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Abstract

In this research, exponential approximation is used to solve a class of nonlinear Emden-Fowler
equations. This method is based on the matrix forms of exponential functions and their deriva-
tives using collocation points. To demonstrate the usefulness of the method, we apply it to some
different problems. The numerical approximate solutions are compared with available (existing)
exact (analytical) solutions to show the accuracy of the proposed method. The method has been
checked with several examples to show its validity and reliability. The reported examples illustrate
that the method is reasonably efficient and accurate.

Keywords: Exponential approximation; Emden-Fowler equations; Lane-Emden equations; Op-
erational matrix; Collocation method
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2 M. Aslefallah et al.

1. Introduction

Differential equations have a remarkable role in several scientific and engineering phenomena
that are always of interest in physical and technical applications and appear in various fields such
as mathematics, physics and engineering sciences (Siriwardana and Pradhan (2021), Manafian et
al. (2016), Shivanian and Aslefallah (2017), Aslefallah et al. (2020), Aslefallah and Shivanian
(2015), and Aslefallah et al. (2019)). The Emden-Fowler type of equations are singular initial
value problems (IVPs) associated with second-order ordinary differential equations (ODEs) used
to model various phenomena in mathematical physics and astrophysics such as thermal explosions,
stellar structure, the thermal behavior of a spherical cloud of gas, isothermal gas spheres, and
thermionic currents (Bellman (1953); Chandrasekhar (1967)).

In astrophysics, the Lane-Emden equation is a dimensionless form of Poisson’s equation for the
gravitational potential of a Newtonian self-gravitating, spherically symmetric, polytropic fluid.

Physically, hydrostatic equilibrium relates potential gradient, density, and pressure gradient, while
Poisson’s equation relates potential to density. So, if we have another equation that dictates how
pressure and density change relative to each other, we can arrive at a solution. The particular choice
of a polytropic gas as mentioned above makes the mathematical expression of the problem partic-
ularly concise and leads to the Lane-Emden equation. This equation is a useful approximation for
self-gravitating spheres of plasma such as stars, but is usually a limiting assumption (Chowdhury
and Hashim (2009); Asadpour et al. (2019)).

Recently, Yüzbaşi and Sezer (2013b), Yüzbaşi (2020), Yüzbaşi (2018), and Yüzbaşi and Sezer
(2013a) have worked the collocation method based on exponential approximation to solve the
linear neutral delay differential, pantograph, singular differential-difference, and Fredholm integro-
differential difference equations and Fredholm integro differential equation systems.

In this study, we seek the approximate solution of Emden-Fowler as series of exponential functions.
Exponential polynomials or exponential functions have interesting applications in many problems.

The rest of this article is organized as follows. In Section 2 some basic concepts about the main
equation and the method are presented. In Section 3, we express briefly required mathematical
preliminaries and matrix relations for exponential functions of the method. In Section 4, we present
numerical implementation of matrix operation of method. Some numerical examples are reviewed
to show the accuracy of the method, and results are reported in Section 5. Finally, in the last section,
concluding remarks are given.

2. Basic Concepts

Many problems in applied mathematical physics that occur on semi-infinite interval, are related to
Emden-Fowler equation. The equation is of the form:
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u′′(x) +
f ′(x)

f(x)
u′(x) + g (x, u(x)) = h(x), x > 0, (1)

with initial conditions

u(0) = α0, u′(0) = α1, (2)

where g(x, u(x)) and h(x) are continuous real valued functions f(x) is a continuous and differen-
tiable function with f(x) ̸= 0.

Equation (1) reduces to the Lane-Emden equation which, with specified f(x), was used to model
several phenomena in mathematical physics and astrophysics such as the theory of stellar structure,
the thermal behavior of a spherical cloud of gas, isothermal gas sphere, and theory of thermionic
currents. The solution of the Emden-Fowler equation (1) and (2), as well as other various linear
and nonlinear singular IVPs in quantum mechanics and astrophysics, is numerically challenging
because of the singularity behavior at the origin.

In this study, we seek the approximate solution of Equation (1) with Equation (2) as series of expo-
nential functions. Exponential polynomials or exponential functions have interesting applications
in many problems. These polynomials are based on the exponential base set B = {1, e−x, e−2x, . . .}
and defined by

u(x) ≃ uN(x) =
N∑

n= 0

ane
−nx, (3)

so that an are the unknown coefficients (n = 0, 1, . . . , N ). The motivation to choose the exponen-
tial series is to avoid the singularity at the origin.

3. Matrix Relations for Exponential Functions

In the first step, let us write the approximate solution uN(x) defined by (3) of Equation (1) in the
matrix form as,

u(x) = E(x)A, (4)

where

E(x) = [1 e−x e−2x . . . e−Nx],

and

A = [a1 a2 . . . aN ]
T .

Secondly, the relation between E(x) and its first derivative E′(x) is given by

E′(x) = E(x)D,

3
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where

D =


0 0 0 · · · 0
0 −1 0 · · · 0
0 0 −2 · · · 0
...

...
... . . . ...

0 0 0 . . . −N

 ,

and, by repeating the process

Ek(x) = E(x)Dk, k = 0, 1, 2, . . . , (5)

where D0 is the unit matrix in dimensional (N + 1)× (N + 1). Note that

Dk =


0 0 0 · · · 0
0 (−1)k 0 · · · 0
0 0 (−2)k · · · 0
...

...
... . . . ...

0 0 0 . . . (−N)k

 .

From the matrix relations (4) and (5), we have matrix form of the k-th derivative

u(k)(x) = E(x)DkA, k = 0, 1, . . . ,m. (6)

By replacing the collocation points {xi}Ni=0 we turn (6) into the following system of matrix equa-
tions:

u(k)(xi) = E(xi)DkA, i = 0, 1, . . . , N.

or, in compact form,

U(k) = E.Dk.A,

where

E =


E(x0)
E(x1)

...
E(xN)

 =


1 e−x0 e−2x0 . . . e−Nx0

1 e−x1 e−2x1 . . . e−Nx1

...
...

... . . . ...
1 e−xN e−2xN . . . e−NxN

 , U(k) =


u(k)(x0)
u(k)(x1)

...
u(k)(xN)

 .

4. Implementation of Matrix Operation

To obtain an exponential series solution of (1) under the mixed conditions (2), the following matrix
method is used. The foundation of this method is based on calculating the unknown coefficients
using the collocation points. Then, by using collocation points on interval [0, b] defined as

xj =
b

N
j, j = 0, 1, . . . , N.

First, the collocation points are substituted in (1)

u′′(xi) +
f ′(xi)

f(xi)
u′(xi) + g (xi, u(xi)) = h(xi), i = 0, 1, . . . , N, (7)

4
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and then this system is written in the matrix form

U(2) + FU(1) + G = H,

where

F =

[
f(x0)

f ′(x0)

f(x1)

f ′(x1)
. . .

f(xN)

f ′(xN)

]T
,

G = [g(x0, u(x0)) g(x1, u(x1)) . . . g(xN , u(xN))]
T ,

and

H = [h(x0) h(x1) . . . h(xN)]
T .

After the substitution of the above relations, we have the fundamental matrix equation

ED2A + FED1A + G = H, (8)

Here, (8) corresponds to a system of the nonlinear algebraic equations with the unknown coeffi-
cients an, n = 0, 1, . . . , N .

In a special case, if g(x, u) = p(x)um, then

u′′(xi) +
f ′(xi)

f(xi)
u′(xi) + p(xi)u

m(xi) = h(xi), i = 0, 1, . . . , N,

and this system is written in the matrix form

U(2) + FU(1) + PUm = H,

where

P = [p(x0) p(x1) . . . p(xN)]
T .

After the substitution of the above relations, we have the fundamental matrix equation

ED2A + FED1A + P(EA)m = H,

or equivalently, (
ED2 + FED1 + P(EA)m−1E

)
A = H. (9)

Briefly, (9) can also be written in the form

WA = H,

where

W = ED2 + FED1 + P(EA)m−1E.

Here, (9) corresponds to a system of the (N + 1) nonlinear algebraic equations with the unknown
coefficients an, n = 0, 1, . . . , N .

According to conditions (2), we have:

u(0) = α0 =⇒ a0 + a1 + a2 + . . .+ aN = α0, (10)

5
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and

u′(0) = α1 =⇒ −a1 − 2a2 − 3a3 − . . .−NaN = α1. (11)

Together with initial conditions, they make a system of non-linear algebraic equations which can be
easily solved by using any numerical methods such as Newton’s iterative method or just applying
mathematical software to solve the nonlinear equations. Hence, uN(x) can be calculated.

5. Numerical experiments

In this section, we will use the method explained in Section 2 to solve various types of Emden-
Fowler equations. All the calculations have been performed using MAPLE. We solve four exam-
ples using the method and report the numerical results. The accuracy and efficiency of the method
are shown with absolute error. All examples are solved on interval [0, 1], but it is necessary to
emphasize that with a proper transformation, examples on interval [0,∞) can be solved.

Example 5.1.

For first example, consider the Lane-Emden equation as follows

u′′(x) +
α

x
u′(x) + g(x, u) = h(x),

with initial conditions

u(0) = α0, u′(0) = α1.

In this special case, for g(x, u) = un(x) and h(x) = 0, this equation is the standard Lane-Emden
equation that was used to model the thermal behavior of a spherical cloud of gas acting under the
mutual attraction of its molecules and subject to the classical laws of thermodynamics (Yildirim
and Ozi (2009); Hosseini and Abbasbandy (2015)).

In this example, let n = 5, α = 2 and h(x) = 0. Then,

u′′(x) +
2

x
u′(x) + u5(x) = 0,

with initial conditions

u(0) = 1, u′(0) = 0.

The exact solution to this initial value problem is well known to be u(x) =
(
1 + x2

3

)−1/2
.

The mentioned procedure has also been carried out for the values N = 5 and N = 10. The
obtained bounds are shown in Table 1 together with the maximum actual errors corresponding to
these N values. Figure 1 shows the graph of absolute error function with N = 5 (top left), graph
of approximated and exact solution with N = 5 (top right), graph of absolute error function with
N = 10 (bottom left) and graph of approximated and exact solution with N = 10 (bottom right).
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Table 1. The absolute error obtained by the method for Example 5.1

xi N=5 N=10
0.00 0 0
0.10 6.0264× 10−4 1.7758× 10−5

0.20 1.5729× 10−3 2.4552× 10−5

0.30 2.3039× 10−3 2.5351× 10−5

0.40 2.6684× 10−3 2.4950× 10−5

0.50 2.7316× 10−3 2.3806× 10−5

0.60 2.6093× 10−3 2.2199× 10−5

0.70 2.4046× 10−3 2.0302× 10−5

0.80 2.1854× 10−3 1.8219× 10−5

0.90 1.9816× 10−3 1.6059× 10−5

1.00 1.7908× 10−3 1.3868× 10−5

Figure 1. (a) Graph of absolute error function with N = 5, (b) graph of approximated and exact solution with N = 5,
(c) graph of absolute error function with N = 10, and (d) graph of approximated and exact solution with
N = 10 for Example 5.1.
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Example 5.2.

Consider the following linear, non-homogeneous singular initial value problem:

u′′(x) +
2

x
u′(x) + u = x4 + x3 + 21x2 + 12x+ 6,

with initial conditions u(0) = u′(0) = 0.

The exact solution of this problem is

u(x) = x4 + x3 + x2.

The behavior of absolute error is reported in Table 2 for the values N = 10 and N = 15. Figure
2 shows the graph of absolute error function with N = 10 (top left), graph of approximated and
exact solution with N = 10 (top right), graph of absolute error function with N = 15 (bottom left)
and graph of approximated and exact solution with N = 15 (bottom right).

Table 2. The absolute error obtained by the method with N = 10 and N = 15 for Example 5.2

x N=10 N=15
0 0 0

0.10 2.9321× 10−3 9.3412× 10−5

0.20 4.1523× 10−3 1.0317× 10−4

0.30 4.2314× 10−3 1.0671× 10−4

0.40 4.3412× 10−3 1.0712× 10−4

0.50 4.4451× 10−3 1.0601× 10−4

0.60 4.4561× 10−3 1.0452× 10−4

0.70 4.4421× 10−3 1.0343× 10−4

0.80 4.3287× 10−3 1.0212× 10−4

0.90 4.2367× 10−3 1.0076× 10−4

1.00 4.1765× 10−3 9.7380× 10−5

Example 5.3.

As another example, consider the following nonlinear Emden-Fowler type equation

u′′(x) +
8

x
u′(x) + u(18 + 4 lnu) = 0,

with initial conditions u(0) = 1 and u′(0) = 0. The exact solution is u(x) = e−x2 .

The behavior of absolute error is reported in Table 3 for the values N = 10 and N = 15. Figure
3 shows graph of absolute error function with N = 10 (top left), graph of approximated and exact
solution with N = 10 (top right), graph of absolute error function with N = 15 (bottom left) and
graph of approximated and exact solution with N = 15 (bottom right).
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Figure 2. (a) Graph of absolute error function with N = 10, (b) graph of approximated and exact solution with N = 10,
(c) graph of absolute error function with N = 15 and (d) graph of approximated and exact solution with
N = 15 for Example 5.2.

Table 3. The absolute error obtained by the method with N = 10 and N = 15 for Example 5.3

x N=10 N=15
0 0 0

0.10 4.1235× 10−5 9.2356× 10−6

0.20 2.1676× 10−4 1.0811× 10−5

0.30 4.3299× 10−4 1.0918× 10−5

0.40 7.7867× 10−4 1.1124× 10−5

0.50 1.0211× 10−3 1.2457× 10−4

0.60 1.5432× 10−3 1.4321× 10−4

0.70 1.7656× 10−3 1.7345× 10−4

0.80 1.9912× 10−3 1.8798× 10−4

0.90 2.0985× 10−3 2.0011× 10−4

1.00 2.2080× 10−3 2.2046× 10−4

9
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Figure 3. (a) Graph of absolute error function with N = 10, (b) graph of approximated and exact solution with N = 10,
(c) graph of absolute error function with N = 15 and (d) graph of approximated and exact solution with
N = 15 for Example 5.3.

Example 5.4.

This example corresponds to the following nonlinear, homogeneous generalized Emden-Fowler
equation:

u′′(x) +
5

x
u′(x) + 8(eu + 2eu/2) = 0,

with initial conditions u(0) = 0 and u′(0) = 0. The exact solution is u(x) = −2 ln(1 + x2).

The behavior of absolute error is reported in Table 4 for the values N = 10 and N = 15. Figure
4 shows graph of absolute error function with N = 10 (top left), graph of approximated and exact
solution with N = 10 (top right), graph of absolute error function with N = 15 (bottom left) and
graph of approximated and exact solution with N = 15 (bottom right).
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Table 4. The absolute error obtained by the method with N = 10 and N = 15 for Example 5.4

x N=10 N=15
0 0 0

0.10 2.2387× 10−6 1.3412× 10−7

0.20 6.2678× 10−6 3.0317× 10−7

0.30 4.5565× 10−5 2.1129× 10−6

0.40 1.4577× 10−4 7.1296× 10−6

0.50 3.1256× 10−4 1.1199× 10−5

0.60 6.4490× 10−4 3.6532× 10−5

0.70 1.2309× 10−3 6.5643× 10−5

0.80 1.9023× 10−3 7.0785× 10−5

0.90 2.9766× 10−3 1.2297× 10−4

1.00 4.2012× 10−3 2.1457× 10−4

Figure 4. (a) Graph of absolute error function with N = 10, (b) graph of approximated and exact solution with N = 10,
(c) graph of absolute error function with N = 15 and (d) graph of approximated and exact solution with
N = 15 for Example 5.4
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6. Conclusions

In this paper exponential approximation has been employed to solve a class of nonlinear Emden-
Fowler equations. The method is based on exponential functions and collocation method as op-
erational matrix. Also, to illustrate the accuracy and efficiency of this method, four numerical
examples with different order and complexity have been presented. Through numerical experi-
ments, we find that numerical results are in good agreement with the exact analytical solutions. As
a result of comparisons with exact solutions, it has been observed that the method presented gives
good results. In addition, it is observed that errors decrease as N values increase. As illustrated
by the computational results, the implementation of the proposed method is very easy for similar
problems.

Acknowledgment:
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