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Abstract

The aim of this article is to introduce a new type of continuous functions such as N-neutrosophic
crisp γ continuous and weakly N-neutrosophic crisp γ continuous functions in a N-neutrosophic
crisp topological space and also discuss a relation between them in N-neutrosophic crisp topo-
logical spaces. We also investigate some of their properties in N-neutrosophic crisp γ continuous
function via N-neutrosophic crisp topological spaces. Further, a contra part of continuity called
N-neutrosophic crisp γ-contra continuous map in a N-neutrosophic crisp topology is also initiated.
Finally, an application based on neutrosophic score function of medical diagnosis is examined with
graphical representation.
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2 A. Vadivel and C. John Sundar

1. Introduction

In mathematics, a idea of a fuzzy set between the intervals was first presented by Zadeh (1965)
in order of logic and set hypothesis. The general topology has been system with fuzzy set was
attempted by Chang (1968) as fuzzy topological space. Adlassnig (1986) applied fuzzy set the-
ory to formalize medical relationships and fuzzy logic to mechanized analysis framework. This
hypothesis (Innocent and John (2004); Roos (1994); Sugeno (1985)) has been utilized in the
fields of man-made brainpower, likelihood, science, control frameworks and financial aspects.
In 1983, Atanassov (1986) started intuitionistic fuzzy set which contains a membership and non-
membership values. Coker (1997) made intuitionistic fuzzy set in a topology entitled as intuitionis-
tic fuzzy topological spaces. De et al. (2001) was the first to built up the uses of intuitionistic fuzzy
sets in medical diagnosis. Several researchers (Biswas et al. (2014); Khatibi and Montazer (2009);
Szmidt and Kacprzyk (2001)) further examined intuitionistic fuzzy sets in medical diagnosis.

In our daily routine, we have used crisp sets in most of our life. The concepts of neutrosophy
and neutrosophic set by Smarandache (1999) are the recent tools in a topological space. It was
first introduced by Smarandache (2002) in the beginning of 21th century. Salama et al. (2014)
has provided the basic concept of neutrosophic crisp set in a topological space. After that
Al-Omeri (2016) also investigated some fundamental properties of neutrosophic crisp topological
spaces. Al-Hamido et al. (2018) explore the possibility of expanding the concept of neutrosophic
crisp topological spaces into N -topology and investigate some of their basic properties in N -terms.
By using N -terms of topological spaces, we can define 1ncts, 2ncts, · · · , Nncts.

Andrijevic (1996) introduced b-open sets and develop some of their works in general topology.
The notion of γ-open set in topological spaces was introduced by Min (2002) and worked in the
field of general topology. Vadivel and Sundar (2020) presented γ-open sets in neutrosophic crisp
topological spaces via N -terms of N -neutrosophic crisp topology.

Smarandache (2002) described the single valued Neutrosophic set on three portion (T-Truth, F-
Falsehood, I-Indeterminacy) neutrosophic sets and further concentrated by Wang et al. (2010).
Majumdar and Samanta (2014) characterized some similarity measures of single valued neutro-
sophic sets in decision making problems. Recently many researchers (Abdel et al. (2019), Broumi
and Smarandache (2013), Nabeeh et al. (2019), Thanh and Ali (2017), Ye and Zhang (2014), and
Ye and Ye (2015)) presented several similarity measures and single-valued neutrosophic sets in
medical diagnosis. Applications based on neutrosophic score function by authors in various fields
are Smarandache (2020), Vadivel and Sundar (2021), Vadivel et al. (2022), etc.

In this present work, we extend the open sets into a continuous functions such as N -neutrosophic
crisp γ continuous and weakly N -neutrosophic crisp γ continuous functions in Nncts. Also, we
study and investigate some of their fundamental properties in Nncts. Also, N -neutrosophic crisp
γ contra continuous function in a N -neutrosophic crisp topological space is also discussed here.
Finally, an application based on neutrosophic score function of medical diagnosis is examined with
graphical representation.
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2. Preliminaries

Some basic definitions and properties of N -neutrosophic crisp topological spaces are discussed
in this section. A neutrosophic crisp set (briefly, ncs), ∅N , YN , subset, union, intersection and
complement (briefly, Ko

c) are defined by Salama and Smarandache (2015). A neutrosophic crisp
topology (briefly, nct) and neutrosophic crisp topological space (briefly, ncts) are defined by
Salama et al. (2014). A N -neutrosophic crisp sets (briefly, Nncs), N -neutrosophic crisp (briefly,
Nnc) topology, N -neutrosophic crisp topological space (briefly, Nncts), N -neutrosophic crisp open
set (briefly, Nncos), N -neutrosophic crisp closed set (briefly, Nnccs), N -neutrosophic crisp inte-
rior of Ko (briefly, Nncint(Ko)), N -neutrosophic crisp closure of Ko (briefly, Nnccl(Ko)), N -
neutrosophic crisp pre open set (briefly, NncPos), N -neutrosophic crisp semi open set (briefly,
NncSos), N -neutrosophic crisp α-open set (briefly, Nncαos) and their respective closed sets are
defined by Al-Hamido et al. (2018). A N -neutrosophic crisp regular open set (briefly, Nncros),
N -neutrosophic crisp γ-open set (briefly, Nncγos) and their respective closed sets are defined by
Vadivel and Sundar (2020). The family of all Nncos of X is denoted by NncOS(X) and respective
other open sets and closed sets. A N -neutrosophic crisp continuous (briefly, NncCts) is defined by
Thivagar et al. (2018).

For an application part, some basic definitions such as neutrosophic sets, empty set, whole set,
union and intersection of neutrosophic set, neutrosophic topological spaces (briefly, NTS) are
defined by Salama and Smarandache (2015) and Vadivel and Sundar (2021).

3. N -neutrosophic crisp γ continuous maps

Here we study about N -neutrosophic crisp γ continuous maps and their properties in Nncts.
Throughout Sections 3, 4 and 5, let (X1, NncΓ), (X2, NncΨ) and (X3, NncΦ) be any Nncts’s. Let
h and g be a maps defined as h : (X1, NncΓ) → (X2, NncΨ) and g : (X2, NncΨ) → (X3, NncΦ)
in a Nncts. Let Ko and Mo be a Nncs’s in Nncts.

Definition 3.1.

A map h is said to be N -neutrosophic crisp γ (respectively, α, semi , pre and regular) continuous
(briefly, NncγCts (respectively, NncαCts, NncSCts, NncPCts and NncrCts)) if the inverse image
of every Nncos in (X2, NncΨ) is a Nncγos (respectively, Nncαos, NncSos, NncPos and Nncros)
in (X1, NncΓ).

Example 3.1.

Let X = {lo,mo, no, oo, po}, ncτ1 = {ϕN , XN , L,M,N}, ncτ2 = {ϕN , XN}. L = ⟨{no},
{ϕ}, {lo,mo, oo, po}⟩, M = ⟨{lo,mo}, {ϕ}, {no, oo, po}⟩, N = ⟨{lo,mo, no}, {ϕ}, {oo, po}⟩, then
2ncτ = {ϕN , XN , L,M,N}.

Let h : (X, 2ncτ) → (X, 2ncτ) be an identity function. Then, h is 2ncCts, 2ncαCts, 2ncSCts,
2ncPCts and 2ncγCts.
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4 A. Vadivel and C. John Sundar

Theorem 3.1.

The statements are true for a map h but not converse.

(i) Every NncrCts is a NncCts.

(ii) Every NncCts is a NncαCts.

(iii) Every NncαCts is a NncSCts.

(iv) Every NncαCts is a NncPCts.

(v) Every NncSCts is a NncγCts.

(vi) Every NncPCts is a NncγCts.

Proof:

(i) Let h : (X1, NncΓ) → (X2, NncΨ) be a NncrCts and Ko is a Nncos in X2. Then h−1(Ko)
is Nncros in X1. Since every Nncro is Nnco by Proposition 3.2 in Vadivel and Sundar (2020),
h−1(Ko) is Nncos in X1. Therefore, h is NncCts.

(ii) Let h : (X1, NncΓ) → (X2, NncΨ) be a NncCts and Ko is a Nncos in X2. Then h−1(Ko) is
Nncos in X1. Since every Nnco is Nncαo by Proposition 3.2 in Vadivel and Sundar (2020), h−1(Ko)
is Nncαos in X1. Therefore, h is NncαCts.

(iii) Let h : (X1, NncΓ) → (X2, NncΨ) be a NncαCts and Ko is a Nncos in X2. Then h−1(Ko)
is Nncαos in X1. Since every Nncαo is NncSo by Proposition 3.2 in Vadivel and Sundar (2020),
h−1(Ko) is NncSos in X1. Therefore, h is NncSCts.

(iv) Let h : (X1, NncΓ) → (X2, NncΨ) be a NncαCts and Ko is a Nncos in X2. Then h−1(Ko)
is Nncαos in X1. Since every Nncαo is NncPo by Proposition 3.2 in Vadivel and Sundar (2020),
h−1(Ko) is NncPos in X1. Therefore, h is NncPCts.

(v) Let h : (X1, NncΓ) → (X2, NncΨ) be a NncSCts and Ko is a Nncos in X2. Then h−1(Ko)
is NncSos in X1. Since every NncSo is Nncγo by Proposition 3.2 in Vadivel and Sundar (2020),
h−1(Ko) is Nncγos in X1. Therefore, h is NncγCts.

(vi) Let h : (X1, NncΓ) → (X2, NncΨ) be a NncPCts and Ko is a Nncos in X2. Then h−1(Ko)
is NncPos in X1. Since every NncPo is Nncγo by Proposition 3.2 in Vadivel and Sundar (2020),
h−1(Ko) is Nncγos in X1. Therefore, h is NncγCts. ■

Example 3.2.

In Example 3.1, h is 2ncCts but not 2ncrCts, the set h−1(N) = N is a 2ncos but not a 2ncros.
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Figure 1. NncγCts function in Nncts.

Example 3.3.

Let X = {lo,mo, no, oo}, ncτ1 = {ϕN , XN , ⟨{lo, oo}, {ϕ}, {mo, no}⟩}, ncτ2 = {ϕN , XN},
then we have 2ncτ = {ϕN , XN , ⟨{lo, oo}, {ϕ}, {mo, no}⟩}. Let Y = {wo, xo, yo, zo},
ncΨ1 = {ϕN , YN ,W,X, Y }, ncΨ2 = {ϕN , YN}. W = ⟨{xo}, {ϕ}, {wo, yo, zo}⟩,
X = ⟨{wo, yo}, {ϕ}, {xo, zo}⟩, Y = ⟨{wo, xo, yo}, {ϕ}, {zo}⟩, then we have 2ncΨ =
{ϕN , YN ,W,X, Y }.

Define h : (X, 2ncτ) → (Y, 2ncΨ) as h(lo) = yo, h(mo) = yo, h(no) = zo and h(oo) = wo,
then 2ncαCts but not 2ncCts, the set h−1(⟨{wo, yo}, {ϕ}, {xo, zo}⟩) = ⟨{lo,mo, oo}, {ϕ}, {no}⟩ is
a 2ncαos but not 2ncos.

Example 3.4.

Let X = {lo,mo, no, oo}, ncτ1 = {ϕN , XN , L,M,N}, ncτ2 = {ϕN , XN}. L =
⟨{no}, {ϕ}, {lo,mo, oo}⟩, M = ⟨{lo,mo}, {ϕ}, {no, oo}⟩, N = ⟨{lo,mo, no}, {ϕ}, {oo}⟩, then
we have 2ncτ = {ϕN , XN , L,M,N}. Let Y = {wo, xo, yo, zo}, ncΨ1 = {ϕN , YN ,W,X, Y },
ncΨ2 = {ϕN , YN}. W = ⟨{xo}, {ϕ}, {wo, yo, zo}⟩, X = ⟨{wo, yo}, {ϕ}, {xo, zo}⟩, Y =
⟨{wo, xo, yo}, {ϕ}, {zo}⟩, then we have 2ncΨ = {ϕN , YN ,W,X, Y }.

Define h : (X, 2ncτ) → (Y, 2ncΨ) as h(lo) = zo, h(mo) = yo, h(no) = yo and h(oo) =
wo, then 2ncSCts (respectively, 2ncγCts) but not 2ncαCts (respectively, 2ncPCts), the set
h−1(⟨{wo, yo}, {ϕ}, {xo, zo}⟩) = ⟨{mo, no, oo}, {ϕ}, {lo}⟩ is a 2ncSos (respectively, 2ncγos) but
not 2ncαos (respectively, 2ncPos).

Example 3.5.

In Example 3.4, Define h : (X, 2ncτ) → (Y, 2ncΨ) as h(lo) = wo, h(mo) = xo, h(no) = zo and
h(oo) = yo, then 2ncPCts (respectively, 2ncγCts) but not 2ncαCts (respectively, 2ncSCts), the
set h−1(⟨{xo}, {ϕ}, {wo, yo, zo}⟩) = ⟨{mo}, {ϕ}, {lo, no, oo}⟩ is a 2ncPos (respectively, 2ncγos)

5
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6 A. Vadivel and C. John Sundar

but not 2ncαos (respectively, 2ncSos).

Remark 3.1.

A map h satisfies the following statements are equivalent.

(i) h is NncγCts.

(ii) The inverse h−1(Ko) of each Nncos Ko in X2 is Nncγos in X1.

Theorem 3.2.

A map h satisfies the statements are equivalent.

(i) h(Nncγcl(Ko)) ⊆ Nnccl(h(Ko)), for all ncs Ko in X1;

(ii) Nncγcl(h
−1(Mo)) ⊆ h−1(Nnccl(Mo)), for all ncs Mo in X2.

Proof:

(i) Since Nnccl(h(Ko)) is a Nnccs in X2 and h is NncγCts, then h−1(Nnccl(h(Ko))) is Nncγc
in X1. Now, since Ko ⊆ h−1(Nnccl(h(Ko))), Nncγcl(Ko) ⊆ h−1(Nnccl(h(Ko))). Therefore,
h(Nncγcl(Ko)) ⊆ Nnccl(h(Ko)).

(ii) By replacing Ko with Mo in (i), we obtain h(Nncγcl(h
−1(Mo))) ⊆ Nnccl(h(h

−1(Mo))) ⊆
Nnccl(Mo). Hence, Nncγcl(h

−1(Mo)) ⊆ h−1(Nnccl(Mo)). ■

Remark 3.2.

If h is NncγCts, then:

(i) h(Nncγcl(Ko)) is not necessarily equal to Nnccl(h(Ko)) where Ko ⊆ X1.

(ii) Nncγcl(h
−1(Mo)) is not necessarily equal to h−1(Nnccl(Mo)) where Mo ⊆ X2.

Example 3.6.

In Example 3.1, h is a NncγCts.

(i) Let Ko = ⟨{lo,mo}, {ϕ}, {no, oo, po}⟩ ⊆ X . Then, h(2ncγcl(Ko)) = h(2ncγcl(⟨{lo,mo}, {ϕ},
{no, oo, po}⟩)) = h(⟨{lo,mo}, {ϕ}, {no, oo, po}⟩) = ⟨{lo,mo}, {ϕ}, {no, oo, po}⟩. But
2nccl(h(Ko)) = 2nccl(h(⟨{lo,mo}, {ϕ}, {no, oo, po}⟩)) = 2nccl(⟨{lo,mo}, {ϕ}, {no, oo, po}⟩) =
⟨{lo,mo, oo, po}, {ϕ}, {no}⟩. Thus, h(2ncγcl(Ko)) ̸= 2nccl(h(Ko)).

(ii) Let Mo = ⟨{lo}, {ϕ}, {mo, no, oo, po}⟩ ⊆ Y . Then, 2ncγcl(h−1(Mo)) ⊆ 2ncγcl(h
−1(⟨{lo},

{ϕ}, {mo, no, oo, po}⟩)) = 2ncγcl(⟨{lo}, {ϕ}, {mo, no, oo, po}⟩). But h−1(2nccl(Mo)) =
h−1(2nccl(⟨{lo}, {ϕ}, {mo, no, oo, po}⟩)) = h−1(Y ) = X . Thus, 2ncγcl(h

−1(Mo)) ̸=
h−1(2nccl(Mo)).
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Theorem 3.3.

Let h be a function, then h−1(Nncint(Ko)) ⊆ Nncγint(h
−1(Ko)), for all ncs Ko in X2.

Proof:

If h is NncγCts and Ko ⊆ X2. Nncint(Ko) is Nnco in X2 and hence, h−1(Nncint(Ko)) is
Nncγo in X1. Therefore, Nncγint(h

−1(Nncint(Ko))) = h−1(Nncint(Ko)). Also, Nncint(Ko) ⊆
Ko, implies that h−1(Nncint(Ko)) ⊆ h−1(Ko). Therefore, Nncγint(h

−1(Nncint(Ko))) ⊆
Nncγint(h

−1(Ko)). That is, h−1(Nncint(Ko)) ⊆ Nncγint(h
−1(Ko)).

Conversely, let h−1(Nncint(Ko)) ⊆ Nncγint(h
−1(Ko)) for every subset Ko of X2. If Ko is

Nnco in X2, then Nncint(Ko) = Ko. By assumption, h−1(Nncint(Ko)) ⊆ Nncγint(h
−1(Ko)).

Thus, h−1(Ko) ⊆ Nncγint(h
−1(Ko)). But Nncγint(h

−1(Ko)) ⊆ h−1(Ko). Therefore,
Nncγint(h

−1(Ko)) = h−1(Ko). That is, h−1(Ko) is Nncγo in X1, for every Nncos Ko in X2.
Therefore, h is NncγCts on X1. ■

Remark 3.3.

If h is NncγCts, then Nncγint(h
−1(Ko)) is not necessarily equal to h−1(Nncint(Ko)) where Ko ⊆

X2.

Example 3.7.

In Example 3.1, h is a 2ncγCts. Let Ko = ⟨{lo, no}, {ϕ}, {mo, oo, po}⟩ ⊆ Y .
Then, 2ncγint(h

−1(Ko)) ⊆ 2ncγint(h
−1(⟨{lo, no}, {ϕ}, {mo, oo, po}⟩)) = 2ncγint(⟨{lo, no},

{ϕ}, {mo, oo, po}⟩) = ⟨{lo, no}, {ϕ}, {mo, oo, po}⟩. But h−1(2ncint(Ko)) = h−1(2ncint(⟨{lo,
no}, {ϕ}, {mo, oo, po}⟩)) = h−1(⟨{no}, {ϕ}, {lo,mo, oo, po}⟩) = ⟨{no}, {ϕ}, {lo,mo, oo, po}⟩.
Thus, 2ncγint(h−1(Ko)) ̸= h−1(2ncint(Ko)).

Definition 3.2.

Let Ko = ⟨K1, K2, K3⟩ a Nncs on X , then pt = ⟨pt1, pt2, pt3⟩, pt1 ̸= pt2 ̸= pt3 ∈ X is called a
N -neutrosophic crisp point (briefly, NncP ).

A NncP , pt = ⟨pt1, pt2, pt3⟩ belongs to a Nncs Ko = ⟨K1, K2, K3⟩ of X , denoted by pt ∈ Ko, if
it may be defined in two ways,

(i) {pt1} ⊆ K1, {pt2} ⊆ K2 & {pt3} ⊇ K3, or

(ii) {pt1} ⊆ K1, {pt2} ⊇ K2 & {pt3} ⊇ K3.

Theorem 3.4.

Let h be a map, then the following statements are equivalent.

(i) h is a NncγCts function;

(ii) For every NncP pt(pt1,pt2,pt3) ∈ X1 and each ncs Ko of h(pt(pt1,pt2,pt3)), ∃ a Nncγos Mo such

7
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8 A. Vadivel and C. John Sundar

that pt(pt1,pt2,pt3) ∈ Mo ⊆ h−1(Ko);

(iii) For every Nnc point pt(pt1,pt2,pt3) ∈ X1 and each ncs Ko of h(pt(pt1,pt2,pt3)), ∃ a Nncγos Mo

such that pt(pt1,pt2,pt3) ∈ Mo and h(Mo) ⊆ Ko.

Proof:

(i) ⇒ (ii): If pt(pt1,pt2,pt3) is a NncP in X1 and if Ko is a ncs of h(pt(pt1,pt2,pt3)), then there exists an
Nncos W in X2 such that h(pt(pt1,pt2,pt3)) ∈ W ⊂ Ko. Thus, h is a NncγCts, Mo = h−1(W ) is a
Nncγos and pt(pt1,pt2,pt3) ∈ h−1(h(pt(pt1,pt2,pt3))) ⊆ h−1(W ) = Mo ⊆ h−1(Ko). Thus, (ii) is a valid
statement.

(ii) ⇒ (iii): Let pt(pt1,pt2,pt3) be a NncP in X1 and let Ko be a ncs of h(pt(pt1,pt2,pt3)). Then, there
exists a Nncγos Mo such that pt(pt1,pt2,pt3) ∈ Mo ⊆ h−1(Ko) by (ii). Thus, we have pt(pt1,pt2,pt3) ∈
Mo and h(Mo) ⊆ h(h−1(Ko)) ⊆ Ko. Hence, (iii) is valid.

(iii) ⇒ (i): Let Ko be a Nncos in X2 and let pt(pt1,pt2,pt3) ∈ h−1(Ko). Then, h(pt(pt1,pt2,pt3)) ∈
h(h−1(Ko)) ⊂ Ko. Since Ko is a Nncos, it follows that Ko is a ncs of h(pt(pt1,pt2,pt3)). Therefore,
from (iii), there exists a Nncγos Mo such that pt(pt1,pt2,pt3) and h(Mo) ⊆ Ko. This implies that
pt(pt1,pt2,pt3) ∈ Mo ⊆ h−1(h(Mo)) ⊆ h−1(Ko). Therefore, we know that h−1(Ko) is a Nncγos in
X1. Thus, h is a NncγCts function. ■

Theorem 3.5.

Let h be a map, then the following statements are equivalent.

(i) h is a NncγCts function;

(ii) For each pt(pt1,pt2,pt3) ∈ X1 each Nncos Mo ⊂ X2 containing h(pt(pt1,pt2,pt3)), there exists a
Nncγos L ⊂ X1 containing pt(pt1,pt2,pt3) such that h(L) ⊂ Mo.

Proof:

(i) ⇒ (ii): Let Mo be any Nncos of X2 containing h(pt(pt1,pt2,pt3)), then h−1(Mo) ∈ NncγOS(X1).
The set L = h−1(Mo) which containing pt(pt1,pt2,pt3), then h(L) ⊂ Mo.

(ii) ⇒ (i): Let Mo ⊂ X2 be Nncos and let pt(pt1,pt2,pt3) ∈ h−1(Mo). Then, h(pt(pt1,pt2,pt3)) ∈
Mo and thus there exists Lp ∈ NncγOS(X1) such that pt(pt1,pt2,pt3) ∈ Lp and h(Wp) ⊂ Mo.
Then, pt(pt1,pt2,pt3) ∈ Lp ⊂ h−1(Mo), and so h−1(Mo) =

⋃
p∈h−1(Mo)

Lp but
⋃

p∈h−1(Mo)
Lp ∈

NncγOS(X1), then, h−1(Mo) ∈ NncγOS(X1). Therefore, h is NncγCts. ■

Theorem 3.6.

Let h be a map. Then, the following statements are equivalent.

(i) h is a NncγCts function;

(ii) The inverse image of each Nnccs in X2 is Nncγcs;
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(iii) Nncint(Nnccl(h
−1(Ko))) ∩Nnccl(Nncint(h

−1(Ko))) ⊂ h−1(cl(Ko)) for each Ko ⊂ X2;

(iv) h(Nncint(cl(O))) ∩Nnccl(Nncint(O)) ⊂ Nnccl(h(O)) for each O ⊂ X1.

Proof:

(i) ⇒ (ii): Let H ⊂ X2 be Nnccs. Then, X2\H is Nncos. h−1(X2\H) ∈ NncγOS(X1), i.e.,
X1\h−1(H) ∈ NncγOS(X1). Then h−1(H) is Nncγcs.

(ii) ⇒ (iii): Let Ko ⊂ X2, then h−1(Nnccl(Ko)) is Nncγcs in X1, i.e., Nncint(Nnccl(h
−1(Ko)))

∩Nnccl(Nncint(h
−1(Ko))) ⊂ Nncint(Nnccl(h

−1(Nnccl(Ko)))) ∩ Nnccl(Nncint(h
−1(Nnc

cl(Ko)))) ⊂ h−1(Nnccl(Ko)).

(iii) ⇒ (iv): Let O ⊂ X1, Ko = h(O) in (iii) then Nncint(Nnccl(h
−1(h(O)))) ∩ Nnccl(Nnc

int(h−1(h(O)))) ⊂ h−1(Nnccl(h(O))). So that Nncint(Nnccl(O)) ∩ Nnccl(Nncint(O)) ⊂
h−1(Nnccl(h(O))). This gives h(Nncint(cl(O))) ∩Nnccl(Nncint(O)) ⊂ Nnccl(h(O)).

(iv) ⇒ (i): Let Mo ⊂ X2 be Nncos. L = X2\Mo and O = h−1(L), then
h(Nncint(Nnccl(h

−1(L)))) ∩ Nnccl(Nncint(h
−1(L))) ⊂ Nnccl(h(h

−1(L))) ⊂ Nnccl(L) = L,
i.e., h−1(L) is Nncγcs in X1, so h is NncγCts. ■

4. Weakly N -neutrosophic Crisp γ Continuous

Definition 4.1.

A map h is said to be a weakly N -neutrosophic crisp continuous (briefly, WeNncCts) function if
for each pt(pt1,pt2,pt3) ∈ X1 and each Nncos Mo of X2 containing h(pt), there exists an Nncos of
Ko containing pt(pt1,pt2,pt3) such that h(Ko) ⊂ Nnccl(Mo).

Definition 4.2.

A map h is said to be a weakly N -neutrosophic crisp γ continuous (briefly, WeNncγCts) function
if for each pt(pt1,pt2,pt3) ∈ X1 and each Nncos Mo of X2 containing h(pt), there exists Ko ∈
NncγOS(X1) such that h(Ko) ⊂ Nnccl(Mo).

Remark 4.1.

Every WeNncCts function is WeNncγCts function. Also, WeNncγCts function is implied by
NncγCts. The following examples show that the reverse implications are not true in general.

Example 4.1.

Let X = {lo,mo, no, oo} = Y , ncτ1 = {ϕN , XN , L,M,N}, ncτ2 = {ϕN , XN}. L =
⟨{no}, {ϕ}, {lo,mo, oo}⟩, M = ⟨{lo,mo}, {ϕ}, {no, oo}⟩, N = ⟨{lo,mo, no}, {ϕ}, {oo}⟩. Then,
we have 2ncτ = {ϕN , XN , L,M,N}. Let ncΨ1 = {ϕN , YN , O = ⟨{lo,mo}, {ϕ}, {no, oo}⟩},
ncΨ2 = {ϕN , YN , P = ⟨{no, oo}, {ϕ}, {lo,mo}⟩}. Then, we have 2ncΨ = {ϕN , YN , O, P}.
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Define h : (X, 2ncτ) → (Y, 2ncΨ) as identity function, then h is We2ncγCts but not We2ncCts

and 2ncγCts.

Definition 4.3.

Let (X1, NncΓ) be Nncts, pt ∈ NncP in X1, a Nncs Ko = ⟨K1, K2, K3⟩ ∈ Γ is called N -
neutrosophic crisp neighborhood (briefly, Nncnbhd) of p in (X1, NncΓ) if pt ∈ Ko, if there is a
Nncos, Mo = ⟨M1,M2,M3⟩ containing pt such that Mo ⊆ Ko.

Lemma 4.1.

Let h be a map, then the following statements are equivalent.

(i) h is WeNncγCts at pt(pt1,pt2,pt3) ∈ X1;

(ii) pt ∈ Nnccl(Nncint(h
−1(Nnccl(Mo)))) ∪ Nncint(Nnccl(h

−1(Nnccl(Mo)))) for each Nncnbhd
Mo of h(pt);

(iii) h−1(Mo) ⊂ Nncγint(h
−1(Nnccl(Mo))) for every Nncos Mo of X2.

Proof:

(i) ⇒ (ii): Let Mo be any Nncnbhd of h(pt). Since h is WeNncγCts at pt, there exist
L ∈ NncγOS(X1) such that h(L) ⊂ Nnccl(Mo). Then, L ⊂ h−1(Nnccl(Mo)). Since L is
Nncγo, pt ∈ L ⊂ Nnccl(Nncint(L)) ∪ Nncint(Nnccl(L)) ⊂ Nnccl(Nncint(h

−1Nnccl(Mo))) ∪
Nncint(Nnccl(h

−1(Nnccl(Mo)))).

(ii) ⇒ (iii): Let pt ∈ h−1(Mo) so h(pt) ∈ Mo. Then, pt ∈ h−1(Nnccl(Mo)) and
since pt ∈ Nnccl(Nncint(h

−1(Nnccl(Mo)))) ∪ Nncint(Nnccl(h
−1(Nnccl(Mo)))). We have

pt ∈ h−1(Nnccl(Mo)) ∩ [Nnccl(Nncint(h
−1(Nnccl(Mo)))) ∪Nncint(Nnccl(h

−1(Nnccl(Mo))))] =
Nncγint(h

−1(Nnccl(Mo))). Hence, h−1(Mo) ⊂ Nncγint(h
−1(Nnccl(Mo))).

(iii) ⇒ (i): Let Mo be any Nncnbhd of h(pt). Then, pt ∈ h−1(Mo) ⊂ Nncγint(h
−1(Nnccl(Mo))).

The set L = Nncγint(h
−1(Nnccl(Mo))) then L ∈ NncγOS(X1) and h(L) ⊂ Nnccl(Mo). This

shows that h is WeNncγCts at pt ∈ X1. ■

Theorem 4.1.

Let h be a map, then the following statements are equivalent.

(i) h is WeNncγCts;

(ii) Nncγcl(h
−1(Nncint(Nnccl(Ko)))) ⊂ h−1(Nnccl(Ko)) for every subset Ko of X2;

(iii) Nncγcl(h
−1(Nncint(F ))) ⊂ h−1(F ) for every Nncrcs F of X2;

(iv) Nncγcl(h
−1(Mo)) ⊂ h−1(Nnccl(Mo)) for every Nncos Mo of X2;
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(v) h−1(Mo) ⊂ Nncγint(h
−1(Nnccl(Mo))) for every Nncos Mo of X2;

(vi) h−1(Mo) ⊂ Nnccl(Nncint(h
−1(Nnccl(Mo)))) ∪ Nncint(Nnccl(h

−1(Nnccl(Mo)))) for every
Nncos Mo of X2.

Proof:

(i) ⇒ (ii): Let Ko be any subset of X2. Assume that pt ∈ X1\h−1(Nnccl(Ko)). Then, h(pt) ∈
X2\Nnccl(Ko) and there exists a Nncos Mo containing h(pt) such that Mo ∩ Ko = ∅; hence
Nnccl(Mo) ∩ Nncint(Nnccl(Ko)) = ∅. Since h is WeNncγCts, there exists L ∈ NncγOS(X1)
such that h(L) ⊂ Nnccl(Mo). Therefore, we have L∩h−1(Nncint(Nnccl(Ko))) = ∅. Hence, pt ∈
X1\Nncγcl(h

−1(Nncint(Nnccl(Ko)))). Thus, we obtain Nncγcl(h
−1(Nncint(Nnccl(Ko)))) ⊂

h−1(Nnccl(Ko)).

(ii) ⇒ (iii): Let F be any Nncrcs of X2. Then, we have Nncγcl(h
−1(Nncint(F ))) ⊂

Nncγcl(h
−1(Nncint(Nnccl(Nncint(F ))))) ⊂ h−1(Nnccl(Nncint(F ))) = h−1(F ).

(iii) ⇒ (iv): For any NncosMo of X2, Nnccl(Mo) is Nncrcs in X2 and we have Nncγcl(h
−1(Mo)) ⊂

Nncγcl(h
−1(Nncint(Nnccl(Mo)))) ⊂ h−1(Nnccl(Mo)).

(iv) ⇒ (v): Let Mo be any Nncos of X2. Then, X2\Nnccl(Mo) is Nncos in X2

and using Nncγcl(X1\A) = X1\Nncγint(A), we have X1\Nncγint(h
−1(Nnccl(Mo))) =

Nncγcl(h
−1(X2\Nnccl(Mo))) ⊂ h−1(Nnccl(X2\Nnccl(Mo))) ⊂ X1\h−1(Mo). Therefore, we ob-

tain h−1(Mo) ⊂ Nncγint(h
−1(Nnccl(Mo))).

(v) ⇒ (vi): Let Mo be any Nncos of X2. By using Nncγint(A) =
A∩ (Nncint(Nnccl(A))∪Nnccl(Nncint(A))), we have h−1(Mo) ⊂ Nncγint(h

−1(Nnccl(Mo))) ⊂
Nnccl(Nncint(h

−1(Nnccl(Mo)))) ∪Nncint(Nnccl(h
−1(Nnccl(Mo)))).

(vi) ⇒ (i): Let pt be any NncP of X1 and Mo any Nncos of X2 containing h(pt). Then, pt ∈
h−1(Mo) ⊂ Nnccl(Nncint(h

−1(Nnccl(Mo))))∪Nncint(Nnccl(h
−1(Nnccl(Mo)))). It follows from

Lemma 4.1, h is WeNncγCts. ■

Theorem 4.2.

Let h be a map, then the following statements are equivalent.

(i) h is WeNncγCts;

(ii) Nncγcl(h
−1(Nncint(Nnccl(Mo)))) ⊂ h−1(Nnccl(Mo)) for each Mo ∈ NncγOS(X2);

(iii) Nncγcl(h
−1(Mo)) ⊂ h−1(Nnccl(Mo)) for each Mo ∈ NncPOS(X2);

(iv) h−1(Mo) ⊂ Nncγint(h
−1(Nnccl(Mo))) for each Mo ∈ NncPOS(X2);

(v) Nncγcl(h
−1(Nncint(Nnccl(Mo)))) ⊂ h−1(Nnccl(Mo)) for each Mo ∈ NncSOS(X2).

11

Vadivel and Sundar: Continuous Function Via N-Neutrosophic Crisp Topological Spaces

Published by Digital Commons @PVAMU,
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Proof:

(i) ⇒ (ii): Let Mo be any Nncγos of X2. Then, Nnccl(Mo) is Nncrcs. Since h is WeNncγCts, from
Theorem 4.1 we have Nncγcl(h

−1(Nncint(Nnccl(Mo)))) ⊂ h−1(Nnccl(Mo)).

(ii) ⇒ (iii): Clear, since NncPOS(X2) ⊂ NncγOS(X2) and Mo ⊂ Nncint(Nnccl(Mo)).

(iii) ⇒ (iv): This is similar to the proof of the implication (iv) ⇒ (v) in Theorem 4.1.

(iv) ⇒ (i): This follows from Theorem 4.1, since every Nncos is NncPos. ■

Lemma 4.2.

If h is WeNncγCts and g is NncCts, then the composition g ◦ h : (X1, NncΓ) → (X3, NncΦ) is
WeNncγCts.

Proof:

Let pt ∈ X1 and Ko be a Nncos of X3 containing g(h(pt)). Then, g−1(Ko) is a Nncos of X2

containing h(pt) and there exists Mo ∈ NncγOS(X1) such that h(Mo) ⊂ Nnccl(g
−1(Ko)). Since

g is NncCts, we obtain (g ◦ h)(Mo) ⊂ g(Nnccl(g
−1(Ko))) ⊂ g(g−1(Nnccl(Ko))) ⊂ Nnccl(Ko). ■

5. N -neutrosophic Crisp γ-contra Continuous Function

Definition 5.1.

A map h is said to be a N -neutrosophic crisp γ contra continuous (briefly, NncγCCts) function if
the inverse image of each Nncos Ko in (X2, NncΨ) is a Nncγcs set in (X1, NncΓ).

Example 5.1.

Let X = {lo,mo, no, oo} = Y , ncτ1 = {ϕN , XN , L,M,N}, ncτ2 = {ϕN , XN}. L =
⟨{lo}, {ϕ}, {mo, no, oo}⟩, M = ⟨{mo, no}, {ϕ}, {lo, oo}⟩, N = ⟨{lo,mo, no}, {ϕ}, {oo}⟩. Then,
we have 2ncτ = {ϕN , XN , L,M,N}. ncΨ1 = {ϕN , YN , O, P}, ncΨ2 = {ϕN , YN}. O =
⟨{lo, oo}, {ϕ}, {mo, no}⟩, P = ⟨{mo, no}, {ϕ}, {lo, oo}⟩, then we have 2ncΨ = {ϕN , YN , O, P}.
Let h : (X, 2ncτ) → (Y, 2ncΨ) be an identity function. Then, h is a 2ncγCCts.

Theorem 5.1.

Let h be a map, then the following statements are equivalent.

(i) h is a NncγCCts function;

(ii) h−1(Mo) is a Nncγcs set in X1, for each Nncos Mo in X2.

Proof:

(i) ⇒ (ii): Let h be any NncγCCts function and let Mo be any Nncos in X2. Then, Mo is a Nnccs

in X2. Based on these assumptions, h−1(Mo) is a Nncγos in X1. Hence, h−1(Mo) is a Nncγcs in
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X1.

(ii) ⇒ (i): Same way. ■

Theorem 5.2.

Let h be a bijective mapping. Then, h is NncγCCts, if Nnccl(h(Ko)) ⊆ h(Nncγint(Ko)), for each
ncs Ko in X1.

Proof:

Let Mo be any Nnccs in X1. Then, Nnccl(Mo) = Mo and h is onto, by assumption,
which shows that h(Nncγint(h

−1(Mo))) ⊇ Nnccl(h(h
−1(Mo))) = Nnccl(Mo) = Mo.

Hence, h−1(h(Nncγint(h
−1(Mo)))) ⊇ h−1(Mo). Since h is an into mapping, we have

Nncγint(h
−1(Mo)) = h−1(h(Nncγint(h

−1(Mo)))) ⊇ h−1(Mo). Therefore, Nncγint(h
−1(Mo)) =

h−1(Mo), so h−1(Mo) is a Nncγos in X1. Hence, h is a NncγCCts mapping. ■

Theorem 5.3.

Let h be a map, then the following statements are equivalent.

(i) h is a NncγCCts map;

(ii) For each NncP pt(pt1,pt2,pt3) ∈ X1 and Nnccs Mo containing h(pt(pt1,pt2,pt3)), there exists a
Nncγos Ko in X1 containing pt(pt1,pt2,pt3) such that Mo ⊆ h−1(Ko);

(iii) For each NncP pt(pt1,pt2,pt3) ∈ X1 and Nnccs Mo containing h(pt(pt1,pt2,pt3)), there exists a
Nncγos Ko in X1 containing pt(pt1,pt2,pt3) such that h(Ko) ⊆ Mo.

Proof:

(i) ⇒ (ii): Let h be a NncγCCts mapping, let Mo be any Nnccs in X2 and let pt(pt1,pt2,pt3) be a NncP
in X1 and such that h(pt(pt1,pt2,pt3)) ∈ Mo. Then, pt(pt1,pt2,pt3) ∈ h−1(Mo) = Nncγint(h

−1(Mo)).
Let Ko = Nncγint(h

−1(Mo)). Then, Ko is a Nncγos and Ko = Nncγint(h
−1(Mo)) ⊆ h−1(Mo).

(ii) ⇒ (iii): The results follow from evident relations h(Ko) ⊆ h(h−1(Mo)) ⊆ Mo.

(iii) ⇒ (i): Let Mo be any Nnccs in X2 and let pt(pt1,pt2,pt3) be a NncP in X1 such that pt(pt1,pt2,pt3) ∈
h−1(Mo). Then, h(pt(pt1,pt2,pt3)) ∈ Mo. According to the assumption, there exists a Nncγos Ko in
X1 such that pt(pt1,pt2,pt3) ∈ Ko and h(Ko) ⊆ Mo. Hence, pt(pt1,pt2,pt3) ∈ Ko ⊆ h−1(h(Ko)) ⊆
h−1(Mo). Therefore, pt(pt1,pt2,pt3) ∈ Ko = Nncγint(Ko) ⊆ Nncγint(h

−1(Mo)). Since pt(pt1,pt2,pt3)
is an arbitrary NncP and h−1(Mo) is the union of all NncP ’s in h−1(Mo), we obtain that h−1(Mo) ⊆
Nncγint(h

−1(Mo)). Thus, h is a NncγCCts mapping. ■
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6. Application: Neutrosophic Score Function

In this section, we present a neutrosophic score function based on methodical approach for
decision-making problem with neutrosophic information.

Definition 6.1.

Let Ni = ⟨µi, σi, γi⟩, i = 1, 2, 3, · · · , k be neutrosophic sets, then the neutrosophic score function

(shortly, NSF (Ni)) is defined by NSF (Ni) =
1

3(k+2)

[∑k+2
i=1 [2 + µi − σi − γi]

]
.

The following essential steps are proposed the precise way to deal with select the proper attributes
and alternative in the decision-making situation.

Step 1: Consider the universe of discourse (set of objects) t1, t2, · · · , tm, the set of alternatives
τ1, τ2, · · · , τn, the set of decision attributes ν1, ν2, · · · , νp.

Step 2: Construct a neutrosophic matrix of alternative verses objects and object verses decision
attributes.

Step 3: Construct the neutrosophic topologies τ ∗i and ν∗
i .

Step 4: Find the score values by Definition 6.1 of each of the entries of the NTS.

Step 5: Arrange neutrosophic score values for the alternatives τ1 ≤ τ2 ≤ · · · ≤ τn and the attributes
ν1 ≤ ν2 ≤ · · · ≤ νp. Choose the attribute νp for the alternative τ1 and νp−1 for the alternative τ2
etc. If n < p, then ignore νk, where k = 1, 2, · · · , n− p.

Example 6.1.

Medical diagnosis has increased volume of data accessible to doctors from new medical inno-
vations and includes vulnerabilities. In medical diagnosis, very difficult task is the way toward
classifying different set of symptoms under a single name of an illness. In this part, we exemplify
a medical diagnosis problem for effectiveness and applicability of above proposed approach.

Step 1: Consider the following tables giving informations when consulted physicians about four
patients, Jhon, Bob, Raja and Thaya and symptoms is a universe of discourse are Temperature
(Temp), Headache (Ha), Stomach pain (Spa), Cough (co) and Chest pain (Cpa). We need to find
the patient and to find the disease such as Viral fever (Vf), Malaria (Ma), Stomach problem (Sp),
Typhoid (Ty) and Chest problem (Cp) of the patient. The data in Table 1 and Table 2 are explained
by the membership, the indeterminacy and the non-membership functions of the patients and dis-
eases respectively.

Step 2: Construct a neutrosophic matrix of alternative verses objects and object verses decision
attributes.

Step 3: Construct the neutrosophic topologies τ ∗i and ν∗
i .
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Table 1. Neutrosophic values for patients

SymptomsPatients Jhon Bob Raja Thaya
Temperature (0.8,0.1,0.1) (0.0,0.2,0.8) (0.8,0.1,0.1) (0.6,0.3,0.1)
Headache (0.6,0.3,0.1) (0.4,0.2,0.4) (0.8,0.1,0.1) (0.5,0.1,0.4)
Stomach pain (0.2,0.0,0.8) (0.6,0.3,0.1) (0.0,0.4,0.6) (0.3,0.3,0.4)
Cough (0.6,0.3,0.1) (0.1,0.2,0.7) (0.2,0.1,0.7) (0.7,0.1,0.2)
Chest pain (0.1,0.3,0.6) (0.1,0.1,0.8) (0.0,0.5,0.5) (0.3,0.3,0.4)

Table 2. Neutrosophic values for disease

DiseaseSymptoms Temperature Headache Stomach pain Cough Chest pain
Viral fever (0.4,0.6,0.0) (0.3,0.2,0.5) (0.1,0.2,0.7) (0.4,0.3,0.3) (0.1,0.2,0.7)
Malaria (0.7,0.3,0.0) (0.2,0.2,0.6) (0.0,0.1,0.9) (0.7,0.3,0.0) (0.1,0.1,0.8)
Stomach problem (0.1,0.2,0.7) (0.2,0.4,0.4) (0.8,0.2,0.0) (0.2,0.1,0.7) (0.2,0.1,0.7)
Typhoid (0.3,0.4,0.3) (0.6,0.3,0.1) (0.2,0.1,0.7) (0.2,0.2,0.6) (0.1,0.0,0.9)
Chest problem (0.1,0.1,0.8) (0.0,0.2,0.8) (0.2,0.0,0.8) (0.2,0.0,0.8) (0.8,0.1,0.1)

Neutrosophic topologies for patients are τ ∗i :

(i) τ ∗1 = {(0, 0, 1), (1, 1, 0), (0.8, 0.1, 0.1), (0.6, 0.3, 0.1), (0.2, 0.0, 0.8), (0.1, 0.3, 0.6), (0.8, 0.3,
0.1), (0.2, 0.3, 0.6), (0.6, 0.1, 0.1), (0.1, 0.1, 0.6), (0.1, 0.0, 0.8)}.

(ii) τ ∗2 = {(0, 0, 1), (1, 1, 0), (0.0, 0.2, 0.8), (0.4, 0.2, 0.4), (0.6, 0.3, 0.1), (0.1, 0.2, 0.7), (0.1, 0.1,
0.8), (0.1, 0.2, 0.8), (0.0, 0.1, 0.8)}.

(iii) τ ∗3 = {(0, 0, 1), (1, 1, 0), (0.8, 0.1, 0.1), (0.0, 0.4, 0.6), (0.2, 0.1, 0.7), (0.0, 0.5, 0.5), (0.8, 0.4,
0.1), (0.8, 0.5, 0.1), (0.2, 0.4, 0.6), (0.2, 0.5, 0.5), (0.0, 0.1, 0.6), (0.0, 0.1, 0.5), (0.0, 0.1, 0.7)}.

(iv) τ ∗4 = {(0, 0, 1), (1, 1, 0), (0.6, 0.3, 0.1), (0.5, 0.1, 0.4), (0.3, 0.3, 0.4), (0.7, 0.1, 0.2), (0.7, 0.3,
0.1), (0.5, 0.3, 0.4), (0.7, 0.3, 0.2), (0.6, 0.1, 0.2), (0.3, 0.1, 0.4)}.

Neutrosophic topologies for diseases are ν∗
i :

(i) ν∗
1 = {(0, 0, 1), (1, 1, 0), (0.4, 0.6, 0.0), (0.3, 0.2, 0.5), (0.1, 0.2, 0.7), (0.4, 0.3, 0.3)}.

(ii) ν∗
2 = {(0, 0, 1), (1, 1, 0), (0.7, 0.3, 0.0), (0.2, 0.2, 0.6), (0.0, 0.1, 0.9), (0.1, 0.1, 0.8)}.

(iii) ν∗
3 = {(0, 0, 1), (1, 1, 0), (0.1, 0.2, 0.7), (0.2, 0.4, 0.4), (0.8, 0.2, 0.0), (0.2, 0.1, 0.7), (0.2, 0.2,

0.7), (0.8, 0.4, 0.0), (0.1, 0.1, 0.7), (0.2, 0.2, 0.4)}.

(iv) ν∗
4 = {(0, 0, 1), (1, 1, 0), (0.3, 0.4, 0.3), (0.6, 0.3, 0.1), (0.2, 0.1, 0.7), (0.2, 0.2, 0.6), (0.1, 0.0,

0.9), (0.6, 0.4, 0.1), (0.3, 0.3, 0.3)}.

(v) ν∗
5 = {(0, 0, 1), (1, 1, 0), (0.1, 0.1, 0.8), (0.0, 0.2, 0.8), (0.2, 0.0, 0.8), (0.8, 0.1, 0.1), (0.1, 0.2,
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0.8), (0.2, 0.1, 0.8), (0.2, 0.2, 0.8), (0.8, 0.2, 0.1), (0.0, 0.1, 0.8), (0.1, 0.0, 0.8), (0.0, 0.0, 0.8), (0.0,
0.1, 0.8)}.

Step 4: Find the neutrosophic score values.

Neutrosophic score values for the patients are

NSF (τ1) = 0.5818, NSF (τ2) = 0.4666, NSF (τ3) = 0.5076, NSF (τ4) = 0.6545.

Figure 2. Neutrosophic score values for patients

Neutrosophic score values for the diseases are

NSF (ν1) = 0.5222, NSF (ν2) = 0.5, NSF (ν3) = 0.54, NSF (ν4) = 0.5407, NSF (ν5) =
0.4761.

Figure 3. Neutrosophic score values for diseases

Step 5: Arrange neutrosophic score values for the alternatives τ1, τ2, τ3, τ4 and the attributes
ν1, ν2, ν3, ν4, ν5 in run-up order. We consider the sequences below τ2 ≤ τ3 ≤ τ1 ≤ τ4 and
ν5 ≤ ν2 ≤ ν1 ≤ ν3 ≤ ν4. Thus, the patient Jhon suffers from Viral fever, the patient Bob suf-
fers from Stomach problem, the patient Raja suffers from Typhoid, and the patient Thaya suffers
from Malaria.
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7. Conclusion

In this article, we have examined some new types of N-neutrosophic crisp γ-continuous,
weakly N-neutrosophic crisp γ-continuous, N-neutrosophic crisp γ-contra continuous maps in
N-neutrosophic crisp topological spaces and we analysed the difference between these maps.
This can be improved to N-neutrosophic crisp γ-irresolute function, N-neutrosophic crisp γ-
homeomorphism functions of N-neutrosophic crisp topological spaces are the further research ar-
eas can be covered in future tasks. Finally, we applied a neutrosophic score function in a medical
diagnosis problem along with graphical representation.
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