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Abstract

The second wave of COVID-19 is an unprecedented condition in India and began in mid February
2021. Individuals who were already suffering from other comorbidities were found with lung in-
fection, and hence, the number of disease induced deaths were rising faster during the second wave
in relation to the first wave. This paper has proposed a mathematical model with fractional order
derivatives by correlating the model based number of infectives with the real number of infectives
in India. For the system of fractional differential equations, a disease-free state has been computed
and proved to be locally asymptotically stable with certain restrictions. The mathematical model
has been numerically simulated using the predictor-corrector method to highlight the role played
by fractional order in controlling the disease spread. Numerical simulations signify the fact that a
vital role has been played by fractional order model over integer order model in determining the
transmission of COVID-19. It can be visualized that the increment rate in the infectives is lower
by taking into consideration the memory effect due to a previous exposure to COVID-19.
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2 Rajput et al.

1. Introduction

India is the second-leading country in the entire world deteriorated with a massive surge of COVID-
19 infectives and deaths. India has experienced devastating impacts during the second wave of
COVID-19 disease. The new coronavirus known as SARS-Cov-2 has generated a contagious res-
piratory infection defined as COVID-19. The transmission of COVID-19 infection can occur either
by direct or indirect contacts with actively infected individuals. The COVID-19 infection majorly
affects those individuals who already have other immune-based comorbidities. The COVID-19
infection may differ between individuals. Many infected individuals with mild to moderate symp-
toms can be recovered without getting hospitalized for intensive medical care. In India, the second
wave has become a catastrophe especially due to the insufficient availability of medical facilities to
the infected individuals. During the second wave of COVID-19, the number of deaths were rising
at a higher rate as some of the individuals who were already suffering from other comorbidities
were experiencing the lack of medical treatment.

By the end of June 2021, more than 180 million infected individuals in the entire world were
diagnosed with COVID-19 disease. Over 3.9 million COVID-19 infectives died in around 215
countries. In other words, it is estimated that out of per 1000 COVID-19 infected individuals more
than 21 infectives have died so far. According to the report given by the World Health Organization,
it is determined that the transmission of COVID-19 infection in India has occurred due to a cluster
of cases. Due to the insufficient number of vaccination for the population, the government of India
has decided to control the transmission of COVID-19 infection by working on non-pharmaceutical
strategies such as restrictions on social gatherings and international traveling of individuals to and
from India. In India, by the end of June 2021, more than 30 million individuals were infected
with COVID-19 disease, out of which around 392 thousands infectives succumbed to death due to
COVID-19 pandemic. As reported by WHO, out of total deaths due to COVID-19 infection, it is
observed that more than 70% of infectives were suffering with other comorbidities.

In the current situation, vaccination to all individuals is considered to be the best strategy to control
and reduce the transmission of COVID-19 infection. Therefore, different countries and worldwide
scientists are collaborating and working together to introduce the best treatment procedure to re-
duce the COVID-19 infection. As reported by the World Health Organization, vaccination is not
that efficient to eradicate the COVID-19 infection but reduces its infection level in a vaccinated in-
dividual. Therefore, the efficacy of vaccination depends on the non-pharmaceutical precautionary
measures such as quarantine, social distancing, isolation of infectives and contact tracing.

The first and second wave of COVID-19 pandemic has majorly affected older-aged people, middle-
aged people, and other adults especially those who were already infected with other immune-
based comorbidities. This pandemic situation has become a major concern to both researchers and
health care authorities. Various multidimensional mathematical models have been introduced to
analyze and predict the solutions for infectious diseases (Tanvi and Aggarwal (2020a); Tanvi et
al. (2020a); Tanvi and Aggarwal (2020b); Tanvi and Aggarwal (2021)). To analyze and control
the transmission dynamics of COVID-19 infection, researchers have given different mathematical
approaches (Zhang et al. (2020); Shahidul et al. (2020); Chen et al. (2020); Lau et al. (2020);
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Colbourn (2020); Prem et al. (2020); Wilder-Smith and Freedman (2020); Tanvi et al. (2021b);
Tanvi et al. (2020b); Tanvi et al. (2021a); Lin et al. (2020); Mandal et al. (2020); Ndairou et al.
(2020); Ahmad et al. (2021); Khajanchi et al. (2021)). By considering the case study of New
York and the entire US, a non-linear mathematical model has been investigated by Ngonghala
et al. (2020) along with the incorporation of non-pharmaceutical interventions such as infection
prevention and isolation to control of disease. A novel COVID-19 model has been proposed by
Kucharski et al. (2020) to estimate the transmission dynamics of COVID-19 in Wuhan during
December 2019 to February 2020 by taking into consideration four different databases from within
and outside Wuhan.

Nowadays, fractional calculus has become an emerging field to investigate various complex phe-
nomena, such as neural networks and signal processing (Podlubny (1998)). Being an extension of
ordinary calculus, fractional calculus works as an important tool and provides more degree of free-
dom to model the transmission dynamics of infectious diseases. Recently many researchers have
investigated fractional differential equation models to incorporate the nonlinear behavior and mem-
ory effect into the model. From a mathematical modeler point of view fractional calculus provides
an advantage due to inclusion of memory effect in the model and to explore the hidden dynamics
of an infectious disease. Fractional differential equations use the hereditary properties of infectives
or prior knowledge of the disease due to some previous exposure to the disease and hence provides
an advantage over ordinary differential equations as these properties have not been taken under
consideration in ordinary differential equation models. In comparison to the classical integer order
models, the study of infectious diseases becomes more realistic and highly predictable in case of
fractional order models by incorporating memory effects and hereditary properties of the infection.

Bearing in consideration the advantage of fractional calculus in disease modeling, many re-
searchers have introduced fractional order differential equation models to explore the dynamics of
COVID-19 (Nazir et al. (2021); Alzaid and Alkahtani (2020)). Rajagopal et al. (2020) have intro-
duced a SEIRD model with fractional order derivatives in Caputo sense to analyze the COVID-19
prevalence by incorporating memory effect into the model and found out the root mean-square
value less then the classical one. Their results show that the fractional order model is more realistic
due to the inclusion of memory effect. A fractional order model with different compartments under
fractional order derivatives has been introduced by Ahmad et al. (2020). They have compared their
model with the actual reported data against confirmed infectives and death cases for initial 67 days
in Wuhan city. Baba and Nasidi (2021) proposed a nonlinear fractional order mathematical model
to understand the transmissibility of COVID-19 in the human population. Numerical simulations
have been performed to visualize the rich dynamics by varying the value of fractional order. A
fractional order model for the case study of Wuhan China has been studied by Yadav and Verma
(2021) and the comparative analysis has also been performed for classical model and fractional
model along with the certified experimental data.

Keeping in view the aforementioned articles and the importance of including memory effect in
disease modeling, we have introduced a Caputo fractional order mathematical model by incorpo-
rating the effect of vaccination in the transmission dynamics of COVID-19. Fractional order model
is useful to capture the consequence of re-infection from COVID-19 or having a certain memory
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4 Rajput et al.

of COVID-19 on the transmission and control of the disease. Qualitative and quantitative analysis
of the model has been done following Perko (1991), Strogatz (2014), and Podlubny (1998).

The content of this article is arranged in following manner. In the second section, a non-linear
fractional order model has been developed in Caputo sense together with the justification of the
well posedness of the model in a positively invariant region under consideration. The equilibrium
points have been computed in the third section together with the analysis of the disease-free equi-
librium point in the fourth section. The fifth section captures the effect of various parameters on
the reproduction number with the help of sensitivity analysis. Numerical simulations have been
performed to validate the current data of India with different values of the fractional order in the
sixth section. In the last section, the proposed model results have been concluded in brief.

2. Model Formation

To analyze the transmission of COVID-19 infection, a seven dimensional mathematical model is
introduced with mutually distinct classes. The system of differential equations is based on frac-
tional order derivatives of order α ∈ (0, 1) to justify the significance of memory effects. The
memory effects of individuals involve the previous exposures from the COVID-19 infection and/or
some other immune based comorbidities such as Human Immunodeficiency Virus (HIV), tubercu-
losis, diabetes and others. The total population is changing per day by the virtue of natural births
represented by a constant recruitment rate Π and natural death of individuals represented by the
parameter δ. The total population N(t) is divided into seven distinct classes of population, Sc(t):
the class of individuals susceptibles to COVID-19 infection, Ec(t): the class of individuals that are
pre-symptomatically infected and are exposed to COVID-19 infection, Vc(t): the class of suscepti-
bles and exposed individuals who have attained COVID-19 vaccination. The total actively infected
individuals from COVID-19 infection are categorized into three mutually distinct classes, Ic(t): the
class of isolated infectives that are either symptomatic or asymptomatic from COVID-19 infection,
Uc(t): the class of infected individuals in the need of intensive medical care but are unable to at-
tain it due to lack of medical facilities and Hc(t): the class of COVID-19 infected individuals who
require intensive medical care and are hospitalized and Rc(t): the class of recovered individuals
from COVID-19 infection. Therefore, the total population N(t) can be written as

N(t) = Sc(t) + Ec(t) + Vc(t) + Ic(t) + Uc(t) +Hc(t) +Rc(t).

Corresponding to the model, the transmission rate of COVID-19 infection is determined by the
constant parameter β. Also, the force of infection (λ) is given as

λ =
β

N(t)
(η1Ic(t) + η2Uc(t) +Hc(t)).

The modification parameters 0 < η1, η2 < 1 represent the infectiousness level of isolated and unat-
tended infectives among the infected classes. With the force of infection λ, the susceptibles receive
infection and become exposed to COVID-19 infection. At the constant rate ν1 and ν2, suscepti-
bles and exposed individuals, respectively, attain vaccination against COVID-19 disease and move
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Figure 1. Schematic diagram illustrating the COVID-19 transmission

to class Vc(t). After the incubation period denoted by 1
σ

, the exposed individuals start showing
symptoms of COVID-19 infection and headway to the isolated class. Due to the incautiousness in
precautionary measures, the vaccinated individuals get exposed with the disease at the rate (1−ϵ)λ.
The constant parameter ψ represents the rate at which isolated infectives remain unattended due
to insufficient medical treatment facilities. However, the fraction ρ of unattended infectives have
attained medical care during home isolation and enters into the class of isolated infectives again.
By the constant rate γ, a fraction of isolated infectives attain medical treatment at hospitals and
move to the class of hospitalized infectives. Also, µ is a fraction of unattended infectives that re-
quire intensive medical care and move into the hospitals at the µUc. At the constant rate τ1 and
τ2, the isolated infectives and hospitalized infectives, respectively, get recovered from COVID-19
infection and switch to the class of recovered individuals. As reported by the World Health Orga-
nization, individuals recovered from COVID-19 disease may not be immune for the long time, and
therefore, again become susceptibles to COVID-19 infection.

Using the variables described above and model parameters in Table 1, the mathematical model is
represented by the schematic diagram given in Figure 1 and the corresponding nonlinear system of
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6 Rajput et al.

Table 1. The characterization of parameters

Parameter Description
Π constant natural birth rate
β rate of transmission for COVID-19
ν1 rate of vaccination for the susceptibles against COVID-19
ν2 rate of vaccination for the exposed individuals against COVID-19
δ natural death rate
η1 modification parameter
δI COVID-19 disease succumbed rate of isolated infectives
δu COVID-19 disease succumbed rate of unattended infectives
δh COVID-19 disease succumbed rate of hospitalized infectives
σ rate at which exposed individuals become isolated infected
ϵ efficacy of vaccination against COVID-19
ρ fraction of unattended infectives becoming isolated infectives
ψ rate at which isolated infectives become unattended
η2 modification parameter
γ rate at which isolated infectives attain medical care
τ1 recovery rate of isolated infectives against COVID-19
τ2 recovery rate of hospitalized infectives against COVID-19
k period after which recovered individuals become susceptibles for COVID-19
µ fraction of unattended infectives attaining medical care at hospitals

differential equations with fractional order derivative is given as

dαSc

dtα
= Π+

1

k
Rc − λSc − ν1Sc − δSc,

dαEc

dtα
= λSc + (1− ϵ)λVc − ν2Ec − σEc − δEc,

dαVc
dtα

= ν1Sc + ν2Ec − (1− ϵ)λVc − δVc,

dαIc
dtα

= σEc + ρUc − ψIc − γIc − τ1Ic − (δ + δI)Ic,

dαUc

dtα
= ψIc − ρUc − µUc − (δ + δu)Uc,

dαHc

dtα
= µUc + γIc − τ2Hc − (δ + δh)Hc,

dαRc

dtα
= τ1Ic + τ2Hc −

1

k
Rc − δRc,

(1)

with the initial conditions given as

Sc(0) = Sc0 ⩾ 0, Ec(0) = Ec0 ⩾ 0, Vc(0) = Vc0 ⩾ 0, Ic(0) = Ic0 ⩾ 0,

Uc(0) = Uc0 ⩾ 0, Hc(0) = Hc0 ⩾ 0 and Rc(0) = Rc0 ⩾ 0.
(2)
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All the variables describing human population, that is, Sc(t), Ec(t), Vc(t), Ic(t), Uc(t), Hc(t), and
Rc(t), must be positive for all time t > 0. Thus, for rest of the analysis the following biologically
feasible region will be considered:

Ω =

{
(Sc, Ec, Vc, Ic, Uc, Hc, Rc) ∈ R7

+ : N(t) ⩽
Π

δ

}
.

Theorem 2.1.

There exist a unique solution X(t) = (Sc(t), Ec(t), Vc(t), Ic(t), Uc(t), Hc(t), Rc(t)) for the model
system (1), together with the initial conditions given by (2) in the positively invariant region Ω.

Proof:

Following Lin (2007), it can be easily verified that the so-
lution X(t) = (Sc(t), Ec(t), Vc(t), Ic(t), Uc(t), Hc(t), Rc(t)) corresponding to the model system
(1) exists uniquely. Further, it can be observed that

Dα
t Sc|Sc=0 = Π+

1

k
RC > 0,

Dα
t Ec|Ec=0 =

β

N
(η1Ic + η2Uc +Hc)Sc + (1− ϵ)

β

N
(η1Ic + η2Uc +Hc)Vc ⩾ 0,

Dα
t Vc|Vc=0 = ν1Sc + ν2Ec ⩾ 0,

Dα
t Ic|Ic=0 = σEc + ρUc ⩾ 0,

Dα
t Uc|Uc=0 = ψIc ⩾ 0,

Dα
t Hc|Hc=0 = µUc + γIc ⩾ 0,

Dα
t Rc|Rc=0 = τ1Ic + τ2Hc ⩾ 0.

Thus, it follows that all the solution components are positive. Further, to show positive invariance
of the region Ω, it is required to prove that every solution trajectory starting in Ω remains in Ω for
all t ⩾ 0. Corresponding to the model system (1), the rate of change of total population can be
written as

Dα
t N(t) = Π− δIIc(t)− δuUc(t)− δhHc(t)− δN(t)

⩽ Π− δN(t).

After some algebraic calculations, we obtain

N(t) ⩽ N(0)Eα(−δtα) +
Π

δ
(1− Eα(−δtα)).

Thus, we have shown that 0 < N(t) ⩽ Π
δ

, if N(0) ⩽ Π
δ

, for all t ⩾ 0. Therefore, all the solution
components are bounded as the total population N(t) is bounded between 0 and Π

δ
. Hence, the

region Ω is positively invariant and the corresponding model system (1) is well-posed. ■
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8 Rajput et al.

3. Equilibrium Points

The disease free equilibrium point, DE , for the model system (1) describes the state in which the
population is free from COVID-19, and is given as

DE =

(
Π

ν1 + δ
, 0,

ν1Π

δ(ν1 + δ)
, 0, 0, 0, 0

)
.

For the model system (1), the basic reproduction number which is a threshold quantity counting
the number of secondary infected cases generated by a single infected individual (Jones (2007))
can be computed using the next generation matrix approach (Driessche and Watmough (2020)).
Correspondingly, the matrices F and V are determined as

F =


0 βη1(δ+ν1(1−ϵ))

δ+ν1

βη2(δ+ν1(1−ϵ))
δ+ν1

β(δ+ν1(1−ϵ))
δ+ν1

0 0 0 0
0 0 0 0
0 0 0 0

 , (3)

V =


ν2 + σ + δ 0 0 0

−σ ψ + γ + τ1 + δ + δI −ρ 0
0 −ψ ρ+ µ+ δ + δu 0
0 −γ −µ τ2 + δ + δh

 . (4)

Using the spectral radius of FV −1, the basic reproduction number is determined as

R0 =
βσ (δ + ν1(1− ϵ)) {(γ + η1B4)B3 + (µ+ η2B4)ψ}

B1B4(δ + ν1) (B2B3 − ψρ)
, (5)

where

B1 = ν2 + σ + δ, B2 = ψ + γ + τ1 + δ + δI , B3 = ρ+ µ+ δ + δu and B4 = τ2 + δ + δh.

The endemic equilibrium point, EE , for the model system (1) is characterized by a steady state in
which the disease will persist in the population and can be obtained by solving the simultaneous
system of equations, given as

Π+
1

k
Rc − λSc − ν1Sc − δSc = 0,

λSc + (1− ϵ)λVc − ν2Ec − σEc − δEc = 0,

ν1Sc + ν2Ec − (1− ϵ)λVc − δVc = 0,

σEc + ρUc − ψIc − γIc − τ1Ic − (δ + δI)Ic = 0,

ψIc − ρUc − µUc − (δ + δu)Uc = 0,

µUc + γIc − τ2Hc − (δ + δh)Hc = 0,

τ1Ic + τ2Hc −
1

k
Rc − δRc = 0.

(6)
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Here, the components of EE = (S∗
c , E

∗
c , V

∗
c , I

∗
c , U

∗
c , H

∗
c , R

∗
c) are computed as

S∗
c =

1

(λ+ ν1 + δ)

(
Π+

(
τ1B3B4 + τ2 (µψ + γB3)

B4ψ(1 + δk)

)
U∗
c

)
,

E∗
c =

1

σ

(
B2B3

ψ
− ρ

)
U∗
c ,

V ∗
c =

1

((1− ϵ)λ+ δ)

(
ν1

(λ+ ν1 + δ)

(
Π+

(
τ1B3B4 + τ2 (µψ + γB3)

B4ψ(1 + δk)

)
U∗
c

))
+

1

((1− ϵ)λ+ δ)

(
ν2
σ

(
B2B3

ψ
− ρ

)
U∗
c

)
,

I∗c =
B3

ψ
U∗
c ,

U∗
c =

Πσψ(1 + δk)(λ+ ν1C1)(δ + (1− ϵ)λ)

C2 − C3

,

H∗
c =

µψ + γB3

ψB4

U∗
c ,

R∗
c =

k

ψ(1 + δk)

(
τ1B3 +

τ2
B4

(µψ + γB3)

)
U∗
c ,

(7)

where

C1 =
(1− ϵ)λ

(1− ϵ)λ+ δ
,

C2 = B4(B2B3 − ρψ)(1 + δk)(λ+ ν1 + δ) ((σ + δ) ((1− ϵ)λ+ δ) + ν2δ) ,

C3 = σ (τ1B3B4 + τ2(µψ + γB3)) (λ+ ν1C1)(δ + (1− ϵ)λ).

(8)

4. Stability Analysis of the Disease-free Equilibrium

In this section, the stability of the disease-free equilibrium point is determined to be locally asymp-
totically stable in order to find the conditions under which small disturbances away from DE dissi-
pate in time.

For the model system (1), the linearization matrix evaluated at DE =
(

Π
ν1+δ

, 0, ν1Π
δ(ν1+δ)

, 0, 0, 0, 0
)

is
computed as

J =



−(ν1 + δ) 0 0 − βη1δ
ν1+δ

− βη2δ
ν1+δ

− βδ
ν1+δ

1
k

0 −B1 0 βη1δ
ν1+δ

+ (1−ϵ)βη1ν1

ν1+δ
βη2δ
ν1+δ

+ (1−ϵ)βη2ν1

ν1+δ
βδ

ν1+δ
+ (1−ϵ)βν1

ν1+δ
0

ν1 ν2 −δ − (1−ϵ)βη1ν1

ν1+δ
− (1−ϵ)βη2ν1

ν1+δ
− (1−ϵ)βν1

ν1+δ
0

0 σ 0 −B2 ρ 0 0
0 0 0 ψ B3 0 0
0 0 0 γ ν −B4 0
0 0 0 τ1 0 τ2 −( 1

k
+ δ)


.
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10 Rajput et al.

The characteristic equation of the matrix (λpI7 − J) is computed as

(λp + δ)(λp + ν1 + δ)

(
λp +

1

k
+ δ

)(
λ4p + P3λ

3p + P2λ
2p + P1λ

p + P0

)
= 0, (9)

where the coefficients of the last factor are given as

P3 = B1 +B2 +B3 +B4,

P2 = B1B2 +B3B4 + (B1 +B2)(B3 +B4)−
βση(δ + (1− ϵ)ν1)

δ + ν1
,

P1 = B1B2(B3 +B4) +B3B4(B1 +B2)− ρψ(B1 +B4)−
βσ(δ + (1− ϵ)ν1)

δ + ν1
(η2ψ + γ + η2(B3 +B4)),

P0 = B1B2B3B4 − ρψB1B4 − βσ(δ + (1− ϵ)ν1)

δ + ν1
(γB3 + µψ + η2ψB4 + η1B3B4).

(10)

The argument of each root of the first three factors is given as

arg(λs) =
Π

p
+ s

2Π

p
⩾

Π

p
>

Π

N
>

Π

2N
,

for s = 0, 1, 2, . . . , (p− 1).

Thus, all roots of the first three factors have arguments greater than Π
2N

. Now, following the Routh-
Hurwitz stability criterion for fractional derivatives (Ahmad et al. (2006)), it can be observed that
all roots of the remaining quartic factor have argument greater than Π

2N
, if the coefficients given by

(10) satisfy the following conditions:

(i) P3 > 0 and P0 > 0,
(ii) P3P2 > P1,

(iii) P1P2P3 > P 2
3P0 + P 2

1 .

In the above discussion, we have proved the following theorem.

Theorem 4.1.

For the system of differential equations with fractional order derivative (1), the equilibrium point
DE is locally asymptotically stable, provided the given conditions are satisfied:

(i) P3 > 0 and P0 > 0,
(ii) P3P2 > P1,

(iii) P1P2P3 > P 2
3P0 + P 2

1 ,

where the coefficients P3, P2, P1 and P0 are given by equation (10).

5. Sensitivity Analysis

In this paper, the mathematical model illustrates the transmission of an epidemic disease known as
COVID-19. Mathematically, the transmission of COVID-19 disease is described by the threshold
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Table 2. Parameters value used in numerical simulations

Parameter Value Source Parameter Value Source
Π 50000 day −1 Assumed β 2.47 day −1 Data fitted
ν1 0.015 day −1 Estimated ν2 0.031 day −1 Data fitted
δ 0.000039 day −1 Estimated δI 0.0000735708 day −1 Estimated
δu 0.003323 day −1 Estimated δh 0.005536 day −1 Estimated
σ 1/4.68 day −1 Estimated γ 0.007 day −1 Estimated
ρ 0.32 Data fitted ϵ 0.81 Estimated
k 1/90 day −1 Estimated µ 0.51 Data fitted
τ1 0.972 day −1 Estimated τ2 0.95 day −1 Estimated
η1 0.57 Data fitted η2 0.54 Data fitted

quantity R0. This section signifies the impact of aforementioned model parameters on the basic
reproduction number (R0) using the sensitivity analysis. This nonlinear mathematical model con-
sists of the fractional derivatives, and therefore, we determine the impact of various parameters
on R0 that illustrates the memory effects. We investigate the normalized forward sensitivity index
of R0 by determining the partial derivative of R0 with respect to different parameters using the
parameters value mentioned in Table 2.

Now, we will determine the sensitivity index of R0 with respect to the parameters value given in
Table 2. For the constant parameter ϵ, the sensitivity index signifies the immense impact of efficacy
of vaccination on R0, given by Chitnis et al. (2008) as

ΥR0

ϵ :=
∂R0

∂ϵ

ϵ

R0

= − 4.20561.

For the basic reproduction number R0, the sensitivity indices corresponding to the remaining pa-
rameters are mentioned in Table 3. Following observations can be made from the sensitivity anal-
ysis:

• ΥR0

ϵ = −4.20561: This value indicates the high impact of the efficacy of vaccination on R0. It
is estimated that R0 decreases with a huge difference of 42% if ϵ increases by 10%. From this, it
is observed that the efficacy of vaccination provides a significant impact into the model. Thus,
the transmission of COVID-19 infection can be majorly reduced by increasing the efficacy of
vaccination among the vaccinated individuals.

• ΥR0

β = 1: For the transmission rate β, the sensitivity index is estimated to be 1 which signifies
that β and R0 are directly proportional. Therefore, the reproduction of new infection can be
controlled if transmission of infection can be reduced by providing vaccination with higher
rate and keeping the infectives under isolation.

• ΥR0

ρ = −0.202759: From this value of sensitivity index for ρ, is it observed that the reproduc-
tion number decreases by approximately 2% if ρ increases by 10%. It indicates that to control
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Figure 2. Graph depicting the impact level of parameters on R0

the transmission of COVID-19 infection, the unattended infectives must obtain the medical
treatment as early as possible.

• ΥR0

η1
= +0.351649 and ΥR0

η2
= +0.323802: For the fractions η1 and η2, the sensitivity in-

dices indicates that the reproduction of new infectives must be controlled by keeping all the
infectives under isolation and strictly follow the precautionary measures.

From the above observations, it is concluded that the basic reproduction number R0 is highly
affected with variation in the efficacy of vaccination. From the sensitivity index, it is concluded
that the transmission of COVID-19 infection can be reduced if the vaccination is provided with
its optimal level and the efficacy of vaccination is increased by strictly obeying the precautionary
measures against COVID-19 disease. Also, the medical care must be provided with precedence to
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those who need intensive medical care.

Table 3. Sensitivity indices of R0 to the parameters

Parameter Sensitivity index (R0) Parameter Sensitivity index (R0)

τ1 -0.657608 γ -0.000217
τ2 -0.322656 δI -0.000049
µ -0.202759 δ +0.010667
ν2 -0.126678 σ +0.126838
ρ -0.117597 ψ +0.306252
ν1 -0.010906 η2 +0.323802
δu -0.003406 η1 +0.351649
δh -0.001880 β +1.0

6. Numerical Simulations

For the COVID-19 model system (1) discussed above, the numerical simulation has been done
in this section using the predictor-corrector method which is an algorithm designed to solve
the system of fraction differential equations in MATLAB software. The parameters value pre-
scribed in Table 2 have been referred to numerically solve the system of equations. Consider-
ing the time duration from April 20 - June 10, 2021 for the study period, the initial conditions
for the variables defined in the model system (1) are chosen as Sc(0) = 1300000000, Ec(0) =
10000000, Vc(0) = 127129113, Ic(0) = 1617428, Uc(0) = 323486, Hc(0) = 215657 and
Rc(0) = 13276039. The baseline parameters value have been estimated using the data pro-
vided on the World Health Organization (2020b) and World Health Organization (2020c). Mo-
HFW (2020) and the literature published for the case study of India (Ngonghala et al. (2020);
Mandal et al. (2020)). On the basis of daily new births in India, which ranges from 45, 000−70, 000
per day, we have assumed the constant recruitment rate Π to be 50,000 for India. In India, for an in-
dividual the average life expectancy is estimated as 69.3 years which assisted us in calculating the
natural death rate δ to be 1

69.3
× 1

365
day−1 = 3.9×10−5 day−1. Further, the per day active cases for the

month of April - May 2021 were recorded as 3244040 (Worldometer (2020)), whereas the per day
deaths were reported to be 3592 (Worldometer (2020)). It has been reported that more than 75% of
the total infectives recover on their own during home isolation and do not require any specific medi-
cal assistance for their treatment, due to which out of total active cases, we have estimated 2433030
to be isolated active cases per day. However, out of the remaining 25% active cases approximately
10% cases are daily hospitalized which are estimated as 324404 and the remaining are still consid-
ered to be unattended. On the other hand, approximately 50% of the total COVID-19 induced death
cases occur in hospitals due to comorbidities along with the COVID-19 infection. Directed by this,
approximately 1796 deaths are estimated in hospitals per day. Thus, the estimated cases fatality
rate of hospitalized infectives in India is computed as δh = 1796

324404
= 0.005536 per day. However,

the case fatality rate for the isolated infectives is estimated at δI = 179
2433030

= 0.0000735708 per day
by considering the fact that the number of individuals succumbed to COVID-19 in home isolation
without any specific requirement of medical assistance is less than 5%.
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Figure 3. Graph validating the model by comparing the estimated number of infectives with the real data of India with
different values of the order of derivative for the time interval April 20, 2021 - June 10, 2021.
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Figure 4. Graph illustrating the predicted cases of India with different values of the order of derivative for the time
interval April 20, 2021 - July 10, 2021.

Consequently, the COVID-19 death rate of unattended infectives is computed as δu = 1617
486606

=
0.00332 per day. As reported by the World Health Organization (2020a), an individual exposed to
a COVID-19 infected individual will spend approximately 4 − 6 days in incubation period after
acquiring the infection. Thus, in accordance with the real data of India and the fact produced by
WHO, the progression rate of exposed individuals to the isolation is estimated at σ = 1

4.68
per

day. It is known that isolated and unattended infectives have lesser chance of spreading infection
in comparison to the hospitalized infectives due to the fact that they are isolated at home and do
not come in contact with health care workers. Thus, the relative infectiousness of isolated and
unattended infectives is less than that of hospitalized infectives, which in turn made us to assume
η1 = 0.57 and η2 = 0.54.
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The vaccination rate for susceptibles computed by the ratio of no. of individuals vaccinated per
day to the target population has been estimated at ν1 = 0.015. As per the report by World Health
Organization, recovery rate for COVID-19 has reached to approximately 95% by the end of May
2021, corresponding to which we have estimated τ1 = 0.972 and τ2 = 0.95. We assume that
γ = 0.07, due to the fact that the progression of infectives to hospitals is less than 10%. Further-
more, after getting recovered from COVID-19 an individual is supposed to acquire immunity for
approximately 3 months and therefore k is estimated at 90 days. In accordance with the real data of
India for active cases and the proposed model, certain parameters value have been fitted and hence
chosen as ρ = 0.32, ν2 = 0.031, µ = 0.51.

Using the MATLAB software, the estimated data is validated for the numerical simulation of the
model. Therefore for the data validation, the real data of India is correlated with the predicted num-
ber of infectives for integer and fractional values of α. From Figure 3, the demolition of COVID-19
infection in India can be observed for the time period April 20 - June 10, 2021 for the different
values of order α of differential equations. It can be visualized from the graph that infectives in-
crease until May 16, 2021 and then start decreasing. It can also be observed from Figure 3 that the
trajectory corresponding to the total infectives predicted by the model is in close approximation
with the real data of India for the fractional order α = 0.98 from beginning until the end of the
prediction period. This may happen due to the fact that by April 2021 more than 15.38 million
individuals had already been recovered from COVID-19 in the first wave. These individuals have
certain memories of the disease for how to adopt practices in order to prevent themselves from re-
infection with COVID-19 or which practices to be taken if again become infected with COVID-19.
This justifies the importance of inclusion of memory effect in the model. It can be observed from
Figure 4 that following trajectory corresponding to α = 0.98, the number of infectives reaches
approximately 0.2× 106 by July 10, 2021.
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Figure 5. Graphs depicting the stability of the equilibrium point DE = (2.81865 × 106, 0, 1.27923 × 109, 0, 0, 0, 0)
with different values of the order of derivative.
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Figure 6. Graphs depicting the stability of the equilibrium point DE = (2.81865 × 106, 0, 1.27923 × 109, 0, 0, 0, 0)
with different values of the order of derivative.

With the chosen parameters value, we have obtained the basic reproduction number to be less
than unity, consequently the disease-free equilibrium point is obtained as DE = (2.81865 ×
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106, 0, 1.27923 × 109, 0, 0, 0, 0). In our model, Figure 5 and 6 show the trajectories correspond-
ing to COVID-19 for four different values of the order of derivatives (α), to represent the role that
memory plays in the treatment and recovery from COVID-19 infection. The local asymptotic sta-
bility of the disease-free equilibrium point DE can also be visualized in Figure 5 and 6 in which all
the solution trajectories are converging towards their respective equilibrium components.

In Figure 5(a), we can visualize the effect of fractional order on the population susceptible to
COVID-19. As the order of derivative decreases from α = 1 to α = 0.94, memory effect increases,
which in turn decreases the decrement rate of susceptibles as can be seen in Figure 5(a). The key
reason behind the decrease in decrement rate of susceptibles could be the lower rate of transfer
of susceptibles to infection class as memory effect increases. Thus, Figure 5(a) shows the crucial
role played by the inclusion of memory effect (characterized by the fractional order α) in reducing
the infection rate and increasing the susceptibles. It can also be observed from Figure 5(a), the
number of susceptibles approach at a faster rate to the corresponding component value 2.81865×
106 of equilibrium as the order of differential equations α raises from 0.94 to 1. This justifies
higher convergence rate for a higher value of α. The effect of fractional order on the vaccinated
population can be seen in Figure 5(b). It can be concluded that the requirement of increment in
vaccinated individuals is more for integer order model as compared to the case when fractional
order model is considered. This may happen due to the fact that fractional order includes the
memory of individuals who have a previous exposure to the disease and hence are taking more
precautionary measures to keep themselves away from the infected individuals.

Also, the immune system of individuals having a previous exposure to the disease may also have
the memory of being attacked by the same virus before and hence produces antibodies in the
early stage of infection or already have active antibodies in their system which in turn reduces the
emergency of getting vaccinated. Keeping this in mind, the health care authorities are vaccinating
susceptibles on priority rather than those who have recovered from the disease and have prescribed
a time duration of three months from the date of infection for those who have previous exposure
to the disease. However, for integer order models where memory effect is not considered, there
is an emergent need of vaccination and high increment in the vaccination rate is required as can
be seen from Figure 5(b), which is quite infeasible for any community. Thus, fractional order is
more feasible as far as the real world scenario is considered. The trajectory corresponding to the
vaccinated population can be seen to be converging towards the equilibrium component 1.27923×
109 in approximately 5 months with a higher convergence rate for integer order as compared to
fractional order.

Figure 6(a) and (b) show the prevalence of infection in exposed and isolated individuals, respec-
tively. It can be observed that the nunber of exposed and isolated individuals increases for the initial
25 days and reaches its peak value until May 16, 2021. The growth in the number of infectives is
slow for small fractional order, as smaller fractional order indicates more memory effect and in-
fected individuals with previous exposure will be cautious with following precautionary measures
that reduces the accretion rate of infectives. However, it can also be observed that after approxi-
mately 25 days infectives start decreasing with a slower decay rate for lower fractional order which
is a result of higher vaccination rate for higher order.
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Figure 7. Graphs illustrating the predicted death cases for the model system (1) with different values of the order of
derivative.

The similar behavior of solution trajectories corresponding to unattended infectives and hospital-
ized infectives can be seen in Figure 6(c) and (d) for different values of fractional order. It can also
be seen in Figure 6(e) that for higher order of derivative, infection rate is more and hence the num-
ber of recovered individuals also increase and further converge towards the equilibrium component
zero as infectives decrease in the long run.

From Figure 7, it can be observed that the death cases increase for initial few days as the COVID-
19 cases rise with a lower increment rate for fractional order and then start decreasing as infectives
decrease with a lower decrement rate for higher value of order of differential equations. This jus-
tify the fact that if the memory effect is taken into consideration the health care facilities are made
available to the infectives so, the death cases increases slowly. Thus, the fractional order deriva-
tives plays a vital role in deduction of the number of infectives and makes a mathematical model
realistic.

The COVID-19 vaccines were introduced worldwide several months ago. The graph in Figure 8
illustrates the effect of vaccination rate ν1 on COVID-19 infectives by varying the value of ν1 from
0.01 to 0.0175 for α = 0.98. It can be visualized from Figure 8 that the number of infectives
decreases with a higher rate for ν1 = 0.15 and the rate of increment is much lesser in this case
as compared to the cases when vaccination rate is lesser. Therefore, the spread of infection can be
effectively controlled if the vaccination rate can be increased by encouraging the susceptibles to
take vaccination along with increasing the vaccination production and vaccination centers.

As per the World Health Organization, it is difficult to exactly determine the efficacy of a vaccina-
tion, whether it is Covaxin or Covishield, yet both the vaccines are proved to be very effective in
controlling the disease. However, no vaccine is 100% effective in controlling the spread of the dis-
ease and a small fraction of individuals acquire COVID-19 infection even after getting vaccination
with either first dose or both doses.
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Figure 8. Graph illustrating the effect of vaccination rate on COVID-19 infectives by varying the value of ν1 from 0.01
to 0.0175.
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Figure 9. Graph illustrating the changes in COVID-19 infectives with efficacy of vaccination (ϵ) ranges from 0.69 to
0.81.

Certain other factors such as an individual’s health condition, previous exposure to COVID-19,
infection with some other comorbidities and an individual’s age may leave an impact on the efficacy
of vaccination. On the other hand, vaccines are effective and the development of antibodies may be
hampered due to a suppressed immune system. Keeping this in view, health care authorities advise
all the vaccinated individuals to follow all the precautionary measures such as mask wearing,
breathing etiquette, social distancing, avoiding large gathering and the consumption of alcohol
for at least 45 days in order to develop a strong and healthy immune system. All these practices
have an immense impact on the efficacy of vaccination.

Keeping all the practices in mind, we have portrayed the number of active infectives in Figure
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9 by varying the value of efficacy of vaccination, that is, ϵ from 0.69 to 0.81 to visualize the
vital role played by the efficacy of vaccination in reducing the infection prevalence. From Figure
9, it can be visualized that infectives start decreasing more rapidly as the efficacy of vaccination
increases. Thus, it can be concluded that even after getting vaccinated against COVID-19 infection,
the population must follow all the precautionary measures such as infection prevention, social
distancing and avoiding alcohol consumption for at least 45 days after the vaccination in order to
increase the efficacy of vaccination.

The behavior of solution trajectories, corresponding to the COVID-19 model for different values
of the order of derivative, indicates the novelty of this article over other papers on COVID-19.

7. Discussion

In this paper, we have analyzed a COVID-19 model by incorporating vaccination for both suscep-
tibles and exposed individuals. The basic reproduction number has been computed along with the
determination of two equilibrium points, namely, the equilibrium point with disease free and the
equilibrium point with existence of disease. We have also estimated the sensitivity index for the
threshold quantity R0 that signifies the impact of distinct parameters. It has been observed from
sensitivity analysis that the transmission rate of the disease and efficacy of vaccination have an
immense impact on the reproduction number and can play a crucial role in reducing the spread of
the disease. Thus, proper precautionary measures such as wearing masks, body sanitization, social
distancing and isolation of infectives must be followed to reduce the transmission rate and efficacy
of vaccination against infection which in turn reduces the disease prevalence.

The model is based on the Caputo fractional order derivative and is numerically simulated for α
ranging from 0.94 to 1. Numerical results show the crucial role played by fractional order deriva-
tives in the reduction of infection prevalence. It has been visualized that the real data of India
is in close approximation to predicted model trajectory for the fractional order α = 0.98, which
consequently shows that if the memory effect is taken into consideration along with strict im-
plementation of precautionary measures and proper management of vaccination rate, the infected
population decreases to approximately 0.2×106 in the beginning of July 2021. It has been also ob-
served that for higher order of derivative infection rate is higher which in turn increases the number
of recovered individuals. The graphs corresponding to the solutions trajectories also predict that
India can be made free from COVID-19 in next five months if vaccination is given properly and
strict precautionary measures such as infection prevention, home isolation, quarantine and work
from home are followed.

Also, the convergence rate towards the equilibrium point is less for a fractional order model which
justifies the actual solutions to the real problems. Numerical results also signify the fact that if the
vaccination rate and the efficacy of vaccination is increased by strictly following all the precaution-
ary measures and avoiding practices which reduce human immunity such as consuming alcohol,
the COVID-19 infectives can be decreased.
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8. Conclusion

In this paper, a fractional order model has been formed with an aim to explain the transmission
dynamics of population by taking the memory effect into consideration. It has been observed that
the fractional order α can portray the role of precautionary measures in decreasing the COVID-
19 infection, as a lower increment rate can be observed in the number of infectives by reducing
the value of α and increasing the memory effect. It must be noticed that for smaller fractional
order growth as well as decay rate is slower. The results presented in this article can be fruitful for
the COVID-19 outbreak and may be utilized for making defensive strategies against the infection
prevalence.
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