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Abstract

In this paper, we have investigated resonant curve due to frequencies − angular rate of rotation of
the Earth and the rate of change of Earth’s equatorial ellipticity parameter. Perturbation equations
are used to convert the non-linear equations of motion of geo-synchronous satellite to the linear
form. With the help of graphs, we have shown the effect of Earth’s equatorial ellipticity parameter
on oscillatory amplitude and variation in orbital radius of satellite. By defining different pertur-
bations, we have also drawn resonant curve due to frequencies steady-state orbital angular rate of
satellite and the rate of change of Earth’s equatorial ellipticity parameter. we have analyzed the un-
damped and unforced phase portrait and phase space by using the method of Poincare section. Fi-
nally, we have obtained energy integral and motion of the mean longitude for the geo-synchronous
satellite in the set of axis rotating with Earth.
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2 S. Yadav et al.

1. Introduction

In recent years, geo-synchronous satellite orbit resonant with respect to perturbing influence of
the gravitational field of Earth has been studied widely. There are many forces which affect the
motion of the geo-synchronous satellite like Earth’s gravitational force, solar radiation pressure,
relativistic effect, etc.

When two satellites or planets repeat their geometric configuration with respect to their orbits
within a period of time, then we say that resonance occurs. In the circular and elliptical case, the
resonance was studied by Bhatnagar and Gupta (1977) in the restricted three-body problem. They
have also studied resonance in two rigid spheroids and in the artificial Earth’s satellite. Garfinkel
(1982) studied the resonance problem in the celestial mechanics. He formulated the method and
found the solution for the resonance problem. Stevan and Holmes (1983) studied the phase portrait
and Poincare section by considering non-linear oscillator with single degree of freedom and non-
linear restoring force. Bhatnagar and Kaur (1990) studied the in-plane motion of geo-synchronous
satellite caused by the attraction of the Sun, the Moon and the Earth including oblateness and
Earth’s equatorial ellipticity parameter. Breiter (1999) investigated a family of resonance, unstable
and stable points. He also studied the luni-solar resonance problem. Radwan (2002) studied the
resonance between the motion of the satellite, the Sun and the Moon by taking oblateness of the
Earth and Luni-solar attraction. Formiga and de Moraes (2011) studied the motion of the satellite
and resonance between two frequencies of the Earth rotational motion and mean orbital motion by
using geopotential perturbations.

In previous related work, Yadav and Aggarwal (2013) have studied the effect of Earth’s equatorial
ellipticity on the amplitude and time period of the resonant oscillations but they ignored the study
of resonant curve due to the commensurability between the frequencies θ̇E (angular rate of rotation
of the Earth) and γ̇ (rate of change of Earth’s equatorial ellipticity parameter).

Equations of motion in our study are in agreement with the equations of motion of Frick and Garber
(1962) if J (2)

2 terms are neglected. The phase portrait is drawn in our study for the undamped and
unforced system is similar to the phase portrait drawn by Stevan and Holmes (1983) in the non-
linear oscillatory system for undamped and unforced system.

The present study of geo-synchronous satellite with resonance has many applications in telecom-
munication as they are directly over the equator and visible from the large area of Earth’s surface.
Geo-synchronous satellites are also used in meteorological department for weather forcasting, re-
mote sensing, oceanography, stationkeeping on a spacecraft in the vicinity of Libration points orbit
as part of trajectory design in the Earth-Moon system and atmospheric tracing. Also, it is used in
navigation purposes.

Kaur et al. (2018) studied the resonance problems of geo-centric satellite due to Poynting-
Robertson Drag. They assumed that the Sun, the Earth and the satellite lies in the same plane
and found resonance points between the angular velocity of Earth and mean motion of satellite.
Yadav et al. (2019) investigated the location and stability of Lagrangian points in the problem of
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geo-centric satellite including Earth’s equatorial ellipticity. They observed that for different values
for Γ, the Lagrangian points exist infinitely. Cai et al. (2020) analyzed the chlorophyll-a distribution
in the Sea area from the geo-synchronous satellite. Hashimoto et al. (2021) studied the Amazon
canopy using Advanced Baseline Imager of new generation of geo-stationary satellite.

This paper is organized as follows. In Section 2, we have expressed equations of motion of geo-
synchronous satellite using Earth’s gravitational potential by following the procedure of Frick and
Garber (1962). In Section 3, we defined the perturbations relative to the synchronous orbit and also
found the solution. We have drawn resonant curve and shown the effect of γ on ∆r in Section 4. In
Section 5, we have shown the phase portrait for the undamped and unforced oscillations. We have
also described the phase space with the help of Poincare section. In Section 6, we have obtained
the energy integral in the set of axis rotating with Earth. We have also found equilibrium points
and motion of the mean longitude. In Section 7, we discussed and analysed the results.

2. Equations of Motion

We have taken xyz system as inertial reference with origin at the Earth’s center and Oz be the polar
axis. The position of satellite P is in the spherical coordinates θ, ϕ and r. OA is the instantaneous
position of the minor axis of the Earth’s equatorial section (Figure 1).

Let angle γ be the measured from minor axis of the Earth’s equatorial ellipse to the projection of
the satellite (Figure 2).

We take the Earth’s gravitational potential and following the procedure of Frick and Garber (1962)
to find force components.

Therefore, equations of motion of the satellite in spherical polar coordinate P (r, θ, ϕ) can be writ-
ten as

r̈ − rθ̇2 cos2 ϕ− rϕ̇2 = −g0R
2
0

r2
+

3J2g0R
4
0

r4

(
3 sin2 ϕ− 1

2

)
− 9J

(2)
2 g0R

4
0 cos

2 ϕ cos 2γ

r4
,

1

r cosϕ

d

dt
(r2θ̇ cos2 ϕ) = −6J

(2)
2 g0R

4
0 cosϕ sin 2γ

r4
,

1

r

d

dt
(r2ϕ̇) + rθ̇2 cosϕ sinϕ = −3J2g0R

4
0 cosϕ sinϕ

r4
− 6J

(2)
2 g0R

4
0 cosϕ sinϕ cos 2γ

r4
,

where

r = radial distance of the satellite from the center of the Earth,
R0 = 6.3781 × 106 m = radius of the Earth,
g0 = 9.8 m/s2 = gravitational acceleration at the Earth’s surface,
J2 = 1.08219× 10−3 = Earth oblateness coefficient,

J
(2)
2 = −5.35× 10−6 = equatorial ellipticity coefficient,

γ = θ − θE (Figure 1).
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4 S. Yadav et al.

This can be simplified as (assuming ϕ to be very small)

r̈ − rθ̇2 = −g0R
2
0

r2
− 3J2g0R

4
0

2r4
− 9J

(2)
2 g0R

4
0 cos 2γ

r4
, (1)

1

r

d

dt
(r2θ̇) = −6J

(2)
2 g0R

4
0 sin 2γ

r4
. (2)

3. Perturbations Relative to Synchronous Orbit

We define

r = rc +∆r,

θ = θE + γ0 +∆γ,

where rc is the orbital radius of a synchronous orbit (rc = 42164 Km) and γ0 is longitude difference
between minor axis of the Earth’s equatorial and the position the synchronous satellite.

In the above perturbation equations, rc is very large in comparison to ∆r. So, ∆r
rc

, being very small,
may be neglected.

Equations (1) and (2) can be written as

∆r̈ − θ̇2E∆r = rcθ̇
2
E + 2rcθ̇E∆γ̇ − g0R

2
0

r2c
− 3J2g0R

4
0

2r4c
− 9J

(2)
2 g0R

4
0

r4c
cos 2γ , (3)

and

d

dt
(r2c∆γ̇ + 2rcθ̇E∆r) = −6J

(2)
2 g0R

4
0

r3c
sin 2γ̇t. (4)

On integrating Equation (4), we get

r2c∆γ̇ + 2rcθ̇E∆r =
3J

(2)
2 g0R

4
0

γ̇ r3c
cos 2γ + c, (5)

where c is constant of integration to be determined by using initial condition when t = t0 then
∆r = ∆r0 ∆γ̇ = 0. So, we get

c = 2rcθ̇E∆r0 −
3J

(2)
2 g0R

4
0

γ̇ r3c
cos 2γ̇t0.

Substituting above value of c in Equation (5), we get

rc∆γ̇ = −2θ̇E(∆r −∆r0) +
3J

(2)
2 g0R

4
0

γ̇ r4c
cos 2γ̇t− 3J

(2)
2 g0R

4
0

γ̇ r4c
cos 2γ̇t0. (6)
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Substituting the value of rc∆γ̇ from Equation (6) in Equation (3), we get

∆r̈ + 3θ̇2E∆r = 4θ̇2E∆r0 + rcθ̇
2
E − g0R

2
0

r2c
− 3J2g0R

4
0

2r4c

+K cos 2γ̇t− 6θ̇EJ
(2)
2 g0R

4
0

γ̇ r4c
cos 2γ̇t0 , (7)

where

K =
3J

(2)
2 g0R

4
0

r4c

(
2
θ̇E
γ̇

− 3

)
.

Since our aim is to study resonance due to frequencies θ̇E and γ̇, we ignore secular terms. We get

∆r̈ + 3θ̇2E∆r = K cos 2γ̇t, (8)

which is non-homogeneous second order differential equation.

A particular solution of Equation (8) is

∆r = A cos 2γ̇t,

where

A =
K

3θ̇2E − 4γ̇2
.

4. Resonance at the Point Where 3θ̇2
E = 4γ̇2

We have drawn graphs using dimensionless coordinates by assuming that orbital radius of satellite
(rc = 42164 Km), mass of Earth (5.972 × 1024 Kg) and universal gravitational constant (G) as 1
unit, i.e., 1 m = 2.3716949×10−8 units, 1 Kg = 0.167248091×10−24 units, 1 Sec = 473620 units.

From the expression of oscillatory amplitude A, it is found that A becomes indeterminate if γ̇2

θ̇2
E

= 3
4
.

So, resonance occurs at the point where γ̇2

θ̇2
E

= 3
4
.

From Figure 3, we observed that the amplitude A becomes indeterminate (resonance occurs) at
γ̇2

θ̇2
E

= 3
4
.

In Figure 4, we observed that ∆r increases with respect to time t.

In Figure 5, oscillatory amplitudes are changing when values of γ increases. There is small effect
of Earth’s equatorial ellipticity parameter on oscillatory amplitude.

In Figure 6, we have shown the point R where resonance occurs and amplitude becomes indeter-
minate in three-dimensional graph.
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6 S. Yadav et al.

Similarly, by defining the following different perturbations relative to synchronous orbit

r = rc +∆r,

θ = θ0 + γ0 +∆θ,

where θ0 is steady-state value of θ and following the same procedure, we obtain

∆r̈ + 3θ̇20∆r = K cos 2γ̇t, (9)

where θ̇0 is steady-state orbital angular rate of geo-synchronous satellite.

A particular solution of Equation (9) is

∆r = A cos 2γ̇t,

where

A =
K

3θ̇20 − 4γ̇2
.

Here, amplitude A becomes inderminate when 3θ̇20 = 4γ̇2, i.e., resonance occur between the fre-
quencies θ̇0 and γ̇.

Now, it can be observed that resonant curve due to the frquencies θ̇0 and γ̇ is similar to the Figure
3.

In Figure 7, we observed that ∆r increases when time t increases.

In Figure 8, oscillatory amplitudes are changing when values of γ increases. There is small effect
of Earth’s equatorial ellipticity parameter on oscillatory amplitude.

In Figure 9, we have shown the point R where resonance occurs and amplitude becomes indeter-
minate in three-dimensional graph.

5. Phase Portrait and Poincare Section

5.1. Phase Portrait

Phase portrait is a continuous family of closed orbits. Phase potrait of the differential equation
∆ṡ = −3θ̇2E∆r (∆s = ∆ṙ) is parametric curves on the plane which trace the path of the particular
solution. This plane is called phase plane. The undamped, unforced phase plane for the Equation
(8) is shown in Figure 10.

5.2. Poincare Section

We can study Equation (8) by applying the method of Poincare section. The periodically forced
oscillations has 3-dimentional extended phase space with coordinates (t,∆r,∆s) (where ∆s =

6
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∆ṙ). It is observed that vector field Equation (8) is periodic in t with period π
γ̇

. Orbits in the phase
space (t,∆r,∆s) are described by the mapping P :

∑
→
∑

induced by the solution

∆r = A cos(
√
3θ̇E(t− t0)) +B sin(

√
3θ̇E(t− t0)) +

K

3θ̇20 − 4γ̇2
cos 2γ̇t, (10)

where
∑

= {(t,∆r,∆s)|∆r = 0,∆s > 0}, is Poincare section. Figure 11 describes the phase
space (t,∆r,∆s) showing Poincare section

∑
with periodicty π

γ̇
in t. It is also observed that the

flow of differential equation

∆ṙ = ∆s, ∆ṡ = K cos(2γ̇t) (11)

for ∆s > 0, ∆ṙ ̸= 0 is everywhere transverse to
∑

.

6. Energy Integral in the Set of Axis Rotating with Earth

The energy integral E per unit mass is given by

E =
v2

2
− U − θ̇2E r2 cos2 ϕ

2
, (12)

where

v2 = ṙ2 + r2θ̇2 cos2 ϕ+ r2ϕ̇2,

and

U =
g0R

2
0

r

[
1− J2

R2
0

r2

(
3 sin2 ϕ− 1

2

)
+ 3

J
(2)
2 R2

0

r2
cos2 ϕ cos 2γ

]
.

By substituting the values of U (Frick and Garber (1962)) and v in Equation (12) and after simpli-
fication, we get

E =
ṙ2

2
+

r2θ̇2 cos2 ϕ

2
+

r2ϕ̇2

2
− g0R

2
0

r

[
1− J2

R2
0

r2

(
3 sin2 ϕ− 1

2

)
+ 3

J
(2)
2 R2

0

r2
cos2 ϕ cos 2γ

]
− θ̇2E r2 cos2 ϕ

2
. (13)

The equilibrium points of the sum

U +
θ̇2E r2 cos2 ϕ

2
= f(r, θ, ϕ) (supposed), (14)

are the minimum and saddle points of the function f . These points may be obtained by solving the
following three equations.

∂f

∂r
= 0

=⇒
[
−g0R

2
0

r2
+

3J2g0R
4
0

(
3 sin2 ϕ− 1

)
2 r4

− 9J
(2)
2 g0R

4
0 cos

2 ϕ cos 2γ

r4

]
+ θ̇2E r cos2 ϕ = 0, (15)
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8 S. Yadav et al.

∂f

∂θ
= 0

=⇒

[
−6J

(2)
2 g0R

4
0 cos

2 ϕ sin 2γ

r3

]
= 0, (16)

and
∂f

∂ϕ
= 0

=⇒
[
−3J2g0R

4
0 cosϕ sinϕ

r3
− 6J

(2)
2 g0R

4
0 cosϕ sinϕ cos 2γ

r3

]
+ θ̇2E r cosϕ sinϕ = 0. (17)

The motion of the mean longitude L near synchronous satellite is given by

R2

2

(
dL

dt

)2

+ 3

[
U +

θ̇2E r2 cos2 ϕ

2

]
= 0, (18)

where R = 42164 Km.

By substituting the value of U and after simplification, we get

L =
( 6

R2

[J2 g0 R4
0

r3

(
3 sin2 ϕ− 1

2

)
− g0R

2
0

r
− 3 J

(2)
2 g0 R

4
0 cos

2 ϕ cos 2γ

r3

− θ̇2E r2 cos2 ϕ

2

]) 1

2

t+ C,

where C be an integral constant, at t = 0, L = 0, we have C = 0;

then,

L =
( 6

R2

[J2 g0 R4
0

r3c

(
3 sin2 ϕ− 1

2

)
− g0R

2
0

rc
− 3 J

(2)
2 g0 R

4
0 cos

2 ϕ cos 2γ

r3c

− θ̇2E r2c cos
2 ϕ

2

]) 1

2

t. (19)

7. Conclusions

We used perturbation technique to convert non-linear equations of motion of geo-synchronous
satellite to linear form. Then, we obtained a second order linear differential equation and from the
particular solution of that equation, we found that resonance occurs due to frequencies− angular
rate of rotation of the Earth and the rate of change of Earth’s equatorial ellipticity parameter. We
have also drawn and analyzed resonant curve. We have found that variation in radial distance of
the satellite increases when time increases. We have also shown the effect of Earth’s equatorial
ellipticity parameter on different oscillatory amplitudes. We have shown the point R of resonance
including angular rate of rotation of the Earth and the rate of change of Earth’s equatorial ellipticity
parameter with the help of graph.
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By defining different perturbations, we studied resonant curve due to angular rate of rotation of
the Earth and the rate of change of Earth’s equatorial ellipticity parameter and effect of Earth’s
equatorial ellipticity parameter on resonant curve and oscillatory amplitude. We have shown the
undamped and unforced phase portrait. We have shown the phase space by defining Poincare sec-
tion and by considering the Poincare mapping for the differential equation induced by the solution
of that equation. Finally, we have obtained the energy integral in the set of axis rotating with Earth.
We have also found equilibrium points of the sum function and motion of the mean longitude.
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Appendix

Figure 1. Coordinate System

Figure 2. Earth’s Equatorial Section
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Figure 3. Resonant Curve

Figure 4. ∆r vs time t

Figure 5. ∆r vs Earth’s equatorial ellipticity parameter γ
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Figure 6. Effect of γ̇ and θ̇E on A

Figure 7. ∆r vs time t

Figure 8. ∆r vs Earth’s equatorial ellipticity parameter γ
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Figure 9. Effect of γ̇ and θ̇0 on A

Figure 10. Phase portrait for K = 0
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Figure 11. Phase space (t,∆r,∆s) showing the Poincare section
∑

with π
γ̇ periodicity in t
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