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Abstract

The aim of this article is to introduce a new type of continuous functions such as N-neutrosophic
crisp v continuous and weakly N-neutrosophic crisp v continuous functions in a N-neutrosophic
crisp topological space and also discuss a relation between them in N-neutrosophic crisp topo-
logical spaces. We also investigate some of their properties in N-neutrosophic crisp 7y continuous
function via N-neutrosophic crisp topological spaces. Further, a contra part of continuity called
N-neutrosophic crisp y-contra continuous map in a N-neutrosophic crisp topology is also initiated.
Finally, an application based on neutrosophic score function of medical diagnosis is examined with
graphical representation.

Keywords: N-neutrosophic crisp + open set; N-neutrosophic crisp ~ continuous; weakly N-
neutrosophic crisp 7 continuous; N-neutrosophic crisp «y contra continuous; Neu-
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1. Introduction

In mathematics, a idea of a fuzzy set between the intervals was first presented by Zadeh (1965)
in order of logic and set hypothesis. The general topology has been system with fuzzy set was
attempted by Chang (1968) as fuzzy topological space. Adlassnig (1986) applied fuzzy set the-
ory to formalize medical relationships and fuzzy logic to mechanized analysis framework. This
hypothesis (Innocent and John (2004); Roos (1994); Sugeno (1985)) has been utilized in the
fields of man-made brainpower, likelihood, science, control frameworks and financial aspects.
In 1983, Atanassov (1986) started intuitionistic fuzzy set which contains a membership and non-
membership values. Coker (1997) made intuitionistic fuzzy set in a topology entitled as intuitionis-
tic fuzzy topological spaces. De et al. (2001) was the first to built up the uses of intuitionistic fuzzy
sets in medical diagnosis. Several researchers (Biswas et al. (2014); Khatibi and Montazer (2009);
Szmidt and Kacprzyk (2001)) further examined intuitionistic fuzzy sets in medical diagnosis.

In our daily routine, we have used crisp sets in most of our life. The concepts of neutrosophy
and neutrosophic set by Smarandache (1999) are the recent tools in a topological space. It was
first introduced by Smarandache (2002) in the beginning of 21" century. Salama et al. (2014)
has provided the basic concept of neutrosophic crisp set in a topological space. After that
Al-Omeri (2016) also investigated some fundamental properties of neutrosophic crisp topological
spaces. Al-Hamido et al. (2018) explore the possibility of expanding the concept of neutrosophic
crisp topological spaces into /V-topology and investigate some of their basic properties in /N-terms.
By using N-terms of topological spaces, we can define 1,,.ts, 2,,.ts, - - -, Npts.

Andrijevic (1996) introduced b-open sets and develop some of their works in general topology.
The notion of «y-open set in topological spaces was introduced by Min (2002) and worked in the
field of general topology. Vadivel and Sundar (2020) presented y-open sets in neutrosophic crisp
topological spaces via N-terms of N-neutrosophic crisp topology.

Smarandache (2002) described the single valued Neutrosophic set on three portion (T-Truth, F-
Falsehood, I-Indeterminacy) neutrosophic sets and further concentrated by Wang et al. (2010).
Majumdar and Samanta (2014) characterized some similarity measures of single valued neutro-
sophic sets in decision making problems. Recently many researchers (Abdel et al. (2019), Broumi
and Smarandache (2013), Nabeeh et al. (2019), Thanh and Ali (2017), Ye and Zhang (2014), and
Ye and Ye (2015)) presented several similarity measures and single-valued neutrosophic sets in
medical diagnosis. Applications based on neutrosophic score function by authors in various fields
are Smarandache (2020), Vadivel and Sundar (2021), Vadivel et al. (2022), etc.

In this present work, we extend the open sets into a continuous functions such as N-neutrosophic
crisp 7y continuous and weakly /N-neutrosophic crisp v continuous functions in N,ts. Also, we
study and investigate some of their fundamental properties in V,,.ts. Also, N-neutrosophic crisp
~ contra continuous function in a /N-neutrosophic crisp topological space is also discussed here.
Finally, an application based on neutrosophic score function of medical diagnosis is examined with
graphical representation.
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2. Preliminaries

Some basic definitions and properties of N-neutrosophic crisp topological spaces are discussed
in this section. A neutrosophic crisp set (briefly, ncs), O, Yy, subset, union, intersection and
complement (briefly, K,°) are defined by Salama and Smarandache (2015). A neutrosophic crisp
topology (briefly, ,.t) and neutrosophic crisp topological space (briefly, ncts) are defined by
Salama et al. (2014). A N-neutrosophic crisp sets (briefly, /V,.s), N-neutrosophic crisp (briefly,
N,,.) topology, N-neutrosophic crisp topological space (briefly, N, .ts), N-neutrosophic crisp open
set (briefly, N,.0s), N-neutrosophic crisp closed set (briefly, N,.cs), N-neutrosophic crisp inte-
rior of K, (briefly, N,.int(K,)), N-neutrosophic crisp closure of K, (briefly, N,.cl(K,)), N-
neutrosophic crisp pre open set (briefly, N,.Pos), N-neutrosophic crisp semi open set (briefly,
Ny,.Sos), N-neutrosophic crisp a-open set (briefly, N,.aos) and their respective closed sets are
defined by Al-Hamido et al. (2018). A N-neutrosophic crisp regular open set (briefly, NV, .ros),
N-neutrosophic crisp y-open set (briefly, N,.yos) and their respective closed sets are defined by
Vadivel and Sundar (2020). The family of all N,,.0s of X is denoted by V,,.OS(X) and respective
other open sets and closed sets. A N-neutrosophic crisp continuous (briefly, N,,.Cts) is defined by
Thivagar et al. (2018).

For an application part, some basic definitions such as neutrosophic sets, empty set, whole set,
union and intersection of neutrosophic set, neutrosophic topological spaces (briefly, NT'S) are
defined by Salama and Smarandache (2015) and Vadivel and Sundar (2021).

3. N-neutrosophic crisp ~ continuous maps

Here we study about /N-neutrosophic crisp 7 continuous maps and their properties in N,ts.
Throughout Sections 3, 4 and 5, let (X7, N,,.I'), (Xa, N,,.¥) and (X3, N,,.®) be any N,,.ts’s. Let
h and g be a maps defined as h : (X1, N, .[') = (Xo, NpeW) and g @ (Xo, Ny V) — (X3, N,y D)
in a N,.ts. Let K, and M, be a N,,.s’s in N,ts.

Definition 3.1.

A map h is said to be N-neutrosophic crisp ~y (respectively, o, semi , pre and regular) continuous
(briefly, N,,.vC'ts (respectively, N,,.aCts, N,,.SCts, N,,PCts and N,,.rCts)) if the inverse image
of every N,.0s in (X5, N,,.V) is a N,.yos (respectively, N,.«os, N,.Sos, N, Pos and N,,.ros)
in (X1, Np,.I).

Example 3.1.

Let X = {l,,M0,M0,00,D0}> nett = {0n, XN, L, M, N}, 1o = {on,Xn}. L = ({no},

{¢}’ {lm Mo, 007po}>’ M = <{loa mo}7 {gb}v {TLO, Oo,po}>’ N = <{l07 Mo, no}’ {¢}7 {Ooapo}>’ then
2ncT = {¢N7XN7L7M7N}'

Let h : (X,2,.7) — (X,2,.7) be an identity function. Then, h is 2,.Cts, 2,.aCts, 2,.SCts,
2,.PCts and 2,,.vC'ts.

Published by Digital Commons @PVAMU,
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Theorem 3.1.

The statements are true for a map h but not converse.
(1) Every N,.rCtsisa N,.Cts.
(i) Every N, .Ctsisa N,.aCts.
(iii) Every N,.aCtsisa N,.SCts.
(iv) Every N,.aCtsisa N,/ PCts.
(v) Every N,,.SCtsisa N,.yCts.
(vi) Every N,,/PCtsisa N,.yCts.

Proof:

() Let b : (X1, NpoI') — (X3, NyW) be a N,,.rCts and K, is a N,.0s in X,. Then h™!(K,)
is N,.ros in X;. Since every N,.ro is N,.0 by Proposition 3.2 in Vadivel and Sundar (2020),
h=Y(K,) is N,.o0s in X;. Therefore, h is N,,.Cts.

@) Let h : (X1, NpoI') — (Xo, N, W) be a N,,.Cts and K, is a N,,.0s in Xy. Then h™1(K,) is
N,.0sin X]. Since every N,,.0is N,.ao by Proposition 3.2 in Vadivel and Sundar (2020), h~*(K,)
is N,.a0s in X;. Therefore, h is N,,.aC'ts.

(iii) Let h : (X1, NpeI') — (Xo, NoeW) be a N, .aC'ts and K, is a N,.0s in X,. Then h™1(K,)
is N,.os in X;. Since every N, o is N,.So by Proposition 3.2 in Vadivel and Sundar (2020),
h='(K,) is N,,.Sos in X;. Therefore, h is N, .SCts.

@iv) Let h : (X1, NpoI') — (X3, N, W) be a N,.aCts and K, is a N,.0s in X,. Then h=!(K,)
is N,.ao0s in X;. Since every N,.ao is N,.Po by Proposition 3.2 in Vadivel and Sundar (2020),
h=Y(K,)is N,.Posin X;. Therefore, h is N, ./PCts.

(v) Let h : (X, NooT) — (Xo, N, W) be a N, SCts and K, is a N,.0s in X5. Then h™!(K,)
is N,.Sos in X;. Since every N,,.So is N, yo by Proposition 3.2 in Vadivel and Sundar (2020),
h=Y(K,) is N,.vos in X;. Therefore, h is N,,.yCts.

(vi) Let h : (X1, NpeI') — (Xo, N, W) be a N, PCts and K, is a N,,.0s in X5. Then h™!(K,)
is N,.Pos in X;. Since every N,./Po is N,.vo by Proposition 3.2 in Vadivel and Sundar (2020),
h=Y(K,) is N,.vos in X;. Therefore, h is N,,.yCts. -

Example 3.2.

In Example 3.1, h is 2,,.C'ts but not 2,,.rCts, the set h ™' (N) = N is a 2,,.0s but not a 2,,.70s.

https://digitalcommons.pvamu.edu/aam/vol18/iss1/12
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NpeSC'ts

Figure 1. Ny,.yC'ts function in Ny,ts.

Example 3.3.

Let X = {lmmoanoaoo}, ncTl = {¢NaXN7<{l0700}a{¢}7{moano}>}, ncT2 = {¢NﬂXN}7
then we have 2,.7 = {on, Xy, {lo,00}, {0}, {mo,no})}. Let Y = {ws, To, Yo, 20}
nc\lll - {¢N7YN7W7X7Y}’ TLC\IJQ = {¢N7YN} W = <{x0}7{¢}7{woayoazo}>’
X = <{wo7yo}a{¢}7{xoazo}>a Y = <{w07xoyyo}v{¢}a{zo}>’ then we have 2nc\11 -
{¢N7YN7VV7X7Y}'

Define h : (X,2,.7) = (Y,2,.¥) as h(l,) = Yo, h(My) = Yo, h(n,) = 2, and h(0,) = w,,
then 2,,.aC'ts but not 2,,.Cts, the set b= ({({w,, Yo }, {0}, {70, 20})) = {lo; Mo, 00}, {0}, {no}) is

a 2,.ao0s but not 2,,.0s.

Example 3.4.

Let X = {l07m07n0700}9 neTl = {(bN:XN?L:MaN}a ncT2 = {¢N7XN}~ L =

<{n0}7{¢}>{lovm0700}>’ M = <{lo7m0}7{¢}7{n0700}>’ N = <{lo>m07n0}7{¢}7{00}>’ then
we have 2,.7 = {én, Xn, L, M, N}. Let Y = {wo, To, Yo, 20} nc¥1 = {on,Yn, W, X, Y},

nel2 = {on,Yn} W= ({zo}, {0} {wo, 4o, 20}), X = ({wo, 4o}, {0} {70, 20}), ¥ =
({wo, o, Yo}, {0}, {20}), then we have 2, ¥ = {¢n, YN, W, X, Y}

Define h : (X,2,.7) — (Y,2,.¥) as h(l,) = 2, h(m,) = Yo, h(n,) = ¥y, and h(o,) =
w,, then 2,.SCts (respectively, 2,.vCts) but not 2,.aCts (respectively, 2,.PCts), the set

Y ({we, Yo}, {0}, {T0, 20})) = {Mo, Mo, 00}, {0}, {lo}) is a 2,.Sos (respectively, 2,,.v0s) but
not 2,,.«os (respectively, 2,,.Pos).

Example 3.5.

In Example 3.4, Define h : (X, 2,.7) — (Y,2,.V) as h(l,) = w,, h(m,) = x,, h(n,) = 2, and
h(0,) = Yo, then 2, PCts (respectively, 2,.7Cts) but not 2,.aCts (respectively, 2,.SCts), the
set M ({({zo}, {0}, {Wo, Yo, 20 1)) = ({mo}, {0}, {lo, 10, 00}) is a 2, Pos (respectively, 2,,.70s)

Published by Digital Commons @PVAMU,
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but not 2,,.«os (respectively, 2,,.50s).
Remark 3.1.
A map h satisfies the following statements are equivalent.
(1) his N,.yCts.
(i) The inverse h~'(K,) of each N,.0s K, in X5 is N,.yos in X;.
Theorem 3.2.
A map h satisfies the statements are equivalent.
(1) h(Npeycl(K,)) C Nyecl(h(K,)), for all nes K, in X7
(i) Npeyel(h™1(M,)) C h™(N,ecl(M,)), for all ncs M, in Xo.

Proof:

(i) Since N,.cl(h(K,)) is a N,.cs in Xy and h is N,.yCts, then b= (N,.cl(h(K,))) is N,yc
in X;. Now, since K, C h ™} (Np.cl(h(K,))), Npeyel(K,) € h™Y(Nyecl(h(K,))). Therefore,
BNy cl(K)) C Noecl(h(K,)).

(ii) By replacing K, with M, in (i), we obtain h(N,.ycl(h™*(M,))) C Npcl(h(h™'(M,))) C
Npecl(M,). Hence, Ny, ycl(h™(M,)) C h™(Npecl(M,)). -
Remark 3.2.

If his N,.yC'ts, then:

(1) h(Nueycl(K,)) is not necessarily equal to N,,.cl(h(K,)) where K, C X;.
(i) Npeyel(h™'(M,)) is not necessarily equal to ! (N,,.cl(M,)) where M, C Xo.

Example 3.6.
In Example 3.1, his a N,,.vC'ts.

(1) Let K, = <{l07mo}v {¢}7 {nm 00,]?0}) C X. Then, h(QnC’YCl(Ko)) = h(QnCVCl(<{loa mo}? {¢}a
{n0,00,001))) = °({{losmo}, {0}, {n0s 00,00}1)) = ({lo;mo}, {6}, {10, 00,10}). But
QHCCl(h(KO)) = QHCCl(h«{lo; mo}? {¢}> {nm 007po}>>) = 2ncCl(<{lo> mo}? {(b}v {nm 007p0}>) =
{loy Moy 00, po}, {0}, {10 }). Thus, h(2,7¢l(Ko)) # 2necl (R(K,)).

(i) Let My = ({10}, {6}, (m0r10000,00) € V. Then, 2u9€l(h= (My)) € Zurel(h= ({1},
{¢}7{m07n0a007po}>)) = 2n07d(<{lo}7{¢}’{mo:no>00apo}>)' But h_l(zncCl(Mo)) =
D @necl(({l0}, 16}, {0 1000 2o 1))) = DY) = X. Thus, 29el(h (M) #
h=1(2pecl(M,)).

https://digitalcommons.pvamu.edu/aam/vol18/iss1/12
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Theorem 3.3.
Let h be a function, then h ™ (N,.int(K,)) C N,.yint(h~'(K,)), for all ncs K, in Xo.

Proof:

If his N,.Cts and K, C Xo. mmt( o) 18 N,.0 in X5 and hence, h™!(N,.int(K,)) is
N,vo in X. Therefore, N, .yint(h™!( ncmt( o)) = h Y (Nyeint(K,)). Also, N,.int(K,)
K,, implies that h='(N,.int(K,)) C h~'(K,). Therefore, N, yint(h=*(N,.int(K,)))
Npeyint(h™(K,)). That is, A~ (Nyint(K,)) C Npeyint(h™H(K,)).

-
-

Conversely, let h™' (N, int(K,)) C N,yint(h~'(K,)) for every subset K, of X,. If K, is
N,c0 in X, then N, int(K,) = K,. By assumption, h~ (N, int(K,)) C N,.yint(h = (K,)).
Thus, h™'(K,) C N,vyint(h™'(K,)). But N,.yint(h"'(K,)) < h'(K,). Therefore,

Npeyint(h=Y(K,)) = h™'(K,). That is, h=*(K,) is N,.yo in X, for every N,.os K, in Xo.

Therefore, h is N, .vCts on Xj. =
Remark 3.3.

If his N,.yCts, then N, yint(h~'(K,)) is not necessarily equal to b= (N,.int(K,)) where K, C
Xo.

Example 3.7.

In Example 3.1, h is a 2,yCts. Let K, = ({lo,no}, {0}, {m0,00,00}) < Y.

Then, 2nc7int(h_1(Ko)) - 2nc’ﬂnt( (({lmno} {¢} {mmooapo}») = 2n07int(<{loano}a
{0}, {10, 00, 00})) = <{loano}7{¢}7{m07007p0}>' But h™!(2ucint(K,)) = h™' (2ncint({{lo,

no} {¢} {mo7007p0}>)) - B (<{n0}7{¢}7{lo,mo,OmPO}» = <{no}7{¢}7{l07m07007po}>'
Thus, 2,,.yint(h~1(K,)) # h~ ( netnt(K,)).

Definition 3.2.

Let K, = (K1, Ks, K3) a N,.s on X, then pt = (pty, pto, pt3), pt1 # pty # pt3 € X is called a
N-neutrosophic crisp point (briefly, N,,.P).

A N,..P, pt = (ptq, pts, pt3) belongs to a N,,.s K, = (K;, Ky, K3) of X, denoted by pt € K,, if
it may be defined in two ways,

(i) {pt1} C Ky, {pto} C K> & {pt3} O K3, or
(i) {pt:} C Ky, {pt2} 2 K & {pt3} 2 K.

Theorem 3.4.

Let h be a map, then the following statements are equivalent.
(1) hisa N,.yCts function;

(ii) For every NpcP pt(pi, pt, pts) € X1 and each nes K, of h(pt, pty pts))s 3 @ Npeyos M, such

Published by Digital Commons @PVAMU,



Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 ], Iss. 1, Art. 12
8 A. Vadivel and C. John Sundar

that pt(pt1,pt2,pt3) € MO g h’_l(Ko);

(iii) For every N, point pt(y, pi, pt,) € X1 and each ncs K, of h(pt e, pry pts))s 3 @ Npeyos M,
such that pt (s, pt, pt.) € M, and h(M,) C K.
Proof:

(i) = (1): If pt (e, iy pts) 18 @ NP in X5 and if K, is a nes of h(ptp, pi, pis))» then there exists an
Nycos Win X, such that h(pt e, pr, pts)) € W C K,. Thus, his a N, .yCts, M, = h™'(W) is a
Nyeyos and pt e, pr pts) € B (WDt pt, ptapts))) S W1 W) = M, C h™(K,). Thus, (ii) is a valid
statement.

(i) = (iii): Let ptpr, pt, pt,) b @ NP in Xy and let K, be a ncs of h(pt(pe, pr, pt,))- Then, there
exists a N, yos M, such that pt(y, i, pt.) € M, C h71(K,) by (ii). Thus, we have pt(, pt, pts) €
M, and h(M,) C h(h ™} (K,)) C K,. Hence, (iii) is valid.

(iii) = (i): Let K, be a N,,.0s in Xy and let pt o, pt, prs) € B~ H(K,). Then, h(ptpe, ptapts)) €
h(h™(K,)) C K,. Since K, is a N,.0s, it follows that K, is a ncs of h(pt e, pt, pts))- Therefore,
from (iii), there exists a N,.yos M, such that pty, ps, pt,) and h(M,) C K,. This implies that
Plipts ptapts) € Mo € 71 (R(M,)) C h™(K,). Therefore, we know that h~(K,) is a N,.yos in
Xy. Thus, his a N,,.yCts function. =

Theorem 3.5.

Let h be a map, then the following statements are equivalent.
(1) hisa N,.yCts function;

(ii) For each pt(p, pi, p1,) € X1 each Nycos M, C X, containing h(pt(p, pi, pi,)), there exists a
Npeyos L C X containing pt (s, pt, pt,) such that h(L) C M,,.

Proof:

(i) = (ii): Let M, be any N,.os of X, containing h(pt (e, pt, pts))» then b= (M,) € N,:yOS(X7).
The set L = h™'(M,) which containing pt ¢, pt, pt,)> then h(L) C M,.

(i) = (i): Let M, C X, be N,.0s and let ptp, pt,pts) € h~H(M,). Then, h(pt, pt, pts)) €
M, and thus there exists L, € N,.yOS(X1) such that ptiu, pi, pts) € Lp and R(W,) C M,.
Then, ptyt, pt,pts) € Ly C h7'(M,), and so h™H(M,) = Upep-1iar,) Ly bt Upep vy I €
N,neyOS(X,), then, h=Y(M,) € N,.vOS(X,). Therefore, h is N,,,yC'ts. -

Theorem 3.6.

Let h be a map. Then, the following statements are equivalent.
(1) hisa N,.yCts function;

(i) The inverse image of each N,.cs in X5 is N,.ycs;

https://digitalcommons.pvamu.edu/aam/vol18/iss1/12
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(iil) Nyeint(Npecl(h™H(K,))) N Npecl (Npeint(h1(K,))) € h=(cl(K,)) for each K, C Xo;
(iv) A(Npeint(cl(O))) N Npecl(Nyeint(O)) C Npecl(h(O)) for each O C Xj.

Proof:

(i) = (ii): Let H C X5 be N,.cs. Then, Xo\H is N,.0s. h"'(Xo\H) € N,~vOS(X,), i.e.,
Xi\h Y (H) € N,,,yOS(X;). Then h™'(H) is N,.ycs.

(i) = (iii): Let K, C Xo, then h™Y(N,.cl(K,)) is Npeycs in X, i.e., Nyeint(Nycl(h(K,)))
ANl (Npeint(h™HK,)))  C Npeint(Npecl (R (Npecl(K,)))) N Npeel (Npeint (™ (Npe
cl(K,)))) C h Y (Nyecl(K,)).

(i) = (iv): Let O C X, K, = h(O) in (iii) then Nyint(Npecl(h™(1(0)))) N Nyecl (Npe
int(h"'(h(0)))) € h~ (Npecl(h(0))). So that Nyint(Nueel(0)) N Nyoel(Npeint(0)) C
h=Y(Npecl(h(O))). This gives h(Npeint(cl(O))) N Nyeel (Npeint(0)) € Necl(h(O)).

(iv) = (i): Let M, C X, be Nyos. L = X,\M, and O = h'(L), then
h(Nyeint(Nyecl(R7H(L)))) N Nyl (Npeint(h™(L))) C Npecl(h(h7YH(L))) C Npecl(L) = L,
i.e., h"Y(L)is N,yesin Xy, so his N,yCts. -

4. Weakly N -neutrosophic Crisp v Continuous

Definition 4.1.

A map h is said to be a weakly N-neutrosophic crisp continuous (briefly, WeN,,.Cts) function if
for each pt (s, pr, pt) € X1 and each Ny.0s M, of X5 containing h(pt), there exists an V,.0s of
K, containing pt (ps, pt, pt,) Such that h(K,) C Nyecl(M,).

Definition 4.2.

A map h is said to be a weakly N-neutrosophic crisp v continuous (briefly, WelN,,.yCts) function
if for each pt(p, pi, pt,) € X1 and each N,.os M, of X, containing h(pt), there exists K, €
N,.yOS(X71) such that h(K,) C Ny.cl(M,).

Remark 4.1.

Every WeN, .Cts function is WeN,,.vC'ts function. Also, WeN,,.vCts function is implied by
N,.vC'ts. The following examples show that the reverse implications are not true in general.

Example 4.1.

Let X = {lo,mo,no,oo} = Y, ncTl = {¢N7XN7L7M,N}, ncT2 = {¢N7XN}- L =
{no} {0} {loy Mo, 06})s M = ({lo, Mo}, {0}, {10, 00})s N = ({lo, M0, 10}, {0}, {00}). Then,
we have 2nc7— - {¢N7XN7L7M7 N} Let nc‘yl = {(bN?YNaO = <{l07m0}7{¢}7{n0700}>}a
ne¥Vo = {on, YN, P = ({no,0,}, {0}, {lo, m,})}. Then, we have 2,V = {¢n, Yn, O, P}.

Published by Digital Commons @PVAMU,
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Define h : (X, 2,.7) — (Y,2,.¥) as identity function, then A is We2,,.yCts but not We2,.Cts
and 2,,.yCts.

Definition 4.3.

Let (X1, N,.[') be Ny.ts, pt € Np.P in Xy, a Nyes K, = (K, Ky, K3) € T is called N-
neutrosophic crisp neighborhood (briefly, N,,.nbhd) of p in (X1, N,.I') if pt € K,, if there is a
Nye0s, M, = (M7, My, M3) containing pt such that M, C K,,.

Lemma 4.1.
Let h be a map, then the following statements are equivalent.
(i) his WeN,.yCts at ptip, pt, prs) € X1

(i) pt € Nyuecl(Npeint(h™ Y (Npecl(M,)))) U Npeint(Nyecl (R (Nyecl(M,)))) for each N,,.nbhd
M, of h(pt);

@(iil) A=Y (M,) C Nyeyint(h™Y(Nyecl(M,))) for every N,.0s M, of Xo.

Proof:

(i) = (ii): Let M, be any N,.nbhd of h(pt). Since h is WeN,yCts at pt, there exist
L € N,~yOS(X;) such that h(L) C N,.l(M,). Then, L C h™Y(N,.cl(M,)). Since L is
Npeyo, pt € L C Nyecl(Nyeint(L)) U Nyeint(Npecl(L)) C Npecl (Npeint (b= Nyecl(M,))) U
Npeint(Npecl (R~ (Nl (M,)))).

(i) = (iii): Let pt € h7'(M,) so h(pt) € M,. Then, pt € h Y (N,.cl(M,)) and
since pt € Nyl (Npeint(h™H (Npecl(M,)))) U Nyeint(Nyecl (™ (Npecl(M,)))). We have
pt € ™Y (Nyecl(M,y)) N [Npecl (Npeint(h™ (Npecl (M,)))) U Npeint (Nyecl (R (N, ecl(M,))))] =
Npeyint(h=Y(Nyecl(M,))). Hence, b= (M,) C Nyvint(h™(Npecl(M,))).

(iii) = (i): Let M, be any N,,.nbhd of h(pt). Then, pt € h=1(M,) C Nueyint(h™ (Npecl(M,))).
The set L = N,yint(h™'(N,.cl(M,))) then L € N, ,yOS(X;) and h(L) C N,.cl(M,). This
shows that h is WeN,,.vCts at pt € X;. -

Theorem 4.1.

Let h be a map, then the following statements are equivalent.
(1) his WeN,.~Cts;
(i) Npeyel(h ™ (Npeint(Nyecl(K,y)))) € ™Y (N,ecl(K,)) for every subset K, of Xo;
(iil) Npeyel(h Y (Npeint(F))) € h™1(F) for every N, rcs F of Xo;

(iv) Npeyel(h™1(M,)) C h=Y(N,ecl(M,)) for every N,.os M, of Xo;

https://digitalcommons.pvamu.edu/aam/vol18/iss1/12

10



Vadivel and Sundar: Continuous Function Via N-Neutrosophic Crisp Topological Spaces

AAM: Intern. J., Vol. 18, Issue 1 (June 2023) 11

(v) h™Y(M,) C Nyeyint(h™(N,ecl(M,))) for every N,.0s M, of Xs;

(vi) h™Y(M,) C Nyuecl(Npeint(h™H(Npecl(M,)))) U Npeint(Npecl (R (Nyecl(M,)))) for every
N,.0s M, of Xs.

Proof:

(i) = (ii): Let K, be any subset of X,. Assume that pt € X;\h ™' (N,.cl(K,)). Then, h(pt) €
Xo\N,cl(K,) and there exists a N,.0s M, containing h(pt) such that M, N K, = &; hence
Nyecl(M,) N Nyeint(Nycl(K,)) = @. Since h is WeN,,.yCts, there exists L € N, vyOS(X;)
such that h(L) C N,.cl(M,). Therefore, we have L N h~ (N, int(N,.cl(K,))) = @. Hence, pt €
X\ N,evel (™ (Nyeint(Nyecl(K,)))). Thus, we obtain N,.ycl(h™! (N, int(N,.cl(K,)))) C
h™H(Naecl (K5)).

(i) = (iii): Let F be any N,.rcs of X,. Then, we have N,.ycl(h™'(N.int(F))) C
Npeyel (R (Npeint (Npecl (Npeint(F))))) C Y Npecl(Nyeint (F))) = hH(F).

(iii) = (iv): For any N,,.0s M, of X5, N,.cl(M,) is N, rcs in X, and we have N,,.ycl(h=1(M,)) C
Npeyel (R (Npeint (Npecl (M) C B Y (Nyecl (M,)).

(iv) = (v): Let M, be any N,.os of X,. Then, X5\N,.cl(M,) is N,.os in X,
and using N,.ycl(X;\A) = X\N,vint(A), we have X;\N,vint(h ' (N,.cl(M,))) =
Npeyel (RN ( X\ Npecl (M) C B (Nyecl (X2 \ Npecl(M,))) € X1 \h™'(M,). Therefore, we ob-
tain h=1(M,) C N,.yint(h™ (Nyecl(M,))).

(v) = (vi: Let M, be any N,os of X,. By using N,.vint(A) =
AN (Npeint(Nyecl(A)) U Nyecl (Nyeint(A))), we have b= (M,) C Nyeyint(h™ (Npecl(M,))) C
Nyl (Npeint (™ (Npecl(M,)))) U Nyeint (Npecl (R (Nyecl (M,)))).

(vi) = (i): Let pt be any N,,.P of X; and M, any N,.0s of X, containing h(pt). Then, pt €
h='(M,) C Npuec(Nyeint(h™ (Nyecl(M,)))) U Npeint (Nyecl (R (N,ecl(M,)))). It follows from
Lemma 4.1, h is WeN,,.yCts. -

Theorem 4.2.

Let h be a map, then the following statements are equivalent.
(1) his WeN,yCts;
(i) Npeyel(h ™ (Npeint(Nyecl(M,)))) C B (Nyecl(M,)) for each M, € N, .vOS(X5);
(iii) Npeyel(h™H(M,)) C h™ (Npecl(M,)) for each M, € N,,.POS(X5);
(iv) h™*(M,) C Nuyint(h™Y(Npecl(M,))) for each M, € N,.POS(X,);

(V) Npevel (B Y (Nyeint(Npecl(M,)))) C h™H(Npecl(M,)) for each M, € N,,.SOS(X5).
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Proof:

(i) = (ii): Let M, be any N,,.vos of Xs. Then, N,,.cl(M,) is N, rcs. Since h is WeN,,.yCts, from
Theorem 4.1 we have N, .ycl(h™ Y (N, int(Nyecl(M,)))) C h™(Npecl (M,)).

(ii) = (iii): Clear, since N,,;POS(Xs) C N,.vOS(Xs3) and M, C N, int(Ny.cl(M,)).
(i11) = (iv): This is similar to the proof of the implication (iv) = (v) in Theorem 4.1.
(iv) = (i): This follows from Theorem 4.1, since every NV,,.0s is N, Pos. =

Lemma 4.2.

If his WeN,.yCts and g is N,,.Cts, then the composition g o h : (X1, NpI') — (X3, Ny ®) is
WeN,.~yCts.

Proof:

Let pt € X, and K, be a N,,.0s of X3 containing g(h(pt)). Then, g7*(K,) is a N,.0s of X5
containing h(pt) and there exists M, € N,.yOS(X;) such that h(M,) C N,.cl(g7'(K,)). Since
g is N,,.Cts, we obtain (g o h)(M,) C g(Nncl(g7(K,))) C g(g7 (Nuecl(Ky))) C Npecl(K,). m

5. N -neutrosophic Crisp v-contra Continuous Function

Definition 5.1.

A map h is said to be a N-neutrosophic crisp 7y contra continuous (briefly, N, .yC'Cts) function if
the inverse image of each N,,.0s K, in (Xa, N,,.V) is a N,.yes setin (Xq, Ny I).

Example 5.1.

Let X = {l,,mo,n0,0,} = Y, nen = {on, XN, L,M,N}, et = {én,Xn}. L =

{lo} {0}, {mo, 10, 00})s M = ({mo, 10}, {0}, {lo,00})s N = ({lo,m0, 10}, {0}, {0}). Then,
we have 2nc7— = {¢N7XN7L7M7N}- nc\Ijl = {¢N7YN70aP}’ nc\DZ = {¢NaYN}- O =

({lo, 00}, {0}, {mo,n0})s P = ({mo,n0}, {0}, {ls,00}), then we have 2,V = {én, Yy, O, P}.
Leth: (X,2,.7) = (Y, 2,.¥) be an identity function. Then, h is a 2,,,yCC'ts.

Theorem 5.1.

Let h be a map, then the following statements are equivalent.
(1) hisa N,.yCCts function;
(i) h~Y(M,) is a N,.ves setin Xy, for each N,.0s M, in Xo.

Proof:

(i) = (i1): Let h be any N,,.yC'C'ts function and let M, be any N,,.0s in X5. Then, M, is a N,.cs
in X5. Based on these assumptions, h_l(ﬁo) is a N,.vos in X;. Hence, h_l(Mo) is a N,.ycs in

https://digitalcommons.pvamu.edu/aam/vol18/iss1/12
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Xi.

(i1) = (i): Same way. [ |
Theorem 5.2.

Let h be a bijective mapping. Then, h is N,,.,yCCts, if N,.cl(h(K,)) C h(N,yint(K,)), for each
ncs K, in X;.

Proof:

Let M, be any N,.cs in Xj. Then, N,.cl(M,) = M, and h is onto, by assumption,
which shows that h(N,.yint(h=*(M,))) 2 Npcl(h(h7Y(M,))) = Npc(M,) = M,.
Hence, h~'(h(N,yint(h™'(M,)))) 2 h7'(M,). Since h is an into mapping, we have
Npeyint(h=Y(M,)) = h= Y (h(Npeyint(h=1(M,)))) D h™1(M,). Therefore, N,,.yint(h=*(M,)) =
h=Y(M,), so h=(M,) is a N,,.yos in X;. Hence, h is a N,,,yCCts mapping. =

Theorem 5.3.

Let h be a map, then the following statements are equivalent.
(1) hisa N,.yCCts map;

(i) For each NP ptop, pi,pt,) € X1 and Nyccs M, containing h(pt (e, pi, pts)), there exists a
Nyeyos K, in Xy containing pt e, pt, pt,) such that M, C h™'(K,);

(iii) For each NP pt(p, ptopt;) € X1 and Nyccs M, containing h(ptpe, pt, pts))> there exists a
Npeyos K, in X containing pt e, pi, pt,) such that h(K,) C M,.

Proof:

(i) = (ii): Let h be a N,,.yC'Cts mapping, let M, be any N, .cs in X, and let pt (s, pt, pt,) be @ Ny P
in X; and such that a(pt e, pt, pts)) € Mo. Then, pti, i, prs) € K™ HM,) = nc’ymt(h Y(M,)).
Let K, = N,.yint(h='(M,)). Then, K, is a N,.yos and K, = N,.yint(h~'(M,)) C h™'(M,).

(ii) = (iii): The results follow from evident relations h(K,) C h(h~1(M,)) C M,.

(iii) = (1): Let M, be any N,,.cs in X, and let pt , pt, pt,) b€ @ Ny P in Xy such that pt ¢, pe, pr,) €
h=Y(M,). Then, h(pt(pt, pt, pts)) € Mo. According to the assumption, there exists a N,.yos K, in
X such that pt(p, pr, pts) € K, and h(K,) C M,. Hence, ptp, pt, pt,) € Ko € h7HA(K,)) C
h=Y(M,). Therefore, pt(pt, pt, pts) € Ko = Npeyint(K,) C Nypeyint(h™(M,)). Since pt e, pry pts)
is an arbitrary N,,.P and h='(M,) is the union of all N,,.P’s in h~*(M,,), we obtain that h~*(M,) C
Npeyint(h=Y(M,)). Thus, h is a N,,.yCC'ts mapping. -
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6. Application: Neutrosophic Score Function

In this section, we present a neutrosophic score function based on methodical approach for
decision-making problem with neutrosophic information.

Definition 6.1.

Let N; = (u;, 04,7), t = 1,2,3, -+ | k be neutrosophic sets, then the neutrosophic score function
(shortly, NSF(N;)) is defined by NSF(N;) = gty [ X522 4 i — 0 - %]] .

The following essential steps are proposed the precise way to deal with select the proper attributes
and alternative in the decision-making situation.

Step 1: Consider the universe of discourse (set of objects) tq, s, - ,t,,, the set of alternatives
T1,T2, " , Tn, the set of decision attributes vy, v, - -+, 1.

Step 2: Construct a neutrosophic matrix of alternative verses objects and object verses decision
attributes.

Step 3: Construct the neutrosophic topologies 7;* and v
Step 4: Find the score values by Definition 6.1 of each of the entries of the NT'S.

Step 5: Arrange neutrosophic score values for the alternatives 7; < 75 < --- < 7, and the attributes

v1 < vy < --- < v, Choose the attribute v, for the alternative 7; and v,_; for the alternative 7,
etc. If n < p, then ignore vy, where k = 1,2,--- . n — p.
Example 6.1.

Medical diagnosis has increased volume of data accessible to doctors from new medical inno-
vations and includes vulnerabilities. In medical diagnosis, very difficult task is the way toward
classifying different set of symptoms under a single name of an illness. In this part, we exemplify
a medical diagnosis problem for effectiveness and applicability of above proposed approach.

Step 1: Consider the following tables giving informations when consulted physicians about four
patients, Jhon, Bob, Raja and Thaya and symptoms is a universe of discourse are Temperature
(Temp), Headache (Ha), Stomach pain (Spa), Cough (co) and Chest pain (Cpa). We need to find
the patient and to find the disease such as Viral fever (Vf), Malaria (Ma), Stomach problem (Sp),
Typhoid (Ty) and Chest problem (Cp) of the patient. The data in Table 1 and Table 2 are explained
by the membership, the indeterminacy and the non-membership functions of the patients and dis-
eases respectively.

Step 2: Construct a neutrosophic matrix of alternative verses objects and object verses decision
attributes.

Step 3: Construct the neutrosophic topologies 7;* and v

https://digitalcommons.pvamu.edu/aam/vol18/iss1/12
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Table 1. Neutrosophic values for patients

SymptomsPatients

Jhon

Bob

Raja

Thaya

Temperature

(0.8,0.1,0.1)

(0.0,0.2,0.8)

(0.8,0.1,0.1)

(0.6,0.3,0.1)

Headache

(0.6,0.3,0.1)

(0.4,0.2,0.4)

(0.8,0.1,0.1)

(0.5,0.1,0.4)

Stomach pain

(0.2,0.0,0.8)

(0.6,0.3,0.1)

(0.0,0.4,0.6)

(0.3,0.3,0.4)

Cough

(0.6,0.3,0.1)

(0.1,0.2,0.7)

(0.2,0.1,0.7)

(0.7,0.1,0.2)

Chest pain

(0.1,0.3,0.6)

(0.1,0.1,0.8)

(0.0,0.5,0.5)

(0.3,0.3,0.4)

Table 2. Neutrosophic values for disease

15

DiseaseSymptoms

Temperature

Headache

Stomach pain

Cough

Chest pain

Viral fever

(0.4,0.6,0.0)

(0.3,0.2,0.5)

(0.1,0.2,0.7)

(0.4,0.3,0.3)

(0.1,0.2,0.7)

Malaria

(0.7,0.3,0.0)

(0.2,0.2,0.6)

(0.0,0.1,0.9)

(0.7,0.3,0.0)

(0.1,0.1,0.8)

Stomach problem

(0.1,0.2,0.7)

(0.2,0.4,0.4)

(0.8,0.2,0.0)

(0.2,0.1,0.7)

(0.2,0.1,0.7)

Typhoid

(0.3,0.4,0.3)

(0.6,0.3,0.1)

(0.2,0.1,0.7)

(0.2,0.2,0.6)

(0.1,0.0,0.9)

Chest problem

(0.1,0.1,0.8)

(0.0,0.2,0.8)

(0.2,0.0,0.8)

(0.2,0.0,0.8)

(0.8,0.1,0.1)

Neutrosophic topologies for patients are 7,

O =

0.1),(0.2,0.3,0.6), (0.6,0.1,0.1), (0.1,0.1,0.6), (0.1, 0.0, 0.8) }.

(i) 75 =

0,0.1,0.8)}.

{(0,0,1),(1,1,0),(0.8,0.1,0.1), (0.6,0.3,0.1), (0.2,0.0,0.8), (0.1, 0.3, 0.6), (0.8, 0.3,

{(0,0,1),(1,1,0), (0.0,0.2,0.8), (0.4,0.2,0.4), (0.6,0.3,0.1), (0.1,0.2,0.7), (0.1,0.1,
0.8),(0.1,0.2,0.8), (0.

Gii) 72 = {(0,0,1),(1,1,0),(0.8,0.1,0.1), (0.0,0.4,0.6), (0.2,0.1,0.7), (0.0, 0.5, 0.5), (0.8, 0.4,
0.1), (0.8,0.5,0.1), (0.2,0.4,0.6), (0.2,0.5,0.5), (0.0, 0.1, 0.6), (0.0, 0.1, 0.5), (0.0,0.1,0.7)}.

Gv) 77 = {(0,0,1),(1,1,0),(0.6,0.3,0.1), (0.5,0.1,0.4), (0.3,0.3,0.4), (0.7,0.1,0.2), (0.7,0.3,
0.1),(0.5,0.3,0.4), (0.7,0.3,0.2), (0.6,0.1,0.2), (0.3,0.1,0.4)}.

Neutrosophic topologies for diseases are v/;":

() v; = {(0,0,1), (1,1,0), (0.4,0.6,0.0), (0.3,0.2,0.5), (0.1,0.2,0.7), (0.4,0.3,0.3) }.

(i) v3 = {(0,0,1), (1,1,0), (0.7,0.3,0.0), (0.2,0.2,0.6), (0.0,0.1,0.9), (0.1,0.1,0.8) }.

Gii) v = {(0,0,1),(1,1,0),(0.1,0.2,0.7), (0.2,0.4,0.4), (0.8,0.2,0.0), (0.2,0.1,0.7), (0.2, 0.2,
0.7, (0.8,0.4,0.0), (0.1,0.1,0.7), (0.2,0.2,0.4)}.

(v) i = {(0,0,1),(1,1,0),(0.3,0.4,0.3), (0.6,0.3,0.1), (0.2,0.1,0.7), (0.2,0.2,0.6), (0.1, 0.0,
0.9), (0.6,0.4,0.1), (0.3,0.3,0.3)}.

V) vs =
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0.8),(0.2,0.1,0.8), (0.2,0.2,0.8), (0.8,0.2,0.1), (0.0, 0.1, 0.8), (0.1, 0.0, 0.8), (0.0, 0.0, 0.8), (0.0,
0.1,0.8)}.

Step 4: Find the neutrosophic score values.
Neutrosophic score values for the patients are

NSF(r;) = 0.5818, NSF(73) = 0.4666, NSF(73) = 0.5076, NSF(74) = 0.6545.

ﬁHNeutrosophic score value

=5
» 061 e :
L
=
g 04p i
=
(t;J; 0.2 1 8
0
Jhon Bob Raja Thaya

Figure 2. Neutrosophic score values for patients

Neutrosophic score values for the diseases are

NSF(v) = 05222, NSF(1,) = 0.5, NSF(v3) = 0.54, NSF(vy) = 0.5407, NSF(v5) =
0.4761.

H .
“Neutrosophlc score value
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Figure 3. Neutrosophic score values for diseases

Step 5: Arrange neutrosophic score values for the alternatives 71,79, 73,7, and the attributes
vy, V9, V3, Vg, V5 10 run-up order. We consider the sequences below , < 73 < 7 < 74 and
vs < vy < 11 < 13 < vy Thus, the patient Jhon suffers from Viral fever, the patient Bob suf-
fers from Stomach problem, the patient Raja suffers from Typhoid, and the patient Thaya suffers
from Malaria.
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7. Conclusion

In this article, we have examined some new types of N-neutrosophic crisp ~y-continuous,
weakly N-neutrosophic crisp y-continuous, N-neutrosophic crisp y-contra continuous maps in
N-neutrosophic crisp topological spaces and we analysed the difference between these maps.
This can be improved to N-neutrosophic crisp ~y-irresolute function, N-neutrosophic crisp -
homeomorphism functions of N-neutrosophic crisp topological spaces are the further research ar-
eas can be covered in future tasks. Finally, we applied a neutrosophic score function in a medical
diagnosis problem along with graphical representation.
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