for many years. The ability to use PRC to model and control the 

morphology of a physical object or robot can also show the usefulness of RC in 

more robust tasks. 

2.4 Digital Twin 

As explained in Section 1.4, digital twins can be used for soft robotics for 

various benefits. 

• Simulation and Design: soft-bodied robots can have complex structures that can be 

difficult to model. Digital twins can help by creating a virtual model of the soft 

robot that can be used for simulations and design suggestions. This allows for 

testing different configurations of a proposed robot without the need for physical 

prototypes. 

• Control and Optimization: soft robots can be difficult to control due to their 

highly-nonlinear interactions and movement. Digital twins can help by creating a 

virtual model of the robot and its environment, which can be used to optimize 

control algorithms and test different control strategies. This can help for improving 

the robot to achieve optimal distance and power. 

• Predictive Maintenance: soft-bodied robots are often subject to damage due to 
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their potential terrain or material design. Because of this, digital twins have been 

used to monitor a robot’s performance and predict when maintenance may be 

needed given certain forces. This feature can help relieve potential damage to the 

robot itself and the environment. 

As explained in [32], a digital twin is essentially a virtual model designed to 

accurately reflect an actual, physical object. Digital twins utilize real-time data to 

create models or simulations to predict a process. In many studies, digital twins 

have been used to model various objects from large-scale wind turbines to cells in a 

system. The authors in [3] investigated epidemiological models to help with the 

more recent Covid-19 epidemic. They suggested using a Bi-Directional LSTM and a 

Generative Adversarial Network (GAN) based digital twin to predict and gain a 

better understanding of how diseases spread. In the results, these two network 

models performed accurately in comparison to previous predictive disease models 

and also led to faster execution time. This study helps prove how certain structures 

of neural networks can be beneficial for digital twin modeling. This digital twin 

concept has also been validated in [33] as it has been utilized to simulate more 

industrial environments, thus showing the ability to be robust in use. In this study, 

physics-informed neural networks were used to generate predictive models for 

fatigue crack growth prognosis on aircraft window panels. Trained over large 

quantities of historical airplane data and real-time data, the model showed 

flexibility to learn and predict the dynamics of the cracks. For soft-bodied robotics, 

knowing the dynamics and potential stresses of a system can have an impact on its 
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modeling and development. 

Overall, digital twins can help accelerate the development and deployment 

of soft robots by reducing the need for prototyping and testing a physical robot, 

while also improving performance and reliability. 

2.5 Robotic Control 

Robotic control optimization involves finding the best ways to control and 

manipulate robots to perform specific tasks efficiently and effectively. There are 

many factors to consider when optimizing robotic control, such as the robot’s 

physical capabilities, the environment it operates in, and the specific task it needs to 

perform. 

One common approach to robotic control optimization is through the use of 

ma- chine learning and deep learning techniques. For example, reinforcement 

learning algorithms can be used to train robots to perform certain tasks through 

trial and error, adjusting their behavior based on feedback from their environment. 

Studies have shown [34][35] how neural networks and reinforcement learning can be 

utilized for the grasping of objects and general manipulation of a robot. In these 

studies, it was shown that the final control policy was essentially a superposition 

of control signals from the robot. The robot learns to select the appropriate grip and 

force to pick up objects by receiving rewards for successful grasps and penalties for 

failed attempts. 

Another aspect of robotic control optimization is the use of sensors and 

actuators. By choosing the right sensors and actuators, improvements can be 
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made to a robot’s performance, speed, and efficiency. Studied in [36], a robot’s 

sensor configuration determines how it perceives its environment, such as cameras, 

lidars, or force sensors. Different sensors provide different types of information, 

such as visual or tactile feedback, and have different noise and resolution 

characteristics. The control algorithm must be designed to process the sensor 

data and extract relevant features for decision-making promptly. 

Finally, optimization can also be achieved through the intentional design 

of the robot’s structure and control system. This can involve optimizing the 

robot’s kinematics and dynamics, as well as developing control algorithms that 

take into account the robot’s physical properties and the action to be performed. 

Since robots can be designed and configured in many different ways, there is no 

true optimization pattern for a robot. Shown in [37], more complex robots can 

perform many complex tasks but they also come with a more complex optimization 

algorithm. Overall, robotic control optimization is a complex problem that involves 

expertise in robotics, control theory, and machine learning. 
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CHAPTER 3  

METHODOLOGY 

For the purposes of robotics, artificial intelligence (AI), has been defined 

as the ability of a computer or computer-controlled robot to perform tasks with the 

ability to learn, commonly associated with intelligent beings [37]. This field of AI 

has a subset of fields which are machine learning (ML) and deep learning (DL). It 

can ingest unstructured data in its raw form such as images or text, and it can 

automatically determine the features which distinguish different categories of data 

from one another [38]. Unlike basic machine learning, it does not require human 

intervention to process data, allowing us to scale machine learning in larger or 

smaller fashions as needed. For the future of soft-bodied robotics, there have to be 

robust, flexible, and cost-efficient methods to ensure optimal control and movement. 

In the field of deep learning, there are a variety of techniques and methods 

used to train models. Some of the deep learning techniques used for this 

application were supervised learning and recurrent neural networks. Supervised 

learning can be powerful in deep learning as it can leverage labeled datasets, also 

known as supervised learning, to train its algorithm, but it does not necessarily 

require a completely labeled dataset. In addition, recurrent neural networks have 

been known to be good for time-series forecasting, as the model is able to learn 

from previous internal states. These methods have been great for deep learning 

practices, so investigating these approaches are necessary to see if they are 

feasible for this application. 
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In general, this research sought to provide a deep learning approach to 

modeling soft-bodied robotics using reservoir computing. The physical system 

acts as the body to be studied which can be an efficient and cost effective way to utilize 

reservoir computing. In practice, this would allow for the investigation of these 

tactics for soft-bodied robotics. 

3.1 Methods in Deep Learning 

Deep learning is a subfield of machine learning that uses artificial neural 

net- works (ANNs) with multiple layers to model and solve complex problems. It 

is called “deep” because it involves the use of neural networks with multiple hidden 

layers that can learn increasingly abstract representations of the input data. In 

contrast to traditional machine learning, which relies on hand-crafted features and 

rule-based algorithms, deep learning can automatically learn useful features and 

patterns from raw data. The basic idea behind deep learning models is to simulate 

the structure and function of the human brain’s neural network, which is composed 

of interconnected neurons that process and transmit information. Soft robots have 

several advantages over traditional robots, such as improved flexibility and 

enhanced mobility for various terrains. The idea for these types of robotic 

structures is that they can perform a wide range of tasks with precision. To 

perform these tasks, some form of self-learning has to be done to ensure mobility 

and adaptability for different environments. Deep learning methods allow for these 

robots to have a form of self-learning. 
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3.1.1 Supervised Learning. Supervised learning is a type of machine 

learning algorithm in which the computer is trained on a labeled dataset. In 

supervised learning, the computer is given a set of input data along with the correct 

output or label for each example. The goal of the algorithm is to learn a function 

that maps the input data to the correct output so that it can make accurate 

predictions for new, unseen data [39]. Supervised learning can be used in a variety 

of applications, such as image recognition, speech recognition, natural language 

processing, and prediction [40]. For example, in a supervised learning algorithm 

designed to identify digits, the algorithm would be given a dataset of digit images, 

along with their corresponding labels (the actual digit represented by the image). 

The algorithm would then learn to recognize the patterns in the images that are 

associated with each digit, and use this information to classify new, unseen images. 

It is a widely used approach in machine learning and is typically used when the task 

is well-defined and the labeled data is available.  

            However, the quality of the labeled data can significantly impact the 

accuracy of the algorithm, and labeling large datasets can be a time-consuming 

and expensive process. When analyzing robots, I can accurately map inputs to 

outputs given this method. As certain tasks may be more difficult to accomplish or 

the robotic structure itself is more complicated, this method serves well for 

prediction accuracy due to its ability to directly map inputs to outputs. A 

supervised learning algorithm can be simply written as equation (3.1) where Y = 

(y1, y2, y3, ..., yn) is the prediction and X = (x1, x2, x3, ..., xn) 
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is the input vector. Supervised learning is generally divided into two sub-categories, 

classification and regression, to be discussed below. 

Y = f (X) 

Eq. (3.1) 

3.1.2 Classification. Classification is a type of supervised learning task 

in machine learning where the goal is to predict the class or category of a given input. 

The input data is typically a set of features or attributes that describe a particular 

object or entity, and the output is a label that specifies the class or category to which 

the object or entity belongs. There are many types of classification algorithms, 

including decision trees, support vector machines (SVMs), and neural networks [41]. 

These algorithms use different techniques to learn the mapping from input features to output 

labels, and usually, the choice of algorithm depends on the specific task and attributes of the 

data. For example, a classification algorithm might be trained on a dataset of images of 

animals with complex locomotion features, such as an octopus or bird, with each image 

labeled respectively. The algorithm would learn to recognize the patterns in the images that 

are associated with each label, and use this information to classify new, unseen images as 

either an “octopus” or “bird.”. However, for these tasks, I did not focus on the class of the 

object, but rather on its previous and next actions. To perform this task, I utilized another 

supervised learning strategy, a regression algorithm. 

3.1.3 Regression. Regression is a supervised machine learning 

algorithm that is used for predicting a continuous output variable based on one or 

more input variables. The goal of regression is to learn a function that can accurately 

map the input variables to the output variable [42]. The training process for a 
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regression model involves feeding the algorithm a dataset with known input and 

output values, and the algorithm learns to adjust its parameters to minimize the 

difference between the predicted output and the actual output in the training set. 

When the model has been trained, it can be used to make predictions on new data. 

The relationship between the input and outputs is represented by a mathematical 

formula, called a regression model, which is typically a linear or nonlinear function. 

Throughout the process of the study, I utilized several popular regression models such 

as linear, ridge, and lasso to investigate how the model performs with each 

algorithm. 

3.2 Deep Learning Models 

It has been proven how various deep learning methods can be used to 

develop controllers for soft-bodied robots that can operate in dynamic situations. 

For example, deep neural networks (DNNs) can be used to process sensor data 

from soft robots and identify the shape and location of objects, detect obstacles, 

and recognize gestures. In addition, Recurrent neural networks (RNNs) can be 

used to model the behavior of soft robots over time. RNNs have been used to 

predict the movement of soft robots and to control their motion in different 

environments. These are a only few methods that can be utilized in modeling 

dynamic systems. 

The main advantages of these deep learning principles are their ability to 

automatically learn and represent hierarchical features from raw data. These 

models have been proven to be particularly useful for tasks that involve high-
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dimensional data. Shown in recent works [2], various neural networks have been 

utilized for many complex tasks such as robotics. Two of the more popular neural 

networks are deep neural networks (DNN) and recurrent neural networks (RNN). 

These two models show potential for the future of soft robotics due to their ability 

to learn abstract information and provide accurate representations of complex 

architectures. 

3.2.1 Deep Neural Networks. The main purpose of a deep neural 

network is to receive a set of inputs, perform progressively complex calculations on 

them, and give output to solve real-world problems. A deep neural network (DNN), 

typically consists of multiple hidden layers that are fully connected [2][43] as shown in 

Figure 3.1. Each hidden layer has several nodes which are termed the hidden units. 

For this study, I used two different DNN architectures compare with other deep 

learning models. The first architecture contained four dense layers with 256 nodes 

each except for the output dense layer which had 201 nodes corresponding to the 

maximum input dimension of the various structures modeled. The first three layers 

used the Rectified Linear Unit (ReLU) activation functions while the output layer 

had no activation function. For the second architecture, to provide a deeper 
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model while improving performance, I utilized six hidden layers. This would make 

the model more adaptable and robust. These models were developed using the 

Keras framework. 

 

 

 

Fig. 3.1. Architecture of a Deep Neural Network [2] 

 

3.3 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a type of artificial neural network 

that is specialized for processing sequential data, such as time series or natural 

language. RNNs are designed to handle varied input sequences by maintaining a 

memory of past inputs and using this memory to influence the processing of 

future inputs. The key feature of RNNs is that they have loops in their architecture, 

which allow information to be passed from one time step to the next. Specifically, 

RNNs have a set of hidden nodes that are connected to both the input nodes and 
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the output nodes. During the processing of each time step, the hidden nodes receive 

both the current input and the output of the previous time step. 

The main advantage of RNNs is their ability to capture the temporal 

dynamics of sequential data [44]. Unlike traditional feedforward neural networks, 

which process each input independently and in isolation, RNNs can use information 

from previous time steps to influence the processing of future inputs. This makes 

RNNs particularly useful for tasks such as speech recognition, language modeling, 

and time series forecasting, where the current input was influenced by past inputs. 

For soft robots, their locomotion is proportional to time. As such, most robotic 

simulation data can be sequential. Due to this property of the data, RNNs can 

provide great performance in modeling complex, time series data. 

There are several variations of RNNs that have been developed to address 

specific challenges in sequential data processing. One common type of RNN is the 

Long Short-Term Memory (LSTM) network, which is designed to address the 

vanishing gradient problem [45] that can occur in standard RNNs. The vanishing 

gradient problem arises when the gradients that are propagated through the 

network during backpropagation become very small, making it difficult to train 

the network effectively. Another variation of RNNs is the Echo State Network 

(ESN), which is similar to the LSTM in terms of being beneficial for sequential 

data but has a different architecture. ESNs provide an architecture and supervised 

learning principle for RNNs. 

 



28  

 

3.3.1 Long Short Term Memory (LSTM). Long Short-Term 

Memory (LSTM) is a type of recurrent neural network (RNN) architecture. 

LSTMs were introduced to address the issue of vanishing gradients in traditional 

RNNs, which made it difficult for them to effectively capture long-term dependencies 

in sequential data. Essentially, an LSTM is made up of cells that can store 

information, and gates that control the flow of information. During training, the 

LSTM network learns to adjust the parameters of these gates to decide how much 

information should be stored or discarded at each step, in order to optimize the 

network’s performance on a given task [3]. 

For the experiments, I investigated two different LSTM architectures for 

comparison against other deep learning models. The first architecture was made up 

of two LSTM layers with 320 memory cells each and a dense layer as the output 

layer. To provide a deeper layered approach, the second architecture used six 

LSTM layers and one dense layer as the output layer. The dense layer had 201 

nodes corresponding to the maximum input dimension of the various structures 

modeled. The architecture of an LSTM unit is as shown in Fig. 3.2. 
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Fig. 3.2. Architecture of an LSTM [3] 

 

3.3.2 Echo State Network. An Echo State Network is a type of 

RNN, part of the reservoir computing framework, explained in Section 4.5.1. The 

ESN was proposed as a simplified alternative to more complex RNNs such as long 

short- term memory (LSTM) networks. ESNs have an architecture of nonlinear 

processing elements that are densely interconnected and recurrent, forming a 

“reservoir ” that stores information about the history of input and output patterns. 

The outputs of these internal processing elements are referred to as the “echo 

states”. The key idea behind an ESN is that the echo state can be used to “echo” the 

input sequence, allowing the network to learn a complex mapping from the input 

sequence to the output sequence. During training, only the output weights of the 

network are trained, while the fixed internal state is left unchanged. This makes 

the training process much faster and easier than in traditional RNNs. 
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One of the advantages of ESNs is that they require less training data and 

have fewer parameters to tune than other types of RNNs, which can make them 

easier to use in practice. The main idea is to introduce a random, fixed recurrent 

neural network with the input signal, and combine a desired output signal by a 

trainable linear combination of all of the signals. ESNs have been shown to be 

effective for tasks such as speech recognition and image captioning [46]. As 

mentioned, this framework derives from the reservoir computing framework 

which has proven to be useful on time-series data through its ability to learn from 

its previous internal state. Due to this nature, the ESN can be used to accurately 

map signals of a robotic structure with less training time and training loss. 

3.3.2.1 Deep Echo State Network. Another method studied in this 

study was the idea of a Deep Echo State Network (DeepESN). This framework used 

the RC framework, but instead used stacked reservoirs that feed into each other 

successively, shown in Fig. 3.3. By using this technique, the model can provide a 

deeper level of feature extraction. It has been shown in previous research how this 

model provides higher accuracy on more complex tasks than standard RC [4]. For 

this experiment, I used the same parameters of the standard RC and varied the 

number of layers to investigate the effects of this method. 
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Fig. 3.3. Architecture of a Deep Echo State Network with Successive Reservoirs [4] 

 

3.4 Reservoir Computing 

The underlying method for this study stemmed from the concept of 

Reservoir Computing (RC). The reservoir is treated as a black box from which 

a simple readout mechanism is trained to read the state of the reservoir and map 

it to the desired output [47]. Overall, the RC model, shown in Fig. 3.4, 

encompasses three important parts: input layer, dynamic reservoir, and readout 

layer. These elements are explained further in upcoming sections.  
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          To summarize, the input layer ingests data into the reservoir. The readout 

layer is used to analyze the state of the system. The readout layer is usually a simple 

linear regression. What makes this framework so powerful is that it uses fixed 

weights in most of the layers. In this entire framework, only the readout layer 

weights are trained. This combination leads to faster training and lower training 

costs. This framework has been utilized for various complex time series tasks with 

decent prediction accuracy [6][5]. Overall, these characteristics make RC easy and 

quick to train, thus proving to be a viable method for robotic modeling and 

control. 

 

 

 

Fig. 3.4. A typical Reservoir Computing Architecture [5] 
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3.4.1 Architecture. The diagram shown in Fig. 3.4, depicts the 

architecture of RC. This model has three main sections: the input layer, reservoir, 

and readout layer. Between these layers are a system of nonlinear memory cells 

called weights. These weights are all fixed except at the readout layer. Another 

important part of the architecture is the RC model’s ability to have internal states 

that can be learned from. This internal state can be modeled in Equation (3.2), 

where x(t-1) is the state vector of the reservoir units, u(t) is the input vector, Win 

is the weight matrix for the input-reservoir connections, W is the weight matrix for 

the recurrent connections in the reservoir, Wfb is the feedback weight matrix and 

f is a hyperbolic tangent(tanh) activation function. 

 

x(t) = f (Win · u(t) + W · x(t − 1) + Wfb · y(t − 1)) 

Eq. (3.2) 

3.4.1.1 Input Layer. Overall, the function of the input layer is to 

process data into the reservoir with fixed random coefficients, Win. In the function 

above, the input layer can be modeled by the combination of the input signal and 

input weight matrix, Win· u(t). Throughout this study, the weight matrix was 

varied with different initialization approaches such as random and Xavier 

initialization. 

3.4.1.2 The Reservoir. What makes the RC framework unique from 

others is the use of a fixed set of random, nonlinear nodes, the reservoir. The reservoir 
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is typically a recurrent neural network (RNN) with a large number of neurons, but 

other types of dynamical systems such as echo state networks (ESN) and liquid 

state machines (LSM) can also be used as reservoirs. The reservoir is called fixed 

because its connections and parameters are generated randomly and are not 

modified during the learning process. The input data is fed into the reservoir, and 

the reservoir’s dynamics transform the input into a higher-dimensional 

representation, which is then fed into a linear readout layer to produce the output. 

Studies have been conducted and show how the number of recurrent units, the size 

of the reservoir, affect the performance in predictions [6][48]. For this study, I varied 

the size of the reservoir, ranging from 50 to 250 recurrent units, to encompass the 

different input dimensions for the different datasets. 

3.4.1.3 Readout Layer. The output from the readout layer is also 

computed using the simple output layer equation as shown in equation (3.3) where 

fY is the output nonlinear activation function [49]. 

y(t) = fY (Wout · x(t)) 

Eq. (3.3) 

The task of training the readout is then reduced to a simple linear regression 

problem of minimizing the squared error. The regression model minimizes the 

mean square error between predictions, Y and the ground truth, Ŷ i.e. |Y − Ŷ| 2 

3.4.2 Echo State Property. ESNs have an architecture of nonlinear 

processing units that are interconnected and recurrent, forming a “reservoir” that 

stores information about the mapping between inputs and outputs. The outputs of 
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these internal states are referred to as the “echo states.”. The titles of the echo states 

stem from the input values echoing throughout the reservoir’s states due to the 

reservoir’s recurrent nature [16][22]. These echo states are fed into an, usually linear, 

readout network, which generates the network output. The performance of the ESN 

depends on the design of the RNN-based reservoir. It was observed [46] that the echo 

state property was obtained for any input if the spectral radius (i.e. the maximum 

absolute eigenvalue of W) was adjusted to be less than one. 

 

3.4.3 Reservoir Computing Model. The reservoir computing model 

utilized for analyzing soft robotics is shown in Fig. 3.5. It provides an outlook of 

reservoir computing models that are modeled for dynamic systems. The input from 

the system, u(t), feeds into a fixed input weight matrix, Win, which feeds into the 

internal reservoir. The internal states are then trained at the output layer weight 

matrix, Wout. With an RC model for soft robotics, one can potentially accurately 

model many dynamic systems due to this architecture. In this study, I varied 

different parameters of the RC model such as the size of the reservoir, which 

correlates to the reservoir weight matrix. I also modified the input dimension 

corresponding with the appropriate number of nodes in the structure, which varied 

the input weight matrix as well. 
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Fig. 3.5. Depiction of a Software Reservoir Computing Model for Soft-Robotic Structures 

 

3.4.4 Physical Reservoir Computing. In some cases, mechanical 

systems, such as soft and compliant robots, are possible options for physical reservoirs. 

Soft and compliant robots with flexible bodies are difficult to control due to their 

complex body dynamics compared with rigid robots with stiff bodies. However, 

such complex behavior can be favorably leveraged to generate rich nonlinear 

dynamics required for RC. The idea of outsourcing computation to a physical body 

is also known as morphological computing in the field of robotics. Other types of 

physical bodies have been studied such as the limbs of an octopus and birds [18]. 

This study utilized this concept of reservoir computing to investigate the potential 

uses of physical reservoir computing and its performance on modeling soft 

robotics, shown in Fig. 3.6. To achieve this, I used the frameworks of reservoir 

computing within the digital space, while also using the principles of physical 

reservoir computing. The physical body studied for this was spring-mass systems, 

as explained in Section 3.5. I chose this due to their ability to model many complex, 
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dynamic structures, while also being easier to model in a digital twin as it provides 

nodes and springs to be observed. 

 

 

 

Fig. 3.6. Flow of a Physical Reservoir Computing Model 

 

3.5 Mass-Spring Networks 

For the digital twin concept, the body chosen to simulate was utilized with 

a Mass-Spring network. A Mass-Spring network is a mathematical model that is used 

to simulate the behavior of objects that are connected by a network of springs 

and masses, shown in Fig. 3.7. The basic idea is that the springs represent the 

connections between the masses, and the masses represent the objects themselves. 

In a Mass-Spring network, the behavior of each mass is determined by the forces 

exerted on it by the springs that are connected to it. These forces are calculated 

based on the displacement of the spring from its resting position, as well as the 

properties of the spring, such as its stiffness and damping. 

In physics simulations, they are used to model the behavior of complex 

physical systems such as fluids, gasses, or solids. In engineering, they are used to 

model the behavior of structures such as buildings, bridges, or machines. For this 
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application, I combined physics simulation with engineering, providing a more realistic 

model of the system. Mass-spring networks were chosen as the body of choice 

because they were easy to implement with geometry and physics equations. Shown 

in equation (3.4), these systems can be modeled through formulas for each spring 

and node. Each node, N, , is represented by its mass mi, whereas the passive 

parameters for each connection are the spring stiffness kj and the damper 

coefficients dj for each spring. The default values used in the experiments are C = 

3, mi = 1 kg, kj = 100 N/m, and dj = 10 Ns/m 

 

 

 

Fig. 3.7. An example of a 20 node structure with attached springs [4] 

 

 

Eq. (3.4) 
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3.5.1 Optimization. For the optimization of mass-spring network 

performance, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has 

been utilized as the best optimization method. In certain studies, it has been 

described as one of the most promising methods for optimization [50], where control 

functions cannot be described using an explicit representation. CMA-ES samples 

solutions from a multivariate gaussian distribution. After evaluating all solutions, 

the solutions are sorted by evaluation values, then updating the distribution 

parameters based on the ranking of evaluation values. 

For the simulation, locomotion traits were performed and evaluated through 

two performance metrics, distance, and power. It performed the optimization using 

the CMA-ES as it produces a decent convergence speed and requires few 

initialization parameters. In the CMA-ES algorithm, the number of iterations is 

tuned specifically for each optimization to ensure convergence, since optimizing 

small structures will converge faster than larger ones [28]. From each trial run, the 

best individual is retained as the optimized model structure. Typically, the 

optimized parameters, θ, of the MSD network are the controller amplitude aj 

between 0 and 0.25, its frequency between 0 and 10 Hz, its phase ϕj between 0 and 

2π, and the spring stiffness kj between 0 and 100 N/m. To synchronize the actuators 

together and impose the fundamental frequency, the angular speeds ωj are fixed to 

the same value. 

3.6 Digital Twin Reservoir Computing Model 

A digital twin represents a physical system that is created using digital 
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technology such as sensors, simulation software, and machine learning algorithms. 

Essentially, a digital twin is a digital replication of a physical system that is 

capable of simulating its behavior and performance. It ingests data and replicates 

processes so one can predict possible performance outcomes and issues that the 

real-world product might undergo. It can be utilized to model various systems 

ranging in complexity [51]. This concept is used to predict the outcomes of physical 

and digital systems by attempting to create a digital representation of the system. 

In efforts to further the research into soft-bodied robotics, in running the 

locomotion simulation, this work aimed to introduce an approach of reservoir 

computing for the implementation of a digital twin. 

To achieve this, I utilized a simulator [28] that simulates various 

structures of spring-mass systems. This design and its locomotion were 

optimized with the CMA-ES optimization method explained in Section 3.5.1. This 

returns different optimal parameters such as its spring lengths and stiffnesses. 

With these optimal parameters and simulation, I used these as inputs to the digital 

twin model. From there, these inputs were transformed through the RC model to 

provide an output. This output was measured against the simulation output. In 

the end, this allowed us to measure the accuracy of modeling spring-mass 

systems with digital twins with an RC framework, shown in Fig. 3.8. This can 

provide progress in the field of soft-bodied robotics as I can more accurately study 

its dynamics for many structures. 
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Fig. 3.8. Flow of a Digital Reservoir Computing Model for Digital Twin Modeling 

 

3.6.1 Optimal Control. Soft robotic optimal control is the application 

of optimal control theory to soft robots, to find the best control strategies for these 

highly compliant systems. The main challenge in soft robotic optimal control is the 

highly nonlinear and complex nature of the system dynamics, which can make it 

difficult to derive analytical solutions. 

To optimize motion within robotic structures, I utilized reservoir computing 

to map inputs to potential outputs. As explained in Section 3.5, I utilized a mass- 

spring network simulator of a locomotion robotic structure. With optimal 

parameters moving a structure through time, I investigated mapping the trajectory 

of the robot to optimal spring parameters. To run the experiments and analysis, I 

utilized an MSD network simulator [28]. This simulator directly implemented 

mechanical equations using Python and Numpy to manipulate the simulated 
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structure. These networks [1][52] consisted of a set of nodes with mass, connected by 

springs which were all separately actuated. 

 

Lj,0 = lj,0 · (1 + aj · sin (ωj · t + Φj)) 

Eq. (3.5) 

 

To actuate the spring using a control signal, I modulated the reference lengths of 

the springs lj,0. In the simplest and default case, this was represented by a simple 

sinusoidal signal shown in equation (3.5). This input signal allowed for a set of 

tunable parameters lj,0, ωj, αj for each spring in the simulation. All springs had an 

optimal base Φj. These parameters were implemented to obtain optimal spring 

lengths using equation (3.5). Shown in Fig. 3.9, these spring lengths were used as 

the labeled data. From this, I used the dynamic movement of the robot as input 

to the model to predict the optimal spring control signals, thus providing for 

optimal robotic control. 
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Fig. 3.9. Flow of a Reservoir Computing Model for Optimal Control in Digital Twin 

Modeling 
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CHAPTER 4  

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

 

In this section, I provide and explain the two experimental set-ups: 

Dynamics and Control. In such experiments, the parameters of the simulation 

and the proposed RC model settings are detailed in Section 4.2. In a following 

Section 4.5, I examined the results of modeling the Dynamics of the structure and 

compare the performance of the ESN against various methods and parameters. In 

Section 4.6, I examined potential performance enhancements to the ESN. This 

section will over- all provide an overview of how RC performs across different 

metrics and schemes. To provide a deeper understanding of robotic control, I 

display the observed results from the Control experiment, provided in Section 4.7. 

4.1 Data Generation 

To generate data for the experiments, I utilized the MSD simulator 

explained in [28]. The simulation runs to achieve optimized parameters for the 

structure. In doing this, I was able to receive a 2-D simulation of a moving 

structure with optimized spring parameters, thus providing a set of trajectories of 

the simulated robot. The simulation was executed over 100,000 time steps, which 

was mitigated to 400 seconds of simulation time. Each time step provided a 

location and velocity of each node, which also allowed for an overall acceleration of 

each node over all of the time steps. These location, speed and acceleration 

parameters were used as the inputs for the RC, shown in Fig. 3.5. 
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The simulations provided for each of the simulations to be performed over 

a different number of nodes: 5, 10, 20, and 50, yet most other variables such as 

the number of springs and spring stiffness all remained the same. To explain the 

datasets used: Dataset 1 corresponds to the structure with 5 nodes, Dataset 2 

corresponds to the structure with 10 nodes, Dataset 3 corresponds to the structure 

with 20 nodes, and Dataset 4 corresponds to the structure with 50 nodes, shown in 

Table 4.1. This was done in order to truly understand how robust the RC is given 

simple to more complex structures. 

Table 4.1. DYNAMICS SIMULATION TRAINING DATA DESCRIPTION 

 

Category Number of Nodes Size 

Data 1 5 100,000×21 

Data 2 10 100,000×41 

Data 3 20 100,000×81 

Data 4 50 100,000×201 

 

For optimal robotic control, this simulation used the CMA-ES 

optimization strategy to provide optimal spring parameters for the best movement 

and performance. In this simulation, various optimal parameters for each spring 

were provided after each iteration. These parameters were mapped into a control 

signal for each spring, previously shown in Equation 3.5, which served as output to 

investigate methods of accurately modeling a structure’s movement trajectory to 
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optimal spring lengths. In the control experiments carried out, the input to the 

model was the dynamics of the structure: position, velocity and acceleration of the 

nodes. The target outputs were the optimal control signal for each spring in the 

structure. In doing the experiments, I simulated 5, 10, 20 and 50 node structures 

with 9, 24, 54, and 144 springs, respectively. The label data dimensions are shown 

in Table 4.2. 

Table 4.2. CONTROL SIMULATION TRAINING DATA DESCRIPTION 

 

Category Number of Nodes Number of Springs Size 

Data 1 5 9 100,000×9 

Data 2 10 24 100,000×24 

Data 3 20 54 100,000×54 

Data 4 50 114 100,000×114 

 

4.2 Experiment Set-Up 

4.2.1 Dynamics Simulation Set-Up. For the purposes of modeling 

soft robotics, I utilized the position, speed and acceleration of each node of the structure 

to accurately create a digital twin. Mapping these characteristics was important 

because it allowed me to model how the structure would move over time. In doing 

this, I could accurately observe the evolution of each node over time. From these 

plots, I was able see how the dynamics of each node were affected given various forces, 

thus making accurately modeling each node a challenge. The images shown in Fig. 
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4.2 and Fig. 4.3 represent nodes 1 and 11 in the simulated structure, shown in Fig. 

4.1, providing a look into how each node trajectory is unique. Observed in the plots, 

each of the nodes evolved differently over time, causing such complexity. A more 

detailed view of the x-position of the mass is provided in Figure 4.4, showing how 

the structure did not have a constant pattern of motion. All of the characteristics of 

the moving masses make digital twin modeling a complicated task to solve. 

 

 

 

Fig. 4.1. 20 node structure with modeled nodes derived from [4] 

 

The simulated structures can be perceived as a reservoir because of its 

dynamics and high complexity. For each time step tk, the system’s current state is 

evaluated using the input vectors [x1, x2..y1, y2..vx1, vx2...vy1, vy1...a], a[k − 1], 

which comprise both X and Y components of all the nodes. Through this, I 

examined not only the acceleration, but also the position and speed of each node, 

thus creating a digital twin for a soft robotic structure. 
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(a) Node 1 X-Position 

 

(b) Node 1 Y-Position 

 

(c) Node 1 X-Speed 

 

(d) Node 1 Y-Speed 
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(e) Node 1 Acceleration 

 

Fig. 4.2. Evolution of Node 1 Dynamics over 2,000 time steps 
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(a) Node 11 X-Position 

 

(b) Node 11 Y-Position 

 

(c) Node 11 X-Speed 

 

 

(d) Node 11 Y-Speed 
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(e) Node 11 Acceleration 

Fig. 4.3. Evolution of Node 11 Dynamics over 2,000 time steps 

 

 

 

(a) Node 1 X-Position 

 

(b) Node 11 X-Position 

 

Fig. 4.4. Detailed View of X-Position Evolution over 2,000 time steps 
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4.2.2 Control Experiment Set-Up. From the simulation explained, I 

utilize the speed and position states to start the experiments. Each of the input vectors 

consisted of the speed, position and acceleration components at each time step, in 

the X and Y directions. Each of the output vectors consisted of the control signal 

for each spring in the structure. 

The overall goal was to optimize motion within robotic structures, utilizing 

reservoir computing to map dynamic inputs to control outputs. In doing the 

following experiments, I simulated 5, 10, 20 and 50 node structures with 9, 24, 54, 

and 144 springs, respectively. The label data dimensions are shown in Table 4.2. 

With optimal parameters moving a structure through time, I investigated 

mapping the trajectory of the robot to optimal spring parameters. Each input 

was the movement trajectory of each node of the robot, represented in Table 4.1, 

while the output was the correlated control length of each spring connected to each 

node, described in Table 4.2. The difference in dimensions shown in Table 4.3, was 

also a variable to be studied. 
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Table 4.3. CONTROL SIMULATION DATA DESCRIPTION 

 

 

Category Input Dimensions Output Dimensions 

Data 1 100,000×21 100,000×9 

Data 2 100,000×41 100,000×24 

Data 3 100,000×81 100,000×54 

Data 4 100,000×201 100,000×114 

 

4.3 Evaluation Metrics 

Most of the experiments were evaluated using the Mean Absolute Percent 

Error (MAPE) metric. It represents the average of the absolute percentage errors of 

each input to calculate how accurate the predicted quantities were in comparison 

with the actual quantities. To compute the MAPE, percentage errors are added 

together without respect to sign, as shown in equation 4.1 where At is the actual 

value and Ft is the predicted value. 

 

 

Eq. (4.1) 

MAPE is often effective for analyzing large sets of data and requires the use of 

dataset values other than zero which may result in undefined or infinite MAPE. 

This drawback occurs if the Y position of the node is located at zero or smaller 
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than 0.0001. Due to this, a nominal value of 0.7 is added to the input if it falls in 

that range. In all experiments, the average MAPE was taken for three to five trials 

for each experiment. 

4.4 In-depth Performance of Reservoir Computing for Optimal Dynam- ics 

In addition to performing the experiments on the RC model, I also tested 

the performance of the data against other deep learning models. I utilized the 

LSTM and DNN, due to their nature of having the ability to perform on time-series 

and more complex data. I then performed a deeper analysis on the proposed RC 

model with different parameter set-ups. 

4.4.1 Comparison of Performance between Deep Learning 

Models. Deep learning models and ESNs were trained, and evaluated using Data 1 

(5 Node Structure), Data 3 (20 Node Structure), and Data 4 (50 Node Structure). 

Model parameters used are provided in Table 4.4. For clarification, α is the learning 

rate, HL is the number of hidden layers, LN is the number of nodes per hidden layer, BS 

is the batch size and NE is the number of epoch used. In the first column, IM was 

the initialization method used, ρ(W ) was the spectral radius, N was the size of the 

given reservoir, AF was the activation function used, and RM was the regression 

method used for training the output layer. X is Xavier initialization method, G is 

normalized Xavier initialization (gloriot) method, HE is HE initialization method, 

Ri is ridge regression, Li is linear regression, La is lasso regression and HT is 

hyperbolic tangent [53]. 

Results from these experiments were recorded in Table 4.5 . From the 
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results, I observed that the RC had better performance LSTM and DNN on all 

datasets. It is also observed that as the structure complexity increases, the 

performance decreases for all models as well. The RC model performs over 5% 

better than the other DNN and LSTM models studied. 

 

Table 4.4. MODEL PARAMETERS FOR DIFFERENT MODELS 

 

Parameters  

RC DNN LSTM 

IM = [Xavier, Random, Gloriot, He] α = 0.001 α = 0.001 

N = [21,41,81,201] HL = 6 HL = 6 

RM = [Li, Ri, La] LN = 256 LN = 256 

AT = HT BS = 64 BS = 64 

ρ(W ) = 0.9 NE = 100 NE = 100 

 

In RC principles, computational time and power are very important. For 

the purposes of soft-bodied robotics, the time and energy it takes for the body to 

learn and perform actions can affect the overall mobility and ability to perform 

actions. Shown in Table 4.5, the training times given the various networks varied 

drastically. For the LSTM and DNN, training time significantly increased as the 

complexity increased. In the RC, the training time still stayed relatively lower, 

averaging several minutes. The experimental comparison is shown in Table 4.5 
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Table 4.5. PERFORMANCE OF THE DEEP LEARNING MODELS ON EACH 

DATASET 

 

MAPE(%) 

 

 

 

 

Fig. 4.5. Sample Plot of RC Model Predicted Data 

 

4.5 Performance of Reservoir Computing Models with different Set- Ups 

The experiments carried out were also given different set-ups to provide a 

more in-depth examination of how the model performed under different 

conditions. I varied several parameters including: initialization methods, readout 

methods, and reservoir size. 

4.5.1 Reservoir Sizes. One of the more impactful parameters of the RC 

architecture is the size of the reservoir, referring to the number of recurrent memory 

Model    Data 1 Time(s) Data 2 Time(s) Data 3 Time(s) Data 4 Time(s) 

RC    1.19 302 2.22 418 2.51    577 4.25     701 

LSTM    6.95 5420 8.15 6812 10.31    8645 19.11     1212 

DNN    9.76 1132 10.02 1412 12.52    2248 31.12     4561 
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units with the reservoir. Typically, reservoirs can be designed to have the same 

number of units as the input dimension, but that is not always the case. Due to 

this, I investigated the effect of varying the number of nodes in the reservoir, N, on 

the performance of the model while keeping other parameters (spectral radius, 

initialization method, and the activation function) constant. Results from this 

experiment are as recorded in Table 4.6. Fig. 4.6 shows a graphical plot of the MAPE 

values for the different reservoir sizes across all the data categories. 

From these results I observed how the models were optimized as the 

internal reservoir units were equal to the input dimension into the reservoir. This 

gives a better understanding of how to configure the reservoir for optimal 

dynamics. 

 

Table 4.6. MODEL PERFORMANCE COMPARISON FOR DIFFERENT 

RESERVOIR SIZES 

 

Mape(%) 

 

Reservoir Size, N Data 1 Data 2 Data 3 Data 4 

= input dimension 1.89 2.41 2.51 3.12 

25 1.77 2.54 2.95 5.83 

50 1.93 2.52 2.66 7.96 

100 2.58 2.98 2.72 12.56 

200 2.31 4.88 3.78 5.77 
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250 4.21 4.23 5.22 7.96 

 

 

Fig. 4.6. Plots of Model Performance on Different Reservoir Sizes 

 

4.5.2 Initialization Methods. Currently, RC was not as constrained as 

there was no systematic way of defining the dynamic reservoir. The reservoir is usually 

randomly generated at network initialization. In addition to randomly initializing the 

reservoir, I explored the option of using some other weight initialization approaches 

used in general deep learning [54][55] and investigated how they affect the 

performance of the ESN. I ran experiments on all datasets using the random, 

Xavier, normalized Xavier (gloriot), and HE initialization methods while keeping all 

other parameters constant. The model performances when each of the initialized 

methods were used are recorded in Table 4.7. From the results, I can observed 
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how the model performed best using Xavier initialization for weight matrices. 

 

Table 4.7. MODEL PERFORMANCE COMPARISON FOR DIFFERENT 

INITIALIZATION APPROACHES 

 

MAPE(%) 

 

 

 

 

 

 

 

4.5.3 Readout Methods. In the basic RC framework, the only training 

is done at the readout layer. To reduce error at this readout layer, I also evaluated the 

three different regression models on the performance of the network: linear, ridge, 

and lasso regression, while keeping all other parameters constant. The results from 

these experiments are observed in Table 4.8. 

 

 

 

 

 

 Xavier Random HE Gloriot 

Data 1 1.89 5.09 7.01 7.15 

Data 2 2.22 5.25 6.10 7.59 

Data 3 2.49 4.53 3.52 5.22 

Data 4 4.87 10.02 13.33 16.67 
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Table 4.8. MODEL PERFORMANCE COMPARISON FOR DIFFERENT READOUT 

METHODS 

 

 

MAPE(%) 

 

 

 Linear Ridge Lasso 

Data 1 1.98 1.96 2.12 

Data 2 2.89 2.65 2.79 

Data 3 2.95 2.79 2.96 

Data 4 6.51 5.12 6.62 

 

 

4.6 Performance of Enhanced Reservoir Computing Models 

4.6.1 Pre-Trained Models. In attempts to improve the performance 

of the RC, I experimented with the use of pre-trained deep learning models as a re- 

placement for the reservoir, instead of randomized weights. For these experiments, I 

used dataset 3 on DNN and LSTM models, due to the 20 node structure having 

moderate modeling complexity. I then used a pre-trained DNN and LSTM deep 

learning model to evaluate the performance. The results are shown in Table 4.9. 

Looking at the data, the pre-trained models showed some improvements in com- 

parison to the standard DNN and LSTM, but not enough to consider it an effective 

replacement for the standard, fixed reservoir. 
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Table 4.9. MODEL PERFORMANCE COMPARISON FOR PRE-TRAINED 

MODELS 

 

 

Model Performance Comparison for Pre-Trained Models 

 

 

Model MAPE(%) 

ESN 2.58 

LSTM 6.31 

DNN 6.81 

ESN + LSTM 4.25 

ESN + DNN 5.95 

 

 

 

4.6.2 DeepESN. In another attempt to improve the performance of the 

ESN, I experimented with a layered RC structure in which each reservoir was 

successively passed into the other. A DeepESN is a deep Recurrent Neural Network 

composed by a hierarchy of recurrent layers intrinsically able to develop hierarchical 

and distributed temporal features. Such characteristics make DeepESN suitable for 

time-series and sequence processing [4]. I experimented with various numbers of 

layers to effectively determine the performance of this approach. The results are 
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observed in Table 4.10. From the results, I observed that the layered approach 

provided decent accuracy but was not suitable for complex tasks as performance 

deteriorates with an increase in depth. 

Table 4.10. MODEL PERFORMANCE COMPARISON FOR DEEP ECHO STATE 

NETWORK 

 

 

Model Performance for Deep Echo State Network 

 

 

Layers MAPE(%) 

1 2.42 

2 3.31 

5 6.81 

10 10.25 

20 25.95 

 

 

4.7 In-depth Performance of Reservoir Computing for Optimal Control 

For optimal control in soft robotic structures, I investigated how the dynamics 

of the structure could be mapped to the length of each spring of the mass-spring 

network. Through various simulations, I was able to observe and analyze how the 

dynamics of the moving structure could be used to control the length of its springs, 

providing optimal control parameters. As shown in Fig. 4.7, springs can vary in 
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length and the nodes they connect to, which affects the overall dynamics for that 

spring and mass. For example, spring 1 would have less movement veracity 

compared to spring 14 as it connects two nodes with more dynamic movement. 

These signals were chosen to highlight and plot as they provided a more 

comprehensive look at how the configuration of the structure affected the 

kinematics and control features, thus making modeling more of a challenge. 

 

 

 

Fig. 4.7. 20 node structure with modeled springs 

 

4.7.1 Performance of Reservoir Computing Model. Mapping 

highly linear dynamics accurately can provide an outlook into soft robotic control. 

As explained, the inputs represent dynamic movement trajectory, including the 

position, speed and acceleration at each node over time, shown in Figs. 4.2 and 

4.3. These inputs are mapped into the lengths for each spring, resulting in optimal 

control for moving robotic masses. To accurately model the controls of a robot, I 

analyzed spring mass structures of 5,10, 20 and 50 nodes. The results of the RC 
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model on each dataset is shown in Table 4.11. From the results observed, it showed 

how the RC framework was able to provide accuracy and efficiency when predicting 

non-linear signals. For a moderately complex structure, Data 3, the model showed 

less than 10% error while also having a relatively low training time. For soft robotic 

purposes, this is important as it will allow the robot to be controlled with decent 

precision while also requiring less training time and data. 

Depicted in Fig. 4.7, I chose to highlight a 20 mass structure with 54 

connecting springs. This provided a scope of a moderately complex structure with 

a significant number of parameters to tune. The prediction is tested spring lengths 

Table 4.11. PERFORMANCE OF RC MODEL ON CONTROL PARAMETERS 

 

Model Performance for Reservoir Computing Model 

 

Category MAPE(%) Training Time(s) 

Data 1 6.02 321 

Data 2 7.71 420 

Data 3 8.67 598 

Data 4 13.01 766 

 

over 20,000 time steps are shown in Fig. 4.8. From these modeled signals, I 

observed how they did not exactly align with the true sin wave inputs due to the 

non-linear characteristics of the data. Overall, the model still provides a decent 

representation of the predicted control signal. 
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(a) Spring 1 

 

(b) Spring 14 

 

 

(c) Spring 24 
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(d) Spring 54 

 

Fig. 4.8. Tested Spring Control Signals over 20,000 time steps 

 

4.7.2 Performance of Different Reservoir Sizes. Explained in 

previous results, one of the more impactful parameters of the RC architecture is the 

size of the reservoir. In investigating of the dynamics, I observed how the model 

performed best when the size of the reservoir equaled the input data dimension. 

Due to this, I investigated the effect of varying the number of nodes in the reservoir, 

N, on the performance of the model while keeping other parameters constant. 

Results from this experiment are as recorded in Table 4.12. 

From these results, it is observed how the models were optimized as the 

internal reservoir units were equal to the input dimension into the reservoir. This 

gives a better understanding of how to configure the reservoir for optimal control. 
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Table 4.12. MODEL PERFORMANCE COMPARISON FOR DIFFERENT 

RESERVOIR SIZES 

 

Mape (%) 

 

Reservoir Size, N Data 1 Data 2 Data 3 Data 4 

= input dimension 6.03 7.11 8.52 13.12 

25 6.13 7.51 8.78 14.80 

50 6.33 7.61 8.92 14.67 

100 7.58 7.98 8.72 14.56 

200 8.31 8.18 9.78 13.77 

250 9.21 9.23 9.82 14.26 

 

 

4.7.3 Performance of Different Initialization Methods. From 

previous experiments, it is observed that different initialization methods can have an 

effect on the performance of the model. I ran experiments on all datasets using the 

random, Xavier, normalized Xavier (gloriot), and HE initialization methods while 

keeping all other parameters constant. The model performances when each of the 

initialized methods were used are recorded in Table 4.13. From the results, I can 

observed how the model performed best using Xavier initialization for weight matrices. 
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Table 4.13. MODEL PERFORMANCE COMPARISON FOR DIFFERENT 

INITIALIZATION APPROACHES 

 

MAPE(%) 

 

 Xavier Random HE Gloriot 

Data 1 6.02 7.09 7.41 7.25 

Data 2 7.71 8.25 8.10 8.89 

Data 3 8.67 8.93 9.42 9.22 

Data 4 13.01 14.02 16.33 16.67 

 

 

4.7.4 Performance of Different Readout Methods. To reduce error 

at the readout layer, I evaluated the three different regression models: linear, ridge, 

and lasso regression, while keeping all other parameters constant. The results 

from these experiments are observed in Table 4.14. In the results of varying the 

initialization methods, one can see how each method had decent performance but 

performed best using ridge regression as the readout layer. 
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Table 4.14. MODEL PERFORMANCE COMPARISON FOR DIFFERENT 

READOUT METHODS 

 

MAPE(%) 

 

 Ridge Linear Lasso  

Data 1 6.05 6.11 6.91 7.25 

Data 2 7.86 8.30 8.19 8.89 

Data 3 8.79 8.94 9.95 9.02 

Data 4 13.52 14.42 16.33 16.77 

 

4.8 Summary of Results 

I performed many experiments over various methods to provide a vast 

amount of data needed to analyze how effective this approach could be to perform 

complex functions, such as soft robotics. Observations from these experimental 

results are summarized below: Section B 

• RC models had better performance than the popular deep learning models such as 

DNN and LSTM by a significant margin. It also required much less training time, 

which is desirable for morphological computation. 

• RC was very robust and efficient using different activation functions and regression 

methods used for training the output layer. When analyzing Table 4.5, there was 

no significant margin of error from each approach, allowing for this RC framework 

to be flexible. 
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• As expected, when the size of the reservoir matched the size of the input sequence 

into an RC model, the model had better performance. In Tables 4.6 and 4.12, the 

models performed best when equivalent to the length input of the given structure. 

Since each dataset provided a different input size, the results showed a clear 

observation of the effects of the size of the reservoir. 

• RC can be used to efficiently model soft robotic structures as a digital twin. The RC 

model can efficiently learn the desired kinematics for a robotic structure of different 

configurations. 

• RC showed the decent ability to model highly-nonlinear dynamic inputs and 

outputs, being able to predict the control signal from the desired movement 

kinematics. Shown in Fig. 4.8, the model can map the spring control 

signals within the robot from its desired movement trajectory, thus providing a 

deeper understanding of soft robotic control. 

• Utilizing pre-trained models showed some minor improvements with respect to its 

initial model, DNN and LSTM, but it did not prove to be an effective replacement 

reservoir. 

• While a multi-layered reservoir approach can be useful in some complex tasks, the 

approach was not effective enough for this data. The architecture can show 

greater performance with minimal layers but performs worse as more layers are 

introduced. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

Soft-bodied robots have attracted a lot of attention recently because of their 

capabilities of performing sophisticated tasks that rigid-bodied robots cannot. In 

this study, methods based on reservoir computing were proposed to address the 

challenges of modeling and control of future soft-bodied robots. 

Specifically, the first goal of this study was to model complex, spring-mass 

system dynamics using reservoir computing techniques. This study showed that 

even though these can be modeled using general machine learning approaches with 

relatively good performance, the digital twin created using the principle of reservoir 

computing achieved better accuracy. 

The second objective was to understand how complex systems are 

controlled. To achieve this, a simulator was used to provide optimal locomotion and 

spring parameters of a spring-mass system. This provided a clear understanding of 

how the body reacted under stress at different times. Using these mass-spring 

systems and reservoir computing allowed for modeling the node trajectory dynamics, 

such as position and speed, to control the lengths of the springs between the 

nodes. 

Lastly, I tested different methods in which to use different reservoir sizes 

and configurations. In these cases, I varied the size of the reservoir to observe how 



72  

 

the number of recurrent units affected the reservoir control. Also, I tested how 

the reservoir component of the network was replaced with different pre-trained deep 

learning models and adding successive reservoirs in a layered approach. Overall, 

some of these approaches gives a moderate performance, they are not as efficient 

as the proposed conventional reservoir computing model with dynamic reservoirs. 

In sum, the proposed digital twin and optimal controller based on 

reservoir computing showed excellent performance for future soft-bodied robots. 

Because a reservoir computing based approach not only has high accuracy but also 

requires much less computational resources and training time, makes it a promising 

solution for modeling and real-time control of complex dynamical systems. 

5.2 Future Work 

For the future of soft-bodied robotics, research is still being conducted to 

understand how these systems will be accurately modeled and utilized for 

optimal performance. The next phase of research will focus on optimizing these 

models to generate a physical reservoir computer with optimization to achieve desired 

dynamics. This can allow for physical robotic control, thus potentially being an 

innovative approach for larger, more complex structures. 
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[52] E. J. Hermans, M. J. Henckens, M. Jo ëls, and G. Fernández, “Dynamic Adaptation 

of Large-scale Brain Networks in Response to Acute Stressors,” Trends in 

Neurosciences, vol. 37, no. 6, p. 304–314, 2014. 

[53] O. Onasami, M. Feng, H. Xu, M. Haile, and L. Qian, “Underwater Acoustic 

Communication Channel Modeling Using Reservoir Computing,” IEEE Access, 

vol. 10, pp. 56550–56563, 2022. 

[54] T. G. Thuruthel and F. Iida, “Morphological Computation and Control Com- 

plexity,” IOP Conference Series: Materials Science and Engineering, vol. 1261, 

no. 1, p. 012011, 2022. 
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