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Abstract

This research aims to study atmospheric internal waves which occur within the fluid rather than on
the surface. The mathematical model of the shallow fluid hypothesis leads to a coupled nonlinear
system of partial differential equations. In the shallow flow model, the primary assumption is that
vertical size is smaller than horizontal size. This model can precisely replicate atmospheric internal
waves because waves are dispersed over a vast horizontal area. A semi-analytical approach, namely
modified differential transform, is applied successfully in this research. The proposed method ob-
tains an approximate analytical solution in the form of convergent series without any linearization,
perturbation, or calculation of unneeded terms, which is a significant advantage over other existing
methods. To test the effectiveness and accuracy of the proposed method, obtained results are com-
pared with Elzaki Adomain Decomposition Method, Modified Differential Transform Method, and
Homotopy Analysis Method.

Keywords: Climate prediction; Shallow fluid equations (SFE); Atmospheric internal waves
(AIW); coupled system of a partial differential equation; Semi-analytical approach
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2 Y.F. Patel and J.M. Dhodiya

1. Introduction

The natural phenomena of internal waves, known as internal gravity waves, occur within a geo-
physical fluid rather than on its surface (such as the atmosphere, oceans, or lakes). The fluid must
be layered for the phenomena to occur; each layer must have the same temperature and density,
which should fluctuate with height only. The waves travel horizontally like surface waves when
density changes over a small vertical height (Imani et al. (2012)). Internal waves in the atmosphere
arise when a homogeneous layer of air passes over a major obstacle, such as a mountain range.
Horizontal patterns of homogeneous air are disturbed when the air meets the barrier, forming a
wave pattern. They can cause wave clouds, generated when steady air passes over an obstacle like
a mountain. Because air mass moves through the wave, it ascends and descends repeatedly. The
formation of clouds occurs at the cooled peaks of these waves if the atmosphere is humid enough.
Due to adiabatic heating, such clouds will vaporize in the descendant section of the wave, resulting
in the clear stripes and classic clouded. This phenomenon has been observed in several places of
the world. Recent research has found that these waves significantly affect the chemistry, turbu-
lence, and atmospheric temperature and are increasingly used in atmospheric models. Prediction
of climate is a type of numerical prediction of weather that tries to give a generic climate prediction
over long periods, such as a few weeks to a few years, to aid in agricultural planning, cyclone, air
quality forecasting, and drought mitigation (Varsoliwala and Singh (2021)). Recent climate models
used for predicting have a limited ability, using only a few day’s worths of data. In such models,
it is difficult to adequately reflect the intricate interactions between the land surface, ocean, and
atmosphere. Climate models are systems of PDEs derived from the fundamental law of sciences, a
combination of thermodynamics, chemistry, and fluid motion used to describe the atmosphere and
ocean. Because the atmosphere is considered fluid, it is critical to research its properties to improve
climate forecasting. Understanding how these waves work would allow for more accurate weather
forecasting simulations.

The standard model depicts the occurrence of AIW waves in shallow water equations or shallow
fluid equations (SFEs). The SFM primary assumption is that the vertical dimension is substantially
smaller than the horizontal dimension. To model the flow of fluid in atmospheres, coastal areas,
and seas, SWEs are used, a general system of coupled nonlinear partial differential equations.
Shallow fluid assumptions are used to study Kelvin and Rossby waves in the atmosphere, climate,
and tsunami models.

Researchers have previously addressed the internal waves phenomena from various perspectives.
Imani et al. (2014) apply homotopy perturbation method (HPM) and variational iteration method
to study the atmospheric internal wave model. To solve coupled linear and nonlinear shallow water
equations (SWE) in one dimension, Chakraverty and Karunakar (2018, 2021) use the homotopy
perturbation method. They compare the solutions of linear and nonlinear SWEs graphically. RVIM
was employed by Imani et al. (2012) to study the coupled Whitham Broer Kaup equation. To solve
the AIW, Busrah used Homotopy and Variational Iteration Methods. The homotopy method was
successfully used by Jaharuddin and Hermansyah to determine the approximate solution to the
internal wave model. The results of these methods are then compared to a numerical method to
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show the effectiveness of the method (Jaharuddin and Hadi (2018)). Goswami et al. (2019) looked
at analytical strategies for fractional PDEs in plasma ion-acoustic waves. The hyperbolicity of
multilayer SWEs that include the complete Coriolis force due to the earth’s rotation was addressed
by Stewart and Dellar (2013). Finite element method was used for SWEs ocean models by LeRoux
et al. (1998). Busrah and Bakhtiar (2014) considered a one-and-a-half-layer model to study Kelvin
waves by neglecting continuous stratification and mean currents. However, their study includes
the full effects of the Earth’s sphericity. Kumar (2013) uses the homotopy perturbation approach
to develop a numerical solution for the coupled fractional nonlinear SWS. Several researchers
have also used various strategies to evaluate differential equations from diverse perspectives and
angles (Abu Arqub (2019a); Aguilar and Sutherland (2006); Momani et al. (2020a); Momani et
al. (2020b); Abu Arqub (2019b); Turkyilmazoglu (2022); Turkyilmazoglu (2021); Turkyilmazoglu
(2015); Turkyilmazoglu (2019); Varsoliwala and Singh (2021)).

The present research uses the modified differential transform method to study atmospheric internal
wave phenomena. The motivation behind the research was to provide an efficient algorithm to
solve the coupled nonlinear PDEs arising in the study of internal wave phenomena.

This paper has been organized as follows. Section 2 describes the problem statement. Section 3
discusses the implementation and convergences of MDTM. Section 4 deals with the application
of MDTM to the stated problem. Numerical simulation, results, and conclusion are presented in
Sections 5 and 6, respectively.

2. Problem Formulation

Based on the shallow fluid assumption, AIW is represented using a system of NLPDE. The fun-
damental expression of motion of fluids in the derivative form is derived from the conservation
of momentum and mass. The term "shallow fluid" refers to a fluid layer with a shallow depth
compared to its height. Assuming atmosphere as homogeneous fluid here whose density does not
change with space and autobarotropic whose density is only determined by hydrostatic, pressure,
inviscid and incompressible.The momentum equations can be given in its basic form as Warner
(2010):

∂µ

∂ζ
+ µ

∂µ

∂ω1

+ ρ
∂µ

∂ω2

+ q
∂µ

∂ω3

− Cρ+
1

p

∂ρ

∂ω1

= 0, (1)

∂ρ

∂ζ
+ µ

∂ρ

∂ω1

+ ρ
∂ρ

∂ω2

+ q
∂ρ

∂ω3

+ Cµ+
1

p

∂ρ̃

∂ω2

= 0, (2)

∂ρ̃

∂ω3

= −ρg. (3)

The equation of continuity is

∂p

∂ζ
+ p

(
∂µ

∂ω1

+
∂ρ

∂ω2

+
∂q

∂ω3

)
= 0. (4)
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4 Y.F. Patel and J.M. Dhodiya

For homogeneous and incompressible fluid,
∂p

∂ζ
= 0, (5)

so that p = p0, where p0 is a constant. Therefore, Equation (4) reduces to
∂µ

∂ω1

+
∂ρ

∂ω2

+
∂q

∂ω3

= 0. (6)

Equation (6) is known as incompressible continuity equation. Hydrostatic equation is given by
∂ρ̃

∂ω3

= −ρ0g. (7)

From Equation (7), we get

∂

∂ω1

(
∂ρ̃

∂ω3

)
=

∂

∂ω3

(
∂ρ̃

∂ω1

)
= 0. (8)

By virtue of barotropy, the vertical pressure gradient does not fluctuate horizontally, and the hor-
izontal pressure gradient does not fluctuate vertically which is represented by Equation (8). With
depth, all forces are invariable due to the wind created by the resulting Coriolis force and pressure
gradient force. Integrating Equation (7) over the fluid depth, we get

ω3(ρT )∫
ω3(ρB)

∂ρ̃

∂ω3

dω3 = −ρ0g

ω3(ρT )∫
ω3(ρB)

dω3, (9)

where ρB and ρT denotes pressure at the bottom and top border of fluid, respectively.

ρB − ρT = gp0ϑ, (10)

where ϑ denotes fluid depth. If ρT << ρB or ρT = 0 ,
ρB
p0

= gϑ,

1

p0

∂ρB
∂ω1

= g
∂ϑ

∂ω1

. (11)

In Equations (1) and (2) the new expression of pressure gradient is obtained by assuming horizontal
pressure gradient at the fluid base is proportional to the depth gradient. Integrate Equation (6) with
respect to ω3, the following equation is obtained:

ω3∫
0

∂q

∂ω3

dω3 = −
ω3∫
0

(
∂µ

∂ω3

+
∂ρ

∂ω2

)
dω3. (12)

Because the pressure gradient is independent of ω3, assuming ρ and µ are independent of ω3, their
derivatives are also independent of ω3 .

q (ω3)− q (0) = −
(

∂µ

∂ω1

+
∂ρ

∂ω2

)
ϑ, (13)

for ω3 = ϑ. At base the vertical velocity of fluid is zero. Also

q (ω3) =
Dz

Dζ

∣∣∣∣
ϑ

=
Dϑ

Dζ
. (14)
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Therefore, the equation of continuity for shallow water is given by

Dϑ

Dζ
= −ϑ

(
∂µ

∂ω1

+
∂ϑ

∂ω2

)
. (15)

So the three equation in terms of cartesian velocities µ, ρ and depth of the fluid ϑ are:
∂µ

∂ζ
+ µ

∂µ

∂ω1

+ ρ
∂µ

∂ω2

− Cρ+ g
∂ϑ

∂ω1

= 0, (16)

∂ρ

∂ζ
+ µ

∂ρ

∂ω1

+ ρ
∂ρ

∂ω2

+ Cµ+ g
∂ϑ

∂ω2

= 0, (17)

∂ϑ

∂ζ
+ µ

∂ϑ

∂ω1

+ ρ
∂ϑ

∂ω2

+ ϑ

(
∂µ

∂ω1

+
∂ρ

∂ω2

)
= 0. (18)

The mathematical equations in terms of µ, ρ and ϑ are considered one-dimensional as Varsoliwala
and Singh (2021). We can specify a mean component for which the perturbations occur by speci-
fying an invariant pressure gradient of the desired magnitude in the y-direction as Varsoliwala and
Singh (2021). The system of equation transforms into

∂µ

∂ζ
+ µ

∂µ

∂ω1

− Cρ+ g
∂ϑ

∂ω1

= 0, (19)

∂ρ

∂ζ
+ µ

∂ρ

∂ω1

+ Cµ+ gd = 0, (20)

∂ϑ

∂ζ
+ µ

∂ϑ

∂ω1

+ ρd+ ϑ
∂µ

∂ω1

= 0, (21)

where ω1, ϑ,C, d, g and ζ are space coordinate, depth of the fluid, Coriolis parameter, mean depth
of fluid, constant of gravity and time, respectively. µ and ρ denotes the cartesian velocities, respec-
tively.

3. Implementation of MDTM

This section discusses the method of obtaining the analytical solution and convergence of this
solution obtained by MDTM. First of all, we show that the solution obtained by the proposed
method exists as a power series in terms of τ or ω. Consider the following non-linear PDE:

vτ = w (ω, τ, µ, vω, vωω, ...) , (22)

with initial condition

v (ω, 0) = v0 (ω) . (23)

Applying fundamental operation of MDTM from Table 1 to Equation (22), transformed recursive
formula is given by:

(l + 1)V
l+1

(ω) = W

(
ξ, vl,

dVl (ω)

dω
,
d2Vl (ω)

dω2
, ...

)
, (24)
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6 Y.F. Patel and J.M. Dhodiya

and the transformed initial condition is

v (ω) = v0 (ω) , (25)

where Vl+1 (ω) and W
(
ω, vl,

dVl(ω)
dω

, d
2Vl(ω)
dω2 , ...

)
are transformed forms obtained by applying

MDTM to the original function v (ω, τ) and w (x, τ, µ, µω, µωω, ...) in the lth iteration. Substi-
tuting the value of Vl (ω) for l = 0, 1, 2, 3, 4, ..n in Equation (24), the approximate analytical series
solution of Equation (22) with initial condition Equation (23) is given by

v (ω, τ) =
∞∑
l=0

Vl (ω)(τ − τ0)
l. (26)

The convergence of series solutions obtained by MDTM has been discussed by Moosavi Noori
and Taghizadeh (2021). For specific parameter values the convergence of the series solution is
discusses in Section 5.

4. Application of Modified Differential Transform Method

For analytical solution of system of Partial Differential Equations (19) through (21), we consider
the following initial conditions:

µ (ω1, 0) = ex sech(ω1)
2, (27)

ρ (ω1, 0) = 2ω1e
ω1 sech(2ω1)

2, (28)

ϑ (ω1, 0) = ω1
2 sech(2ω1)

2. (29)

Applying MDTM to coupled system Partial Differential Equations (19) through (21) and initial
condition (27) through (29), the system of coupled recursive formula is given by

(κ+ 1)U(κ+1) (ω1) + Aκ (ω1)− CPκ (ω1) + g
∂νκ (ω1)

∂ω1

= 0, (30)

(κ+ 1)P(κ+1) (ω1) +Bκ (ω1)− CUκ (ω1) + gdδ (k) = 0, (31)

(κ+ 1) νκ+1 (ω1) +Dκ (ω1) + dPκ (ω1) + Eκ (ω1) = 0, (32)

where t dimensional spectrum function Uκ (ω1) and Pκ (ω1) and νκ (ω1) denotes transformed func-
tion and Aκ (ω1) , Bκ (ω1) , Dκ (ω1) and Eκ (x) are transformed the function of the nonlinear terms
where

Aκ (ω1) =
κ∑

ξ=0

Uξ (ω1)
∂Uκ−ξ(ω1)

∂ω1
; Bκ (ω1) =

κ∑
ξ=0

Uξ (ω1)
∂Pκ−ξ(ω1)

∂ω1
;

Dκ (ω1) =
κ∑

ξ=0

Uξ (ω1)
∂νκ−ξ(ω1)

∂ω1
; Eκ (ω1) =

κ∑
ξ=0

νξ (ω1)
∂νκ−ξ

∂ω1
,

with transformed initial condition

U0 (ω1) = eω1 sech(ω1)
2, (33)
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P0 (ω1) = 2ω1 e
ω1 sech(2ω1)

2, (34)

ν0 (ω1) = ω1
2 sech(2ω1)

2. (35)

For the convenience of the reader, the first few nonlinear terms are as follows:

A0 (ω1) = U0 (ω1)
∂U0(ω1)

∂ω1
; A1 (ω1) = U0 (ω1)

∂U1(ω1)
∂ω1

+ U1 (ω1)
∂U0(ω1)

∂ω1
,

A2 (ω1) = U0 (ω1)
∂U2(ω1)

∂ω1
+ U1 (ω1)

∂U1(ω1)
∂ω1

+ U2 (ω1)
∂U0(ω1)

∂ω1
,

A3 (ω1) = U0 (ω1)
∂U3(ω1)

∂ω1
+ U1 (ω1)

∂U2(ω1)
∂ω1

+ U2 (ω1)
∂U1(ω1)

∂ω1
+ U3 (ω1)

∂U0(ω1)
∂ω1

,
B0 (ω1) = U0 (ω1)

∂P0(ω1)
∂ω1

; B1 (ω1) = U0 (ω1)
∂P1(ω1)
∂ω1

+ U1 (ω1)
∂P0(ω1)
∂ω1

,
B2 (ω1) = U0 (ω1)

∂P2(ω1)
∂ω1

+ U1 (ω1)
∂P1(ω1)
∂ω1

+ U2 (ω1)
∂P0(ω1)
∂ω1

,
B3 (ω1) = U0 (ω1)

∂P3(ω1)
∂ω1

+ U1 (ω1)
∂P2(ω1)
∂ω1

+ U2 (ω1)
∂P1(ω1)
∂ω1

+ U3 (xω1)
∂p0(ω1)
∂ω1

,
D0 (ω1) = U0 (ω1)

∂ν0(ω1)
∂ω1

; D1 (ω1) = U0 (ω1)
∂ν1(ω1)
∂ω1

+ U1 (ω1)
∂ν0(ω1)
∂ω1

,
D2 (ω1) = U0 (ω1)

∂ν2(ω1)
∂ω1

+ U1 (ω1)
∂ν1(ω1)
∂ω1

+ U2 (ω1)
∂ν0(ω1)
∂ω1

,
D3 (ω1) = U0 (ω1)

∂ν3(ω1)
∂ω1

+ U1 (ω1)
∂ν2(ω1)
∂ω1

+ U2 (ω1)
∂ν1(ω1)
∂ω1

+ U3 (ω1)
∂ν0(ω1)
∂ω1

,
E0 (ω1) = ν0 (ω1)

∂ν0(ω1)
∂ω1

; E1 (ω1) = ν0 (ω1)
∂ν1(ω1)
∂ω1

+ ν1 (ω1)
∂ν0(ω1)
∂ω1

,
E2 (ω1) = ν0 (ω1)

∂ν2(ω1)
∂ω1

+ ν1 (ω1)
∂ν1(ω1)
∂ω1

+ ν2 (ω1)
∂ν0(ω1)
∂ω1

,
E3 (ω1) = ν0 (ω1)

∂ν3(ω1)
∂ω1

+ ν1 (ω1)
∂ν2(ω1)
∂ω1

+ ν2 (ω1)
∂ν1(ω1)
∂ω1

+ ν3 (ω1)
∂ν0(x)
∂ω1

.

Substituting Equations (33) and (34) into Equations (30) through (34), we obtain the coefficients
of the series solution as:

U1 (ω1) =
2fω1

ξ21
− eω1

ξ22

(
eω1

ξ22
− 2eω1ξ4

ξ32

)
− g

(
2ω1

ξ21
− 4x2ξ3

ξ31

)
,

P1 (ω1) = −Hg − eω1

ξ22

(
2

ξ21
− 8ω1ξ3

ξ32

)
− feω1

ξ21
,

ν1 (ω1) = −ω1
2

ξ21

(
eω1

ξ22
− 2eω1ξ3

ξ22

)
− eω1

ξ22

(
2ω1

ξ21
− 4ω2

1ξ3
ξ31

)
− 2Hω1

ξ21
,

where cosh (2ω1) = ξ1, cosh (ω1) = ξ2, sinh (2ω1) = ξ3, sinh (ω1) = ξ4. The coefficients are
calculated up to the fifth iteration, but only the first iteration is mentioned as the remaining itera-
tion are too long to mention. Applying inverse transformations for the set of values {Uk (ω1)}nκ=0

,{Pk (ω1)}nκ=0 and {ϑk (ω1)}nκ=0 gives an n-term approximation analytical solution as follows:

µ (ω1, ζ) =
n∑

κ=0

Uκ (ω1) ζ
κ,

µ (ω1, ζ) =
eω1

ξ22
+

(
2fω1

ξ21
− eω1

ξ22

(
eω1

ξ22
− 2eω1ξ4

ξ31

)
− g

(
2ω1

ξ21
− 4x2ξ3

ξ31

))
ζ + ... (36)

ρ (ω1, ζ) =
n∑

κ=0

Pκ (ω1) ζ
κ,

7
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8 Y.F. Patel and J.M. Dhodiya

ρ (ω1, ζ) =
2ω1 e

ω1

ξ21
+

(
−Hg − eω1

ξ22

(
2

ξ21
− 8ω1ξ3

ξ32

)
− feω1

ξ21

)
ζ + ..., (37)

ϑ (ω1, ζ) =
n∑

κ=0

νκ (ω1) ζ
κ,

ϑ (ω1, ζ) =
ω1

2

ξ21
+

(
−ω1

2

ξ21

(
eω1

ξ22
− 2eω1ξ3

ξ22

)
− eω1

ξ22

(
2ω1

ξ21
− 4ω2

1ξ3
ξ31

)
− 2Hω1

ξ21

)
ζ + .... (38)

5. Result and Discussion

This section discusses the analytical approximated solution of the stated problem represented by
Equations (19) through (21) with initial condition (27) through (29) using MATLAB software
package with following parameter values as Busrah and Bakhtiar (2014): C = 2Ω sinα where
Ω = 7.29× 10−5 rad/s and α = π

3
, g = 9.8, d = −C

g
U , where U = 2.5 m/s. The semi-analytical

solution using the mention parameter values is given by:

µ (ω1, ζ) =
eω1

ξ22
− ζ

(
1807757627164716012183ω1

92233720368547758080 ξ21
+

e2ω1

ξ42
− 196ω2

1 ξ
2
2

5 ξ32

)
+ ..., (39)

ρ (ω1, ζ) =

(
11646029410023092 ζ ξ22 − 4658411764009237 ζ eω1

)
ξ21 + ζ

36893488147419103232 ξ21 ξ
2
2

+ ..., (40)

ϑ (ω1, ζ) =
ω2
1 ζ

ξ21
+

ω1 ζ
(
297092586990385 ξ22 − 9223372036854775808 ω1 eω1

)
4611686018427387904 ξ21 ξ

2
2

+ ..., (41)

where ζ = 7.3786976294838206464 (ω1 ξ
2
2 − ζ ω1 eω1). For convergence analysis according to the-

orem and corollary as Warner (2010), we have

Ψ0,µ =
∥σ1∥
∥σ0∥

= 0.4556 < 1,

Ψ0,ρ =
∥σ1∥
∥σ0∥

= 0.4676 < 1,

Ψ0,ϑ =
∥σ1∥
∥σ0∥

= 0.4776 < 1,

Ψ1,µ =
∥σ1∥
∥σ0∥

= 0.3425 < 1,

Ψ1,ρ =
∥σ1∥
∥σ0∥

= 0.3645 < 1,

Ψ1,ϑ =
∥σ1∥
∥σ0∥

= 0.3348 < 1,

.

.

.

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 [], Iss. 1, Art. 5

https://digitalcommons.pvamu.edu/aam/vol18/iss1/5



AAM: Intern. J., Vol. 18, Issue 1 (June 2023) 9

and so on. Hence,
n∑

κ=0

Uκ (ω1) ζ
κ,

n∑
κ=0

Pκ (ω1) ζ
κ,

n∑
κ=0

νκ (ω1) ζ
κ are convergent. Tables 1, 2, 3 gives

numerical values for the vertical velocity component (ρ), horizontal velocity component (µ), and
depth (ϑ) for 0 ⩽ ζ ⩽ 0.1 and 0 ⩽ ω1 ⩽ 2. Table 2 also shows that values are very modest
in contrast to horizontal velocity component and vertical velocity component, which is consistent
with the AIWs phenomena, in which the fluid’s depth is insignificant in comparison to its horizontal
scale. The behaviour of velocity component (ρ), horizontal velocity component (µ), and depth (ϑ)
with respect to space (ω1) and time (ζ) is presented in Figures 1, 2, and 3. The solution obtained by
MDTM is compared with HAM and EADM graphical and numerical in Figures 6, 7, 8 and Tables
4, 5, 6, respectively, which shows that the results obtain using MDTM shows a good agreement
with other existing methods. Figure 4 represents that the velocity component, horizontal velocity
component, and depth at ζ = 0.04 and 0 ⩽ ω1 ⩽ 2 decreases as distance increases. Figure 5
represents that the velocity component, horizontal velocity component, and depth at ω1 = 1 and
0 ⩽ ζ ⩽ 0.1 changes slow for the fixed distance as time increases.

6. Conclusion

In this research Modified differentiable transform is successfully applied to obtain the series solu-
tion of internal wave phenomena with its convergence criteria. The comparison of the obtained
solution by MDTM with other existing methods shows an excellent agreement. It proves that
MDTM is a promising tool for dealing with an extensive system of coupled PDE with non linearity
as it does require linearization, perturbation, discretization, or calculation of unneeded terms like
adomain polynomial. The straightforward applicability and efficiency of converting the nonlinear
terms into an algebraic system is a significant advantage of MDTM over methods. The findings
demonstrate that the MDTM is an effective mathematical tool for dealing with the mathematical
model described by an extensive system of PDE.

Acknowledgment:
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Table 1. Solution µ (ω1, ζ) for different values of ω1 and ζ

ω1 ζ = 0 ζ = 0.02 ζ = 0.04 ζ = 0.06 ζ = 0.08 ζ = 0.1

0.2 1.17382055010529 1.10394648990523 1.04281789464098 0.99136570893583 0.94950868550835 0.91674541915434
0.4 1.27646307333570 1.22235739039917 1.16040745259023 1.09444941308803 1.02754727241215 0.96097450445032
0.6 1.29657921914999 1.29338429348215 1.27816448289798 1.25114567886057 1.21451365832879 1.17299971931881
0.8 1.24420015707333 1.27481382026098 1.30016517300075 1.31797019885855 1.32567195588917 1.32050656680318
1 1.14160862122846 1.18150497823164 1.22205731352074 1.26229633115233 1.30079538924922 1.33557284222827

1.2 1.01270205118126 1.04834601765969 1.08652111046652 1.12729484543237 1.17064595005641 1.21643580085099
1.4 0.87654144467375 0.90376846210306 0.93325479177443 0.96527567923920 1.00014081381955 1.03819678929355
1.6 0.74556548727735 0.76472758769768 0.78538552066967 0.80773500380157 0.83200537056795 0.85846427108557
1.8 0.62649165491863 0.63936785165778 0.65310902874133 0.66781667447176 0.68360867583633 0.70062157564331
2 0.52204290827576 0.53047118574834 0.53936456682840 0.54876879146602 0.55873594368095 0.56932524133422

Table 2. Solution ρ (x, t) for different values of ω1 and ζ

ω1 ζ = 0 ζ = 0.02 ζ = 0.04 ζ = 0.06 ζ = 0.08 ζ = 0.1

0.2 0.342255514432471 0.313623748739862 0.283991520834054 0.253612276622892 0.222379605437395 0.189813424336102
0.4 0.447244134185795 0.447447980351848 0.444639583498955 0.439219849118303 0.431786048670346 0.423089002447617
0.6 0.366023995448891 0.381509278376572 0.395974056917585 0.408959188533379 0.420086503530180 0.429120283859302
0.8 0.240843321309257 0.255922360902292 0.271859772678012 0.288451476714494 0.305376600810571 0.322174933642583
1 0.141301649706329 0.150991750162516 0.161687434019689 0.173473451445028 0.186419338645104 0.200572011316873

1.2 0.077721058419163 0.082873363926876 0.088612621060336 0.095029782483018 0.102230318391243 0.110335724429274
1.4 0.041111462288953 0.043581889668243 0.046316026855938 0.049356527567586 0.052754510575690 0.056570843373782
1.6 0.021197433077131 0.022311857957907 0.023529931071703 0.024866762278598 0.026340310168196 0.027971811179474
1.8 0.010734800757347 0.011219516693992 0.011741981118016 0.012306852343560 0.012919553733266 0.013586379539330
2 0.005363802732104 0.005570817313895 0.005790957104495 0.006025552230860 0.006276115218673 0.006544363289885

Table 3. Solution ϑ (ω1, ζ) for different values of ω1 and ζ

ω1 ζ = 0 ζ = 0.02 ζ = 0.04 ζ = 0.06 ζ = 0.08 ζ = 0.1

0.2 0.0342255514432471 0.0274458486055882 0.0216857543766980 0.0168577809456019 0.0128968012768440 0.0098819546460326
0.4 0.0894488268371590 0.0831695780620673 0.0764439388004842 0.0696831910382803 0.0631105102002532 0.0566189567601499
0.6 0.1098071986346670 0.1094082813911880 0.1077291332717650 0.1048335781975410 0.1010336422944210 0.0969618948653115
0.8 0.0963373285237027 0.0998117973438979 0.1028161212228780 0.1050806123956170 0.1062928639661910 0.1061031087519420
1 0.0706508248531645 0.0746025481752057 0.0787472424397094 0.0830030241438369 0.0872375247860272 0.0912558966878234

1.2 0.0466326350514979 0.0495433954424299 0.0527494162112457 0.0562772160443726 0.0601496261679602 0.0643837248154856
1.4 0.0287780236022672 0.0305374343626966 0.0324911137852941 0.0346696704906922 0.0371090894952830 0.0398514114818826
1.6 0.0169579464617045 0.0179074164271985 0.0189541591644014 0.0201135393561632 0.0214039644676739 0.0228473520737857
1.8 0.0096613206816125 0.0101379533742486 0.0106569619948070 0.0112242407982366 0.0118467509323820 0.0125326770588064
2 0.0053638027321036 0.0055915515453541 0.0058363092411512 0.0061000520301792 0.0063850611021316 0.0066939629051971

Table 4. Comparison of µ (ω1, ζ) for the different values of ω1 and ζ

ω1 ζ = 0 ζ = 0.02 ζ = 0.04

HAM EADM MDTM HAM EADM RDTM HAM EADM RDTM
0 1.000000 1.000000 1.00000000000000 0.983500 0.980000 0.98768903966591 0.967000 0.960000 0.98957666986782

0.2 1.173820 1.173820 1.17382055010529 1.113130 1.100260 1.10394648990523 1.052440 1.026690 1.04281789464098
0.4 1.276460 1.276460 1.27646307333570 1.236110 1.227550 1.22235739039917 1.195750 1.178630 1.16040745259023
0.6 1.296580 1.296580 1.29657921914999 1.298660 1.299100 1.29338429348215 1.300740 1.301620 1.27816448289798
0.8 1.244200 1.244200 1.24420015707333 1.271070 1.276770 1.27481382026098 1.297930 1.309330 1.30016517300075
1 1.141610 1.141610 1.14160862122846 1.174060 1.180950 1.18150497823164 1.206520 1.220290 1.22205731352074

1.2 1.012700 1.012700 1.01270205118126 1.041100 1.047120 1.04834601765969 1.069490 1.081540 1.08652111046652
1.4 0.876541 0.876541 0.87654144467375 0.898141 0.902722 0.90376846210306 0.919740 0.928903 0.93325479177443
1.6 0.745565 0.745565 0.74556548727735 0.760805 0.764037 0.76472758769768 0.776044 0.782509 0.78538552066967
1.8 0.626492 0.626492 0.62649165491863 0.636783 0.638966 0.63936785165778 0.647074 0.651439 0.65310902874133
2 0.522043 0.522043 0.52204290827576 0.528816 0.530252 0.53047118574834 0.535589 0.538462 0.53936456682840
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Table 5. Comparison of ρ (ω1, ζ) for the different values of ω1 and ζ

ω1 ζ = 0 ζ = 0.02 ζ = 0.04

HAM EADM RDTM HAM EADM RDTM HAM EADM MDTM
0 0.0000000 0.0000000 0.0000000000000000 0.00000000 0.00000000 0.0003803170821522 0.00000000 0.00000000 0.0000000000000000
0.2 0.0342256 0.0342256 0.0342255514432471 0.02820320 0.02692570 0.0274458486055882 0.22180080 0.0196258 0.0216857543766980
0.4 0.0894488 0.0894488 0.0894488268371590 0.08458110 0.08354850 0.0831695780620673 0.07971330 0.7764820 0.0764439388004842
0.6 0.1098070 0.1098070 0.1098071986346670 0.10998400 0.11002200 0.1094082813911880 0.11016200 0.1102370 0.1077291332717650
0.8 0.0963373 0.0963373 0.0963373285237027 0.09933320 0.09996870 0.0998117973438979 0.10232900 0.1036000 0.1028161212228780
1 0.0706508 0.0706508 0.0706508248531645 0.73817300 0.07448900 0.0746025481752057 0.07698380 0.0783272 0.0787472424397094
1.2 0.0466326 0.0466326 0.0466326350514979 0.04891990 0.04940510 0.0495433954424299 0.05120720 0.0521776 0.0527494162112457
1.4 0.0287780 0.0287780 0.0287780236022672 0.03015680 0.03044930 0.0305374343626966 0.03153560 0.3212060 0.0324911137852941
1.6 0.0169579 0.0169579 0.0169579464617045 0.01770480 0.01786320 0.0179074164271985 0.01845170 0.0187685 0.0189541591644014
1.8 0.0096613 0.0096613 0.0096613206816125 0.01003850 0.01011850 0.0101379533742486 0.01041570 0.0105757 0.0106569619948070
2 0.0053638 0.0053638 0.0053638027321036 0.00554517 0.00558364 0.0055915515453541 0.00572653 0.0058035 0.0058363092411512

Table 6. Comparison of ϑ (ω1, ζ) for the different values of ω1 and ζ

ω1 ζ = 0 ζ = 0.02 ζ = 0.04

HAM EADM RDTM HAM EADM RDTM HAM EADM MDTM
0 0.0000000 0.0000000 0.00000000000000 -0.0329969 -0.0329962 -0.039292517272731 -0.0659938 -0.0799924 -0.077521787737289
0.2 0.3422560 0.3422560 0.34225551443247 0.3191890 0.3142960 0.313623748739862 0.2961220 0.2863369 0.283991520834054
0.4 0.4472440 0.4472440 0.44724413418580 0.4487180 0.4490300 0.447447980351848 0.4501930 0.4508160 0.444639583498955
0.6 0.3660240 0.3660240 0.36602399544889 0.3790890 0.3818590 0.381509278376572 0.3921540 0.3976930 0.395974056917585
0.8 0.2408430 0.2408430 0.24084332130926 0.2528960 0.2554500 0.255922360902292 0.2649480 0.2700560 0.271859772678012
1 0.1413020 0.1413020 0.14130164970633 0.1489080 0.1505200 0.150991750162516 0.1565150 0.1597370 0.161687434019689
1.2 0.0777211 0.0777211 0.07772105841916 0.0817537 0.0826069 0.082873363926876 0.0857864 0.0874927 0.088612621060336
1.4 0.0411115 0.0411115 0.04111146228895 0.0430527 0.0434624 0.043581889668243 0.0449939 0.0458133 0.046316026855938
1.6 0.0211974 0.0211974 0.02119743307713 0.2207920 0.0226440 0.022311857957907 0.0229610 0.0233315 0.023529931071703
1.8 0.0107348 0.0107348 0.01073480075735 0.1112150 0.0112020 0.011219516693992 0.0115083 0.0116692 0.011741981118016
2 0.0053638 0.0053638 0.00536380273210 0.0055306 0.0055647 0.005570817313895 0.0056974 0.0057655 0.005790957104495

Figure 1. Analytical result for ρ (x, t) with parameter values Ω = 7.29× 10−5 rad/s,α = π
3 , g = 9.8, U = 2.5 m/s

13

Yogeshwari and Dhodiya: Model of Atmospheric Internal Waves Phenomenon

Published by Digital Commons @PVAMU,



14 Y.F. Patel and J.M. Dhodiya

Figure 2. Analytical result for µ (x, t) with parameter values Ω = 7.29× 10−5 rad/s,α = π
3 , g = 9.8, U = 2.5 m/s

Figure 3. Analytical result for ϑ (x, t) with parameter values Ω = 7.29× 10−5 rad/s,α = π
3 , g = 9.8, U = 2.5 m/s
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Figure 4. Analytical approximate solution of µ, ρ, ϑ for ζ = 0.04 and 0 ⩽ ω1 ⩽ 2

Figure 5. Analytical approximate solution of µ, ρ, ϑ for ω1 = 1 and 0 ⩽ t ⩽ 0.1

Figure 6. Comparison of analytical approximate solution of µ for ζ = 0.04 and 0 ⩽ ω1 ⩽ 2
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Figure 7. Comparison of analytical approximate solution of ρ for ζ = 0.04 and 0 ⩽ ω1 ⩽ 2

Figure 8. Comparison of analytical approximate solution of ϑ for ζ = 0.04 and 0 ⩽ ω1 ⩽ 2
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