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Abstract

In this paper, we propose a four-parameter weighted Poisson distribution that includes and gener-
alizes the weighted Poisson distribution proposed by Castillo and Pérez-Casany and the Conway-
Maxwell-Poisson distribution, as well as other well-known distributions. It is a distribution that is
a member of the exponential family and is an exponential combination formulation between the
weighted Poisson distribution proposed by Castillo and Pérez-Casany and the Conway-Maxwell-
Poisson distribution. This new distribution with an additional parameter of dispersion is more
flexible, and the Fisher dispersion index can be greater than, equal to, or less than one. This last
property allows it to model over-dispersed data as well as under-dispersed or equi-dispersed data.
Many other properties of the new distribution are studied in this article. The parameters are esti-
mated by two methods: the least squares and the maximum likelihood methods. The properties of
the estimators are not studied because they follow directly. Two examples of application to real
data, taking into account situations of overdispersion and underdispersion, are examined.

Keywords: Count data; Over- and under-dispersion; Exponential family; Conway-Maxwell-
Poisson distribution; Weighted Poisson distribution; Estimation
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2 M. Koukouatikissa Diafouka et al.

1. Introduction

The concept of weighted distribution was introduced by Rao (1965) as one of the alternatives to
the Poisson distribution for the modeling and statistical analysis of count data. Indeed, the Poisson
distribution is still not appropriate for modeling count data although it is a benchmark model. The
lack of adequacy of the Poisson distribution is due to the variation observed in the data because of
the variance of the sample which can be larger or smaller than the mean. These variation phenom-
ena are called overdispersion and underdispersion, respectively, relative to the Poisson distribution.
Thus, one of the most important questions in the modeling and analysis of count data is how to
formulate an adequate probabilistic model to describe these observed variations in the data.

Since then, the familly of weighted distributions (weighted Poisson distributions in particular)
has been widely and variously studied in the literature; we can cite Patil et al. (1986), Patil (2002),
Chakraborty and Imoto (2016), Louzayadio et al. (2021) and their references. In particular, Conway
and Maxwell (1962) have formulated a family of generalized Poisson distributions of discrete
probabilities with two parameters, called the Conway-Maxwell-Poisson distribution (noted COM-
Poisson or CMP distribution). It is a weighted Poisson distribution (Gupta et al. (2014)) which has
been used as a basis to develop several general families of distributions, and Castillo and Pérez-
Casany (1998) proposed a family of weighted Poisson distributions with three parameters, noted
WPD, which includes and generalizes the family of Poisson distributions.

On this, in this paper we propose a new family of weighted Poisson distributions with four param-
eters which includes and generalizes the WPD proposed by Castillo and Pérez-Casany (1998) and
COM-Poisson distribution (Conway and Maxwell (1962)). The new family of weighted Poisson
distributions is a new exponential family (cf Section 2.2) which also generalizes other well known
distributions (cf Section 2.4). If CMP and WPD have only one dispersion parameter each, the new
family of weighted Poisson distributions has two (cf Section 2.5). Its Fisher dispersion index can
be greater than, equal to or smaller than one; it allows it to describe both over- and under-dispersed
data. This new family of weighted Poisson distributions is an exponential combination between
the WPD proposed by (Castillo and Pérez-Casany (1998)) and the CMP distribution (Conway
and Maxwell (1962)) (cf Section 2.7). All these properties and the mass function are presented
in Section 2. In Section 3, we determine the estimators of the parameters. The properties of these
estimators will not be studied because the methods used are usual and the asymptotic properties of
the estimators derived from these methods follow naturally. In Section 4, we fit the proposed new
distribution to real data. The conclusion and perspectives are presented in Section 5.

2. New Weighted Poisson Distribution

In this section, the mass function of the new distribution is presented and studied from a proba-
bilistic and statistical point of view.
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2.1. Point probability functions and recursive ratio probabilities

Let X be a positive discrete random variable, we propose a new discrete distribution whose prob-
ability mass function (in short pmf) p(x) = P (X = x) is defined by

p(x) =
λx(x+ a)α

x!ν
1

C(λ, α, ν, a)
, x ∈ N, (1)

where

C(λ, α, ν, a) =
∑
j≥0

λj(j + a)α

j!ν
. (2)

By the quotient criterion, the series (2) converges for all

• λ > 0, α ∈ R, ν > 0, a > 0, or
• λ > 0, α ∈ R+, ν > 0, a = 0, or
• 0 < λ < 1, α ∈ R, ν = 0, a > 0 (a = 0 for x ∈ N∗, see Section 2.4).

The recursive ratio probabilities corresponding to pmf defined in (1) is:

p(x+ 1)

p(x)
=

λ

(x+ 1)ν

(
1 +

1

x+ a

)α

. (3)

As in Castillo and Pérez-Casany (1998), note that the second factor in the right hand of (3) tends
to one, for every a ∈ R∗

+ and α ∈ R, when x tend to infinity. Then, the tails of the new distribu-
tion with parameter λ are similar to the tails of COM-Poisson distribution with parameter λ (see
Shmueli and al. (2005)). While, values of ν that are less than 1 correspond to flatter recursive ratio
probabilities than the WPD proposed by Castillo and Pérez-Casany (1998) and hence to longer
tails.

2.2. Weighted Poisson distribution and exponential family

The pmf given by (1) can be written as follows:

p(x) =
(x+ a)αx!1−ν

e−λC(λ, α, ν, a)

λx

x!
e−λ, x ∈ N. (4)

Relationship (4) shows that the new distribution as defined is a four-parameter weighted Poisson
distribution (Rao (1965); Patil (2002)), of weight function w(x) = (x + a)αx!1−ν and normaliza-
tion constant Eλ [(X + a)αX!1−ν ] = e−λC(λ, α, ν, a). We denote this new distribution by NWPD
(λ, α, ν, a).

The pmf given by (1) can also expressed as

p(x) = exp[x log λ+ α log(x+ a)− ν log(x!)− logC(λ, α, ν, a)], x ∈ N. (5)

3
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4 M. Koukouatikissa Diafouka et al.

And from (5), NWPD (λ, α, ν, a) is, for a fixed, a member of the exponential family of parameters
(log λ, α, ν) with log λ the canonical parameter. Moreover, the parameters (λ, α, ν, a) of NWPD
have the same interpretation as the parameters (λ, ν, a) of WPD, except that NWPD has two pa-
rameters of dispersion, namely α and ν (see Section 2.5).

2.3. Moments of distribution

Consider a random variable X following the NWPD (λ, α, ν, a). The moment of order r of the
variable X + a is given by

E[(X + a)r] =
C(λ, α+ s, ν, a)

C(λ, α, ν, a)
, r ∈ N. (6)

Thus, we deduce the mathematical expectation and the variance from (6),

E(X) =
C(λ, α+ 1, ν, a)− aC(λ, α, ν, a)

C(λ, α, ν, a)
,

V ar(X) =
C(λ, α+ 2, ν, a)C(λ, α, ν, a)− C2(λ, α+ 1, ν, a)

C2(λ, α, ν, a)
.

2.4. Some distributions derived of NWPD

The NWPD is a generalization of some well-known discrete distributions, and the distributions
derived from them. In particular, we have:

• if α = 0 and ν = 1, NWPD genered an ordinary Poisson distribution with parameter λ.
• if α = 0 and ν = 0, NWPD is a geometric distribution with zero probability 1 − λ where

0 < λ < 1.
• if α = 0, NWPD is the COM-Poisson model of parameters λ and ν (Conway and Maxwell

(1962)).
• if ν = 0 and a = 0, NWPD is a new discrete distribution of support N∗ proposed by Kulasekera

and Tonkyn (1992).
• if ν = 1, NWPD is WPD (λ, α, a) proposed by Castillo and Pérez-Casany (1998).

2.5. Characterization : overdispersion and underdispersion

The study of the dispersion of NWPD (λ, α, ν, a) follows from the Theorem 4 of Kokonendji et
al. (2008). The second derivative of the logarithm of the weight function x 7−→ w(x) of NWPD
(λ, α, ν, a) is given by

d2

dx2
logw(x) =

−α

(x+ a)2
+ (1− ν)

∑
k≥1

1

(x+ k)2
.

4
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This means that, NWPD (λ, α, ν, a) is

• overdispersed if one of the following two conditions apply:

– α < 0 and ν ≤ 1 for all a > 0,
– α < 0 and ν > 1 when 0 < ν − 1 < −α for all a > 0.

• underdispersed if one of the following three conditions apply:

– α > 0 and ν ≥ 1 for all a > 0,
– α > 0 and ν < 1 when −α < ν − 1 < 0 or ν − 1 < −α < 0 for all a > 0,
– α < 0 and ν > 1 when 0 < −α < ν − 1 for all a > 0.

2.6. Sufficient statistics

The likelihood of NWPD (λ, α, ν, a) for a set of n independent and identically distributed obser-
vations x1, x2, . . . , xn is

L(x1, . . . , xn|λ, α, ν) = λt1 exp [αt2 − νt3]C
−n(λ, α, ν, a),

where t1 =
n∑

i=1

xi, t2 =
n∑

i=1

log(xi + a) and t3 =
n∑

i=1

log(xi!). By the Factorization Theorem,

for a fixed, (t1, t2, t3) are sufficient statistics for x1, . . . , xn (see Conway and Maxwell (1962);
Meena and Gangopadhyay (2020)).

2.7. Approximation of the normalizing constant C(λ, α, ν, a) using truncation of the
series

C(λ, α, ν, a) being the sum of a convergent series, then there exists a natural number k such that

C(λ, α, ν, a) =
k∑

j=0

λj(j + a)α

j!ν
+Rk,

where Rk =
∑

j≥k+1

λj(j + a)α

j!ν
is the absolute truncation error. Thus, there exist 0 < εk < 1 for all

j > k so that

Rk <
λk+1(k + a+ 1)α

(k + 1)!ν

∑
j≥0

εjk =
λk+1(k + a+ 1)α

(k + 1)!ν(1− εk)
.

The relative truncation error is

Rk/

k∑
j=0

λj(j + a)α

j!ν
,

5
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6 M. Koukouatikissa Diafouka et al.

and can be bounded by
λk+1(k + a+ 1)α

(k + 1)!ν(1− εk)

1
k∑

j=0

λj(j + a)α

j!ν

.

Using this approximation, we have represented pmf for different values of the parameters in Figure
1.

Figure 1. pmfs for different values of parameters

2.8. Other properties

2.8.1. NWPD as exponential combination formulation

From the exponential combination formulation given by Chakraborty and Imoto (2016), we have
the following result.

Proposition 2.1.

The NWPD (λ, α, ν, a) is an exponential combination WPD (µ, r, a) proposed by Castillo and
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Pérez-Casany (1998) and CMP (θ, γ) distribution distributions, with λ = θβµ1− β, α = (1− β)r
and ν = (1− β)γ.

Proof:

The pfm’s CMP (θ, γ) distribution and WPD (µ, r, a) are given respectively by (Shmueli and al.
(2005), Castillo and Pérez-Casany (1998))

p2(x, θ, γ) =
θx

x!γZ(θ, γ)
,

and

p1(x, µ, r, a) =
(x+ a)rµxe−µ

Eλ[(X + a)r]x!
,

where Z(θ, γ) and Eλ[(X + a)r] are the normalizing constants. So, the probability function result-
ing from the exponential combination of this two distributions is given by

[p1(x, θ, γ)]
β [p2(x, µ, r, a)]

1− β =

(
θβµ1− β

)x

(x+ a)(1− β)r

x!(1− β)γ
.

Substituting θβµ1− β by λ, (1 − β)r by α and (1 − β)γ by ν, we have the pmf of NWPD
(λ, α, ν, a). ■

2.8.2. Failure rate function and log-concavity

The failure rate function r(t) of NWPD (λ, α, ν, a) is given by

1

r(t)
=

P (X ≥ t)

P (X = t)

= 1 +
∑
i≥0

t+i∏
u=t

[
λ

(x+ 1)ν

(
1 +

1

x+ a

)α]
,

= α+1Fν

(
1, 1 +

1

t+ a
, 1 +

1

t+ a
, . . . , 1 +

1

t+ a
; t+ 1, t+ 1, . . . , t+ 1;λ

)
,

where α, ν are positive integers in expression of hypergeometric function (Gupta et al. (1997);
Qureshi and Shadab (2020)).

For the log-concavity of NWPD, we have the following result.

Proposition 2.2.

NWPD (λ, α, ν, a) has a

• log-concave pmf if

7
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8 M. Koukouatikissa Diafouka et al.

– α ≥ 0, ν > 0, ∀ a > 0, or
– α > 0, ν = 0 ∀ a > 0, or
– 0 < −α < ν ∀ a > −1 +

√
2.

• log-convex pmf for α < 0, ν = 0, ∀ a > 0.

Proof:

Let put η(t) = 1− p(t+ 1)

p(t)
and ∆η(t) =

p(t+ 1)

p(t)
− p(t+ 2)

p(t+ 1)
. A distribution is said log-concave

if ∆η(t) > 0 and log-convex if ∆η(t) < 0 (see Gupta et al. (1997)).

We have for NWPD (λ, α, ν, a),

∆η(t) =
λ

(t+ 1)ν

(
t+ a+ 1

t+ 1

)α [
1−

(
t+ 1

t+ 2

)ν [
(t+ a+ 1)2 − 1

(t+ a+ 1)2

]α]
.

The sign of ∆η(t) depends only on 1−
(
t+ 1

t+ 2

)ν [
(t+ a+ 1)2 − 1

(t+ a+ 1)2

]α
.

For log-concavity, we have

• if α ≥ 0 and ν > 0,
(
t+ 1

t+ 2

)ν [
(t+ a+ 1)2 − 1

(t+ a+ 1)2

]α
< 1 ∀ a > 0;

• if α > 0 and ν = 0,
[
(t+ a+ 1)2 − 1

(t+ a+ 1)2

]α
< 1 ∀ a > 0,

• for all t ≥ 0, (t + a)(t + a + 2) > t + 1 ∀ a > −1 +
√
2; that imply 1 +

1

(t+ a)(t+ a+ 2)
<

1 +
1

t+ 1
∀ a > −1 +

√
2, i.e., 1 <

(t+ a+ 1)2

(t+ a+ 1)2 − 1
<

t+ 2

t+ 1
∀ a > −1 +

√
2. Taking

the logarithm, we have 0 < log

[
(t+ a+ 1)2

(t+ a+ 1)2 − 1

]
< log

[
t+ 2

t+ 1

]
∀ a > −1 +

√
2. Finally,

if 0 < −α < ν we have −α log

[
(t+ a+ 1)2

(t+ a+ 1)2 − 1

]
< ν log

[
t+ 2

t+ 1

]
∀ a > −1 +

√
2, i.e.,(

t+ 1

t+ 2

)ν [
(t+ a+ 1)2 − 1

(t+ a+ 1)2

]α
< 1 ∀ a > −1 +

√
2.

These three cases imply ∆η(t) > 0.

And for log-convex, if ν = 0 and α < 0, we have
[
(t+ a+ 1)2 − 1

(t+ a+ 1)2

]α
> 1. Thus ∆η(t) < 0.

Note for α = 0 and ν = 0, ∆η(t) = 0. This case corresponding to geometric distribution (see
Section 2.4). ■

The WPD (λ, α, a) and CMP (λ, ν) distributions can be obtained as particular cases from the above
results. WPD (λ, α, a) have log-concave pmf if α ≥ 0 ∀ a > 0 or 0 < −α < 1 ∀ a > −1 +

√
2

8
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and CMP (λ, ν) log-concave pmf for ν > 0.

The following are important results as a consequence of log-concavity (Gupta et al. (1997)).

Corollary 2.1.

If α ≥ 0, ν > 0, ∀ a > 0 or α > 0, ν = 0, ∀ a > 0 or 0 < −α < ν, ∀ a > −1 +
√
2,

the NWPD (λ, α, ν, a) has

• an increasing failure rate function,
• a strongly unimodal distribution (Kim and al. (2018); Weller and Martin (2020)).

And the following is important result as a consequence of log-convexity (Gupta et al. (1997)).

Corollary 2.2.

If α < 0, ν = 0, a > 0, the NWPD (λ, α, ν, a) has a decreasing failure rate function.

Remark 2.1.

Note when NWPD (λ, α, ν, a) generate the geometric distribution for α = 0 and ν = 0, we have a
constant failure rate (see Gupta et al. (1997)).

2.8.3. Stochastic order relations and reliability characteristics

We are interested in three types of stochastic orders: the likelihood ratio order, the hazard rate
order, and the mean residual life order. Consider two discrete random variables X and Y , the
notation X ≤lr Y (X ≤hr Y or X ≤MRL Y ) means X is smaller than Y in the likelihood
ratio (hazard rate or mean residual life, respectively) order. Note that the likelihood ratio order
implies the hazard rate order and subsequently the mean residual life order (Raeisi and Yari (2019);
Huang and Mi (2018)).

Proposition 2.3.

Let be X WPD (λ, α, a), Y CMP (λ, ν) and Z NWPD (λ, α, ν, a) random variables.

• Z ≤lr X if ν > 1.
• Z ≤lr Y when α < 0.

Proof:

If X has WPD (λ, α, a) as pmf and Z WPD (λ, α, ν, a), then

P (X = k)

P (Z = k)
= k!ν−1C(λ, α, ν, a)

C(λ, α, a)
,

is increasing in k if ν > 1.

9

Diafouka et al.: Poisson Distribution For Over- and Under-Dispersion Situations

Published by Digital Commons @PVAMU,



10 M. Koukouatikissa Diafouka et al.

Similarly, if Y has CMP (λ, ν) as pmf, then

P (Y = k)

P (Z = k)
= (k + a)−αC(λ, α, ν, a)

Z(λ, ν)
,

is increasing in k if α < 0.

Hence, the result is proved. ■

Using the above results, it follows that (Perrakis (2019); Shaked and Shanthikumar (2007)),

Corollary 2.3.

• Z ≤hr X if ν > 1 and subsequently Z ≤MRL X if ν > 1.
• Z ≤hr Y if α < 0 and subsequently Z ≤MRL Y if α < 0.

3. Estimation of Parameters

In this section, we are interested in the estimation of the parameters of NWPD (λ, α, ν, a). Two
estimation methods are presented. The first method is simple and is based on the ratio recursive
probabilities using the method of least squares to estimate the parameters (see Kulasekera and
Tonkyn (1992); Castillo and Pérez-Casany (1998)). The second method is the maximum likelihood
method. Just three parameters (λ, ν, α) are estimated; the parameter a is fixed as in Castillo and
Pérez-Casany (1998).

3.1. Alternative method of estimation: least squares method

Consider the recursive ratio probabilities (3) and replace x+1 and x by x+2 and x+1, respectively.
We have,

p(x+ 2)

p(x+ 1)
=

λ

(x+ 2)ν

(
1 +

1

x+ a+ 1

)α

, (7)

and dividing (7) by (3), we have,

p(x+ 2)p(x)

p2(x+ 1)
=

(
x+ 1

x+ 2

)ν [
(x+ a+ 2)(x+ a)

(x+ a+ 1)2

]α
. (8)

So, we can get a linear relation, for a fixed, between the two parameters α and ν taking the loga-

rithms of (8) and then dividing by log

(
x+ 1

x+ 2

)
as follows,

y = ν + αxa, (9)

where

y = log

[
p(x+ 2)p(x)

p2(x+ 1)

]
/ log

(
x+ 1

x+ 2

)
,

10
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and

xa = log

[
(x+ a+ 2)(x+ a)

(x+ a+ 1)2

]
/ log

(
x+ 1

x+ 2

)
.

For x1, . . . , xk a given sample, p(xi), i = 1 . . . k is estimated and replaced by proportion observed,
i.e., by fi =

ni

n
, i = 1 . . . k where ni is the frequency observed for individual i and n the size of

the sample (see Shmueli and al. (2005); Lakshmi et al. (2021)). Once the parameters α and ν are
estimated by the regression of (9), we can obtain the estimate of the parameter λ by the equation
(7).

3.2. Maximum likelihood estimation

Let us denote θ = (log λ, α, ν) the vector of the parameters of interest. The log-likelihood of
NWPDa(θ) is given by

l(θ) = nx log λ+ nαlog(x+ a)− nνlog(x!)− n logC(λ, α, ν, a),

where x =
t1
n
, log(x+ a) =

t2
n
, and log(x!) =

t3
n

. And the maximum likelihood estimator

θ̂ of θ is solution of the equations system

∂

∂ log λ
logC(λ, α, ν, a) = E(X) = x,

∂

∂α
logC(λ, α, ν, a) = E[log(X + a)] = log(x+ a),

− ∂

∂ν
logC(λ, α, ν, a) = E[log(X!)] = log(x!).


. (10)

The system (10) cannot be solved analytically; an alternative method such as Newton-Raphson can
be use (see Gelman et al. (1995), pages 312-313). Following Minka et al. (2003), the gradient of
the log-likelihood is,

∇l(θ) = n


x− E(X)

log(x+ a)− E[log(X + a)]

−log(x!) + E[log(X!)]

 ,

and the seconde matrix is,
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∇2l(θ) = n


−V ar(X) −Cov(X, log(X + a)) Cov(X, log(X!))

−Cov(X, log(X + a)) −V ar[log(X + a)] Cov(log(X + a), log(X!))

Cov(X, log(X!)) Cov(log(X + a), log(X!)) −V ar[log(X!)]

 .

So, the Newton’s method update is,

θnew = θ − (∇2l(θ))−1∇l(θ).

A reasonable starting point for the iteration is the ordinary Poisson MLE, (λ = x, α = 0, ν = 1),
i.e., θ = (log(x), 0, 1) (Minka et al. (2003)) for a fixed. And using the package maxLik for the R
statistical environment, we obtain the estimator θ̂ of θ easly (see Henningsen and Toomet (2011)).

4. Fitting the New Weighted Poisson Distribution: Application Examples

In this section, we give two examples of fitting practical data by the NWPD (λ, α, ν, a). In order to
make the comparison between WPD (λ, ν, a) and NWPD (λ, α, ν, a), we consider the same data
as in Castillo and Pérez-Casany (1998) which allowed them to introduce WPD (λ, ν, a). Thus,
we fixed the same values of a as WPD (λ, ν, a) to estimate the parameter θ = (log(λ), α, ν) of
NWPD (λ, α, ν, a). In the Example 1 the data provide of Greenwood and Yule (1920) and are
overdispersed; in the Example 2 the date provide of Kendall (1961) and are underdispersed. These
data were used by X to fit the W distribution, and we had added the new distribution to these tables.
The differences between the observed and expected values are calculated by Pearson’s χ2 test.

Example 4.1.

Greenwood and Yule (1920) used the data set of the Table 1 to introduce the negative binomial
distribution, a distribution that is considered the prototype of overdispersed distributions. The data
show the distribution of the number of accidents among 647 machine operators in a fixed period
of time. The basic statistics are

x = 0.46522 s2 = 0.6919,

and the ratio of the sample variance to the sample mean is greater than 1.

Table 1 shows that both WPD and NWPD fit the data and have to within 10−1 the same values of
χ2 and p-value.

Example 4.2.

The statistical data, Table 2, are taken from Kendall (1961) and correspond to the observed data
on the number of outbreaks of strikes in 4-week periods, in a coal mining industry in the United
Kingdom during 1948-1959. The basic statistics are

x = 0.99359 s2 = 0.741894,
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and the ratio of the sample variance to the sample mean is small than 1.

Table 2 shows that for the same two values of a, 0.5 and 0.00001, NWPD fits slightly better than
WPD.

Table 1. Number of accidents for machine operators

No. of Obs WPD a = 0.8 NWPD a = 0.8 WPD a = 1 NWPD a = 1

accidents λ̂ = 2.16572 λ̂ = 3.00571421 λ̂ = 2.46942 λ̂ = 6.27464266
r̂ = −2.47553 α̂ = −2.888255 r̂ = −3.07412 α̂ = −4.442394

ν̂ = 1.183231 ν̂ = 1.486904

0 447 447.158 447.077 446.874 447.724
1 132 130.084 129.400 131.032 129.400
2 42 47.182 47.878 46.517 47.878
3 21 15.993 16.175 15.813 16.175
4 3 4.856 4.529 4.916 4.529
5 2 1.725 1.941 1.848 1.294
n 467
χ2 2.917 2.957 2.906 2.926

p− value 0.712 0.706 0.714 0.711

Table 2. Number of outbreaks strikes

No. of Obs WPD a = 0.5 NWPD a = 0.5 WPD a = 0.00001 NWPD a = 0.00001

accidents λ̂ = 0.454975 λ̂ = 0.08983194 λ̂ = 0.70107 λ̂ = 0.5675733
r̂ = 1.12 α̂ = 2.62968 r̂ = 0.07268 α̂ = 0.09180

ν̂ = 0.08526064 ν̂ = 0.77445

0 46 46.607 46.020 46.030 46.020
1 76 72.572 74.568 74.514 75.192
2 24 29.252 27.300 27.469 26.520
3 9 6.466 6.552 6.611 6.708

≥ 4 1 1.103 1.560 1.374 1.560
n 156
χ2 2.115 1.555 1.432 1.279

p− value 0.714 0.816 0.838 0.864

5. Conclusion

In this paper, we proposed a new weighted Poisson distribution for modeling and statistical analysis
of count data. It is a four-parameter distribution that unifies the weighted Poisson distribution
proposed by Castillo and Pérez-Casany and the Conway-Maxwell Poisson distribution. This new
distribution is an exponential combination of the latter two distributions. It is a distribution with
interesting properties. From a practical point of view, its Fisher dispersion index, which can be
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greater than, equal to, or less than one, allows it to describe both over- and under-dispersed data.
This property makes it as robust and competitive as the extended Conway-Maxwell-Poisson family
of four-parameter distributions proposed by Chakraborty and Imoto in 2016.

In addition, we plan to approximate the normalization constant C(λ, α, ν, a) using the Laplace
method and to carry out a comparative study with another four-parameter extended Conway-
Maxwell-Poisson distribution in order to explore other performances of the new distribution.
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