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Abstract

In this paper, we study a continuous-time single server queueing system with an infinite system
of capacity, a two-stage vacation policy with imperfect service, setup, breakdown, delay time,
phase-type of repair and customer reneging. The Markovian Arrival Process is used for the arrival
of a customer and the phase-type distribution is used when offering service. This encompasses
the policy of two vacations: a single working vacation and multiple vacations. Using the Matrix-
Analytic Method to approach the system generates an invariant probability vector for this model.
Henceforth, the busy period, waiting time distribution and cost analysis are the additional findings.
The indicators are secured as a result of this performance. The outcomes result of numerical order
can be graphically interpreted in the form of 2D and 3D.

Keywords: Markovian arrival process; Phase-type distribution; Two-stage vacation policy; De-
lay time; Phase-type repair; Imperfect service; Setup
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2 N. Arulmozhi

1. Introduction

In our daily lives, most places, such as shops, railway stations, networks, medical fields, financial
sectors and so on, will create a queue. We notice queues almost everywhere. The implementations
of queueing theory include a range of sectors. Its findings could be applied to a variety of sectors,
including customer service, warehouse order delivery, traffic flow, data networks and call centers.
Haghighi and Mishev (2008) published a monograph on queueing models in industry and busi-
ness, which provides a detailed to present some queueing models, particularly those applicable in
business as well as the industry sector.

Primarily, Neuts (1984) developed, studied and instructed Markovian arrival process (MAP). We
looked at both discrete and continuous time distributions of phase type. The Markov Arrival Pro-
cess (MAP) is a valuable tool in the point process. Hence, several well-Markov renewal methods
are available, including PH-renewal, Poisson, and Markov-modulated Poisson. Secondarily, Lu-
cantoni et al. (1990) looked at the notations of MAP and Batch Markovian Arrival Process (BMAP)
to represent the Versatile Markovian Point Process (VMPP) more intuitively. Chakravarthy (2010)
derived the Markovian arrival process by depicting matrix (D0, D1) as the guideline for the MAP
at the dimension m x m, where D0 governs for without arrival, where D1 governs for with arrival.
The generator of the matrix Q defined by D = D0 +D1 is an irreducible stochastic matrix.

Recently, server vacation queueing methods have been introduced as one of the most important
features of the queueing model. Working vacation stands for instead of shutting down completely
during the vacation period, the server provides service at a reduced rate. Ye and Liu (2017) in-
vestigated a Markovian queue with two vacation policies: single-working vacations and multiple
vacations. This method effectively utilizes the server’s working vacation time due to the slower
service time. In addition, a stochastic decomposition structure of queue length and a busy period
analysis are both developed.

Ye (2018) studied the batch arrival of the Markovian queue with a two-stage vacation policy that
comprises single working vacations and multiple vacations, in which the server serves at a slow-
down rate rather than completely stopping the service as MX/M/1 suggests. A maximum entropy
investigation of a single server queue with batch arrival of the Markovian model was conducted by
Omey and Gulck (2008), which was subjected to multiple vacations and the potential of the server
breaking down. The discrete-time Markovian arrival process with limited system capacity and two
vacation policies were studied by Ye (2020). They also looked at the spectral properties of ma-
trices and calculated performance metrics using an absorbing Markov chain, busy period analysis
and average waiting time.

The server may not be perfect, and as a result, the customer may request additional service if
he is dissatisfied with the server’s performance. When the server is busy, an incoming customer
can choose to leave or to get a re-service immediately. Recently, Jain et al. (2021) investigated the
working vacation queue with imperfect service, retrial and impatient customers. The quasi-Newton
method (QNM) and genetic algorithm (GA) are created and minimized using the PGF technique
for evaluating the performance measure and cost function. Ammar et al. (2013) investigated a
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Markovian single server queue during busy period analysis by using the noble concept of balking
and reneging of customers. Haghighi et al. (1986) suggested a multi-server model with balking and
reneging that is state-dependent. They also obtained a steady-state probability vector and developed
an average customer loss for a fixed duration.

When a server comes from vacation and notices that the queue is empty, he immediately returns
to his vacation. He will begin serving them according to the regular service policy if there is at
least one customer in the queue. Choudhury and Paul (2006) developed a two-phase single server
queueing method, as well as Bernoulli vacation and multiple vacation policies. They also looked
at waiting time distribution, busy period analysis and some efficiency measures. Using the QBD
process and Matrix Geometric Method, Xiu et al. (2010) examined the single server Markovian
queue demonstrated subject to a single working vacation and the server offers the customer at a
lesser rate during the setup time.

Ayyappan and Shyamala (2014) worked at a Non-Markovian queueing system with batch ar-
rival, Bernoulli vacation, random breakdown, setup time and an optional service. Moeko and Tuan
(2017) have implemented aMX/M/1/SET . We looked at the system’s stability criterion and used
PGF to extract expression. Finally, LST is used to derive the sojourn time distribution. Haghighi
and Mishev (2013) studied three-stage Hiring model as a MX/M (k,K)/1 −MY /Er/1 −∞, tan-
dem Queueing Process with Bulk Arrivals. They also gave the generating function, the mean of the
number of applications in each of the first two stages using the decomposition system.

Whenever the server suffers a breakdown, it will be unable to service until it is repaired. As a result,
the server should be repaired, but due to the lack of repairing equipment or repairmen, the repair
process may not begin instantly. Jain et al. (2014) suggested a single-server Markovian queueing
system with vacation inspection that is state-dependent. They used Matrix Geometric methods
to describe the throughput, delay time to repair and some other performance indices. Singh et
al. (2018) analyzed the second optional service, unstable server, delaying repair and impatient of
the customer for the Non-Markovian queueing model of the bulk input queue. Choudhury and Tadj
(2009) described a Non-Markovian queueing model in two service stages that observed Breakdown
and delay time to repair.

This concept is inspired by banking, where we assume a bank with several service counters. Ar-
riving customers may decide on any counter to receive service from (like asking for loan details,
agriculture loan, car loan, etc.). If a server is available at the moment of the customer’s arrival, the
service is provided instantly; otherwise, the customer must wait in line to obtain it. After receiving
service in Stage-1 vacation, a customer may leave the counter or choose to return and, for example,
request more information about the loan application procedure (imperfect service). The server may
break down during periods of high usage (like not working computers, electrical problems, etc.).
The arriving visitor may renege during the Stage-2 vacation period. All of these situations in the
banking industry have been addressed using our methodology.

The manuscript for this work is synchronized as follows. A brief explanation of our model is pro-
vided in Section 2. Our model’s notations and matrix generation are described in Section 3. Section
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4 N. Arulmozhi

4 contains our model’s steady-state probability. We discussed our model’s busy period in Section
5. In Section 6, waiting time is examined. Performance measures have been enrolled in Section
7. We mention cost optimization in Section 8. In Section 9, particular cases have been examined.
Section 10, displays numerical and graphical outcomes. The conclusion follows in Section ??.

2. Model Description

This is a research paper about studying an arrival system through the Markovian arrival process.
Formally, the MAP is specified by twom xmmatrices (D0, D1), whose sumD = D0+D1, which
is an irreducible infinitesimal generator. The matrix D0 covers non-arrival similarly, the matrix D1

covers arrival. Service time pursues the phase-type distribution. It is represented as (γ, U), where γ
is an initial probability vector. Whose matrix is order n with U0+Ue = 0 implies that U0 = −Ue.
In addition, the service order is first in first out (FIFO). Henceforth λ is the fundamental arrival
rate, which is signified as λ = π1D1e, where π1 is the steady-state probability vector. The average
service rate is mentioned by µb = [γ(−U)−1e]−1.

As so far this paper explained, a single server queueing model subject to a two-vacation policy,
setup, breakdown, delay time to phase-type repair and impatient behavior of a customer. A working
vacation begins at that juncture of an empty state after the service completion. This is known as
Stage-1 vacation and that time of duration process follows an exponential distribution η1. Since the
server can provide the service to the customers at a slow rate of time during the period of working
vacation, therefore, the service time follows PH-distributions and it is represented by (γ, θU) of
order n and working vacation service rate µv = [γ(−θU)−1e]−1. Let’s assume µv < µb.

At the end of a working vacation, when the customers are staying in the system then the server
is provided normal service. After service on a working vacation, though the customer is not sat-
isfied with the service provided, then the server should repeat the same service(re-service) with
the probability p. Hence, the customer which gets satisfied leaves the system with probability q.
Whatever service is provided could be repeated only once during a working vacation. The unavail
of the customer is working vacation, the server will move on another vacation in which the server
completely stops the service and it follows an exponential η2. Instantaneously the server provides
the normal service at a rate of µb to the customers awaiting after working vacation. Unless the cus-
tomer is waiting for the service, the server will be continued in a vacation state, though the server
gets back from multiple vacation. This is known as Stage-2 vacation.

The server can only begin the setup process by at least having a minimum of one customer on the
system for service. By following the completion of the setup process, the server begins to provide
the service to the customer. During normal busy periods, the server may undergo a breakdown;
in this case, the server will enter to delay time to repair and move on to the state of repair which
follows a phase-type distribution (α, S) of order l, where S0 + Se = 0 and the repair rate is
indicated as τ1 = [α(−S)−1e]−1. As a result, the server’s current customer will stay frozen until
the server returns from the repair process. The server will begin a rejuvenating service for the
current customer, after the repair process.
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Customers may be impatience and, as a result, renege from the system with parameter β, which
follows an exponential distribution, during the stage-2 vacation period. The setup rate, delay time
to repair rate, and breakdown rate are all according to exponentially distributed as parameters σ, τ
and ψ, respectively. The schematic picture of this model is provided in Figure 1.

Figure 1. Schematic representation

3. The QBD Process’s Infinitesimal Generation Matrix

The following notations and assumptions are used to explain our model of producing QBD pro-
cesses in this section.

Notations
We will need the obeying notations:
• ⊗ - Kronecker product of two matrices of various dimensions resulting in a block matrix.
• ⊕ - Kronecker sum of two matrices of various dimensions resulting in a block matrix.
• Im stand for identity matrix of m rows and m columns.
• e - A column vector of the suitable order. Each of its entries is one.
• N(t) represents the total number of customers in the system at epoch t.
• J(t) represents the server’s status at epoch t.
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6 N. Arulmozhi

As a result, the server is in one of the following states at any given time t:

J(t) =



0, idle on working vacation mode,
1, busy in working vacation mode,
2, reservice on working vacation mode,
3, vacation mode,
4, setup mode,
5, normal busy mode,
6, delay time to repair,
7, Repair phase in ordinary offering service mode.

• R(t) stands for the repair process considered by phases.
• K(t) stands for phases of the service.
• A(t) - Phases of the Markovian arrival process are assessed.
• Let Y (t) = {N(t), J(t), R(t), K(t), A(t) : t ≥ 0} be a CTMC with state space

Φ = ϕ(0)
∞⋃
i=1

ϕ(i), (1)

where

ϕ(0) = {(0, 0, a) : 1 ≤ a ≤ m} ∪ {(0, 3, a) : 1 ≤ a ≤ m},

and for i ≥ 1,

ϕ(i) = {(i, 1, k, a) : 1 ≤ k ≤ n, 1 ≤ a ≤ m} ∪ {(i, 2, k, a) : 1 ≤ k ≤ n, 1 ≤ a ≤ m}

∪{(i, 3, a) : 1 ≤ a ≤ m}∪{(i, 4, a) : 1 ≤ a ≤ m}∪{(i, 5, k, a) : 1 ≤ k ≤ n, 1 ≤ a ≤ m}

∪{(i, 6, a) : 1 ≤ a ≤ m} ∪ {(i, 7, r, a) : 1 ≤ r ≤ l , 1 ≤ a ≤ m}.

The QBD process has the generator matrix Q which is given by:

Q =


B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .

0 A2 A1 A0 0 0 . . .

0 0 A2 A1 A0 0 . . .
...

...
... . . . . . . . . . . . .

 . (2)

The block matrices of Q are defined as follows:

B00 =

[
D0 − η1Im η1Im

0 D0

]
, B01 =

[
γ ⊗D1 0 0 0 0 0 0

0 0 D1 0 0 0 0

]
,
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B10 =



qθU0 ⊗ Im 0
θU0 ⊗ Im 0

0 βIm
0 0

U0 ⊗ Im 0
0 0
0 0


,

A1 =


θU ⊕D0 − η1Inm pθU0γ ⊗ Im 0 0 en ⊗ η1γ ⊗ Im 0 0

0 θU ⊕D0 0 0 0 0 0
0 0 D0 − η2Im − βIm η2Im 0 0 0
0 0 0 D0 − σIm γ ⊗ σIm 0 0
0 0 0 0 U ⊕D0 − ψInm en ⊗ ψIm 0
0 0 0 0 0 D0 − τIm α⊗ τIm
0 0 0 0 S0 ⊗ γ ⊗ Im 0 S ⊕D0

 ,

A0 =



In ⊗D1 0 0 0 0 0 0
0 In ⊗D1 0 0 0 0 0
0 0 D1 0 0 0 0
0 0 0 D1 0 0 0
0 0 0 0 In ⊗D1 0 0
0 0 0 0 0 D1 0
0 0 0 0 0 0 Il ⊗D1


,

A2 =



qθU0γ ⊗ Im 0 0 0 0 0 0
θU0γ ⊗ Im 0 0 0 0 0 0

0 0 βIm 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 U0γ ⊗ Im 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

4. Steady-State Analysis

4.1. Condition for Stability

Let χ = (χ0, χ1, χ2, χ3, χ4, χ5, χ6) be the steady state probability vector of the generator matrix
A = A0 + A1 + A2 of order (3m+ 3nm+ lm) and satisfies the criterion χA = 0 and χe = 1.
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8 N. Arulmozhi

By solving the following equations, the vector χ is obtained:

χ0[(θU + qθU0γ)⊕D − η1Inm] + χ1[θU
0γ ⊗ Im] = 0, (3)

χ0[pθU
0γ ⊗ Im] + χ1[θU ⊕D] = 0, (4)

χ2[D − η2Im] = 0, (5)
χ2[η2Im] + χ3[D − σIm] = 0, (6)

χ0[(en ⊗ η1γ ⊗ Im)] + χ3[γ ⊗ σIm] + χ4[(U + U0γ)⊕D − ψInm]

+χ6[S
0 ⊗ γ ⊗ Im] = 0,

(7)

χ4[en ⊗ ψIm] + χ5[D − τIm] = 0, (8)
χ5[τα⊗ Im] + χ6[S ⊕D] = 0, (9)

subject to

χ0enm + χ1enm + χ2em + χ3em + χ4enm + χ5em + χ6elm = 1. (10)

The system’s necessary and sufficient conditions for attaining stability is

χA0e < χA2e.

The stability that was found after some mathematical rearrangement is given below:

(χ0 + χ1 + χ4)[en ⊗D1em] + (χ2 + χ3 + χ5)[D1em] + χ6[el ⊗D1em]

< χ0[qθU
0 ⊗ em] + χ1[θU

0 ⊗ em] + χ2[βem] + χ4[U
0 ⊗ em].

(11)

4.2. Invariant Probability Vector

Assume that the variable y be the invariant probability vector of the infinitesimal generator Q of
the process {Y(t): t ≥ 0}. The subdivision of y by level, as y = (y0, y1, y2, ...), where y0 is of
dimension 2m for i = 0 and y1, y2, ... are of dimension (3m + 3nm + lm) for i ≥ 1. Then, y
satisfy the conditions

yQ = 0 and ye = 1.

Furthermore, while the stability criterion is satisfied, the equation gives the various levels,

yj = y1R
j−1, j ≥ 2, (12)

where R is the smallest non-negative solution of the quadratic equation

R2A2 +RA1 + A0 = 0,

and satisfies the relationRA2e = A0e and the vector y0, y1 are obtained with the help of succeeding
equations

y0B00 + y1B10 = 0, (13)
y0B01 + y1[A1 +RA2] = 0, (14)

8
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subject to normalizing condition

y0e2m + y1[I −R]−1e3m+3nm+lm = 1. (15)

As a result, we can compute matrix R using Latouche and Ramaswami (1993) "Logarithmic Re-
duction Algorithm" and compute the stationary probability vector y by using the QBD structure in
(2).

Theorem 4.1.

The structure of our model rate matrix R is

R =



R11 R12 0 0 R15 R16 R17

R21 R22 0 0 R25 R26 R27

0 0 R33 R34 R35 R36 R37

0 0 0 R44 R45 R46 R47

0 0 0 0 R55 R56 R57

0 0 0 0 R65 R66 R67

0 0 0 0 R75 R76 R77


. (16)

Proof:

The R matrix has the formation of our model as given in (16). The matrix quadratic equation
R2A2 +RA1 + A0 = 0 can be rewritten,

R = (R2A2 + A0)(−A1)
−1.

It is simple to verify the matrix’s structure (−A1)
−1 as obeys:

(−A1)
−1 =

1

V



f11 f12 0 0 f15 f16 f17
0 f22 0 0 0 0 0
0 0 f33 f34 f35 f36 f37
0 0 0 f44 f45 f46 f47
0 0 0 0 f55 f56 f57
0 0 0 0 f65 f66 f67
0 0 0 0 f75 f76 f77


, (17)

where the elements of (−A1)
−1 are

f11 = [(θU ⊕D0)(D0 − η2Im − βIm)(D0 − σIm)][(U ⊕D0 − ψInm)(D0 − τIm)(S ⊕D0)

+ (en ⊗ ψIm)(τα⊗ Im)(S
0 ⊗ γ ⊗ Im)],

f12 = −[(pθT 0 ⊗ Im)(D0 − η2Im − βIm)(D0 − σIm)][(U ⊕D0 − ψInm)(D0 − τIm)(S ⊕D0)

+ (en ⊗ ψIm)(τα⊗ Im)(S
0 ⊗ γ ⊗ Im)],

f15 = −[(en ⊗ η1γ ⊗ Im)(θU ⊕D0)(D0 − η2Im − βIm)(D0 − σIm)(D0 − τIm)(S ⊕D0)],

9
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10 N. Arulmozhi

f16 = [(en ⊗ η1γ ⊗ Im)(θU ⊕D0)(D0 − η2Im − βIm)(D0 − σIm)(en ⊗ ψIm)(S ⊕D0)],

f17 = −[(en ⊗ η1γ ⊗ Im)(θU ⊕D0)(D0 − η2Im − βIm)(D0 − σIm)(en ⊗ ψIm)(τα⊗ Im)],

f22 = [(θU ⊕D0 − η1Inm)(D0 − η2Im − βIm)(D0 − σIm)][(U ⊕D0 − ψInm)(D0 − τIm)(S ⊕D0)

+(en ⊗ ψIm)(τα⊗ Im)(S
0 ⊗ γ ⊗ Im)],

f33 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − σIm)][(U ⊕D0 − ψInm)(D0 − τIm)(S ⊕D0)

+(en ⊗ ψIm)(τα⊗ Im)(S
0 ⊗ γ ⊗ Im)],

f34 = −[(θU ⊕D0 − η1Inm)(θU ⊕D0)(η2Im)][(U ⊕D0 − ψInm)(D0 − τIm)(S ⊕D0)

+(en ⊗ ψIm)(τα⊗ Im)(S
0 ⊗ γ ⊗ Im)],

f35 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(η2Im)(σ ⊗ γIm)(D0 − τIm)(S ⊕D0)],

f36 = −[(θU ⊕D0 − η1Inm)(θU ⊕D0)(η2Im)(σ ⊗ γIm)(en ⊗ ψIm)(S ⊕D0)],

f37 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(η2Im)(σ ⊗ γIm)(en ⊗ ψIm)(τα⊗ Im)],

f44 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)][(U ⊕D0 − ψInm)(D0 − τIm)(S ⊕D0)

+(en ⊗ ψIm)(τα⊗ Im)(S
0 ⊗ γ ⊗ Im)],

f45 = −[(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(σ ⊗ γIm)(D0 − τIm)(S ⊕D0)],

f46 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(σ ⊗ γIm)(en ⊗ ψIm)(S ⊕D0)],

f47 = −[(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(σ ⊗ γIm)(D0 − τIm)(τα⊗ Im)],

f55 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(D0 − σIm)(D0 − τIm)(S ⊕D0)],

f56 = −[(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(D0 − σIm)(en ⊗ ψIm)(S ⊕D0)],

f57 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(D0 − σIm)(en ⊗ ψIm)(τα⊗ Im)],

10
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f65 = [(θU ⊕D0 − η1Inm)(θU ⊕D0)(D0 − η2Im− βIm)(D0 − σIm)(τα⊗ Im)(S
0 ⊗ γ⊗ Im)],

f66 = [(θU⊕D0−η1Inm)(θU⊕D0)(D0−η2Im−βIm)(D0−σIm)(U⊕D0−ψInm)(S0⊗γ⊗Im)],

f67 = −[(θU⊕D0−η1Inm)(θU⊕D0)(D0−η2Im−βIm)(D0−σIm)(U⊕D0−ψInm)(τα⊗Im)],

f75 = −[(θU⊕D0−η1Inm)(θU⊕D0)(D0−η2Im−βIm)(D0−σIm)(D0−τIm)(S0⊗γ⊗Im)],

f76 = [(θU ⊕D0− η1Inm)(θU ⊕D0)(D0− η2Im−βIm)(D0−σIm)(en⊗ψIm)(S
0⊗γ⊗ Im)],

f77 = [(θU⊕D0−η1Inm)(θU⊕D0)(D0−η2Im−βIm)(D0−σIm)(U⊕D0−ψInm)(D0−τIm)].

Multiplying a matrix A0 to the left-hand side in (−A1)
−1 matrix does not affect the structure, as

shown in (17). As a result, the matrix A0(−A1)
−1 is given by

(A0)(−A1)
−1 =

1

V



g11 g12 0 0 g15 g16 g17
0 g22 0 0 0 0 0
0 0 g33 g34 g35 g36 g37
0 0 0 g44 g45 g46 g47
0 0 0 0 g55 g56 g57
0 0 0 0 g65 g66 g67
0 0 0 0 g75 g76 g77


, (18)

where the elements of (A0)(−A1)
−1 are

g11 = In⊗D1f11, g12 = In⊗D1f12, g15 = In⊗D1f15, g16 = In⊗D1f16, g22 = [In⊗D1]f22,

g33 = D1f33, g34 = D1f34, g35 = D1f35, g36 = D1f36, g37 = D1f37, g44 = D1f44,

g45 = D1f45, g46 = D1f46, g47 = D1f47, g55 = In ⊗D1f55, g56 = In ⊗D1f56,

g57 = In ⊗D1f57, g65 = D1f65, g66 = D1f66, g67 = D1f67, g75 = Il ⊗D1f75,

g76 = Il ⊗D1f76, g77 = Il ⊗D1f77.

Pre-multiply a matrix A2 with the matrix (−A1)
−1 matrix. As a result, the model of matrix

A2(−A1)
−1 is given by
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(A2)(−A1)
−1 =

1

V



h11 h12 0 0 h15 h16 h17
h21 h22 0 0 h25 h26 h27
0 0 h33 h34 h35 h36 h37
0 0 0 0 0 0 0
0 0 0 0 h55 h56 h57
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (19)

where the elements of A2(−A1)
−1 are

h11 = (qθU0γ1 ⊗ Im)f11, h12 = (qθU0γ1 ⊗ Im)f12, h15 = (qθU0γ1 ⊗ Im)f15,

h16 = (qθU0γ1 ⊗ Im)f16, h17 = (qθU0γ1 ⊗ Im)f17, h21 = (θU0γ1 ⊗ Im)f11,

h22 = (θU0γ1 ⊗ Im)f12, h25 = (θU0γ1 ⊗ Im)f15, h26 = (θU0γ1 ⊗ Im)f16,

h27 = (θU0γ1 ⊗ Im)f17, h33 = (βIm)f33, h34 = (βIm)f34, h35 = (βIm)f35,

h36 = (βIm)f36, h37 = (βIm)f37, h55 = (U0γ ⊗ Im)f55, h56 = (U0γ ⊗ Im)f56,

h57 = (U0γ ⊗ Im)f57.

Consider the sequence {R(n)} is defined by

R(n+1) = [(R(n))2A2 + A0](−A1)
−1, n = 0, 1, 2, 3, ...

The initial condition, i.e., R(0) = 0, has the convergence of monotonically to the lowest non-
negative solution to the equation of quadratic R2A2 + RA1 + A0 = 0. Henceforth, the model of
{A0(−A1)

−1} and {(R(n))2A2(−A1)
−1, where n = 1, 2, 3, ...} will remain the same structure of

(−A1)
−1. Using R(0) = 0 as the initial iteration, we obtain the rate matrix R(1). Similarly, using

rate matrix R(1) to compute for R(2). Continue iterations produce the sequence of rate matrix R,
i.e., R(n). It still follows the same pattern. ■

5. Busy Period Analysis

• In a single-server queueing demonstration, the word busy period is characterized as the length
of time between the entry of a customer into the void system and the first time from that point that
the system size reaches zero. As, the first passage epoch to level zero, starting from level one. It is
the first return time of level zero, taken after by a least one visit to a few other levels, which is the
analog of the busy cycle.

• We have to present an outline of the fundamental period to analyze the busy period. When the
QBD process is taken into thought the first passage time from level i to i− 1, where i ≥ 2.
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• Note that for each level i, i ≥ 1, there are (3m + 3nm + lm) states. The state (i, j) of level i
signifies the jth state of level i when the states are sorted alphabetically.

• Let Gjj′(u, y) represent the conditional probability that the QBD process, starting at time t = 0
in the state (i, j) and keep track of the time until the first visit to the level (i− 1) but not later than
time y. We can modify after exactly u transitions to the left and enter the state (i, j′), at t = 0.

Let the joint transform matrix

Gjj′(z, s) =
∞∑
u=1

zu
∫ ∞

0

e−sydGjj′(u, y) ; |z|≤ 1, Re(s) ≥ 0, (20)

and put the matrix G(z, s) = Gjj′(z, s). Specifically, computed the matrix G(z, s) satisfy the
equation,

G(z, s) = z(SI − A1)
−1A2 + (SI − A1)

−1A0G
2
(z, s). (21)

The matrix G = Gjj′ = G(1, 0) is concerned with excluding the boundary states during the first
passage times. Knowing the rate matrix R, allows us to use the below result to find the matrix G

G = −(A1 +RA2)
−1A2. (22)

The matrix G can be found with the assistance of the logarithmic reduction algorithm (Latouche
and Ramaswami (1993)).

Notations of a busy period

(1) The conditional probability such as the first passage time beginning via level 1 to level 0 at
time t = 0 is expressed by G(1,0)

jj′ (u, y).
(2) For the first passage time, G(0,0)

jj′ (u, y) conditional probability returns to the level 0.
(3) Given the current state of the process (i, j) at epoch t = 0, H1j represents the expected first

passage time among the level i and i− 1.
(4) H⃗1 stands for the column vector with entries H1j.

(5) H2j represents the expected number of customer those received service at the first passage
time among the levels i and i− 1, begins in the state (i, j) at time t = 0.

(6) H⃗2 stands for the column vector with entries H2j.

(7) The average first passage time beginning via level one to level zero is denoted by H⃗(1,0)
1 .

(8) The expected number of services done during the first passage time to the level 0, which begins
from the level 1 is represented by H⃗(1,0)

2 .
(9) H⃗(0,0)

1 stands for the average first return time to level zero.
(10) H⃗(0,0)

2 represents the average number of services completed in between the first return time and
level zero.
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We find the matrix with the succeeding equation is,

G
(1,0)

(z, s) = z(SI − A1)
−1B10 + (SI − A1)

−1A0G(z, s)G
(1,0)

(z, s), (23)

G
(0,0)

(z, s) = (SI −B00)
−1B01G

(1,0)
(z, s). (24)

Thus, the instances that obey are calculated using the matrices G, G
(0,0)

(1, 0) and G
(1,0)

(1, 0) are
stochastic at z = 1 and s = 0. The moments can be found as follows:

H⃗1 = − ∂

∂s
G(z, s)e = −[A1 + A0(I +G)]−1e, (25)

H⃗2 =
∂

∂z
G(z, s)e = −[A1 + A0(I +G)]−1A2e, (26)

H⃗(1,0)
1 = − ∂

∂s
G

(1,0)
(z, s)e = −[A1 + A0G]

−1(A0H⃗1 + e), (27)

H⃗(1,0)
2 =

∂

∂z
G

(1,0)
(z, s)e = −[A1 + A0G]

−1(A0H⃗2 +B10e), (28)

H⃗(0,0)
1 = − ∂

∂s
G

0,0
(z, s)e = −B−1

00 [B01H⃗(1,0)
1 + e], (29)

H⃗(0,0)
2 =

∂

∂z
G

(0,0)
(z, s)e = −B−1

00 [B01H⃗(1,0)
2 ]. (30)

6. Waiting Time Distribution

By using the first passage time, we perform an analysis of waiting time from the distribution of a
customer who arrives in the queuing line. Let W (t), t ≥ 0 denote the distribution function of the
waiting time considering the incoming tagged customer in the queue. When the server is busy or
on vacation, they need to wait in the queuing line to get service from the server.

Let us introduce the absorption time in a CTMC with the state space is as follows:

Ω = (∗) ∪ {1, 2, 3, .....}.
The absorbing state (∗) compares to the arriving tagged customer will begin to get service without
waiting in the queue.

The matrix Q̃ of the absorbing Markov chain is as follows:

Q̃ =


0 0 0 0 0 0 . . .

C10 C1 0 0 0 0 . . .
0 C2 C1 0 0 0 . . .
0 0 C2 C1 0 0 . . .
...

...
... . . . . . . . . . . . .

 ,

where
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C10 =



qθµ

θµ
β
0
µ
0
0


, C1 =



θU − (η1)In pθU
0γ 0 0 η1In 0 0

0 θU 0 0 0 0 0
0 0 −η2 − β η2 0 0 0
0 0 0 −σ σγ 0 0
0 0 0 0 U − ψIn enψ 0
0 0 0 0 0 −τ τα
0 0 0 0 S0γ 0 S


,

C2 =



qθU0γ 0 0 0 0 0 0
θU0γ 0 0 0 0 0 0
0 0 β 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 U0γ 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Let us define x0 = (x1(0), x2(0), ...), which is the conditional probability distribution of the system
state defined on the arrival of the tagged customers and probability vector xi(0) as follows:

xi(0) = yi

[
I3+3n+l ⊗

D1em
λ

]
, i ≥ 1. (31)

Define x(t)=(x∗(t), x1(t), x2(t)....), where xi(t), i ≥ 1 - vector of order 1 × (3 + 3n + l). The
elements of xi(t) are the probabilities of the CTMC in which the respective states of level i with
the generator matrix Q̃ at epoch t.

Let x∗(t) indicates the probability of the tagged customer being in the absorbing state at time t.
Clearly,

W (t) = x∗(t), t ≥ 0.

Let’s use the technique described by Neuts (1984) to compute the Laplace Stieltjes Transform
(LST) for W (s). The row vector w(s) specifies the LST of the first passage time to level 1 when
the process starts at the state i with xi(0), i ≥ 1 as the initial probability vector and i ≥ 1 as the
initial probability vector. According to Neuts (1981), we get

W (s) =
∞∑
i=1

xi(0)[(sI − C1)
−1C2]

i−1(sI − C1)
−1C10. (32)
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16 N. Arulmozhi

6.1. Expected Waiting Time

The expected waiting time is denoted by

E(W ) = −W ′(0) =
∞∑
i=1

xi+1(0)
i−1∑
j=0

M j(−C1)
−1M i−jMe

+
∞∑
i=0

xi+1(0)M
i(−C1)

−2C10,

(33)

where M = (−C1)
−1C2 indicates a stochastic matrix. Hence, the expression for E(W ) offered by

the equation (31) can be solved as:

E(W ) = −W ′(0) =
∞∑
i=1

xi+1(0)
i−1∑
j=0

M j(−C1)
−1e+

∞∑
i=0

xi+1(0)M
i(−C1)

−1e. (34)

Let us define V =
∑∞

i=0 yi+1(0)M
i. Since M is stochastic, we get

V e = x1(I −R)−1e. (35)

This result in (35) can be used to compute the approximate value of V . Now, let us consider the
stochastic matrix M2 such that an inverse of I −M and I −M +M2 are non-singular. Then the
matrix M2 may be chosen as M2=(e3+3n+lm0), where m0 is the stationary probability vector of
M such that m0V =m0 and m0e3+3n+l=1. Moreover, the following expression has the property that
MM2=M2M=M2. Therefore, we get

i−1∑
j=0

M j(I −M +M2) = (I −M i + iM2), for i ≥ 1. (36)

Substituting (35) and (36) in (34) and doing with some simplifications, we get[
∞∑
i=0

xi+1(0)(I −M i + iM2)

]
(I −M +M2)

−1(−C1)
−1e. (37)

As a result, we have computed by calculating all of the terms of (37) and can easily evaluate the
expected waiting time.

E(W ) =

{
y2R(I −R)−1

[
I3+3n+l ⊗

D1em
λ

]
+ x2I

[
I3+3n+l ⊗

D1em
λ

]
− V

[
I3+3n+l ⊗

D1em
λ

]
+ x2R(I −R)−2M2

[
I3+3n+l ⊗

D1em
λ

]}
× (I −M +M2)

−1(−C1)
−1e3+3n+l

+

{
V

[
I3+3n+l ⊗

D1em
λ

]}
× (−C1)

−1e3+3n+l.

(38)
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7. Performance Measure

• Probability that the server to be idle during a working vacation
PIWV =

∑m
a=1 y00a

• Probability that the server is busy during a working vacation
PBWV =

∑∞
i=1

∑n
k=1

∑m
a=1 yi1ka

• Probability of that the server is busy with Re-service during a working vacation
PRWV =

∑∞
i=1

∑n
k=1

∑m
a=1 yi2ka

• Probability that the server is on vacation
PV AC =

∑∞
i=0

∑m
a=1 yi3a

• Probability that the server is on Setup
PSET =

∑∞
i=1

∑m
a=1 yi4a

• Probability that server is busy in normal service
PBNS =

∑∞
i=1

∑n
k=1

∑m
a=1 yi5ka

• Probability that the server is Delay time to repair
PDTR =

∑∞
i=1

∑m
a=1 yi6a

• Probability that server is on repair in the normal busy period
PREP =

∑∞
i=1

∑l
r=1

∑m
a=1 yi7ra

• Probability that the server is busy
Pbusy = PBWV + PBNS

• Expected system size
Esystem =

∑∞
i=1 iyie3m+3nm+lm

• Expected system size during working vacation when the server is in a busy period
EBWV =

∑∞
i=1

∑n
k=1

∑m
a=1 iyi1ka

• Expected system size during working vacation when the server is reservice
ERWV =

∑∞
i=1

∑n
k=1

∑m
a=1 iyi2ka

• Expected system size during server is on vacation
EV AC =

∑∞
i=0

∑m
a=1 iyi3a

• Expected system size during server is on setup mode
ESET =

∑∞
i=1

∑m
a=1 iyi4a

• Expected system size during server is a normal busy period
EBNS =

∑∞
i=1

∑n
k=1

∑m
a=1 iyi5ka

• Expected system size during delay time to repair
EDTR =

∑∞
i=1

∑m
a=1 iyi6a

• Expected system size during a repair under a normal busy period
ERNS =

∑∞
i=1

∑l
r=1

∑m
a=1 iyi7ra

8. Analysis of Cost Model

In this section, we introduce a cost function TC with the following assumption:

• TC - Total cost per unit time.
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• CH - Holding cost for each customer per unit time in the system.

• CIWV - Cost per unit time during the server is idle with a working vacation.

• CBWV - Cost per unit time during the server is busy with a working vacation.

• CRWV - Cost per unit time during the server is reservice with a working vacation period.

• CV AC - Cost obtained during the server is on vacation.

• CSET - Cost obtained during the server is in setup.

• CBNS - Cost obtained during the server is busy in the normal service period.

• CDTR - Cost obtained during the server is in delay time to repair.

• CREP - Cost obtained by the server carrying out the repair process in normal service.

• C1 - Cost obtained by the server carrying out the busy in working vacation.

• C2 - Cost obtained in carrying out the setup process.

• C3- Cost obtained in carrying out the busy in normal service.

• C4 - Cost obtained in carrying out the breakdown process.

• C5 - Cost obtained in carrying out the delay time to repair process.

• C6 - Cost obtained by the server carrying out the repair process with normal service.

• C7 - Cost obtained in carrying out the reneging process.

The total average cost per unit is given by

TC= CHEsystem +CIWV PIWV + CBWV PBWV +CRWV PRWV + CV ACPV AC+ CSETPSET

+CBNSPBNS+CDTRPDTR + θµ C1 + σ C2 + µ C3 +ψ C4+τ C5 + τ1 C6+β C7 .

9. Particular Case

The Poisson process is applied to the arrival. The service times follow an exponential distribution
with a depiction of µ, whereas the inter-arrival times have an exponential distribution with a rate of
λ. Similar to how vacation times are distributed exponentially, so are breakdown, delay, and repair
times. In this case, the infinitesimal generator Q1 is thus reduced as

Q1 =


B00 B01 0 0 0 0 . . .

B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .

0 0 A2 A1 A0 0 . . .
...

...
... . . . . . . . . . . . .

 . (39)
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The entries of the Q1 matrix are as follows:

B00 =

[
−λ− η1 η1

0 −λ

]
, B01 =

[
λ 0 0 0 0 0 0
0 0 λ 0 0 0 0

]
,

B10 =



qθµ 0
θµ 0
0 β
0 0
µ 0
0 0
0 0


, A0 =



λ 0 0 0 0 0 0
0 λ 0 0 0 0 0
0 0 λ 0 0 0 0
0 0 0 λ 0 0 0
0 0 0 0 λ 0 0
0 0 0 0 0 λ 0
0 0 0 0 0 0 λ


,

A1 =



−λ− θµ− η1 pθµ 0 0 η1 0 0
0 −θµ− λ 0 0 0 0 0
0 0 −λ− η2 − β η2 0 0 0
0 0 0 −λ− σ σ 0 0
0 0 0 0 −λ− µ− ψ ψ 0
0 0 0 0 0 −λ− τ τ
0 0 0 0 τ1 0 −τ1 − λ


,

A2 =



qθµ 0 0 0 0 0 0
θµ 0 0 0 0 0 0
0 0 β 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 µ 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Subsequently, the generator matrix of A is

A =



−η1 − pθµ pθµ 0 0 η1 0 0
θµ −θµ 0 0 0 0 0
0 0 −η2 η2 0 0 0
0 0 0 −σ σ 0 0
0 0 0 0 −ψ ψ 0
0 0 0 0 0 −τ τ

0 0 0 0 τ1 0 −τ1


. (40)
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The stationary probability vector χ of A which satisfies χA=0 and χe=1 is given by
χ = (χ0, χ1, χ2, χ3, χ4, χ5, χ6) and after computing the values of χ, we will get the following
results:

χ0 = χ1 = 0,

χ2 = χ3 = 0,

χ4 =
ττ1

(ψτ + ψτ1 + ττ1)
,

χ5 =
ψτ1

(ψτ + ψτ1 + ττ1)
,

χ6 =
ψτ

(ψτ + ψτ1 + ττ1)
.

The stability condition which is turned out to be after some algebraical rearrangement is,

λ <
ττ1[µ]

ψτ + ψτ1 + ττ1
. (41)

10. Numerical Implementation

In this section, we examine the outcome of our system by using numerical and graphical repre-
sentations. The five different MAP representations are distinct with the following variance and
correlation structures and their mean values are 1. These sets of arrival and service values are
literally incurred from Chakravarthy (2010).

Arrival in Erlang of order 2 (ERL-A):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
.

Arrival in Exponential (EXP-A):

D0 = [−1], D1 = [1].

Arrival in Hyper exponential (HYP-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
.

Arrival in MAP-Negative Correlation (MAP-NC-A):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 , D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258

 .
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Arrival in MAP-Positive Correlation (MAP-PC-A):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 , D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539

 .

Let us consider PH-distributions for the service and repair process as follows:

Service in Erlang of order 2 (ERL-S):

γ = [1, 0], U =

[
−2 2
0 −2

]
.

Repair in Erlang of order 2 (ERL-R):

α = [1, 0], S =

[
−2 2
0 −2

]
.

Service in Exponential (EXP-S):

γ = [1], U = [−1].

Repair in Exponential (EXP-R):

α = [1], S = [−1].

Service in Hyper exponential (HYP-S):

γ = [0.8, 0.2], U =

[
−2.8 0
0 −0.28

]
.

Repair in Hyper exponential (HYP-R):

α = [0.8, 0.2], S =

[
−2.8 0
0 −0.28

]
.

Illustration 10.1.

We have examined the consequence of the breakdown rate ψ against the Total cost (TC) in the
obeying Tables 1 through 3. Fix λ = 2, θ = 0.4, µ = 10, σ = 8, η1 = 10, η2 = 12, τ = 5, τ1 = 10,
β = 6, p = 0.5, q = 0.5, CH = 10, CIWV = 2, CBWV = 2, CRWV = 3, CV AC = 5, CSET = 2,
CBNS = 3, CDTR = 3, CRNS = 4, C1 = 4, C2 = 2, C3 = 4, C4 = 1 C5 = 1, C6 = 1, C7 = 5.

We observe that from the obeying Tables 1 through 3:

• As the breakdown rate (ψ) increases, the variety of arrangements of arrival and service times
then the corresponding TC also increases.
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• Observe the arrival times, TC increases highly in MAP-PC-A and increases much slower in
ERL-A than all other arrival times.

Illustration 10.2.

We have examined the consequence of the Service rate µ against the Expected waiting time
(EWT ) in the obeying Tables 4 through 6. Fix λ = 2, θ = 0.4, ψ = 2, σ = 8, η1 = 10,
η2 = 12, τ = 5, τ1 = 10, β = 6, p = 0.5, q = 0.5.

We observe that from the obeying Tables 4 through 6:

• As service rate (µ) increases, the variety of arrangements of arrival and service times then the
corresponding Exepected Waiting Time also decreases.

• Observe the arrival times, Exepected Waiting Time decreases fastly in MAP-PC-A and de-
creases slowly in ERL-A than all other arrival times.

Table 1. Breakdown rate (ψ) vs TC - ERL-S

ψ EXP − A ERL− A HY P − A MAP −NC − A MAP − PC − A

1.1 127.397496 128.183603 129.631088 129.184070 311.354986
1.2 127.608055 128.421525 129.980746 129.431254 318.012439
1.3 127.821613 128.663221 130.339701 129.682228 324.825858
1.4 128.038281 128.908826 130.708352 129.937133 331.800666
1.5 128.258174 129.158485 131.087117 130.196111 338.942537
1.6 128.481413 129.412349 131.476433 130.459316 346.257420
1.7 128.708125 129.670576 131.876760 130.726907 353.751549
1.8 128.938444 129.933332 132.288578 130.999049 361.431460
1.9 129.172509 130.200792 132.712390 131.275919 369.304016
2.0 129.410467 130.473140 133.148726 131.557701 377.376421

Table 2. Breakdown rate (ψ) vs TC - EXP-S

ψ EXP − A ERL− A HY P − A MAP −NC − A MAP − PC − A

1.1 127.431340 128.232034 129.715549 129.172973 304.658113
1.2 127.632490 128.456869 130.039135 129.406139 310.392537
1.3 127.835621 128.684165 130.368898 129.641760 316.220975
1.4 128.040784 128.913987 130.705023 129.879901 322.145792
1.5 128.248034 129.146401 131.047700 130.120628 328.169434
1.6 128.457425 129.381475 131.397126 130.364011 334.294429
1.7 128.669015 129.619279 131.753503 130.610121 340.523394
1.8 128.882865 129.859887 132.117040 130.859031 346.859035
1.9 129.099035 130.103375 132.487953 131.110818 353.304153
2.0 129.31759 130.349821 132.866463 131.365561 359.861647
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Table 3. Breakdown rate (ψ) vs TC - HYP-S

ψ EXP − A ERL− A HY P − A MAP −NC − A MAP − PC − A

1.1 127.573916 128.300363 129.843714 129.081381 272.965135
1.2 127.719306 128.454921 130.035246 129.240411 275.325053
1.3 127.865010 128.609867 130.227724 129.399822 277.699063
1.4 128.011034 128.765208 130.421166 129.559621 280.087402
1.5 128.157385 128.920954 130.615589 129.719818 282.490301
1.6 128.304070 129.077112 130.811011 129.880420 284.907988
1.7 128.451096 129.233690 131.007447 130.041437 287.340689
1.8 128.598469 129.390696 131.204915 130.202875 289.788627
1.9 128.746196 129.548136 131.403432 130.364742 292.252023
2.0 128.894282 129.706019 131.603014 130.527046 294.731096

Table 4. Service rate (µ) vs EWT - ERL-S

µ EXP − A ERL− A HY P − A MAP −NC − A MAP − PC − A

10 0.105410 0.158700 0.304200 0.223330 12.51599
12 0.077960 0.119730 0.215900 0.181200 9.501742
14 0.062571 0.097611 0.168830 0.156780 7.655184
16 0.052885 0.083545 0.140200 0.140950 6.408214
18 0.046296 0.073893 0.121200 0.129890 5.509718
20 0.041556 0.066898 0.107770 0.121750 4.831589
22 0.038000 0.061615 0.097838 0.115510 4.301640
24 0.035244 0.057498 0.090219 0.110580 3.876103
26 0.033050 0.054204 0.084210 0.106580 3.526895
28 0.031267 0.051515 0.079359 0.103280 3.235176

Table 5. Service rate (µ) vs EWT - EXP-S

µ EXP − A ERL− A HY P − A MAP −NC − A MAP − PC − A

10 0.106170 0.157250 0.295820 0.219710 9.587475
12 0.079364 0.120130 0.214540 0.179950 7.260379
14 0.063973 0.098513 0.169580 0.156380 5.835571
16 0.054150 0.084558 0.141620 0.140890 4.874838
18 0.047409 0.074885 0.122790 0.129990 4.183778
20 0.042532 0.067828 0.109350 0.121910 3.663096
22 0.038860 0.062474 0.099341 0.115700 3.256839
24 0.036005 0.058286 0.091625 0.110770 2.931102
26 0.033730 0.054928 0.085516 0.106780 2.664150
28 0.031877 0.052181 0.080571 0.103470 2.441415
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Table 6. Service rate (µ) vs EWT - HYP-S

µ EXP − A ERL− A HY P − A MAP −NC − A MAP − PC − A

10 0.073593 0.106880 0.186370 0.155790 7.033746
12 0.055516 0.083627 0.142320 0.131610 5.619794
14 0.044937 0.069733 0.116370 0.116980 4.686267
16 0.038134 0.060629 0.099546 0.107280 4.022230
18 0.033461 0.054268 0.087884 0.100400 3.524875
20 0.030092 0.049609 0.079398 0.095301 3.137990
22 0.027571 0.046070 0.072989 0.091373 2.828191
24 0.025626 0.043303 0.068004 0.088262 2.574372
26 0.024090 0.041090 0.064033 0.085740 2.362520
28 0.022851 0.039285 0.060806 0.083657 2.182960

In this model, queueing model in the context of MAP/PH/1 with a two-stage vacations policy with
Imperfect service, reneging, setup, breakdown and delayed repair is studied analytically. In our
work, we also obtained stability conditions, busy periods, waiting time, total cost and particular
cases. In addition, numerical examples are provided to study the behavior of various performance
measures. The future research work is that the model under consideration may be extended into
a multi-server queue with two-stage vacations, imperfect service, reneging, setup, breakdown and
delay time to phase-type repair.
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Appendix A

In the 2D Figure 2 through 6, we examined the consequence of the vacation rate (η2) on the ex-
pected system size (Esystem). We fix λ = 2, θ = 0.4, ψ = 2, σ = 8, η1 = 10, µ = 10, τ = 5,
τ1 = 10, β = 6, p = 0.5, q = 0.5 such that the stability condition is satisfied.

We observe that from the obeying Figure: Figure 2 through 6 is considered when increasing the
vacation rate of (η2) on the expected system sizeEsystem for all conceivable arrival and service time
configurations. Consider the arrival times: as η2 increases, the expected system size grows rapidly
for MAP-PC-A and gradually for ERL-A with the various service time arrangements. Similarly,
when all arrival times are combined, service times increase rapidly in HYP-EXP-S and gradually
in ERL-S, except for MAP-PC-A, which increases rapidly in ERL-S but slowly in HYP-S.

Appendix B

From the Figures 7 through 21, we take both the delay time to repair rate (τ ) and service rate (µ)
on the Expected system. We fix λ = 2, θ = 0.4, ψ = 2, σ = 8, η1 = 10, η2 = 12, τ1 = 10, β = 8,
p = 0.5, q = 0.5 such that the stability condition is satisfied.

A quick examination of Figures 7 through 21 reveals that Esystem rises while service rate and delay
time to repair rise for all combinations of arrival and service time groupings. However, Esystem

decreases slowly in ERL-S and highly in HYP-S, whereas arrival times, Esystem decreases slowly
in ERL-A and rapidly in MAP-PC-A.
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Figure 7. Service (µ) and Delay time to repair (τ ) rates vs. Esystem- ERL-S
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Figure 8. Service (µ) and Delay time to repair (τ ) rates vs. Esystem- ERL-S
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Figure 9. Service (µ) and Delay time to repair (τ ) rates vs. Esystem- ERL-S
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Figure 10. Service (µ) and Delay time to repair (τ ) rates vs. Esystem- ERL-S
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Figure 11. Service (µ) and Delay time to repair (τ ) rates vs. Esystem- ERL-S
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Figure 12. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - EXP-S
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Figure 13. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - EXP-S
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Figure 14. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - EXP-S
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Figure 15. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - EXP-S
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Figure 16. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - EXP-S
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Figure 17. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - HYP-S
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Figure 18. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - HYP-S
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Figure 19. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - HYP-S
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Figure 20. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - HYP-S
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Figure 21. Service (µ) and Delay time to repair (τ ) rates vs. Esystem - HYP-S
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