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Abstract

In this paper, a classical queueing system with two types of heterogeneous servers has been
considered. The Markovian Arrival Process (MAP ) is used for the customer arrival, while phase
type distribution (PH) is applicable for the offering of service to customers as well as the repair
time of servers. Optional service are provided by the servers to the unsatisfied customers. The
server-2 may get breakdown during the busy period of any type of service. Though the server-
2 got breakdown, server-2 has a capacity to provide the service at a slower rate to the current
customer who is receiving service when the moment of server-2 struck with breakdown. In the
period of vacation/closedown of server-1 and the server-2 is in working breakdown or under repair
process, the arrival of customers may balk the system due to the impatient. Stability conditions
has derived for our system and the stationary probability vector was evaluated by using the matrix
analytical method. This model also examined at the analysis of busy period, waiting time distribution
and system performance measures. The numerical illustrations are provided with the aid of two
dimensional and three dimensional graphs.

Keywords: Markovian arrival process; Phase type service; Phase type Repair; Optional service;
Working breakdown; Multiple vacation; Closedown; Balking
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2 G. Ayyappan and G. Archana

1. Introduction

In the real world scenario, it can be seen that several of the queueing models are associated with
server vacations, breakdowns, repairs and impatient customers. System manufacturing, designing
of local area communication networks and data communication networks are the most common
examples. The customers are bound to be impatient in general. From the real-life experience, we can
observe that the customers who require service must form a queue. But because of time constraints,
some customers do not join the queue, and some of the customers who joined the queue may
become impatient and leave the queue without getting service.

In this theory, Markovian Arrival Process (MAP ) is the most important tools of point process. Neuts
(1979) pioneered the versatile Markovian point process (VMPP). He has used the concept of point
process which is Markovian arrival process. Chakravarthy (2011) have analysed the MAP which is
represented by n-dimensional parameter matrices (D0, D1) where D0 governing the transition for
no arrival and D1 governing with arrivals.

Krisha Kumar et al. (2008) have studied a two heterogeneous server with Bernoulli vacations. They
consider multiple vacations of their model, after the completion of vacation, if system becomes
empty, the server takes another vacation. They also derived mean waiting time and waiting time
distribution of their model. A multi server queueing model with finite retrial queue was examined
by Artalejo et al. (2007).

Lucantoni et al. (1990) investigated a single server queueing model with server vacations and a
non-renewal arrival process. They have described the distribution of waiting times. Cao and Xie
(2020) investigated the cooperative arrival process of various independent batch Markovian arrival
processes. A single server batch arrival queueing model with generally independent and uniformly
distributed service times was researched by Lucantoni (2005). For the queue length and waiting
time distributions, he has proposed stationary and transient distributions. The three-stage hiring
process of tandem queueing with Erlang phase-type selection and bulk arrivals was studied by
Haghighi and Mishev (2013).

In a queueing model that incorporates a variable arrival rate, optional service, and repair, Ayyappan
and Thilagavathy (2022) have analysed the Markovian arrival process for arrivals and the phase-type
distribution for services. They discussed the waiting time distribution and cost analysis for their
model. A single server batch queueing approach with a second optional service was investigated by
Vĳaya Laxmi et al. (2021). Haghighi and Mishev (2014) examined the monograph of models and
their applications in a textbook with industrial and business applications. Vĳaya Laxmi and George
(2020) investigated the transient queueing system of a batch service queue with a second optional
service and impatient customers. They carried out the cost analysis for optimisation.

A single server queueing model with two phases along with Bernoulli schedule vacation and
multiple vacation policy was done by Choudhury and Paul (2006). They evaluated the analysis of
busy period and expected system size of the model. A queue with working breakdown and working
vacation was examined by Chakravarthy et al. (2020). They considered a backup server to provide
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the service while the main server is in under vacation or breakdown period.

Haghighi and Mishev (2016) examined the external arrival tasks from outside to the system and
internal arrival through immediate feedback or through a splitting process and both have with
delay concept. At the end of service, any one of the events may occur like it may leave the system
completely; or, it seeks feedback or it may go to a unit called splitter. A server’s busy period and
numerical examples are also given in their model.

AMAP/PH(1), PH(2)/1 queueing model in which the services offered by first come first served
basis subject to vacations and optional secondary services was investigated by Chakravarthy (2013).
The concept of optional secondary service is that after completion of primary customer service, they
may need a secondary service with probability p or the customer leaves the system with probability
q. An multi server queueing model with impatient customers have been done by Haghighi et al.
(1986).

A single server queue with infinite capacity along with single working vacation and reneging during
the working vacation period was investigated by Vĳaya Laxmi et al. (2019). They considered
the arriving customers gets impatient and renege from the system during the period of working
vacations. They carried out some numerical analysis to view the effect of the parameters on some
performance measures. A queue subject to working breakdown has been investigated by Kalidass
and Kasturi (2012).

Swathi et al. (2019) examined a queueing system with balking and reneging. The steady state
analysis of the system and several performance measures were also derived by them. A retrial
inventory system with multiple server vacations for two heterogeneous servers are considered by
Suganya and Sivakumar (2019). They assumed that the customers arrive according toMAP as well
as the service follows phase type distribution. The total cost rate and some performance measures
are also obtained.

A single server queueing model with N-policy and second optional services have been evaluated by
Das et al. (2022). They presented the cost analysis and various performance measures of their model.
Chakravarthy and Agarwal (2003) explored a machine repair problem with Unreliable server. In
their model, they considered phase type distribution for the service and repair time of server. They
also determine the performance measures and some numerical illustrations. M/M/C queueing
system with impatient customers was examined by Wang and Zhang (2018). They considered the
system capacity as M size and also evaluated some performance measures of their model.

A single server queueing model subject to setup time, Bernoulli vacation, breakdown, repair,
Bernoulli feedback and impatient customers was examined by Ayyappan and Gowthami (2021).
They evaluated the stationary probability vector and R matrix by the help of matrix-geometric
method and also provided some performance measures. Kadi et al. (2020) have investigated a
multi-server queueing model with Bernoulli feedback, vacation and impatient customers.

Beena and Jose (2020) have recognized on a retrial production inventory system with heterogeneous
servers. The total cost and system performance measures are also evaluated in this model. An
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4 G. Ayyappan and G. Archana

M/M/1/N queue with retention of reneging and balking has been investigated by Kumar and
Sharma (2012). They evaluated the particular cases and some performance measures of their
model. Ayyappan and Thilagavathy (2020) examined a queueing model with a single server, a
standby server, impatient customers, setup, and closedown. They have discussed about their model’s
busy period analysis. A single server queueing model subject to working vacation and two type
of server breakdown have been analysed by Agarwal et al. (2021). They considered the server
breakdown while server is in working vacation or normal busy period. Numerical illustrations are
also examined by them.

The rest of the article is structured as follows. Implementation of our model is provided in Section 2.
Section 3 contains the narration for our model. Section 4 describes the process of matrix generation
and some notations. In Section 5, the stability condition, the invariant probability vector and the rate
matrix R are derived. In Section 6, the busy period analysis is described. Measures of performance
are given in Section 7. The cost analysis are presented in Section 8 and the waiting time distribution
is discussed in Section 9. Section 10 provides some numerical results and graphical outcomes. The
conclusion part is presented in Section 11.

2. Implementation of Our Model

In our real life situations, the motivation of this model is pharmaceutical shops. Consider as one
the pharmacy shop which has more than one billing sections. Let us consider that there are two
servers are working in that shop. The billing process may consists of the following phases:
1. ask the prescription and generate a bill.
2. collect the money through phone pay or cash and enter into the system to make a bill.
3. organize the items and pack it, in the particular cover.

When the customer arrives, during which they see any server free in the system, then they receive
the service without delay; if not, the customers must wait in a lineup to reach the service. Once
the customer receives the service from the server, they may leaves the system completely or they
have a choice to get the service once again by the server (optional service). At the consummation
of service, if there are no customers waiting in the system, server-1 goes on vacation (like receiving
the telephone calls, collection of orders, arranging the prescriptions, etc.) or they pursue further
service for upcoming customers. Server-1 will put down the system in sleep mode or close the
data, before takes the vacation (close down). During the vacation/close down time of server-1 and
breakdown/repair time of server-2, the incoming customers may not enter into the system due to the
lack of patience (balking). While the busy period, the server-2 can attain failure of the service (like
hanging the system, lack of network, etc.), then the server-2 will manage to complete the service
in lower rate (working breakdown) and then he goes to repair process. When the repair process is
finished, the server begins the service to the customers who have been waiting in the queue. Our
model has framed with all these situations.

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 [], Iss. 1, Art. 1

https://digitalcommons.pvamu.edu/aam/vol18/iss1/1



AAM: Intern. J., Vol. 18, Issue 1 (2023) 5

3. Narration of the Model

• In this model, deal with a single queue entry with two heterogeneous servers. Customers arrive
in accordance with Markovian arrival process with representation (D0, D1) of dimension m. The
matrix D0 represents no arrival and D1 represents arrival.
• The service offered to the customers in the basis of first come-first served. The duration of normal

and optional services of both servers which follows PH-distribution with the notations (α1, T1),
(α2, T2), (β1, S1) and (β2, S2) of order n1, n2, n3 and n4, respectively, where T 0

1 + T1e = 0,
T 0
2 + T2e = 0 and S0

1 + S1e = 0, S0
2 + S2e = 0.

• With the process of service completion of server-1 and server-2, the customer either may exit
the system with the probability p2, or they need second optional service with the probability p1,
where p1 + p2 = 1.
• At the end of the service completion epoch server-1 will closedown the system, if there is no

customer present in the system. After completion of vacation by the server-1, if there are no
customers in the system, then the server goes on another vacation.
• In the time of busy period, the server-2 may affect the failure at any moment. At that time, the

server-2 provides the service continuously to the interrupted customer at a slower rate which also
follows PH distribution with representations (β1, θ1S1) and (β2, θ2S2) where (0 < θ1, θ2 < 1).
Server-2 starts the repair process after completing of service at a slower rate for that interrupted
customer only.
• At the end of repair process, either server-2 is ready to give the service if there are customers

in the system or he is in idle. The repair time of the server-2 also based on PH-distribution with
notation (γ,R) of order s. During the customers arrival, they may balk the system if server-1 is
on vacation/closedown period and server-2 is on working breakdown/under repair process with
the probability b.
• The close down, vacation time of server-1 and breakdown time of server-2 are all based on the

exponential distribution with parameters φ, η and τ , respectively (see Figure 1).

4. Matrix Generation under Quasi Birth and Death(QBD) Process

Let us narrate the few notations of this model which followed by generator matrix of the QBD
process as follows:

Notations:

• ⊗ - Kronecker product of two matrices with various orders.
• ⊕ - Kronecker sum of two matrices with various orders.
• Im - Identity matrix of order m.
• e = e(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s).
• e0 = e(1+s)2m.

• e1 = e(4n3+4n4+2s+n1+n1s+n2+n2s)m.
• e2 = e(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s)m.
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6 G. Ayyappan and G. Archana

Figure 1. Schematic representation of our model

• The fundamental arrival rate λ which is specified as λ = πD1em, π is the invariant probability
vector.
• The rate of normal and optional service of server-1 is indicated as µ1 = [α1(−T−1

1 )et1 ]
−1 and

µ2 = [α2(−T−1
2 )et2 ]

−1.
• The rate of normal and optional service of server-2 is indicated as µ3 = [β1(−S−1

1 )es1 ]
−1 and

µ4 = [β2(−S−1
2 )es2 ]

−1.

• The repair rate for normal/optional service of server-2 as represented by σ = [γ(−R−1)er]
−1.

• N(t) represents the total number of customers in the system at time t.
• Ci(t) stands for server-i’s status at time t, where i=1,2.

C1(t) =


0, server-1 is on vacation.
1, server-1 is busy in normal serivce.
2, server-1 is busy in optional service.
3, server-1 is in closedown.
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C2(t) =



0, server-2 is idle.
1, server-2 is busy in normal Service.
2, server-2 is busy in optional Service.
3, server-2 is busy with normal service during the breakdown.
4, server-2 is busy with optional service during the breakdown.
5, server-2 is in PH repair process.

• Si(t) stands for the service phase of server-i’s, where i = 1, 2.
• K(t) stands for the repair phase of server-2.
• A(t) stands for the arrival phase.

Let
{
N(t), C1(t), C2(t), S1(t), S2(t), K(t), A(t), t ≥ 0

}
be the CTMC with the state space as

follows,

Ω = l(0) ∪ l(1)
∞⋃
i=2

l(i),

where
l(0)={(0, 0, 0, a) : 1 ≤ a ≤ m} ∪ {(0, 0, 5, b, a) : 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(0, 3, 0, a) : 1 ≤ a ≤ m} ∪ {(0, 3, 5, b, a) : 1 ≤ b ≤ s, 1 ≤ a ≤ m},

l(1)={(1, 0, 1, k3, a) : 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(1, 0, 2, k4, a) : 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(1, 0, 3, k3, a) : 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(1, 0, 4, k4, a) : 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(1, 0, 5, b, a) : 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(1, 1, 0, k1, a) : 1 ≤ k1 ≤ n1, 1 ≤ a ≤ m}
∪{(1, 1, 5, k1, b, a) : 1 ≤ k1 ≤ n1, 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(1, 2, 0, k2, a) : 1 ≤ k2 ≤ n2, 1 ≤ a ≤ m}
∪{(1, 2, 5, k2, b, a) : 1 ≤ k2 ≤ n2, 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(1, 3, 1, k3, a) : 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(1, 3, 2, k4, a) : 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(1, 3, 3, k3, a) : 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(1, 3, 4, k3, a) : 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m} ∪ {(1, 3, 5, b, a) : 1 ≤ b ≤ s, 1 ≤ a ≤ m},

and for i ≥ 2,
l(i)={(i, 0, 1, k3, a) : iϵZ+, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 0, 2, k4, a) : iϵZ+, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 0, 3, k3, a) : iϵZ+, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 0, 4, k4, a) : iϵZ+, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 0, 5, b, a) : iϵZ+, 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(i, 1, 1, k1, k3, a) : iϵZ+, 1 ≤ k1 ≤ n1, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
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∪{(i, 1, 2, k1, k4, a) : iϵZ+, 1 ≤ k1 ≤ n1, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 1, 3, k1, k3, a) : iϵZ+, 1 ≤ k1 ≤ n1, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 1, 4, k1, k4, a) : iϵZ+, 1 ≤ k1 ≤ n1, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 1, 5, k1, b, a) : iϵZ+, 1 ≤ k1 ≤ n1, 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(i, 2, 1, k2, k3, a) : iϵZ+, 1 ≤ k2 ≤ n2, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 2, 2, k2, k4, a) : iϵZ+, 1 ≤ k2 ≤ n2, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 2, 3, k2, k3, a) : iϵZ+, 1 ≤ k2 ≤ n2, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 2, 4, k2, k4, a) : iϵZ+, 1 ≤ k2 ≤ n2, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 2, 5, k2, b, a) : iϵZ+, 1 ≤ k2 ≤ n2, 1 ≤ b ≤ s, 1 ≤ a ≤ m}
∪{(i, 3, 1, k3, a) : iϵZ+, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 3, 2, k4, a) : iϵZ+, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 3, 3, k3, a) : iϵZ+, 1 ≤ k3 ≤ n3, 1 ≤ a ≤ m}
∪{(i, 3, 4, k4, a) : iϵZ+, 1 ≤ k4 ≤ n4, 1 ≤ a ≤ m}
∪{(i, 3, 5, b, a) : iϵZ+, 1 ≤ b ≤ s, 1 ≤ a ≤ m}.

4.1. The Infinitesimal Matrix Generation

The quasi birth and death process has the generating matrix Q and is as follows:

Q =



B00 B01 0 0 0 0 0 0 . . .
B10 B11 B12 0 0 0 0 0 . . .
0 B21 A1 A0 0 0 0 0 . . .
0 0 A2 A1 A0 0 0 0 . . .
0 0 0 A2 A1 A0 0 0 . . .
... ... ... . . . . . . . . . . . . . . . . . .


,

where

B00 =

[
B00

11 0
B00

21 B
00
22

]
; B01 =

[
B01

11 0 0 0
0 0 0 B01

24

]
; B10 =


B10

11 0
0 B10

22

0 B10
32

0 B10
42

 ;

B00
11 =

[
D0 0

R0 ⊗ Im (D0 + bD1)⊕R

]
; B00

21 =

[
φIm 0
0 φIm

]
;

B00
22 =

[
D0 + φIm 0
R0 ⊗ Im (D0 + bD1)⊕R− ϕImb

]
; B01

11 =

[
β1 ⊗D1 0 0 0 0

0 0 0 0 D1(1− b)⊗ Is

]
;

B01
24 =

[
β1 ⊗D1 0 0 0 0

0 0 0 0 D1(1− b)⊗ Is

]
; B10

11 =


p2S

0
1 ⊗ Im 0

S0
2 ⊗ Im 0
0 γ ⊗ θ1S0

1 ⊗ Im
0 γ ⊗ θ2S0

2 ⊗ Im
0 0

 ;

8
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B10
22 =

[
p2T

0
1 ⊗ Im 0
0 In1 ⊗ p2T 0

1 ⊗ Im

]
; B10

32 =

[
T 0
2 ⊗ Im 0
0 In2 ⊗ p2T 0

2 ⊗ Im

]
;

B10
42 =


p2S

0
1 ⊗ Im 0

S0
2 ⊗ Im 0
0 γ ⊗ θ1S0

1 ⊗ Im
0 γ ⊗ θ2S0

2 ⊗ Im
0 0

 ; B11 =


B11

11 B
11
12 0 0

0 B11
22 B

11
23 0

0 0 B11
33 0

B11
41 0 0 B11

44

 ; B12 =


B12

11 0 0 0
0 B12

22 0 0
0 0 B12

33 0
0 0 0 B12

44

 ;

B21 =


B21

11 0 0 0
0 B21

22 0 B21
24

0 B21
32 B

21
33 B

21
34

0 0 0 B21
44

 ; B11
11 =


B111 B112 B113 0 0
0 B114 0 B115 0
0 0 B116 0 0
0 0 0 B117 0

B118 0 0 0 B119

 ;

where B111 = S1 ⊕D0 − τIn3m, B112 = β2 ⊗ p1S0
1 ⊗ Im, B113 = τIn3m,

B114 = S2⊕D0−τIn4m, B115 = τ⊗In3
, B116 = θ1S1⊕(D0+bD1), B117 = θ2S2⊕(D0+bD1),

and B118 = β1 ⊗R0 ⊗ Im, B119 = R⊕ (D0 + bD1)− ηIsm.

B11
12 =


0 0
0 0
0 0
0 0
0 α1 ⊗ ηIsm

 ; B11
22 =

[
T1 ⊕D0 0
R0 ⊗ In1m [(T1 +R)⊕D0]⊗ In1

]
;

B11
23 =

[
α2 ⊗ p1T 0

1 ⊗ In1m 0
0 α2 ⊗ p1T 0

1 ⊗ In1m

]
; B11

33 =

[
T2 ⊗D0 0
R0 ⊗ In2m T2 ⊕R⊕D0

]
;

B11
41 =


φIn3m 0 0 0 0

0 φIn4m 0 0 0
0 0 φIn3m 0 0
0 0 0 φIn4m 0
0 0 0 0 φIsm

 ; B11
44 =


B441 B442 B443 0 0
0 B444 0 B445 0
0 0 B446 0 0
0 0 0 B447 0

B448 0 0 0 B449

 ;

where B441 = S1 ⊕D0 − (φ+ τ)In3m, B442 = β2 ⊗ p1S0
1 ⊗ Im, B443 = τIn3m,

B444 = S2 ⊕D0 − (φ+ τ)In4m, B445 = τIn4m, B446 = (θ1S1 ⊕D0 + bD1)− φIn3m,

B447 = (θ2S2 ⊕D0 + bD1)− φIn4m, B448 = α1 ⊗R0 ⊗ Im, B449 = R⊕ (D0 + bD1)− φIsm.
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B12
11 =


D1 ⊗ In3

0 0 0 0
0 D1 ⊗ In4 0 0 0
0 0 (1− b)D1 ⊗ In3

0 0
0 0 0 (1− b)D1 ⊗ In4

0
0 0 0 0 D1 ⊗ Is

 ;

B12
22 =

[
β1 ⊗D1 ⊗ In1

0 0 0 0
0 0 0 0 D1 ⊗ In1s

]
; B12

33 =

[
β1 ⊗D1 ⊗ In2

0 0 0 0
0 0 0 0 D1 ⊗ In2s

]
;

B12
44 =


D1 ⊗ In3

0 0 0 0
0 D1 ⊗ In4

0 0 0
0 0 D1(1− b)⊗ In3

0 0
0 0 0 D1(1− b)⊗ In4 0
0 0 0 0 D1(1− b)⊗ Is

 ;

B21
11 =


β1 ⊗ p2S0

1 ⊗ Im 0 0 0 0
β1 ⊗ S0

2 ⊗ Im 0 0 0 0
0 0 0 0 β1 ⊗ θ1S0

1 ⊗ Im
0 0 0 0 β1 ⊗ θ2S0

2 ⊗ Im
0 0 0 0 0

 ;

B21
22 =


p2(T

0
1 + S0

1)⊗ In3m 0
In4
⊗ S0

2 ⊗ Im 0
0 γ ⊗ θ1S0

1 ⊗ In3m

0 γ ⊗ θ2S0
2 ⊗ In4m

0 0

 ;

B21
24 =


0 0 0 0 0
0 In1

⊗ p2T 0
1 ⊗ Im 0 0 0

0 0 In1
⊗ p2T 0

1 ⊗ Im 0 0
0 0 0 In1

⊗ p2T 0
1 ⊗ Im 0

0 0 0 0 In1
⊗ p2T 0

1 ⊗ Im

 ;

B21
32 =


0 0
0 0
0 0
0 0
0 α1 ⊗ T 0

2 ⊗ In2m

 ; B21
33 =


In3
⊗ p2S0

1 ⊗ In 0
e⊗ γ ⊗ S0

2 ⊗ Im 0
0 γ ⊗ θ1S0

1 ⊗ In3m

0 γ ⊗ θ2S0
2 ⊗ In4m

0 0

 ;

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 [], Iss. 1, Art. 1

https://digitalcommons.pvamu.edu/aam/vol18/iss1/1



AAM: Intern. J., Vol. 18, Issue 1 (2023) 11

B21
34 =


In2
⊗ T 0

2 ⊗ Im 0 0 0 0
0 In2

⊗ T 0
2 ⊗ Im 0 0 0

0 0In2
⊗ T 0

2 ⊗ Im 0 0
0 0 0 In2

⊗ T 0
2 ⊗ Im 0

0 0 0 0 0

 ;

B21
44 =


β1 ⊗ p2S0

1 ⊗ Im 0 0 0 0
β1 ⊗ S0

2 ⊗ Im 0 0 0 0
0 0 0 0 γ ⊗ θS0

1 ⊗ Im
0 0 0 0 γ ⊗ θS0

2 ⊗ Im
0 0 0 0 0

 ; A1 =


A1

11 A
1
12 0 0

0 A1
22 A

1
23 0

0 0 A1
33 0

A1
41 0 0 A1

44

 ;

A0 =


A0

11 0 0 0
0 A0

22 0 0
0 0 A0

33 0
0 0 0 A0

44

 ; A2 =


A2

11 0 0 0
0 A2

22 0 0
0 A2

32 A
2
33 0

0 0 0 A2
44

 ; A1
11 =


A111 A112 A113 0 0
0 A114 0 A115 0
0 0 A116 0 0
0 0 0 A117 0

A118 0 0 0 A119

 ;

where A111 = (S1 ⊕D0)− (τ + η)In3m, A112 = β2 ⊗ p1S0
1 ⊗ Im, A113 = τIn3m,

A114 = (S2 ⊕D0)− (τ + η)In4m, A115 = τIn4m, A116 = (θ1S1 ⊕D0 + λD1)− ηIn3m, and
A117 = (θ2S2 ⊕D0 + λD1)− ηIn4m, A118 = β1 ⊗R0 ⊗ Im, A119 = R⊕ (D0 + bD1)− ηIsm.

A1
12 =


α1 ⊗ ηIn3m 0 0 0 0

0 α1 ⊗ ηIn4m 0 0 0
0 0 α1 ⊗ ηIn3m 0 0
0 0 0 α1 ⊗ ηIn4m 0
0 0 0 0 α1 ⊗ ηIsm

 ;

A1
22 =


A221 A222 A223 0 0
0 A224 0 A225 0
0 0 A226 0 0
0 0 0 A227 0

A228 0 0 0 A229

 ;

where A221 = (T1 ⊕ S1 ⊕D0)− τIn1n3m, A222 = β2 ⊗ p1S0
1 ⊗ In4m, A223 = τIn1n3m,

A224 = (T1 ⊕ S2 ⊕D0)− τIn1n4m, A225 = τIn1n4m, A225 = τIn1n4m, A226 = T1 ⊕ θ1S1 ⊕D0,

and A227 = T1 ⊕ θ2S2 ⊕D0, A228 = β1 ⊗R0 ⊗ In3m, A229 = T1 ⊕R⊕D0.
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A1
23 =
α2 ⊗ p1T 0

1 ⊗ In3m 0 0 0 0
0 α2 ⊗ p1T 0

1 ⊗ In4m 0 0 0
0 0 α2 ⊗ p1T 0

1 ⊗ In3m 0 0
0 0 0 α2 ⊗ p1T 0

1 ⊗ In4m 0
0 0 0 0 α2 ⊗ p1T 0

1 ⊗ Ism.

 ;

A1
33 =


A331 A332 A333 0 0
0 A334 0 A335 0
0 0 A336 0 0
0 0 0 A337 0

A338 0 0 0 A339

 ;

where A331 = (T2 ⊕ S1 ⊕D0)− τIn2n3m, A332 = β2 ⊗ p1S0
1 ⊗ In4m, A333 = τIn2n3m,

A334 = (T2 ⊕ S2 ⊕D0)− τIn2n4m, A335 = τIn2n4m, A336 = T2 ⊕ θ1S1 ⊕D0, and
A337 = T2 ⊕ θ2S2 ⊕D0, A338 = β1 ⊗R0 ⊗ In3m, A339 = T2 ⊕R⊕D0.

A1
41 =


φIn3m 0 0 0 0

0 φIn4m 0 0 0
0 0 φIn3m 0 0
0 0 0 φIn4m 0
0 0 0 0 φIsm

 ; A1
44 =


A441 A442 A443 0 0
0 A444 0 A445 0
0 0 A446 0 0
0 0 0 A447 0

A448 0 0 0 A449

 ;

where A441 = (S1 ⊕D0)− (φ+ τ)In3m, A442 = β2 ⊗ p1S0
1 ⊗ Im, A443 = τIn3m,

A444 = (S2 ⊕D0)− (φ+ τ)In4m, A445 = τIn4m, A446 = (θ1S1 ⊕D0 + bD1)− φIn3m, and
A447 = (θ2S2 ⊕D0 + bD1)− φIn4m, A448 = β1 ⊗R0 ⊗ Im, A449 = R⊕D0 + bD1)− φIsm.

A0
11 =


D1 ⊗ In3

0 0 0 0
0 D1 ⊗ In4

0 0 0
0 0 D1(1− b)⊗ In3

0 0
0 0 0 D1(1− b)⊗ In4

0
0 0 0 0 D1(1− b)⊗ Is

 ;

where A0
11 = A0

44, A0
22 =


D1 ⊗ In1n3

0 0 0 0
0 D1 ⊗ In1n4 0 0 0
0 0 D1 ⊗ In1n3

0 0
0 0 0 D1 ⊗ In1n4

0
0 0 0 0 D1 ⊗ In1s

 ;
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A0
33 =


D1 ⊗ In2n3

0 0 0 0
0 D1 ⊗ In2n4 0 0 0
0 0 D1 ⊗ In2n3

0 0
0 0 0 D1 ⊗ In2n4

0
0 0 0 0 D1 ⊗ In2s

 ;

A2
11 =


β1 ⊗ p1S0

1 ⊗ Im 0 0 0 0
β1 ⊗ S0

2 ⊗ Im 0 0 0 0
0 0 0 0 β1 ⊗ θS0

1 ⊗ Im
0 0 0 0 β1 ⊗ θS0

2 ⊗ Im
0 0 0 0 0

 ; A2
22 =


A221 0 0 0 0
A222 A223 0 0 0
0 0 A224 0 A225

0 0 0 A226 A227

0 0 0 0 A228

 ;

where A221 = p2(T
0
1α1 + S0

1β1)⊗ In1m, A222 = β1 ⊗ S0
2 ⊗ In3m, A223 = α1 ⊗ p2T 0

1 ⊗ In4m,

A224 = α1 ⊗ p2T 0
1 ⊗ In3m, A225 = γ ⊗ θ1S0

1 ⊗ Ism, A226 = α1 ⊗ p2T 0
1 ⊗ In4m, and

A227 = γ ⊗ θ2S0
2 ⊗ Ism, A228 = α1 ⊗ p2T 0

1 ⊗ Ism,

A2
32 =


α1 ⊗ T 0

2 ⊗ In3m 0 0 0 0
0 α1 ⊗ T 0

2 ⊗ In4m 0 0 0
0 0 α1 ⊗ T 0

2 ⊗ In3m 0 0
0 0 0 α1 ⊗ T 0

2 ⊗ In4m 0
0 0 0 0 α1 ⊗ T 0

2 ⊗ Ism

 ;

A2
33 =


β1 ⊗ p2S0

1 ⊗ In3m 0 0 0 0
β1 ⊗ S0

2 ⊗ In3m 0 0 0 0
0 0 0 0 γ ⊗ θ1S0

1 ⊗ Ism
0 0 0 0 γ ⊗ θ2S0

2 ⊗ Ism
0 0 0 0 0

 ;

A2
44 =


β1 ⊗ p2S0

1 ⊗ Im 0 0 0 0
β1 ⊗ S0

2 ⊗ Im 0 0 0 0
0 0 0 0 γ ⊗ θS0

1 ⊗ Im
0 0 0 0 γ ⊗ θS0

2 ⊗ Im
0 0 0 0 0

 .

5. System Analysis

We evaluate this model, beneath the certain conditions, to ensure that the system is stable.

5.1. Analysis of System Stability condition

LetA be the matrix , whereA = A0+A1+A2. The invariant probability vector ς , which is referred
to as a generator matrix, satisfies

ςA = 0, ςe = 1.
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The vector ς , which represents the states which partitioned by
ς = (ς0, ς1, ς2, ς3, ς4, ς5, ς6, ς7, ς8, ς9, ς10, ς11, ς12, ς13, ς14, ς15, ς16, ς17, ς18, ς19)

is evaluated by the aid of the subsequent equation:

ς0[(D1 ⊗ In3
+ ((S1 ⊕D0)− (τ + η)In3m) + (β1 ⊗ p2S0

1 ⊗ Im)]
+ ς1[β1 ⊗ S0

2 ⊗ Im] + ς4[β1 ⊗R0 ⊗ Im] + ς15[φIn3m] = 0,

ς0[β2 ⊗ p1S0
1 ⊗ Im] + ς1[(D1 ⊗ In4

) + (S2 ⊕−(τ + η)In4m)] + ς16[φIn4m] = 0,

ς0[τIn3m] + ς2[(D1(1− b)⊗ In3
) + ((θS1 ⊕D0 + λD1)− ηIn3m)] + ς17[φIn3m] = 0,

ς1[τIn4m] + ς3[(D1(1− b)⊗ In4
) + ((θS2 ⊕D0 + λD1)− ηIn4m)] + ς18[φIn4m] = 0,

ς2[β1 ⊗ θ1S0
1 ⊗ Im] + ς3[β1 ⊗ θ2S0

2 ⊗ Im]
+ ς4[(D1(1− b)⊗ Is) + (R⊕ (D0 + bD1)− ηIsm)] + ς19[φIsm] = 0,

ς0[α1 ⊗ ηIn3m] + ς5[(D1 ⊗ In1n3
) + ((T1 ⊕ S1 ⊕D0)− τIn1n3m) + (p2(T

0
1α1 + S0

1β1)⊗ In1m)]

+ ς6[β1 ⊗ θ2S0
2 ⊗ Imn3

] + ς9[β1 ⊗R0 ⊗ In3m] + ς10[α1 ⊗ T 0
2 ⊗ In3m] = 0,

ς1[α1 ⊗ ηIn4m] + ς5[β2 ⊗ p1S0
1 ⊗ In4m]

+ ς6[(D1 ⊗ In1n4
) + ((T1 ⊕ S2 ⊕D0)− τIn1n4m) + (α1 ⊗ p2T 0

1 ⊗ In4m)]

+ ς11[α1 ⊗ T 0
2 ⊗ In4m] = 0,

ς2[α1 ⊗ ηIn3m] + ς5[τIn1n3m] + ς7[(D1 ⊗ In1n3
) + (T1 ⊕ θ1S1 ⊕D0) + (α1 ⊗ p2T 0

1 ⊗ In3m)]

+ ς12[α1 ⊗ T 0
2 ⊗ In3m] = 0,

ς3[α1 ⊗ ηIn4m] + ς6[τIn1n4m] + ς8[(D1 ⊗ In1n4
) + (T1 ⊕ θ2S2 ⊕D0) + (α1 ⊗ p2T 0

1 ⊗ In4m)]

+ ς13[α1 ⊗ T 0
2 ⊗ In4m] = 0,

ς4[α1 ⊗ ηIsm] + ς7[γ ⊗ θ1S0
1 ⊗ Ism] + ς8[γ ⊗ θS0

2 ⊗ Ism]
+ ς9[(D1 ⊗ In1s) + (T1 ⊕R⊕D0) + (α1 ⊗ p2T 0

1 ⊗ Ism)] + ς14[α1 ⊗ T 0
2 ⊗ Ism] = 0,

ς5[α2 ⊗ p1T 0
1 ⊗ In3m] + ς10[(D1 ⊗ In2n3

) + ((T2 ⊕ S1 ⊕D0)− tauIn2n3m) + (β1 ⊗ p2S0
1 ⊗ In3m]

+ ς11[β1 ⊗ S0
2 ⊗ In3

] + ς14[β1 ⊗R0 ⊗ In3m] = 0,

ς6[α2 ⊗ p1T 0
1 ⊗ In4m] + ς10[β2 ⊗ p1S0

1 ⊗ In4m]

+ ς11[(D1 ⊗ In2n4
) + ((T2 ⊕ S2 ⊕D0)− τIn2n4m)] = 0,

ς7[α2 ⊗ p1T 0
1 ⊗ In3m] + ς10[τIn2n3m] + ς12[(D1 ⊗ In2n3

) + (T2 ⊕ θ1S1 ⊕D0)] = 0,

ς8[α2 ⊗ p1T 0
1 ⊗ In4m] + ς11[τIn2n4m] + ς13[(D1 ⊗ In2n4

) + (T2 ⊕ θ2S2 ⊕D0)] = 0,

ς9[α2 ⊗ p1T 0
1 ⊗ Ism] + ς12[γ ⊗ θ1S0

1 ⊗ Ism] + ς13[γ ⊗ θ2S0
2 ⊗ Ism]

+ ς14[(D1 ⊗ In2s) + (T2 ⊕R⊕D0)] = 0,

ς15[(D1 ⊗ In3
) + ((S1 ⊕D0)− (φ+ τ)In3m) + (β1 ⊗ p2S0

1 ⊗ Im)] + ς16[β1 ⊗ S0
2 ⊗ Im]

+ ς19[β1 ⊗R0 ⊗ Im] = 0,

ς15[β2 ⊗ p1S0
1 ⊗ Im] + ς16[(D1 ⊗ In4

) + ((S2 ⊕D0)− (ϕ+ τ)In4m)] = 0,

ς15[τIn3m] + ς17[(D1(1− b)⊗ In3
) + ((θ1S1 ⊕D0 + bD1)− φIn3m)] = 0,

ς16[τIn4m] + ς18[(D1(1− b)⊗ In4
) + ((θ2S2 ⊕D0 + bD1)− φIn4m)] = 0,

ς17[γ ⊗ θ1S0
1 ⊗ Im] + ς18[γ ⊗ θ2S0

2 ⊗ Im]
+ ς19[(D1(1− b)⊗ Is) + ((R⊕ (D0 + bD1))− φIsm)] = 0,
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subject to

ς0en3m + ς1en4m + ς2en3m + ς3en4m + ς4esm + ς5en1n3m + ς6en1n4m + ς7en1n3m + ς8en1n4m

+ ς9en1sm + ς10en2n3m + ς11en2n4m + ς12en2n3m + ς13en2n4m + ς14en2sm + ς15en3m + ς16en4m

+ ς17en3m + ς18en4m + ς19esm = 1.

The necessary and sufficient condition of a QBD process which satisfy the condition ςA0e < ςA2e

allow that system to stay in stable condition.

Therefore,

[(ς0 + ς15)(D1 ⊗ In3
) + (ς1 + ς16)(D1 ⊗ In4

) + (ς2 + ς17)(D1(1− b)⊗ In3
)

+ (ς3 + ς18)(D1(1− b)⊗ In4
) + (ς4 + ς19)(D1(1− b)⊗ Is) + (ς5 + ς7)(D1 ⊗ In1n3

)

+ (ς6 + ς8)(D1 ⊗ In1n4
) + ς9(D1 ⊗ In1s) + (ς10 + ς12)(D1 ⊗ In2n3

) + (ς11 + ς13)(D1 ⊗ In2n4
)

+ ς14(D1 ⊗ In2s)]

< [(ς0 + ς15)(β1 ⊗ p2S0
1 ⊗ Im) + (ς1 + ς16)(β1 ⊗ S0

2 ⊗ Im) + ς2(β1 ⊗ θ1S0
1 ⊗ Im)

+ ς3(β1 ⊗ θ2S0
2 ⊗ Im) + ς5(p2(T

0
1α1 + S0

1β1)⊗ In1m) + ς6(β1 ⊗ S0
2 ⊗ In3m)

+ (ς10 + ς12)(α1 ⊗ T 0
2 ⊗ In3m) + (ς6 + ς8)(α1 ⊗ p2T 0

1 ⊗ In4m) + (ς11 + ς13)(α1 ⊗ T 0
2 ⊗ In4m)

+ ς7(α1 ⊗ p2T 0
1 ⊗ In3m) + (ς7 + ς12)(γ ⊗ θ1S0

1 ⊗ Ism) + (ς8 + ς13)(γ ⊗ θ2S0
2 ⊗ Ism)

+ ς9(α1 ⊗ p2T 0
1 ⊗ Ism) + ς14(α1 ⊗ T 0

2 ⊗ Ism) + ς10(β1 ⊗ p2S0
1 ⊗ In3m)

+ ς11(β1 ⊗ S0
2 ⊗ In3m) + ς17(γ ⊗ θ1S0

1 ⊗ Im) + ς18(γ ⊗ θ2S0
2 ⊗ Im)].

5.2. Analysis of Invariant Probability Vector

Let X represents the infinitesimal generator matrix Q and which is split by X = (X0, X1, X2, ...).

For X0 is of dimension 2m(1 + s), X1 is of dimension (4n3 + 4n4 + 2s+ n1 + n1s+ n2 + n2s)m
and X ′

is are of dimension (4n3 + 4n4 + 2s + 2n1n3 + 2n1n4 + n1s + 2n2n3 + 2n2n4 + n2s)m,
i ≥ 2. The vector X of Q satisfies

XQ = 0, Xe = 1.

After satisfying the stability criterion, use the below equation to find the invariant probability vector
X ,

Xi+1 = X2R
i−1, i = 2, 3, ...

where R is the solution of the matrix quadratic equation and this matrix R is called rate matrix,

R2A2 +RA1 + A0 = 0.

With the aid of succeeding equation we can find the vectors, namely, X0, X1 and X2,

X0B00 +X1B10 = 0,
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X0B01 +X1B11 +X2B21 = 0,

X1B12 +X2[A1 +RA2] = 0,

subject to normalizing condition
X0e0 +X1e1 +X2[I −R]−1e2 = 1.

Therefore, the rate matrix R can be found with the help of logarithmic reduction algorithm, as
described by Latouche and Ramaswami (1999).

Logarithmic Reduction Algorithm
Step 1: H ← (−A1)

−1A0, L← (−A1)
−1A2, G = L and T = H .

Step 2: U = HL+ LH
M = H2

H ← (I − U)−1M
M ← L2

L← (I − U)−1M
G← G+ TL
T ← TH
Continue Step 1 until ∥e−Ge∥∞ < ϵ

Step 3: R = −A0(A1 + A0G)
−1.

6. Analysis of Active Period

• Under the busy period of MAP/PH1, PH2/2 queuing model, we will understand the epoch of
the time interval starts from a new arrival which find the empty system and ends when the system
becomes empty again at the completion of service.
• A busy cycle which is defined by the initial passage time of the level between 1 and 0 and the time

return to 0 level with minimum one visit to any other level.
• From level i to i − 1, i = 3, 4, ... which is the initial passage time under the consideration of

the Quasi birth and death process. The boundary states, namely, i = 0, 1 and 2 are dealt with
separately.
• For all the levels i, where i = 2, 3, ..., we seen that there are (4n3 +4n4 +2s+2n1n3 +2n1n4 +
n1s+ 2n2n3 + 2n2n4 + n2s)m states.

Notations:

• Let Gj,j′(k, x) represent the conditional probability that the QBD process, starts in the state (i, j)
at time t = 0 and ends up in the state (i, j′) by making meticulously k left jumps and obtaining
both stages at the same period.
• The joint transform matrix is

G̃j,j′(z, s) =
∞∑
k=1

zk
∫ ∞

0

e−sxdGj,j′(k, x); |z| ≤ 1, Re(s) ≥ 0.
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• The matrix G̃(z, s) = G̃j,j′(z, s). (Neuts (1981)
• Except for the boundary states, the matrixG = Gjj′ = G̃(1, 0) concerns the initial passage times.
• At time t = 0, when returning from stage 2 to stage 1, the conditional probability is described in

the first return time and it is denoted as G(2,1)
jj′ (k, x).

• At time t = 0, when returning from stage 1 to stage 0, the conditional probability is described in
the first return time and it is denoted as G(1,0)

jj′ (k, x).
• At time t = 0, when returning to stage 0, the conditional probability is described and it is denoted

as G(0,0)
jj′ (k, x).

• At time t = 0, let S1j be the average initial passage time between the stages i and i − 1 and the
process in the state (i, j).
• At time t = 0, let S2j be the average number of customers who received service during the first

passage process between levels i and i− 1, which begins in the state (i, j).
• S̃1, S̃2 be the column vectors along with S1j and S2j as their entries, respectively.
• The average first return time between stage 2 and stage 1 is represented by S̃(2,1)

1 .
• In the first return period from stage 2 to the stage 1, the expected number of services completed

is represented by S̃(2,1)
2 .

• The average first return time between stage 1 and stage 0 is represented by S̃(1,0)
1 .

• In the first return period from stage 1 to stage 0, the expected number of services completed is
represented by S̃(1,0)

2 .
• The average first return time to stage 0 is represented by S̃(0,0)

1 .
• In the first return period to stage 0, the expected number of services completed is represented by
S̃
(0,0)
2 .

We evaluate G̃(z, s) matrix which satisfies the equation

G̃(z, s) = z(sI − A1)
−1A2 + (sI − A1)

−1A0G̃
2(z, s).

Once the rate matrix R found, we can evaluate G matrix by using logarithmic reduction algorithm
method which is given by Latouche and Ramaswami (1999)

G = −(A1 +RA2)
−1A2.

In the boundary states, namely 2, 1 and 0, it is represented by the equations G̃(2,1)(z, s), G̃(1,0)(z, s)
and G̃(0,0)(z, s).

G̃(2,1)(z, s) = z(sI − A1)
−1B21 + (sI − A1)

−1A0G̃(z, s)G̃
(2,1)(z, s),

G̃(1,0)(z, s) = z(sI −B11)
−1B10 + (sI −B11)

−1B12G̃
(2,1)(z, s)G̃(1,0)(z, s),

G̃(0,0)(z, s) = (sI −B00)
−1B01G̃

(1,0)(z, s).

since G, G̃2,1(1, 0), G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are all stochastic matrices.

The instants can be calculated as follows:

S̃1 = −
∂G̃(z, s)

∂s

∣∣
s=0,z=1

e = −[A0(G+ I) + A1]
−1e,
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S̃2 =
∂G̃(z, s)

∂z

∣∣
s=0,z=1

e = −[A0(G+ I) + A1]
−1]A2e,

S̃
(2,1)
1 = −∂G̃

(2,1)(z, s)

∂s

∣∣
s=0,z=1

e = −[A1 + A0G]
−1[e+ A0S̃1],

S̃
(2,1)
2 =

∂G̃(2,1)(z, s)

∂z

∣∣
s=0,z=1

e = −[A1 + A0G]
−1[B21e+ A0S̃2],

S̃
(1,0)
1 = −∂G̃

(1,0)(z, s)

∂s

∣∣
s=0,z=1

= −[B11 +B12G̃
(2,1)(1, 0)]−1[e+B12S̃

(2,1)
1 ],

S̃
(1,0)
2 =

∂G̃(1,0)(z, s)

∂z

∣∣
s=0,z=1

e = −[B12G̃
(2,1)(1, 0) +B11]

−1[B12S̃
(2,1)
2 +B10e],

S̃
(0,0)
1 = −∂G̃

(0,0)(z, s)

∂s

∣∣
s=0,z=1

e = −B−1
00 [B01S̃

(1,0)
1 + e],

S̃
(0,0)
2 =

∂G̃(0,0)(z, s)

∂z

∣∣
s=0,z=1

e = −B−1
00 [B01S̃

(1,0)
2 ].

7. System Performance Measures

• Probability of server-1 is busy with normal service:
PBNS1 = X1(e1(6) + e1(7)) +X2(I −R)−1(e2(6) + e2(7) + e2(8) + e2(9) + e2(10)).

• Probability of server-1 is with in optional service:
PBOS1 = X1(e1(8) + e1(9)) +X2(I −R)−1(e2(11) + e2(12) + e2(13) + e2(14) + e2(15)).

• Probability of server-2 is busy with normal service:
PBNS2 = X1(e1(1) + e1(10)) +X2(I −R)−1(e2(1) + e2(6) + e2(11) + e2(16)).

• Probability of server-2 is busy with optional service:
PBOS2 = X1(e1(2) + e1(11)) +X2(I −R)−1(e2(2) + e2(7) + e2(12) + e2(17)).

• Probability of server-1 is in vacation:
PV 1 =X0(e0(1) + e0(2)) +X1(e1(6) + e1(7)) +X2(I −R)−1(e2(6) + e2(7)

+ e2(8) + e2(9) + e2(10)).

• Probability of server-1 is in closedown:
PCD1 = X0(e0(3) + e0(4)) +X1(e1(10) + e1(11) + e1(12) + e1(13) + e1(14))

+X2(I −R)−1(e2(16) + e2(17) + e2(18) + e2(19) + e2(20)).

• Probability of server-2 to be idle:
PIdle2 = X0(e0(1) + e0(3)) +X1(e1(6) + e1(8)).
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• Probability of server-2 is busy in working breakdown with normal service:

PWBNS2 = X1(e1(3) + e1(12)) +X2(I −R)−1(e2(8) + e2(7) + e2(13) + e2(18)).

• Probability of server-2 is busy in working breakdown with optional service:

PWBOS2 = X1(e1(4) + e1(13)) +X2(I −R)−1(e2(4) + e2(9) + e2(14) + e2(19)).

• Probability of server-2 is under repair state:

PR2 =X0(e0(2) + e0(4)) +X1(e1(5) + e1(7) + e1(9) + e1(14))

+X2(I −R)−1(e2(5) + e2(10) + e2(15) + e2(20)).

• Expected size of system

ESys =
∞∑
z=1

zxze = X1e1 +X2(2(I −R)−1 +R(I −R)−2)e2.

8. Analysis of Cost Model

In this section, we introduce a cost function TAC (fixed cost) with the following assumption:

• TAC - Total cost per unit time.

• CH - Holding cost of each customer in the system.

• CBNS1 - Unit time cost of service that server-1 is busy with normal service.

• CBOS1 - Unit time cost of service that server-1 is busy with optional service.

• CBNS2 - Unit time cost of service that server-2 is busy with normal service.

• CBOS2 - Unit time cost of service when server-2 is busy with optional service.

• CIdle2 - Unit time cost that occurred server-2 is in idle.

• CWBNS2 - Unit time cost that the server-2 is busy during working breakdown in normal service.

• CWBOS2 - Unit time cost that the server-2 is busy during working breakdown in optional service.

• CCD1 - Unit time cost that the server-1 is in close down.
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20 G. Ayyappan and G. Archana

• CV 1 - Unit time cost that the server-1 is on vacation.

• CR2 - Unit time cost that the server-2 is under PH repair due to server caused by breakdown.

• C1 - Cost obtained by the server-1 for providing normal service.

• C2 - Cost obtained by the server-1 for providing optional service.

• C3 - Cost obtained by the server-2 for providing normal service.

• C4 - Cost obtained by the server-2 for providing optional service.

• C5 - Cost obtained by the server-2 is busy with working breakdown in normal service.

• C6 - Cost obtained by the server-2 is busy with working breakdown in optional service.

• C7 - Cost obtained in carrying out breakdown process by server-2.

• C8 - Cost obtained in carrying out the closedown process by server-1.

• C9 - Cost obtained by the server carrying out the repair process.

The total average cost per unit time is given by

TAC = CHESY S + CBNS1PBNS1 + CBOS1PBOS1 + CBNS2PBNS2 + CBOS2PBOS2

+ CIdle2PIdle2 + CWBNS2PWBNS2 + CWBOS2PWBOS2 + CCD1PCD1 + CV 1PV 1

+ CR2PR2 + µ1C1 + µ2C2 + µ3C3 + µ4C4 + θµ3C5 + θµ4C6 + τC7 + ϕC8 + σC9.

9. Investigation of Waiting Time Distribution

We explore the waiting time distribution is described as the customers enters into the empty system.
Let W(t) be the waiting time distribution function, which takes into account new customers joining
the queue. If the server is idle when a customer arrives, they will get service immediately(absorption
time); otherwise, if the server is busy or on vacation, they will have to wait in a queue to receive
service from the server. While the busy time, repair time, close down time or in vacation time of
server, the customers expect the service from server after waiting some amount of time in the queue.

In a CTMC, with the state space

Ω̃ = {∗̄} ∪ {0̄, 1̄, 2̄, 3̄, ...},
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provides the absorption time where

0̄ = {(0, j1, 5, b) : j1 = 0, 3, 1 ≤ b ≤ s},

1̄ = {(1, 0, j2, k3) : j2 = 1, 3, 1 ≤ k3 ≤ n3} ∪ {(1, 0, j2, k4) : j2 = 2, 4, 1 ≤ k4 ≤ n4}
∪ {(1, 0, 5, b) : 1 ≤ b ≤ s} ∪ {(1, 1, 5, k1, b) : 1 ≤ k1 ≤ n1, 1 ≤ b ≤ s}
∪ {(1, 2, 5, k2, b) : 1 ≤ k2 ≤ n2, 1 ≤ b ≤ s} ∪ {(1, 3, j2, k3) : j2 = 1, 3, 1 ≤ k3 ≤ n3}
∪ {(1, 3, j2, k4) : j2 = 2, 4, 1 ≤ k4 ≤ n4} ∪ {(1, 3, 5, b) : 1 ≤ b ≤ s},

and for ī ≥ 2,

ī = {(i, 0, j2, k3) : iϵZ+, j2 = 1, 3, 1 ≤ k3 ≤ n3}
∪ {(i, 0, j2, k4) : iϵZ+, j2 = 2, 4, 1 ≤ k4 ≤ n4}
∪ {(i, 0, 5, b) : iϵZ+, 1 ≤ b ≤ s}
∪ {(i, 0, j2, k3) : iϵZ+, j2 = 1, 3, 1 ≤ k3 ≤ n3}
∪ {(i, 1, j2, k1, k3) : iϵZ+, j2 = 1, 3, 1 ≤ k1 ≤ n1, 1 ≤ k3 ≤ n3}
∪ {(i, 1, j2, k1, k4) : iϵZ+, j2 = 2, 4, 1 ≤ k1 ≤ n1, 1 ≤ k4 ≤ n4}
∪ {(i, 1, 5, k1, b) : iϵZ+, 1 ≤ k1,≤ n1, 1 ≤ k3 ≤ n3}
∪ {(i, 2, j2, k2, k3) : iϵZ+, j2 = 1, 3, 1 ≤ k2 ≤ n2, 1 ≤ k3 ≤ n3}
∪ {(i, 2, j2, k2, k4) : iϵZ+, j2 = 2, 4, 1 ≤ k2 ≤ n2, 1 ≤ k4 ≤ n4}
∪ {(i, 2, 5, k2, b) : iϵZ+, 1 ≤ k2 ≤ n2, , 1 ≤ b ≤ s}
∪ {(i, 3, j2, k3) : iϵZ+, j2 = 1, 3, 1 ≤ k3 ≤ n3}
∪ {(i, 3, j2, k4) : iϵZ+, j2 = 2, 4, 1 ≤ k4 ≤ n4}
∪ {(i, 3, 5, b) : iϵZ+, 1 ≤ b ≤ s}.

Let (∗) represent the state space of an absorbing continuous time Markov chain and the arriv-
ing tagged customers will start to take the service before waiting in the queue.

The state space (∗) obtained from the states which have at least one idle server at the time of arrival
is as follows:

∗̄ = {(0, j1, 0) : j1 = 0, 3} ∪ {(1, 1, 0, k1) : 1 ≤ k1 ≤ n1} ∪ {(1, 2, 0, k2) : 1 ≤ k2 ≤ n2}.

Let Q̃ be the transition matrix of the absorbing Markov chain as follows:

Q̃ =



0 0 0 0 0 0 . . .
M0 P0 0 0 0 0 . . .

M1 P10 P1 0 0 0 . . .
M2 0 P21 P 0 0 . . .

0 0 0 P2 P 0 . . .
0 0 0 0 P2 P . . .
... ... ... . . . . . . . . . . . .


.

The Q̃ entries are as follows:
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M0 =

[
R0

R0

]
; P0 =

[
R 0
φIs R− φIs

]
;M1 =



p2S
0
1

S0
2

0
0
0

R0 ⊗ en1

R0 ⊗ en2

p2S
0
1

S0
2

0
0
0



; P10 =



0 0
0 0

γ ⊗ θ1S0
1 0

γ ⊗ θ2S0
2 0

0 0
0 In1

⊗ p2T 0
1

0 In2
⊗ T 0

2

0 0
0 0
0 γ ⊗ θ1S0

1

0 γ ⊗ θ2S0
2

0 0



;

P1 =


P 1
11 P

1
12 0 0

0 P 1
22 P

1
23 0

0 0 P 1
33 0

P 1
41 0 0 P 1

44

 ; where P 1
22 = T1 ⊕R,P 1

23 = α2 ⊗ p1T 0
1 ⊗ In1

, P 1
33 = T2 ⊕R.

P 1
11 =


S1 − τIn3

β2 ⊗ p1S0
1 τIn3

0 0
0 S2 − τIn4

0τIn3
0

0 0 θ1S1 0 0
0 0 0 θ2S2 0

β1 ⊗R0 0 0 0 R− ηIs

 ; P 1
12 =


0
0
0
0

α1 ⊗ ηIs

 ;

P 1
41 = diag[pij], where p11 = p33 = ϕIn3

, p22 = p44 = φIn4
, p55 = φIs.

M2 = [mi1], of order (20× 1) where m61 = q(T 0
1 + S0

1)⊗ en3
, m71 = en4

⊗ S0
2 ,

m111 = en3
⊗ p2S0

1 , m121 = en4
⊗ S0

2 and the remaining elements are zero.

P21 =


P 21
11 0 0 0
0 P 21

22 0 P 21
24

0 P 21
32 P

21
33 P

21
34

0 0 0 P 21
44

 ; P 21
11 =


β1 ⊗ p2S0

1 0 0 0 0
β1 ⊗ S0

2 0 0 0 0
0 0 0 0γ ⊗ θ1S0

1

0 0 0 0γ ⊗ θ2S0
2

0 0 0 0 0

 ; P 21
22 =


0
0

γ ⊗ θ1S0
1 ⊗ In3

γ ⊗ θ2S0
2 ⊗ In4

0

 ;

P 21
24 =


0 0 0 0 0
0 In4

⊗ p2T 0
1 0 0 0

0 0 In3
⊗ p2T 0

1 0 0
0 0 0 In4

⊗ p2T 0
1 0

0 0 0 0 Is ⊗ p2T 0
1

 ;
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P 21
32 =


0
0
0
0

α1 ⊗ T 0
2 ⊗ In2

 ; P 21
34 =


In3
⊗ T 0

2 0 0 0 0
0 In4

⊗ T 0
2 0 0 0

0 0 In3
⊗ T 0

2 0 0
0 0 0 In4

⊗ T 0
2 0

0 0 0 0 0

 ;

P 21
11 = P 21

44 , P
21
22 = P 21

33 , P =


P11 P12 0 0
0 P22 P23 0
0 0 P33 0
P41 0 0 P44

 ;

P11 =


S1 − (τ + η)In3

β2 ⊗ p1S0
1 τIn3

0 0
0 S2 − (τ + η)In4

0 τIn4
0

0 0 θ1S1 − ηIn3
0 0

0 0 0 θ2S2 − ηIn4
0

β1 ⊗R0 0 0 0 R− ηIs

 ;

P12 =


α1 ⊗ ηIn3

0 0 0 0
0 α1 ⊗ ηIn4

0 0 0
0 0 α1 ⊗ ηIn3

0 0
0 0 0 α1 ⊗ ηIn4

0
0 0 0 0 α1 ⊗ ηIsm

 ;

P22 =


(T1 + S1)− τIn1n3

β2 ⊗ p1S0
1 ⊗ In4

τIn1n3
0 0

0 (T1 + S2)− τIn1n4
0 τIn1n4

0
0 0 T1 + θ1S1 0 0
0 0 0 T1 + θ2S2 0

β1 ⊗R0 ⊗ In3
0 0 0 T1 +R

 ;

P23 =


α2 ⊗ p1T 0

1 ⊗ In3
0 0 0 0

0 α2 ⊗ p1T 0
1 ⊗ In4

0 0 0
0 0 α2 ⊗ p1T 0

1 ⊗ In3
0 0

0 0 0 α2 ⊗ p1T 0
1 ⊗ In4

0
0 0 0 0 α2 ⊗ p1T 0

1 ⊗ Is

 ;

P33 =


(T2 + S1)− τIn2n3

β2 ⊗ p1S0
1 ⊗ In4

τIn2n3
0 0

0 (T2 + S2)− τIn2n4
0 τIn2n4

0
0 0 T2 + θ1S1 0 0
0 0 0 T2 + θ2S2 0

β1 ⊗R0 ⊗ In3
0 0 0 T2 +R

 ;
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P41 =


φIn3

0 0 0 0
0 φIn4

0 0 0
0 0 φIn3

0 0
0 0 0 φIn4

0
0 0 0 0 φIs

 ;

P44 =


S1 − (φ+ τ)In3

β2 ⊗ p1S0
1 τIn3

0 0
0 S2 − (φ+ τ)In4

0 τIn4
0

0 0 θ1S1 − φIn3
0 0

0 0 0 θ2S2 − φIn4
0

β1 ⊗R0 0 0 0 R− φIs

 ;

P2 =


P 2
11 0 0 0
0 P 2

22 0 0
0 P 2

32 P
2
33 0

0 0 0 P 2
44

 ; P 2
11 =


β1 ⊗ p2S0

1 0 0 0 0
β1 ⊗ S0

2 0 0 0 0
0 0 0 0 γ ⊗ θ1S0

1

0 0 0 0 γ ⊗ θ2S0
2

0 0 0 0 0

 ;

P 2
22 =


p2(T

0
1α + S0

1β)⊗ In3
0 0 0 0

β1 ⊗ S0
2 ⊗ In4

α1 ⊗ p2T 0
1 ⊗ In4

0 0 0
0 0 α1 ⊗ p2T 0

1 ⊗ In3
0 γ ⊗ θ1S0

1 ⊗ In3

0 0 0 α1 ⊗ p2T 0
1 ⊗ In4

γ ⊗ θ2S0
2 ⊗ In4

0 0 0 0 α1 ⊗ p2T 0
1 ⊗ Is

 ;

P 2
32 =


α1 ⊗ T 0

2 ⊗ In3
0 0 0 0

0 α1 ⊗ T 0
2 ⊗ In4

0 0 0
0 0 α1 ⊗ T 0

2 ⊗ In3
0 0

0 0 0 α1 ⊗ T 0
2 ⊗ In4

0
0 0 0 0 α1 ⊗ T 0

2 ⊗ Is

 ;

P 2
33 =


β1 ⊗ p2S0

1 ⊗ In3
0 0 0 0

β1 ⊗ S0
2 ⊗ In3

0 0 0 0
0 0 0 0 γ ⊗ θ1S0

1 ⊗ In3

0 0 0 0 γ ⊗ θ2S0
2 ⊗ In4

0 0 0 0 0

 ; P 2
11 = P 2

44.

Let us define Z(0)=(Z0(0), Z1(0), Z2(0), ...) to the conditional probability distribution for
the system state defined on the arrival of the tagged clients and probability vector of
Z0(0), Z1(0). The vector Z0(0) and Z1(0) may further partitioned as Z0(0)=(Z02, Z04) and
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Z1(0)=(Z11, Z12, Z13, Z14, Z15, Z17, Z19, Z110, Z111, Z112, Z113, Z114). Then Zi(0) as follows

Z0(0) = X0

[
I2s ⊗

D1em
λ

]
,

Z10 = X1

[
I4n3+4n4+2s+n1s+n2s ⊗

D1em
λ

]
,

Zi(0) = Xi

[
I(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s ⊗

D1em
λ

]
, for i ≥ 2

where λ as the basic arrival rate of the MAP .

Define

Z(t) = (Z∗(t), Z0(t), Z1(t), ...),

where

Z0(t) − vector of order (1× 2s),

Z1(t) − vector of order (1× (4n3 + 4n4 + 2s+ n1s+ n2s)),

Zi(t), i ≥ 2 − vector of order (1× (4n3 + 4n4 + 2s+ 2n1n3 + 2n1n4 + n1s+ 2n2n3 + 2n2n4 + n2s)).

The entries of Zi(t) indicates the probabilities of the continuous time Markov chain in which
the respective states of level i with the generator matrix Q̃ at epoch t. The probability of tagged
customer is in the absorbing state at epoch t is represented by Z∗(t).

Clearly, W (t)=Z∗(t), for t ≥ 0.

The differential equation Z ′(t)=Z(t)Q̃, where t ≥ 0, becomes

Z ′
∗(t) = Z0(t)M0 + Z1(t)M1 + Z2(t)M2,

Z ′
0(t) = Z0(t)P0 + z1(t)P10,

Z ′
1(t) = Z1(t)P1 + z2(t)P21,

Z ′
i(t) = Zi(t)P + Zi+1(t)P2, for i ≥ 2,

the derivative with respect to t is represented by ′.

Laplace Stieltjes Transform (LST) forW (t) is found with the technique was provided by Neuts and
Lucantoni (1979). In commencing the process at the state i as initial probability vector with Zi(0),
i ≥ 2. Let w(s) as the row vector which specifies the LST of the first passage process to stage 1.

As indicated by Neuts (1979), we get

w(s) =
∞∑
i=2

Zi(0)[(sI − P )−1P2]
i−2. (1)

Let the LST of absorbing time to the state (*) correspond to the process starting at state level
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i = 0, 1, 2 as indicated by ϕ(i, s). As a result in Neuts (1979), we have

ϕ(0, s) = [sI − P0]
−1M0, (2)

ϕ(1, s) = [sI − P1]
−1P10ϕ(0, s) + [sI − P1]

−1M1, (3)
ϕ(2, s) = [sI − P ]−1P21ϕ(1, s) + [sI − P ]−1M2. (4)

Thus, we evaluated the LST of the distribution of its waiting time W̃ (s), provided by

W̃ (s) = Z0(0)ϕ(0, s) + Z1(0)ϕ(1, s) + w(s)ϕ(2, s). (5)

9.1. Expected Waiting Time

The expected waiting time is denoted by

E(W ) = −Z0(0)ϕ
′(0, 0)− Z1(0)ϕ

′(1, 0)− w′(0)e− w(0)ϕ′(2, 0). (6)

On the point that the system has the state levels i = 0, 1, then the mean time to enter into the
absorbing state (∗) is represented by the foremost terms of the following equation.

Besides, if the system has the state level i ≥ 2, the average amount of time to enter into the absorbing
state (∗) is represented by the end two terms of the preceding equation.

On differentiating (2), (3) and (4), we substitute s = 0 and will get

ϕ′(0, 0) = (−1)[−P0]
−2M0, (7)

ϕ′(1, 0) = (−1)[−P1]
−2P10ϕ(0, 0) + [−P1]

−1P10ϕ
′(0, 0)− [−P1]

−2M1, (8)
ϕ′(2, 0) = (−1)[−P ]−2P21ϕ(1, 0) + [−P ]−1P21ϕ

′(1, 0)− [−P ]−2M2. (9)

By use the expression (7) and (8) together with the primary condition

Z(0) = (Z0(0), Z1(0), Z2(0), ...),

we can determine the first two terms of (6). From (1), we have

w(0) =
∞∑
i=2

Zi(0)V
i−2, (10)

where V = [−P ]−1P2. Since V indicate a stochastic matrix, we get

w(0)e = 1− Z0(0)e0 − Z1(0)e1. (11)

With the help of (9) and (10) together with the primary condition Z(0) = (Z0(0), Z1(0), Z2(0), ...),
we can compute the final term of (6).

On differentiating (1) with respect to s and substituting s = 0, we get

w′(0) = (−1)
∞∑
i=1

Z2+i(0)
i−1∑
j=0

V j[−P ]−1V i−j. (12)
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Since V is a stochastic in nature, we get

(−1)w′(0)e = (−1)
∞∑
i=1

Z2+i(0)
i−1∑
j=0

V j[−P ]−1e. (13)

The value of (−1)w′(0)e can be evaluated with the help of the method mentioned by Neuts (1979).
Let us take V2, a stochastic matrix which is satisfying two conditions, namely, I − V + V2 is
non-singular and the generalized inverse is of the form I − V . Then, the matrix V2 may be chosen
as V2 = v0e, where v0 is the invariant probability vector of V such that

v0V = v0 and v0e = 1,

in view of the property that

V V2 = V2V = V2.

Therefore, we get,
i−1∑
j=0

V j(I − V + V2) = I − V i + iV2, for i ≥ 1. (14)

Substituting (14) in (13) and carrying out some simplifications, we get

(−1)w′(0)e(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s) =

[
x2[I −R]−1[I(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s) ⊗

D1em
λ

]

− w(0) + x2R[I −R]−2[I(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s) ⊗
D1em
λ

V2
]

× [I − V + V2]
−1[−P ]−1e(4n3+4n4+2s+2n1n3+2n1n4+n1s+2n2n3+2n2n4+n2s)

(15)

Thus, we have formed all the terms of (6). The expected waiting time can be assess easily by using
(6).

10. Numerical Results

From this part, we determine the results of our system by representing numerically and graphically.
The representations ofMAP are distinct with the following variance and correlation structures and
their mean values are 1. The arrival process like ERL − A, EXP − A and HY P − EXP − A
accord with renewal process and their correlation is zero. This values are taken from Chakravarthy
(2011).

Erlang of order 2 (ERL-A):

D0 =

[
−2 2
0 −2

]
; D1 =

[
0 0
2 0

]
;
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Exponential (EXP-A):

D0 = [−1]; D1 = [1] ;

Hyper exponential (HYP-EXP-A):

D0 =

[
−1.90 0

0 −0.19

]
; D1 =

[
1.710 0.190
0.171 0.019

]
.

Let us consider the service and repair process as PH-distributions and these values are incurred
from Chakravarthy (2011) which are as follows:

ERL-S (Erlang of order 2):

α1 = α2 = (1, 0); T1 = T2 =

[
−2 2
0 −2

]
;

ERL-R (Erlang of order 2):

β1 = β2 = (1, 0); S1 = S2 =

[
−2 2
0 −2

]
;

EXP-S (Service in Exponential):

α1 = α2 = (1); T1 = T2 = [−1];

EXP-R (Repair in Exponential):

β1 = β2 = (1); S1 = S2 = [−1];

HYP-EXP-S (Service in Hyper exponential):

α1 = α2 = (0.8, 0.2); T1 = T2 =

[
−2.8 0
0 −0.28

]
;

HYP-EXP-R (Repair in Hyper exponential):

β1 = β2 = (0.8, 0.2); S1 = S2 =

[
−2.8 0
0 −0.28

]
.

Illustrative Example 10.1.

In Tables 1, 2 and 3, we determine the outcome of the normal service rate of server-1 (µ1) on the
expected system size (ES).

Fix µ2 = 44, µ3 = 50, µ4 = 44, θ1 = 0.5, θ2 = 0.4, σ = η = 3, τ = 1, ϕ = 2, p = 0.8, q = 0.2,
b = 0.001.

We observe that from the following Tables 1, 2, and 3:
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• As increasing the normal service rate of server-1 (µ1), ES values are reduced for various combi-
nations of arrival and service times.
• With estimating the values of different service times, the expected system size decreases speedier

in hyper exponential service time while slow in Erlang service time.

Table 1. Normal Service rate (µ1) vs ES - EXP-S

µ1 EXP-A ERL-A HYP-A
50 0.04581451 0.04404593 0.04697277

51.5 0.04581117 0.04404435 0.04696835
52 0.04580789 0.04404280 0.04696402

52.5 0.04580467 0.04404128 0.04695976
53 0.04580150 0.04403979 0.04695558

53.5 0.04579839 0.04403833 0.04695148
54 0.04579533 0.04403689 0.04694745

54.5 0.04579233 0.04403549 0.04694349
55 0.04578938 0.04403410 0.04693960

55.5 0.04578647 0.04403274 0.04693578

Table 2. Normal Service rate (µ1) vs ES - ERL-S

µ1 EXP-A ERL-A HYP-A
50 0.04314870 0.05036041 0.05144265

50.5 0.04314627 0.05035753 0.05143934
51 0.04314389 0.05035470 0.05143609

51.5 0.04314155 0.05035193 0.05143290
52 0.04313925 0.05034920 0.05142978

52.5 0.04313699 0.05034653 0.05142671
53 0.04313476 0.05034391 0.05142370

53.5 0.04313258 0.05034133 0.05142075
54 0.04313043 0.05033880 0.05141785

54.5 0.04312832 0.05033632 0.05141501

Illustrative Example 10.2.

From Figure 2 as well as the figures in Appendices 6 through 13 representing the two dimensional
graphs, we determine the outcome of vacation rate (η) on the probability of busy with normal
service and optional service server-1(PBNS1 and PBOS1).

Fix λ = 1, µ1 = µ3 = 20, µ2 = µ4 = 10, θ1 = 0.5, θ2 = 0.4, σ = 3, τ = 1, ϕ = 2, ψ = 10,
p = 0.8, q = 0.2, b = 0.001.

Observing from Figures 2 and 6 through 13, when lifting the vacation rate η, the PBNS1 and PBOS1

are increased and which is high in case of HY P.EXP − A and slow in ERL − A. Likewise it
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Table 3. Normal Service rate (µ1) vs ES - HYP-EXP-S

µ1 EXP-A ERL-A HYP-A
50 0.06531732 0.02158777 0.06616394

50.5 0.06530943 0.02158677 0.06614837
51 0.06530170 0.02158579 0.06613309

51.5 0.06529415 0.02158486 0.06611809
52 0.06528675 0.02158395 0.06610337

52.5 0.06527951 0.02158308 0.06608890
53 0.06527241 0.02158223 0.06607470

53.5 0.06526546 0.02158142 0.06606074
54 0.06525865 0.02158063 0.06604703

54.5 0.06525198 0.02157987 0.06603356

is high in ERL − S and slow in HY P.EXP − S. We examined the following view point of the
graphs, ES decreases faster in ERL− S rather than EXP − S and HY P.EXP − S.
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Figure 2. Vacation rate (η) vs. PBNS1 and PBOS1 −M/M/2

Illustrative Example 10.3.

In Figure 3 as well as the figures in Appendices 14 through 21 that represents the three dimensional
graphs, we evaluate the outcome of the normal service rate of server-1 (µ1) and the rate of vacation
(η) on the expected system size (ES).

Fix µ2 = 44, µ3 = 50, µ4 = 44, θ1 = 0.5, θ2 = 0.4, σ = 3, τ = 1, ϕ = 2, p = 0.8, q = 0.2,
b = 0.001.

We see from the Figures 3 and 14 through 21, when elevating the vacation rate (η) and normal
service rate of server-1 (µ1) then ES decreases for both arrival and service patterns. It maximizes
quickly in MAP − NC − A and slowly in HY P.EXP − A. Similarly, it quickly reduces in
ERL− S and increases in HY P.EXP − S.
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Figure 3. Normal service rate (µ1) and Vacation rate (η)vs. ES - Hk/Hk/2

Illustrative Example 10.4.

In the Figure 4 as well as the figures in Appendices 22 through 29 that represents the three
dimensional graphs, we determine the outcome of the breakdown rate (τ ) and the rate of vacation
(η) on the total cost of the system (TAC).

Fix λ = 1, µ1 = µ3 = 20, µ2 = µ4 = 10, θ1 = 0.5, θ2 = 0.4, σ = 3, ϕ = 2, p = 0.8,
q = 0.2, b = 0.001, CH = 15, CBNS1 = CBNS2 = 2, CBOS1 = CBOS2 = 1, CIdle2 = 1,
CWBNS2 = CWBOS2 = 1, CCD1 = 1, CV 1 = 1, CR2 = 1, C1 = C2 = C3 = C4 = C5 = C6 =
C7 = C8 = C9 = 1.

We see from the Figures 4 and 22 through 29, when elevating the vacation rate (η) and breakdown
rate (τ ), then the total cost decreases for both arrival and service patterns. It maximizes quickly in
MAP −NC − A and slowly in HY P.EXP − A. Similarly, it quickly reduces in ERL− S and
increases in HY P.EXP − S.

Illustrative Example 10.5.

From the Figure 5 as well as the figures in Appendices 30 through 37 that represents the two
dimensional graphs, we determine the outcome of normal service rate of server-1(µ1) on the
expected waiting time (EW).

Fix λ = 1, µ2 = 10, µ3 = 20, µ4 = 10, θ1 = 0.5, θ2 = 0.4, σ = 3, η = 3, τ = 1, ϕ = 2, p = 0.8,
q = 0.2, b = 0.001.

Observing from the Figures 5 and 30 through 37, when lifting the normal service rate of server-
1(µ1), then EW values are reduces for both arrival and service patterns. With estimating the values
of different service times, the expected waiting time decreases more fast in hyper exponential
service and slow in Erlang service time.
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Figure 4. Breakdown rate(τ ) and Vacation rate(η)vs. TC - Ek/Hk/2
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Figure 5. Normal service rate of server-1(µ1) vs. EW - M/Ek/2

11. Conclusion

In this paper, we have developed the queueing model with working breakdown, vacation, closedown,
optional service and repair. A queue with two server in which arrival occurs MAP and service
times of both server follows to be phase type distribution. By using matrix analytic method, we
found the stationary probability since the queueing systems are Quasi Birth-Death process. The
stability condition for theMAP/PH1, PH2/2 queuing system has analyzed and some performance
measures for queueing system was selected and implemented in numerical illustrations by using
two dimensional and three dimensional graphs. For further work, the model can be investigate with
batch arrival in according to Markovian arrival process and various service rates with N-policy.
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Appendix

The following Figures 6 through 13 belong to Illustrative Example 2:
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Figure 6. Vacation rate (η) vs. PBNS1 and PBOS1 − Ek/M/2
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Figure 7. Vacation rate (η) vs. PBNS1 and PBOS1 −Hk/M/2

3 4 5 6 7 8 9 10 11 12

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

P
B

N
S

1
 a

n
d

 P
B

O
S

1

10
-3 M/Ek/2

P
BNS1

P
BOS1

Figure 8. Vacation rate (η) vs. PBNS1 and PBOS1 −M/Ek/2
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Figure 9. Vacation rate (η) vs. PBNS1 and PBOS1 − Ek/Ek/2
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Figure 10. Vacation rate (η) vs. PBNS1 and PBOS1 −Hk/Ek/2
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Figure 11. Vacation rate (η) vs. PBNS1 and PBOS1 −M/Hk/2
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Figure 12. Vacation rate (η) vs. PBNS1 and PBOS1 − Ek/Hk/2
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Figure 13. Vacation rate (η) vs. PBNS1 and PBOS1 −Hk/Hk/2

The following Figures 14− 21 belong to Illustrative Example 3:
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Figure 14. Normal service rate (µ1) and Vacation rate (η) vs. ES - M/M/2
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Figure 15. Normal service rate (µ1) and Vacation rate (η) vs. ES - Ek/M/2
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Figure 16. Normal service rate (µ1) and Vacation rate (η) vs. ES - Hk/M/2
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Figure 17. Normal service rate (µ1) and Vacation rate (η) vs. ES - M/Ek/2
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Figure 18. Normal service rate (µ1) and Vacation rate (η) vs. ES - Ek/Ek/2
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Figure 19. Normal service rate (µ1) and Vacation rate (η) vs. ES - Hk/Ek/2
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Figure 20. Normal service rate (µ1) and Vacation rate (η) vs. ES - M/Hk/2
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Figure 21. Normal service rate (µ1) and Vacation rate (η)vs. ES - Ek/Hk/2
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The following Figures 22− 29 belong to Illustrative Example 4:

Figure 22. Breakdown rate(τ ) and Vacation rate(η) vs. TC - M/M/2

Figure 23. Breakdown rate(τ ) and Vacation rate(η) vs. TC - Ek/M/2

Figure 24. Breakdown rate(τ ) and Vacation rate(η) vs. TC - Hk/M/2
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Figure 25. Breakdown rate(τ ) and Vacation rate(η) vs. TC - M/Ek/2

Figure 26. Breakdown rate(τ ) and Vacation rate(η) vs. TC - Ek/Ek/2

Figure 27. Breakdown rate(τ ) and Vacation rate(η) vs. TC - Hk/Ek/2
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Figure 28. Breakdown rate(τ ) and Vacation rate(η) vs. TC - M/Hk/2

Figure 29. Breakdown rate(τ ) and Vacation rate(η) vs. TC - Hk/Hk/2

The following Figures 30− 37 belong to Illustrative Example 5:
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Figure 30. Normal service rate of server-1(µ1) vs. EW - M/M/2
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Figure 31. Normal service rate of server-1(µ1) vs. EW - M/Hk/2
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Figure 32. Normal service rate of server-1(µ1) vs. EW - Ek/M/2
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Figure 33. Normal service rate of server-1(µ1) vs. EW - Ek/Ek/2
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Figure 34. Normal service rate of server-1(µ1) vs. EW - Ek/Hk/2
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Figure 35. Normal service rate of server-1(µ1) vs. EW - Hk/M/2
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Figure 36. Normal service rate of server-1(µ1) vs. EW - Hk/Ek/2
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Figure 37. Normal service rate of server-1(µ1) vs. EW - Hk/Hk/2
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