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Abstract

In this paper, we have proposed an epidemiological model to study the dynamics of concomitant
diseases Tuberculosis (TB) and COVID-19. Here, we have formulated a deterministic compart-
mental model as an extended form of the classical SIS model. First, the basic reproduction number
R0 is derived and then stability analysis of the model is done. It is observed that the disease-free
equilibrium is stable when R0 is less than one and the endemic equilibrium is stable only when
R0 is greater than one. Numerical simulation is carried out to illustrate the theoretical findings and
to study the transmission dynamics of both the concomitant diseases during the first and second
waves of COVID-19 in India.

MSC 2010 No.: 00A69, 00A71, 03C45, 92D30

1. Introduction

The word "concomitant" means occurring during the same period of time. As far as concomi-
tant diseases are concerned, they usually refer to secondary symptoms that occur with the main
symptom. There are several concomitant diseases such as diabetes and hypertension, diabetes and
obesity, TB and HIV, etc. We are interested in the mathematical analysis of recent concomitant
diseases TB and COVID-19. The ongoing pandemic COVID-19 emerged in 2019, caused by novel
beta coronavirus namely, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which
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was first identified in Wuhan (Hubei), China. The disease led to an increase in number of patients
throughout the world since December 2019, posing significant threat to global public health and
the world economy (Song et al. (2021)). When lockdown becomes a safety measure for extenuating
the impact of COVID-19, it is critical to predict the long-term impact of these safety measures on
TB and other severe pre-existing infectious diseases. Although there is now digital scanning with
artificial intelligence solutions which rapidly screen for both of the diseases TB and COVID-19
(Shrinivasan et al. (2020)), the ongoing several challenges managing TB in the curbing time of
COVID-19 is crucial.

Modelling the transmission dynamics of a disease is a technique to formulate known facts about
the transmission and to predict all possible outcomes of the disease with mathematical techniques.
Mathematical modelling of infectious diseases is done to investigate the exclusive parameters,
predict future trends and also to evaluate control measures to provide information for decision-
making (Holmdahl and Buckee (2020)).

COVID-19 has significant human-to-human transmission. Maximum cases of COVID-19 infec-
tion has minimal symptoms and are self-recovering. Old-aged people as well as people with medi-
cal problems like hypertension, cardiovascular diseases, diabetes, chronic respiratory diseases and
long incubation period infectious diseases like TB are at significant risk of complications and death
due to deadly COVID-19 virus (Kaushik et al. (2020); Chen et al. (2020)).

Both TB and COVID-19 are contagious diseases that are transmitted mainly through close contact.
Ongoing researches and clinical evidences reveal that TB is co-related with COVID-19 outcomes,
resulting an approximately two to three times increase in fatality and a 25% decrease in the recov-
ery of COVID-19 co-infection with active TB disease (McQuaid et al. (2021)). The statistics about
an individual having TB when co-infected with COVID-19 can be at severe risk of poor outcomes
(Gupta et al. (2020)).

There have been approximately 34.1 million reported cases and 0.453 million deaths associated
with COVID-19 in India until October 22, 2021 (WHO (2020)). Evidences to date reveal that
COVID-19 infected population with multiple pre-existing comorbidities such as diabetes, hyper-
tension, and cardiovascular diseases are at greater risk of death, but only a few studies have focused
on the involvement of COVID-19 infected population co-infected with other respiratory infec-
tious diseases (Callender et al. (2020)). Over the past several decades, TB incidence and mortality
have been gradually declining, showing ongoing improvements in diagnosis, prevention and treat-
ment. When the nationwide lockdown was imposed, the weeks following the imposition on March
24,2020, India reported an 80% drop in daily notifications of TB relative to average pre-lockdown
levels. Such declines may be partly due to delays in reporting but are also likely to reflect reduc-
tions in access to diagnosis and treatment, potentially having a lasting impact on TB burden at
a country-wide level. Missed diagnoses would result an increased opportunities for transmission,
while worsened treatment outcomes increase the risk of death from TB (Cilloni et al. (2020)),
from which it is concluded that the transmission dynamics of COVID-19 must have affected the
transmission dynamics of TB. Study of these two concomitant diseases TB and COVID-19 is very
limited to the best of our knowledge and it needs further attention. We, therefore, proposed to study
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the disease dynamics of the two concomitant diseases TB and COVID-19 through mathematical
modelling. In this paper, we have studied the impact of COVID-19 on TB for both the waves of
COVID-19 in India.

2. Mathematical Model

In this paper, we present a deterministic compartmental model for concomitant diseases TB and
COVID-19 by assuming a homogeneous mixing of individuals within the population under con-
sideration. To formulate the model, we have divided the total population concerning their disease
status into mutually exclusive epidemiological states. Here, we denote the population susceptible
to infectious disease TB and COVID-19 by x(t), the population infected with TB only by y(t), the
population infected with COVID-19 only by z(t), and the population infected with both TB and
COVID-19 diseases by w(t). It is assumed that both the diseases spread via direct contact between
susceptible(s) and infected individuals. The individuals who recovered from the infection are also
assumed to re-enter the susceptible class. Thus, our model is based on the classical SIS model.
Let N(t) be the total population at any time ′t′ in the region under consideration, which is sum
of all the four sub-populations. Thus, we have N(t) = x(t) + y(t) + z(t) + w(t). A schematic
representation of our compartmental model is shown in Figure 1.

Figure 1. Schematic Representation of Compartmental Model

In the proposed model, let the susceptible population enters the system at constant rate A who
moves to the infected class of TB at the transmission rate β0 and to the infected class of COVID-
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19 at the transmission rate β1. When TB infected population acquires COVID-19, they enter to the
class infected with both TB and COVID-19. Also, when COVID-19 acquires infected population
with TB, they enter to both TB and COVID-19. In addition, TB infected population recovers at
the recovery rate of γ1, COVID-19 infected population recovers at the recovery rate of γ2 and
population infected with both TB and COVID-19 after recovery re-enter the susceptible population
at the recovery rate of γ3. Further, α1, α2 and α3 are respectively the disease related death rates
of TB, COVID-19 and both TB plus COVID-19 infected population and µ is the natural mortality
rate of population in each compartment. The description of parameters are defined in Table 1.

Table 1. Description of Parameters

Parameter Description
A : Recruitment rate
α1 : The disease-related death rate of the TB-infected population
α2 : The disease-related death rate of the COVID-19 infected population
α3 : The disease-related death rate of both TB and COVID-19 infected population
β0 : The transmission coefficient of TB infection from TB population
β1 : The transmission coefficient of COVID-19 infection from COVID-19

infected population
γ1 : The recovery rate of TB population
γ2 : The recovery rate of COVID-19 population
γ3 : The recovery rate of both TB and COVID-19 infected population
µ : Natural mortality rate

The mathematical formulation of our compartmental model is as given below:

dx

dt
= A+ γ1y + γ2z + γ3w − β0xy − β1xz − µx,

dy

dt
= β0xy − β1yz − (γ1 + µ+ α1) y,

dz

dt
= β1xz − β0zy − (µ+ α2 + γ2) z,

dw

dt
= β0zy + β1yz − (µ+ α3 + γ3)w,


, (1)

with the following initial conditions:

x (0) = x0 > 0, y (0) = y0 ≥ 0, z (0) = z0 ≥ 0, w (0) = w0 ≥ 0. (2)

3. Non-Negativity of the Model

Non-negativity conditions are necessary to show that all the state variables remain positive for
t ≥ 0 or the solutions of the system remain positive for all time. Thus, we have the following
lemma.

4
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Lemma 3.1.

Under the initial conditions given by (2), all the solutions (x, y, z, w) of the system of equations
(1) remain non-negative for t ≥ 0 .

Proof:

From the system of equations (1) and (2), we get

dx

dt

∣∣∣∣
x=0

= A+ γ1y + γ2z + γ3w > 0, (3)

dy

dt

∣∣∣∣
y=0

= 0, (4)

dz

dt

∣∣∣∣
z=0

= 0, (5)

dw

dt

∣∣∣∣
w=0

= β0zy + β1yz ≥ 0. (6)

Thus, we conclude that the solution of the system of equations (1) is non-negative for t ≥ 0. ■

4. Boundedness of the Model

In this section, we show that the solutions of the system of equations (1) are bounded. The bounded-
ness implies the natural restrictions to indefinite growth of infected population due to the various
constraints such as natural conditions or preventive habits acquired by the population to protect
themselves from acquiring the disease. Now, we prove the following lemma.

Lemma 4.1.

The set Ω = {(x, y, z, w) : 0 ≤ x+ y + z + w ≤ N} is the closed region for the system (1) with
non-negative initial conditions for all solutions initiating in the positive octant, where Nmax = A

µ
.

Proof:

Adding all the four equations of the system (1), we get

dN

dt
= A− µx− µy − α1y − µz − α2z − µw − α3w. (7)

Using the relation N = x+ y + z + w, the equation (7) can be re-written as

dN

dt
= A− µN − α1y − α2z − α3w.

Thus, we conclude the following:

dN

dt
≤ A− µN.

5
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Now, by using comparison principle, we can write

0 < N ≤ A

µ
. (8)

Thus, the set Ω = {(x, y, z, w) : 0 ≤ x+ y + z + w ≤ N} is the closed region for the system (1)
and all the solutions of the model enter in the set Ω. Thus, our proposed model is well-defined
biologically and mathematically. ■

5. Existence of Equilibrium Points

In this section, we shall show the existence of equilibrium points. In a dynamical system, an equi-
librium point is a state of the system that does not change with respect to time. Thus, if the system
begins at an equilibrium point, the state will try to remain at an equilibrium point forever. The
system (1) has two equilibrium points: one disease-free equilibrium point E0(

A
µ
, 0, 0, 0) and the

other endemic equilibrium point E∗(x∗, y∗, z∗, w∗).

The endemic equilibrium point must satisfy the following equations:

A+ γ1y
∗ + γ2z

∗ + γ3w
∗ − β0x

∗y∗ − β1x
∗z∗ − µx∗ = 0, (9)

β0x
∗ − β1z

∗ − (γ1 + µ+ α1) = 0, (10)
β1x

∗ − β0y
∗ − (µ+ α2 + γ2) = 0, (11)

β0z
∗y∗ + β1y

∗z∗ − (µ+ α3 + γ3) = 0. (12)

Now, from Equation (10), we have

z∗ =
β0x

∗ − (γ1 + µ+ α1)

β1

= f1(x
∗). (13)

Again, from Equation (11), we have

y∗ =
β1x

∗ − (γ2 + µ+ α2)

β0

= f2(x
∗), (14)

and from Equation (12), we have

w∗ =
(β0 + β1)y

∗z∗

(γ3 + µ+ α3)
=

(β0 + β1) f1(x
∗)f2(x

∗)

γ3 + µ+ α3

. (15)

Using (13), (14) and (15) in Equation (9), we have

g(x) = A+
γ1
β0

{β1x
∗ − (γ2 + µ+ α2)}+

γ2
β1

{β0x
∗ − (γ1 + µ+ α1)}+

γ3(β0 + β1)

(γ3 + µ+ α3)[
{ 1

β0β1

β0x
∗ − (γ1 + µ+ α1)}{β1x

∗ − (γ2 + µ+ α2)}
]

− β1x
∗2 + (γ2 + µ+ α2)x

∗ − β0x
∗2 + (γ1 + µ+ α1)x

∗ − µx∗ (16)

6
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Therefore, we have

g(0) = A− γ1
β0

(γ2 + µ+ α2)−
γ2
β1

(γ1 + µ+ α1)

− γ3(β0 + β1)

(γ3 + µ+ α3)β0β1

[(γ1 + µ+ α1)(γ2 + µ+ α2)] , (17)

and

g

(
A

µ

)
=

γ1
β0

{
β1

(
A

µ

)
− (γ2 + µ+ α2)

}
+

γ2
β1

{
β0

(
A

µ

)
− (γ1 + µ+ α1)

}
+

γ3(β0 + β1)

(γ3 + µ+ α3)β0β1

[{
β0

(
A

µ

)
− (γ1 + µ+ α1)

}{
β1

(
A

µ

)
− (γ2 + µ+ α2)

}]
− β1

(
A

µ

)2

+ (γ2 + µ+ α2)

(
A

µ

)
− β0

(
A

µ

)2

− (γ1 + µ+ α1)

(
A

µ

)
. (18)

Now, from Equation (16), we find

g
′
(x) =

γ1β1

β0

+
γ2β0

β1

+
γ3(β0 + β1)

(γ3 + µ+ α3)

[
−2β1β0x

∗ +−(γ1 + µ+ α1)β1 − (γ2 + µ+ α2)β0

β0β1

]
− 2β1x

∗ + (γ2 + µ+ α2)− 2β0x
∗ + (γ1 + µ+ α1). (19)

Clearly, g(A
µ
) > 0. Thus, a unique value x∗ of x exists if g(0) < 0 and g

′
(x) > 0; ∀ 0 < x < A

µ
.

Then, the values y∗, z∗ and w∗ can be obtained respectively from Equations (14), (13) and (15).

5.1. Basic Reproduction Number

The basic reproduction number R0 is a dimensionless number and plays an important role in
analysing any epidemiological model. It is defined as the number of secondary infections spread by
an infected individual during one’s complete infectious period in a population in which each indi-
vidual is susceptible. It can be analytically determined if the disease-free equilibrium of the given
system exists. We use the generalized approach, i.e., next generation matrix approach to determine
the basic reproduction number as proposed by Van den Driessche and Watmough (2002). For the
system (1), the disease-free equilibrium point is E0(Aµ ,0, 0, 0) and hence to determine the basic
reproduction number of the proposed model. We decompose the right hand side of the system(1)
corresponding to the infected compartments as R1 −R2, where

R1 =


β0xy − β1yz
β1xz − β0zy

β0zy + β1yz

0

 ,

and

R2 =


(γ1 + µ+ α1)y
(γ2 + µ+ α2)z
(γ3 + µ+ α3)w

( −A− γ1y − γ2z − γ3w + β0xy + β1xz + µx)

 .

7
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Now, we have

X =

[
dx

dt
,
dy

dt
,
dz

dt
,
dw

dt

]
.

Let us define R̃1 =
[
∂(R1)i
∂xj

]
, and R̃2 =

[
∂(R2)i
∂xj

]
, for i, j = 1, 2, 3 at disease-free equilibrium point.

Thus, differentiating R1 with respect to y, z, and w, we get

R̃1 =

β0x− β1z −β1y 0
β1z β1x− β0y 0

β0z + β1z β0y + β1y 0

 .

Now, at the disease-free equilibrium E0, (where x = A
µ

, y = 0, z = 0, and w = 0), we have

R̃1 =

β0
A
µ

0 0

0 β1
A
µ
0

0 0 0

 .

Similarly, differentiating R2 with respect to y, z, and w, we get

R̃2 =

(γ1 + µ+ α1) 0 0
0 (γ2 + µ+ α2) 0
0 0 (γ3 + µ+ α3)

 .

Note that R̃1 is non-negative and R̃2 is a non-singular M-matrix, whose inverse R̃−1
2 is non-negative

and, therefore, R1R
−1
2 is non-negative. Thus, we have

R̃1R̃
−1
2 =

β0
A
µ

0 0

0 β1
A
µ
0

0 0 0




1
γ1+µ+α1

0 0

0 1
γ2+µ+α2

0

0 0 1
γ3+µ+α3

 ,

i.e., R̃1R̃
−1
2 =


β0A

µ(γ1+µ+α1)
0 0

0 β1A
µ(γ2+µ+α2)

0

0 0 0

 . (20)

Therefore, we have

R0 = max

[
β0

A

µ(γ1 + µ+ α1)
, β1

A

µ(γ2 + µ+ α2)
, 0

]
= max(R1, R2, 0), (21)

where R1 = β0
A

µ(γ1+µ+α1)
corresponds to the reproduction number of TB infection and R2 =

β1
A

µ(γ2+µ+α2)
corresponds to that of COVID-19 infection. Since the infection rate of TB is very

small as compared to COVID-19 infection, therefore, the basic reproduction number for our system
is given by

R0 = R2. (22)

8
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Thus, in case of concomitant diseases TB and COVID-19, COVID-19 infection contributes to the
basic reproduction number of the system.

5.2. Stability Analysis of Equilibrium Points

5.2.1. Local Stability Analysis of Disease Free Equilibrium Point E0

To analyze the stability of an equilibrium point, we compute variational matrix V(E) of system of
equations (1), which is obtained as follows:

V (E) =


−β0y − β1z − µ γ1 − β0x γ2 − β1x γ3

β0y β0x− β1z − (γ1 + µ+ α1) −β1y 0
β1z −β0z β1x− β0y − (µ+ α2 + γ2) 0
0 β0z + β1z β1y + β0y −(µ+ α3 + γ3)

 ,

For the disease-free equilibrium point E0, the variational matrix V (E0) is given by

V (E0) =


−µ γ1 − β0

A
µ

γ2 − β1
A
µ

γ3
0 β0

A
µ
− (γ1 + µ+ α1) 0 0

0 0 β1
A
µ
− (µ+ α2 + γ2) 0

0 0 0 −(µ+ α3 + γ3)

 .

The eigenvalues of the variational matrix corresponding to disease-free equlibrium point are:
λ1 = −µ,
λ2 =

β0A
µ

− (γ1 + µ+ α1),= −(γ1 + µ+ α1)(1−R1),

λ3 =
β1A
µ

− (γ2 + µ+ α2),= −(γ2 + µ+ α2)(1−R2),
λ4 = −(µ+ α3 + γ3).

Clearly, the two eigenvalues λ1 and λ4 of the variational matrix of the disease free equilibrium
point are negative and the remaining two eigenvalues λ2 and λ3 have negative real parts if R1 < 1,
and R2 < 1 respectively. Hence, the disease-free equilibrium point is locally asymptotically stable
by Routh-Hurwitz Criteria (Routh (1877)), if R1 < 1, R2 < 1 and unstable if R1 > 1, R2 > 1.

5.2.2. Local Stability Analysis of Endemic Equilibrium Point E∗

To determine local stability of endemic equilibrium point E∗, we linearize the system about it by
setting x = x1 + x∗ , y = y1 + y∗, z = z1 + z∗ and w = w1 + w∗. After linearization, the system

9
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of equations (1) can be written as follows:

dx1

dt
= γy1 + γ2z1 + γ3w1 − β0x1y

∗ − β0x
∗y1 − β1x

∗z1 − β1x1z
∗ − µx1,

dy1
dt

= β0x
∗y1 + β0x1y

∗ − β1y1z
∗ − β1y

∗z1 − (γ1 + µ+ α1) y1,

dz1
dt

= β1x
∗z1 + β1x1z

∗ − β0z
∗y1 − β0z1y

∗ − (µ+ α2 + γ2) z1,

dw1

dt
= β0z

∗y1 + β0z1y
∗ + β1y

∗z1 + β1y1z
∗ − (µ+ α3 + γ3)w1.

Now, let us consider the Lyapunov function

V =
1

2
x2
1 +

1

2
y21 +

1

2
z21 +

1

2
w2

1. (23)

Differentiating Equation (23) with respect to ’t’, we have

V̇ = −1

3
a11x

2
1 + a12x1y1 −

1

3
a22y

2
1,−

1

3
a11x

2
1 + a13x1z1 −

1

3
a33z

2
1 ,

−1

3
a11x

2
1 + a14x1w1 −

1

3
a44w

2
1,−

1

3
a22y

2
1 + a23y1z1 −

1

3
a33z

2
1 ,

−1

3
a22y

2
1 + a24y1w1 −

1

3
a44w

2
1,−

1

3
a33z

2
1 + a34z1w1 −

1

3
a44w

2
1,


, (24)

where

a11 = (−β0y
∗ − β1z

∗ − µ),

a22 = {β0x
∗ − β1z

∗ − (γ1 + µ+ α1)} ,
a33 = {β1x

∗ − β0y
∗ − (µ+ α2 + γ2)} ,

a44 = {−(µ+ α3 + γ3)} ,
a12 = {γ1 − β0x

∗ + β0y
∗} ,

a13 = {γ2 − β1x
∗ + β1z

∗} ,
a14 = γ3,

a23 = {−β1y
∗ − β0z

∗} ,
a24 = {β0z

∗ + β1z
∗} ,

a34 = {β0y
∗ + β1y

∗} .



. (25)
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The Lyapunov function V̇ is negative definite, if the following conditions hold:

(i) (γ1 − β0x
∗ + β0y

∗)2 <
4

9
(−β0y

∗ − β1z
∗ − µ) {β0x

∗ − β1z
∗ − (γ1 + µ+ α1)} ,

(ii) (γ2 − β1x
∗ + β1z

∗)2 <
4

9
(−β0y

∗ − β1z
∗ − µ) {β1x

∗ − β0y
∗ − (γ2 + µ+ α2)} ,

(iii) γ2
3 <

4

9
(β0y

∗ + β1z
∗ + µ)(µ+ α3 + γ3),

(iv) (β1y
∗ + β0z

∗)2 <
4

9
{−β0x

∗ + β1z
∗ + (γ1 + µ+ α1)} {−β1x

∗ + β0y
∗ + (µ+ α2 + γ2)} ,

(v) (β0 + β1)
2z∗2 <

4

9

γ1 − βx∗

βy∗
−β0x

∗ + β1z
∗ + (γ1 + µ+ α1)(µ+ α3 + γ3),

(vi) (β0 + β1)
2y∗2 <

4

9

γ1 − β1x
∗

β1z∗
−β1x

∗ + β0y
∗ + (γ2 + µ+ α2)(µ+ α3 + γ3).

Thus, if all the conditions (i) through (vi) are satisfied, the endemic equilibrium point E∗ is locally
asymptotically stable.

6. Sensitivity Analysis

In this section, we analyze the sensitive parameters of the model. For example, for a parameter c,
the sensitivity of c is defined as how the model behaves to a small change in any parameter value
according to the following definition:

Kc =
∂R0

∂c

c

R0

,

where

R0 =
β1A

µ(γ2 + µ+ α2)
.

The sensitivity analysis for each of the parameters with respect to R0 is given by:

Kβ1
=

∂R0

∂β1

β1

R0

= 1,

KA =
∂R0

∂A

A

R0

= 1,

Kµ =
∂R0

∂µ

µ

R0

= −2.895,

Kγ2
=

∂R0

∂γ2

γ2
R0

= −0.2067,

Kα2
=

∂R0

∂α2

α2

R0

= −0.7932.

The sensitivity analysis of the concomitant model reveals that the contact rate β1, and the recruit-
ment rate A have a high positive impact on the spread of the virus. The analysis recommends that
the magnitudes of impact of A and β1 are the same. The other parameters µ,γ2,α2 have negative
impact. A graphical representation of sensitivity indices of R0 is shown in Figure 2.
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Figure 2. Sensitivity Analysis of Parameters

7. Numerical Simulation

In this section, we have discussed the quantitative behaviour of the transmission dynamics of con-
comitant diseases TB and COVID-19 in India. We justify the analytical findings of the impact
of COVID-19 on the TB-infected population and vice-versa using MATLAB software. Table 2
gives the parameter values used to perform numerical simulation of the model. Most of the pa-
rameter values have been taken from health sites of the Indian Government and some of them are
assumed. Numerical simulation is done for the first wave of COVID-19 in India from June 1, 2020,
to September 2, 2020, and for the second wave from March 1, 2021, to June 1, 2021, by the same
parameter values except transmission coefficient rates β0 and β1. The basic reproduction number
R0 is computed and is found to be 2.55 for the first wave and 2.65 for the second wave.

Table 2. Values and Sources of Parameters

Parameter Value Source
A 65937.74 day−1 (worldbank (2022))
α1 0.004 day−1 (Nikshay.in (2020))
α2 0.274 day−1 (COVID-19 (2020))
α3 0.272 day−1 Assumed
β0 1.345399 ×10−11 Assumed
β1 2.675 ×10−10 Assumed
γ1 0.0166 day−1 (medicinenet (2020))
γ2 0.0714 day−1 (mohfw.gov (2022))
γ3 0.0222 day−1 Assumed
µ 0.00002 day−1 (Knoema (2020))

Here, we have plotted the Figures for both the waves of a COVID-19 in India and compared them.
In Figure 3, we have plotted the variations of TB-infected population with time for different rates
of transmission coefficient β1 of COVID-19 infection for first and second wave of COVID-19.
We observe that as β1 increases, TB-infected population decreases during both the waves. But the
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Figure 3. Variation of TB population for different values of β1 during first and second waves of COVID-19

number of TB-infected population reported during the second wave was slightly higher than that
during the first wave.

In Figure 4, we have drawn variation of TB infected population with time in the presence of
COVID-19 infection. From the figure, we observe that number of TB infected population reported
in this situation decline drastically. This decrement in number of infected TB population may be
due to diagnosing TB as COVID-19 and treating TB infected population as COVID-19 infected
population. Figures 5 and 6 display the variation of R0 with parameters α2, γ2 and β1 for both the
waves of COVID-19 infection. It is observed that the qualitative nature of the graph is same in both
the waves. For both the waves, it is observed that R0 increases linearly for transmission coefficient
β1 of COVID-19 infection. However, R0 decreases approaches to zero with the increase in death
rate α2 due to COVID-19 infection. Moreover, as recovery rate γ2 of COVID-19 infected popula-
tion increases, then R0 decreases linearly. The graph illustrates that the most sensitive parameter is
β1 while the least sensitive parameter is found to be γ2. Also, the sensitivity of the parameters in
descending order is β1, α2, γ2. It is also observed that R0 increases linearly as A increases.

Figure 4. Variation of TB population with time during the first and second wave of COVID-19
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Figure 5. Variation of the R0 with β1, α2, γ2 and A during the first wave of COVID-19

Figure 6. Variation of the R0 with β1, α2, γ2 and A during the second wave of COVID-19
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8. Conclusion

In this study, a non-linear deterministic mathematical model for the co-infection of two concomi-
tant diseases TB and COVID-19 is proposed to examine the dynamics of spread of these diseases.
The biological meaningfulness of the model is proved by showing the existence, uniqueness, non-
negativity, and boundedness of solutions in a given region. Then, the equilibrium points are com-
puted. The stability analysis of the equilibrium points is also presented with the help of the basic
reproduction number. The analytical study of the model reveals that the disease-free equilibrium
point is stable if the basic reproduction number is less than unity otherwise unstable. Further, there
exist a stable endemic equilibrium point for the basic reproduction number greater than one. Dif-
ferent numerical simulation cases were performed to supplement the analytical results and it is
observed to be in good agreement. Furthermore, the simulation result reveals that there is drastic
decrease in number of TB patient during COVID-19 situation.

Once the model parameter has been estimated on the basis of the available data on WHO and
Nikshay Portal, the model enables us to find out the decrement in the statistics of TB. COVID-19
being the most dangerous disease is much harmful for the TB-infected population, because of the
similar symptoms of TB and COVID-19, the TB-infected population face problems in medical
facilities due to which number of TB infected population are expected to rise but decrement in
notified cases is the matter of major concern and must be taken seriously with proper arrangements
of screening and supplying medical facilities to the TB-infected population, so that we do not get
an abrupt rise in TB notified patients once COVID-19 situations are normed. Disease-related death
rate of COVID-19 is also high when compared to disease-related death of TB. As per the literature,
decrease in number of TB-infected population interprets, the impact of immediate lockdown to
control the COVID-19 infection. But it causes heavy risk to TB population due to the disruption
in health services. Thus, our model is an attempt to draw attention of the policymakers towards
the TB population infected with COVID-19 and actual number of notified cases of TB during the
spread of COVID-19 as any false interpretation in the actual number of TB-infected cases may
lead to another health hazard in the community.
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