
Prairie View A&M University Prairie View A&M University

Digital Commons @PVAMU Digital Commons @PVAMU

All Theses

5-2023

Enhancing Prediction Reliability Of Deep Learning By Data Enhancing Prediction Reliability Of Deep Learning By Data

Confidence For Recommendation Systems: A Case Study On Confidence For Recommendation Systems: A Case Study On

Named Entity Recognition Named Entity Recognition

Prianka Banik

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-theses

https://digitalcommons.pvamu.edu/
https://digitalcommons.pvamu.edu/pvamu-theses
https://digitalcommons.pvamu.edu/pvamu-theses?utm_source=digitalcommons.pvamu.edu%2Fpvamu-theses%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages

ENHANCING PREDICTION RELIABILITY OF DEEP LEARNING BY DATA

CONFIDENCE FOR RECOMMENDATION SYSTEMS: A CASE STUDY ON

NAMED ENTITY RECOGNITIONA

A Thesis

by

PRIANKA BANIK

Submitted to the Office of Graduate Studies of
Prairie View A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2023

Major Subject: Computer Science

ENHANCING PREDICTION RELIABILITY OF DEEP LEARNING BY DATA
CONFIDENCE FOR RECOMMENDATION SYSTEMS: A CASE STUDY ON

NAMED ENTITY RECOGNITION

A Thesis

by

PRIANKA BANIK

Submitted to the Office of Graduate Studies of
Prairie View A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

 Lin Li Xishuang Dong
 Chair of Committee Co-Chair of Committee

 Lijun Qian Ahmed Ahmed
 Committee Member Committee Member

 Kiranmai Bellam Yonggao Yang
 Committee Member Head of Department

 Pamela H. Obiomon Tyrone Tanner
 Dean, Roy G. Perry College of Engineering Dean, Graduate Studies

May 2023

Major Subject: Computer Science

iii

ABSTRACT

Enhancing Prediction Reliability of Deep Learning by Data Confidence for
Recommendation Systems: A Case Study on Named Entity Recognition

(May 2023)

Prianka Banik, B.S., Bangladesh University of Engineering and Technology
Chair of Advisory Committee: Dr. Lin Li

Co-Chair of Advisory Committee: Dr. Xishuang Dong

Reliability is crucial for industrial recommendation systems. Recent advancement

in deep neural networks has greatly improved the performance of modern

recommendation systems. However, there is a lack of research on estimating how reliable

such recommendation systems are in practical scenarios. Due to the blackbox nature of

the deep learning-based systems, many times additional labor has to be involved to

examine the prediction accuracy manually, which is costly and time-consuming. To

address the problem, we propose a novel approach to estimate the model confidence for a

deep learning-based recommendation system. Our approach utilized data statistics to

improve the traditional model confidence estimation and maintain the model’s high

performance. We further proposed a new evaluation metric to properly compare different

prediction confidence estimation approaches. Experimental results showed that the

external data statistics could effectively improve the prediction reliability by increasing

confidence score, which will lead to significant reduction of the time and labors on the

system’s prediction result examination.

Index Terms — Prediction Reliability, Recommendation Systems, Deep Learning,

Data Confidence, Named Entity Recognition

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Lin Li and my co-supervisor Dr. Xishuang

Dong for their constant support and endless patience in completing my master thesis. I

would not have been able to complete my thesis without their guidance in each step of my

thesis from beginning to the end. I would also like to thank Dr. Lijun Qian for giving me

the valuable opportunity to participate in this challenging but interesting project. His

support and valuable suggestions made my thesis more detailed and solid, which greatly

enhanced my research skills.

I would also like to thank my committee members, Dr. Ahmed Ahmed and Dr.

Kiranmai Bellam for their valuable time and efforts in perfecting my thesis through

suggestions and feedback. Besides, I would like to thank my professors in the Department

of Computer Science of PVAMU who taught me over the past two years. Their knowledge,

caring of students, and devotion to higher education will keep impacting me through my

career pursuit.

Furthermore, I would like to thank Ms. Apoorva Banubakode and Dr. Kumar

Sricharan from Intuit Inc. which sponsored this research project, for their time and

constructive suggestions in my thesis.

Last but not the least, I would like to acknowledge the unconditional love and

support of my parents staying overseas and dedicate this thesis to my parents, my husband,

Shujon Naha, and my beloved son, Eron Naha.

v

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES..vii

LIST OF TABLES .. ix

CHAPTER

1. INTRODUCTION .. 1

 1.1 Research Background and Recommendation Systems 1
 1.2 Challenges ... 3
 1.3 Our Method ... 4
 1.3.1 Model Confidence .. 4
 1.3.2 Data Confidence ... 5
 1.3.3 NER as a Practical Application .. 5
 1.4 Programming Language .. 6
 1.5 Thesis Outline .. 6

2. RELATED WORKS ... 8

 2.1 Feature Extraction of Text Data .. 8
 2.1.1 Word Embedding .. 9
 2.1.2 Character Embedding ... 10
 2.2 Deep Neural Networks .. 11
 2.2.1 CNN .. 12
 2.2.2 Character Embedding CNN Model .. 15
 2.2.3 LSTM .. 16
 2.2.4 BERT .. 18
 2.3 Deep Learning based Recommendation Systems ... 20
 2.4 Confidence Score Estimation of Deep Neural Networks 22
 2.5 Data Confidence .. 23

3. METHODOLOGY ... 24

 3.1 Approaches to Address the Problem .. 24
 3.2 Learning Model Prediction Confidence .. 25

vi

 3.3 Data Confidence .. 26
 3.4 Prediction Reliability ... 27
 3.5 Combining Model Confidence with Data Confidence 27

4. CASE STUDY ON NAMED ENTITY RECOGNITION ... 29

 4.1 Task Definition: NER Recommendation ... 29
 4.2 Model Confidence for NER .. 31
 4.2.1 CNN .. 31
 4.2.2 CNN with Character Embedding .. 32
 4.2.3 LSTM .. 33
 4.2.4 LSTM with Character Embedding ... 34
 4.2.5 BERT .. 35
 4.3 Data Confidence for NER ... 36
 4.4 Combining Data Confidence with Model Confidence for NER Prediction

Reliability Estimation ... 37

5. EXPERIMENTAL RESULT ANALYSIS .. 39

 5.1 Datasets ... 39
 5.1.1 WNUT’17 ... 39
 5.1.2 GMB ... 40
 5.2 Evaluation Metrics .. 40
 5.2.1 Total Entity Coverage(TEC) ... 41
 5.2.2 Confusion Matrix .. 43
 5.3 Coding and Experiment Settings ... 43
 5.4 Result Analysis .. 45
 5.4.1 TEC Performance and Comparison .. 45
 5.4.2 Confusion Matrix Performance and Comparison 48

6. CONCLUSION .. 53

REFERENCES ... 55

CURRICULUM VITA ... 66

vii

LIST OF FIGURES

FIGURE Page

2.1 Word2Vec word embedding visualization. Figure taken from [1]……………. 8

2.2 GloVe word embedding visualization. Figure taken from [2].………………... 9

2.3 Character embedding visualization. Figure taken from [3]……….…………... 11

2.4 2D convolutional neural network. Figure taken from [4]……………………... 12

2.5 Depiction of 2D convolution. Figure taken from [5]………………………….. 12

2.6 Depiction of 2D ReLU activation function. Figure taken from [6]…………… 14

2.7 Depiction of 2D maxpooling operation. Figure taken from [7]………………. 14

2.8 Depiction of the Softmax operation. Figure taken from [8] ...………………... 14

2.9 Character CNN model. Figure taken from [9]………………………………... 15

2.10 LSTM Memory Cell………………………………………………………….. 17

2.11 Transformer model. Figure adapted from [10]………………………………... 18

2.12 Different layers inside Encoder and Decoder. Figure adapted from [10]……... 19

4.1 Flowchart of Named Entity Recognition with confidence estimation………... 29

4.2 Depiction of NER with confidence estimation………………………………... 30

4.3 Our CNN model………………………………………………………………. 32

4.4 CNN with Character Embedding model………………………………………. 33

4.5 LSTM model………………………………………………………………….. 34

4.6 LSTM with Character Embedding model…………………………………….. 35

viii

4.7 BERT model…………………………………………………………………... 36

5.1 Total entity coverage (TEC)…………………………………………………... 42

5.2 Confusion matrix for multi-class classification. Figure taken from [11]……... 43

5.3 Code snippet of the linear interpolation of model and data confidence………. 44

5.4 Confusion matrix of LSTM with character embedding model for the baseline
approach (model confidence only)…………………………………………….

48

5.5 Confusion matrix of LSTM with character embedding model for the
proposed approach (model confidence + data confidence)……………………

49

5.6 Confusion matrix of BERT model for the baseline approach (model
confidence only)……………………………………………………………….

50

5.7 Confusion matrix of BERT model for the proposed approach (model
confidence + data confidence)…………………………………………………

51

ix

LIST OF TABLES

TABLE Page

 5.1 BIO FORMAT OF ENTITY TYPES IN THE WNUT’17 DATASET 40

 5.2 BIO FORMAT OF ENTITY TYPES IN THE GMB DATASET. 40

 5.3 TEC VALUES FOR WNUT17 DATASET WITH ρ = 0.85 AND γ = 0.. 46

 5.4 TEC VALUES FOR GMB DATASET WITH ρ = 0.85 AND γ = 0.2. 47

1

CHAPTER 1

INTRODUCTION

Thanks to the advancement of data science in the past decade, especially deep

neural networks, machine learning has been applied to many real-world applications.

However, a critical understudied aspect about these new machine learning tools is

estimating the learning model’s prediction reliability. When we use a neural network

model for prediction (e.g., classifying specific animals from images), we need to know

how confident the model is about the prediction it has just made (e.g., the image contains

a dog). This is crucial in industry applications since the learning model may face real world

data which is sampled from out of the training distribution. If we have a proper way to

find how reliable the model is, we can either accept the prediction result if the confidence

is high or intervene if the confidence is low. For classification problems, Softmax

probability is traditionally used as the estimate of the confidence or reliability score for

the prediction which is not always reliable (we will discuss Softmax activation function in

Chapter 2). Thus, in this thesis, we aim at estimating the prediction confidence of deep

learning models. In the following sections, we will discuss different aspects of this

research1.

1.1 Research Background and Recommendation Systems

This thesis originated from a research project sponsored by Intuit Inc. which

expects to improve the machine learning models’ prediction reliability for

1 This thesis follows the style of IEEE.

2

recommendation systems on the key entities recognized in electronically scanned financial

documents. The problem Intuit engineers encountered is that when they applied machine

learning models for entity recognition, sometimes prediction score of is high on the

classified entity and sometimes the prediction score is low. It is natural for a machine

learning model due to its mathematical and optimization-based foundation. However, to

ensure the entity recognition quality, extra labors are often required to help examine the

classification results when the prediction score is low. This leads to a significant amount

of extra time and cost. Thus, how to improve the performance or the prediction confidence

of the learning systems becomes the key to the research.

Recommendation systems can be defined as a set of algorithms which can suggest

relevant information based on data gathered from user interactions [12]. Such systems can

now be found everywhere in the industry (e.g., Amazon, Yelp, etc.) and they are playing

important roles in improving customer experiences by providing them with useful and

relevant information [13, 14, 15]. Due to the popularity and wide usage of the Internet,

companies and individual entities generate massive amount of contents and sharing them

with the world. To make most use of these contents, it is crucial to find the most relevant

contents based on user’s preferences. This is why we are seeing recommendation systems

everywhere from social networks to online marketing.

Recommendation systems can be divided into two primary categories, content-

based systems and collaborative filtering based systems [12]. The first category, content-

based recommendations systems [16, 17, 18], focuses on user personal data and finding

relevant items. On the other hand, the collaborative filtering-based systems match other

3

users information to see the preferences of similar customers to find the relevant item for

the target user. Collaborative filtering-based approaches [19, 20, 21] include nearest

neighbor-based approaches, machine learning based classifications systems, and data

mining techniques etc. Some recent approaches have also combined the two approaches

to utilize the best of both categories. Also, due to the recent success of deep neural

networks, they are now widely used in recommendation systems [22, 23, 24, 25, 26, 27].

Deep neural networks can understand the input data domain all by themselves by

extracting rich and semantically meaningful feature representations without any need of

hand-crafted features. Also, they tend to work better when a lot of training data is available,

which makes them extremely useful for developing recommendation systems [12].

Although many works have been done to improve the effectiveness of

recommendation systems, the study of estimating the systems’ reliability is still

insufficient [28, 29, 30], making this research timely, needed, and important.

1.2 Challenges

A major problem of the existing deep learning-based recommendation systems is

that they tend to be overconfident in the predictions. This is due to several components in

the models and the training pipelines such as Softmax and Batch Normalization. For such

classification systems, Softmax is often used as the last activation layer which provides a

probability score for the winning class. It is a common practice to use this probability score

as a confidence estimation of how reliable the model is about its predictions. However,

Softmax sometimes produces high confidence values when the prediction is incorrect or

when the data is out of distribution. Similarly, it often produces low confidence values

4

when the prediction is correct. Due to these issues, the Softmax probability value of the

predicted class cannot be considered as a reliable estimation of the model’s actual

confidence. Understanding how reliable a model predicts is critical in an industrial setting.

While developing an automation system, if we can understand when a model is not

confident about its predictions, we can intervene and inspect that particular occurrence.

This will make the system more reliable and practical for industrial use.

1.3 Method

In this thesis, we investigate the problem of estimating model’s prediction

confidence for deep learning-based classifications systems and propose a novel approach

to solve this problem. We started with the traditional approach of using Softmax

predictions from a deep neural network based classifier as the confidence estimation and

then augmented it by incorporating a novel data statistics term which increased the

confidence score when the prediction was correct and similarly lowered the confidence

score when the prediction was incorrect.

 1.3.1 Model Confidence

Following the common approach of regular deep learning-based classification

systems, we also used a Softmax activation function at the end of the model. The Softmax

activation function takes an input vector of logistic scores generated by the model which

has the same dimension as the number of classes in the dataset. Then the Softmax function

generates a probability score for each of the classes by normalizing the exponential of the

input values. We considered the class with highest Softmax score as the predicted class

and the corresponding Softmax value as the model confidence estimation.

5

 1.3.2 Data Confidence

As we have discussed above, the traditional way of estimating model confidence

using Softmax scores may produce unreliable confidence scores. Thus, we introduced an

extra term which we call the data confidence and incorporate it with the model confidence

to predict the final prediction confidence score. The data confidence term is calculated

based on the data statistics of individual items in the dataset. We designed the data

confidence term in such a way so that for highly frequent items, we got a lower data

confidence score and for less frequent items, we got higher data confidence scores. We

used a linear interpolation to combine the model and data confidence scores.

 1.3.3 NER as a Practical Application

To show that the proposed approach can provide more reliable estimation of model

prediction confidence score, we picked a practical application called, Named Entity

Recognition (NER), for verification. NER takes unstructured text data and assigns each

text token to a predefined category of named entity. This is useful for industry which is

trying to make sense of unstructured text data in the wild using automated systems. It is

the core of this Intuit’s project and an essential task in natural language processing.

Accordingly, we proposed a new evaluation metric to correctly quantify the performance

of a confidence estimation system. With extensive experiments, we have shown that the

approach performed significantly better than the traditional approach of estimating model

confidence for NER task.

6

1.4 Programming Language

All experiments conducted in this research were implemented in Python which is

a popular computer programming language for machine learning. Python is open source.

Thus, we did not need to buy any commercial license for developing the methods in

Python. From the native Python libraries, we have used NumPy for mathematical

operations, Panda for reading and writing data files and IPDB for debugging purposes.

The approach is based on deep neural networks which the native Python libraries do not

support. Thus, we have used PyTorch library as an external deep learning framework [31].

The syntax of PyTorch is similar to NumPy. PyTorch provides easy to develop deep neural

networks as well as training and evaluation packages. PyTorch supports CUDA based

GPU operations which were essential for training the models swiftly and observe the

results.

1.5 Thesis Outline

The outline of this thesis is as follows: in Chapter 2, we discuss the existing works

on natural language processing, deep neural networks, recommendation systems,

confidence score estimation of deep neural networks, and how data statistics can be used

to estimate confidence scores. We focused on the relevant technologies and methods which

are explored in the study and provided the context and detailed description of these

approaches. In Chapter 3, we give a general idea about the proposed approach. We

highlight the problems of current approaches for reliability score estimation for deep

neural networks and discuss how data statistics-based information can help to further infer

a more reliable prediction confidence score. In Chapter 4, we describe the details of the

7

approach and the models that we have used to combine the deep learning model based

prediction confidence and the data statistics based confidence estimation to generate a

more reliable confidence estimation for a particular downstream natural language

processing task - Named Entity Recognition. In Chapter 5, we discuss the experimental

setup, results, and the findings. Finally, Chapter 6 summarizes the contribution of this

study and provides useful insights for future work.

8

CHAPTER 2

RELATED WORKS

This chapter briefly introduces the technologies used in our research.

2.1 Feature Extraction of Text Data

Fig. 2.1. Word2Vec word embedding visualization. Fig. taken from [1]

Extracting semantically meaningful features from training data is the first step for

any machine learning system. For text mining and natural language processing tasks, the

data is usually unstructured raw text. To infer meaningful information from the raw data,

we first need to convert the input to meaningful feature representations. Different aspects

of textual features can be extracted for Natural Language Processing (NLP) tasks. The

9

state-of-the-art and most frequently used methods are word level and character level

embeddings.

Fig. 2.2. GloVe word embedding visualization. Fig. taken from [2]

 2.1.1 Word Embedding

Word embedding is to extract word level tokens from text input and then generating

feature representations of these word tokens as the input to the downstream model. The

feature representations are usually vectors which are either learned using some machine

learning approach or generated using hand crafted mathematical formulas. These feature

representations are often referred to as embeddings. Whatever the generation process is,

the goals of these embeddings or feature representations are to embed grammatical syntax

and semantics. Such mathematical representations of grammatical meaning can provide

rich information to perform higher level inference tasks such as part-of-speech

recognition. There are several existing machine learning systems for extracting word

10

embeddings from text data such as Word2Vec [32] and GloVe. Word2Vec utilizes a neural

network to either predict a word from its context or predict the context given the target

word. The first approach is called continuous bag of words (CBOW) and the second

approach is referred to as skip-gram. In this way, the model learns which words are similar

in that similar words will have higher vector similarity. GloVe follows a similar approach

to Word2Vec but also emphasizes on co-occurrence frequencies of words in the training

text data. Both of these approaches learn meaningful vector representations for words

which can be seen in the t-SNE (t-distributed Stochastic Neighbor Embedding) plot of the

word embeddings, as shown in Fig.s 2.2 and 2.1. In Fig. 2.1, we can see that Noah’s sons

are all in similar locations, as well as word relevant to Egypt. Similarly, in Fig. 2.2, we can

see similar words such as ham, bacon and so on are positioned closely in the embedding

space.

 2.1.2 Character Embedding

A problem of word level embedding is that if a word is missing in the training data

or mis-spelled, it will be impossible to extract feature representations for that particular

word. To solve the problem, finer granularity feature representations are learned from

characters, which are called character embedding. This embedding contains semantically

meaningful feature representation for each word. Character embeddings are learned in

similar fashions such as word embedding by learning the contextual representations of

each character in the training corpus. Fig. 2.3 shows the t-SNE plot of character

embedding. Here we can see the number is grouped in the same location where the special

characters are grouped in another location in the embedding space. Learning such rich

11

embedding is helpful for downstream NLP tasks such as named entity recognition (NER).

It is a fine-grained approach to learn meaningful feature representation from text data. As

a character embedding model takes characters as input, it can easily handle out-of-

distribution and mis-spelled words as well as words which had very low frequency in

training data. This is not possible for models which take words as input.

Fig. 2.3. Character embedding visualization. Fig. taken from [3]

2.2 Deep Neural Networks

The main algorithms we studied for prediction reliability enhancement is based on

deep learning which has been applied to many practical applications today. Over the past

decade, a good number of deep neural network architectures were designed, featuring

12

different feature extraction and problem-solving strengths (e.g., AlexNet, VGG16,

GoogLeNET, ResNet, etc.). In the following sections, we will discuss the characteristics

of the deep neural networks that we studied in this work.

Fig. 2.4. 2D convolutional neural network. Fig. taken from [4]

Fig. 2.5. Depiction of 2D convolution. Fig. taken from [5]

 2.2.1 CNN

CNN or convolutional neural networks, as illustrated in Fig. 2.4, are specialized

models for processing spatial or temporal data. A typical CNN is usually made up of a

13

series of convolutional layers, followed by ReLU activation function and Maxpooling

layers as can be seen in Fig. 2.5. The main part of a CNN model is the convolutional layer

which contains learnable kernel matrices which are applied on an input in a sliding window

manner to generate the next layer output. These kernels are learned through

backpropagation to extract meaningful feature representations from input data. After each

convolutional layer, a nonlinear activation function is applied and the most common

activation function for CNN is rectified linear unit (ReLU), as depicted in Fig. 2.6. Using

ReLU as activation function helps the model to learn non-linearity while also helping to

solve the vanishing gradient problem as the activation value after the input greater than

zero is unbounded. This provides bigger gradient values to train the model effectively. The

next layer used in CNN is the Maxpooling layer as can be seen in Fig. 2.7. Maxpool

ensures that the model learns a good summary of the input data while also making the

input smaller at every step to reduce the computation burden of the whole model. Usually,

dropout layers (not shown in the Fig.) are added into the network architecture to help

generalize the model. Finally, for classification CNN models, Softmax activation is used

at the end to transform the final layer output to class probability vectors. A depiction of

the Sofmax activation function can be seen in Fig. 2.8.

14

Fig. 2.6. Depiction of 2D ReLU activation function. Fig. taken from [6]

Fig. 2.7. Depiction of 2D maxpooling operation. Fig. taken from [7]

Fig. 2.8. Depiction of the Softmax operation. Fig. taken from [8]

15

Fig. 2.9. Character CNN model. Fig. taken from [9]

 2.2.2 Character Embedding CNN Model

The character embedding CNN [9] model is a particular 1D CNN model which

takes character sequences as input and learns a contextual feature representation or

embedding for the whole character sequence. Fig. 2.9 shows the character embedding

CNN model. Before passing to the model, each character is turned into a one-hot encoded

vector by first generating a vector with all zeros and same size as the alphabet (e.g., 26)

and then assigning 1 only to the corresponding position of the given character. The

convolutional layers contain 1D kernels which slide over the character sequence to

generate the next level output and then like regular CNN model max poling and ReLU

activation functions are used to learn a single representation for the whole character

sequence.

16

 2.2.3 LSTM

LSTM is a form of deep neural network that is specialized in sequential data

processing such as text, audio, or video. LSTM solves two crucial problems of regular

recurrent neural networks (RNN). The first problem is the long-term dependency where if

the input sequence is too long, then regular RNN fails to relate the current term with the

previous items in the sequence. The second problem is regarding vanishing gradient where

during backpropagation for long input sequences, the gradient is diminished and as a result

no real learning can happen. LSTM or long short-term memory networks solve these

problems by accommodating various memory gates. There are three gates in LSTM, the

input gate, the forget gate, and the output gate. We depict the inner workings of the three

gates in a LSTM cell in Fig. 2.10.

The input gate decides how much information from the current input token should

be added to the sequence context information. This is useful to include information from

the important items of the sequence and ignore relatively irrelevant tokens. The forget

gate, on the other hand, decides which information should be discarded from the context

to only keep the important information. Finally, the output gate decides how much

information from the context and current token should be propagated to the current time

step output. The gates can be mathematically expressed as follows,

it = σ(wi[ht−1,xt] + bi) (2.1)

ft = σ(wf[ht−1,xt] + bf) (2.2)

ot = σ(wo[ht−1,xt] + bo) (2.3)

17

Here, xt indicates the current time step input and the ht−1 indicates the hidden state

output from the previous LSTM cell. Ct−1 indicates the context vector output from the

previous time step. σ represents the Sigmoid activation function and tanh represents the

Tanh activation function. Finally, wi, wf and wo refers to the weights of linear layers

representing the gates and their corresponding biases are bi, bf and bo respectively. it, ft and

ot represents current time step output vectors from the input gate, forget gate and output

gate respectively. Finally, ht and Ct indicate the hidden state output and context output from

the current time step. By employing these gates, LSTM selectively stores information

gathered from the inputs at each time steps and stores a semantically meaningful summary

of the whole sequence in the context vector Ct. These gates allow LSTM to summarize

much longer sequences compared to regular recurrent neural networks. The activation of

the forget gate also solves the problem of vanishing gradient during backpropagation by

remembering that certain information should not be forgotten. For these reasons, we used

the LSTM model instead of regular RNN models in the work.

Fig. 2.10. LSTM Memory Cell

18

 2.2.4 BERT

BERT or Bidirectional Encoder Representations from Transformers [33] is a

modified transformer model to extract rich discriminative feature representations from

input text data. The main task of the transformer is to transform the input sequence to

meaningful long-range contextual feature representations, so we can use the learned

representations for other downstream tasks such as translation from one language to

another (Figure 2.11), sentence classification, NER etc.

Fig. 2.11. Transformer model. Fig. adapted from [10].

The transformer model is based upon an encoder-decoder architecture where the

encoder part consists of different encoder layers which process each input word and

produce a feature vector for the corresponding word and then passes it to the decoder layer.

The inside of the encoder module is two sub-modules: a self-attention layer and a feed

forward layer which is a regular fully connected layer (Fig. 2.12)

19

Fig. 2.12. Different layers inside Encoder and Decoder. Fig. adapted from [10]

Each input word first goes through the self-attention layer and then produces the

next stage feature vector for the corresponding word. For calculating the feature vector, it

considers all other neighboring words of the current input word. Using the relevant

contextual words, we can get a more meaningful feature vector for the input word. After

the Self-Attention layer, the information of the original word may get lost. That is why

there is a residual connection from the original feature vector to the feature vector

generated after the Self-Attention layer. After that they are added together and normalized

to generate the feature representation for the next encoder layer.

After encoding, the final outputs go to the decoder layer. Decoder network is very

similar to the encoder network except it has an extra Encoder-Decoder Attention layer,

which decides which encoder output should get higher weights while decoding. The

decoder then takes input from the encoder network and can generate a Softmax prediction

for each individual word as a sequence of predictions (e.g., NER) or just a single prediction

for the entire input sequence (e.g. Sentiment Classification [34]).

20

BERT uses the transformer model as its base. The model is pre-trained using two

self-supervised learning tasks. For the first task, it takes a sentence as an input and

randomly masks some words in the sentence. The model’s goal is to predict the missing

words. For the second task, it takes two sentences and masks random words in both

sentences and solves the same problem as before by predicting the missing words. It is

better than predicting the next or previous word as those tasks will only provide one

directional learning. But masking random words can have bidirectional contextual

representation of the input word. These tasks pre-train the model so the model can be used

for other downstream tasks like NER.

2.3 Deep Learning based Recommendation Systems

Deep learning-based recommendation systems refers to the deep neural network

based approaches where the models can extract semantically meaningful feature

representation from raw data using only the help of a loss function. The deep learning-

based approaches are now widely used in recommendation systems in the industry [15,

35, 25]. Zhang et al. [12] provided a comprehensive list of deep learning-based

recommendation systems when they grouped the systems based on the models used and

the nature of the input data.

The simplest form of deep neural networks is based on multilayer perceptron

networks (MLP). Such models can be used for recommendations systems when the input

is in the form of a single vector representation. MLP models take the vector as input and

transform it through multiple layers of neurons to generate the recommendation output.

21

Despite their simplicity, they have been used to process text [36], image [37, 38], audio

[39], video [35] and network data [40, 41, 42].

One of the most used deep neural networks is the CNN. CNNs use convolutional

kernel-based approach which makes them efficient in terms of number of parameters and

inference speed. CNNs are mostly famous for visual data recommendation systems such

as images [43, 44, 45, 46, 47, 48, 49, 50, 51] and videos [52] due to their efficiency and

capability of learning both local and global information from spatial data. But they have

also been successfully used to process audio [18], text [22, 23, 24], and recommendation

systems as well.

Another popular deep neural network used in recommendation systems are RNN

models. These models are mostly used to process and recommend sequential data such as

text data [25, 26, 27]. RNN models take sequence as input and usually use internal

memories to learn the context of a large sequence for generating recommendations.

Autoencoders based deep neural networks are also widely used for developing

recommendation systems [53, 54, 55]. Autoencoder based models usually contains two

parts, encoder and decoder. The encoder takes an input and learns to project it into an

embedding space while the decoder takes the embedding as input try to regenerate the

input. In this way, the autoencoder model can learn powerful feature representations which

can be used for classification and ranking.

Finally, attention-based models have emerged as another popular deep neural

network for recommendation systems. They incorporate an extra attention mechanism to

focus on only relevant information from input data to make better recommendations. Such

22

systems showed promising results for both spatial [56] and sequential [22, 57] data

recommendation systems.

Overall, none of the above approaches targeted the problem of accurately

estimating the confidence of the model prediction which is a crucial part to make any

recommendation system reliable and practical for industrial use.

2.4 Confidence Score Estimation of Deep Neural Networks

The goal of confidence score estimation approaches for deep neural networks

(DNN) is to provide the estimate of uncertainty of the model predictions. The existing

works on DNN confidence score estimation can be divided into several categories [58],

such as single deterministic methods, Bayesian methods, ensemble methods, and test-time

augmentation methods. Single deterministic approaches such as [59, 60] use a separate

module to produce the confidence estimation while training the module end-to-end with

the original prediction network. Other single deterministic models such as [61, 62] first

train the original model and then train a separate module to estimate the uncertainty in the

trained model predictions. Bayesian neural network-based approaches are explored in [63,

64]. Ensemble networks-based approaches combine multiple networks to better estimate

the model confidence [65, 66]. Finally, test time augmentation-based approaches [67, 68]

generate multiple samples from a single test example by performing data augmentation

and then get the confidence scores of all these samples to get a better measurement of the

prediction uncertainty.

Although the above approaches can often estimate the model prediction confidence

more reliably compared with the traditional approaches, none of them explored the idea

23

of utilizing data statistics to improve the model confidence score estimation approach. In

this thesis, we have shown that external data statistics-based approaches can significantly

improve the model confidence estimation.

2.5 Data Confidence

There have been very few works to utilize data statistics for directly estimating

prediction confidence score. Some traditional computer vision-based approaches used

pixel data statistics to improve model prediction confidence [69, 70, 71]. In the natural

language processing field, TF-IDF features were used in the context of confidence

estimation [72]. The most relevant work to the proposed approach is [73]. The authors

proposed a new data evidence-based approach to produce an independent confidence

estimation which depends on a input term’s frequency. But none of these approaches

proposed any efficient way to combine model confidence with data confidence to show

that they can complement each other and produce a better confidence score.

24

CHAPTER 3

METHODOLOGY

In this chapter, we will present the general idea about the proposed approach. A

case study of the proposed approach on a specific NER task for recommendation systems

is discussed in Chapter 4.

3.1 Approaches to Address the Problem

The Intuit’s research problem, as mentioned in Chapter 1.1, can be tackled from

two approaches. The first is to design novel machine learning models to achieve better

classification performance, including higher accuracy and higher prediction scores on the

real entities. Ideally, if a learning model can constantly achieve 100% prediction accuracy,

the problem will be solved whether the prediction scores on the entities are low or high. It

is the goal of the machine learning, but very challenging for the current statistical and

optimization-based learning model design, especially when the dataset is limited or the

problem is complicated (e.g., natural language processing). Over the past decade,

computer scientists have devised sophisticated deep learning architectures which can often

achieve high prediction accuracy, but these models are still far from perfection. Further

improving the designs will need the synergy of new datasets, breakthrough of modeling

theory, and higher computation power. The second way to deal with the problem is to fully

utilize the latest deep learning techniques for prediction but enhancing the distinction of

the prediction scores (i.e., increasing the classification confidence of the real entities). This

method may not drastically improve the model’s prediction performance, but it will

25

effectively address the problem from the perspective of practical implementation, as we

only need to pay attention to the data with low prediction scores, the more the data

receiving high prediction confidence, the fewer the extra labors and the less the extra time

will be needed for manually examining the prediction accuracy. Therefore, more cost will

be saved for the business running.

In this thesis, the efforts focused on the second approach. It should be noted that

while we strengthened the classification confidence score, we also tried to improve the

learning model’s prediction performance (i.e., accuracy) or at least keep the learning

model’s performance as competitive as those of the state-of-the-art deep learning models.

3.2 Learning Model Prediction Confidence

Almost all deep neural network-based classifications systems (e.g., CNN, LSTM,

Transformer, etc.) follow a similar pipeline. First, the input is processed by a feature

extractor backbone which extracts semantically meaningful feature representations from

the given input. The next step is to pass the feature representation through a classifier

network, which turns the feature representation into a logit vector with the same size as

the number of target classes. These logit values can be any real number. The next step in

the pipeline is a Softmax activation function, which transforms the unbound logit values

to probability values ranging from zero to one and the sum of all the class probability

values is one. The Softmax activation function can be described as follows:

 (3.1)

26

where zk indicates the logit value for class i and K is the number of target classes. The class

with the maximum Softmax score is considered as the predicted class and the

corresponding Softmax score is considered as the model’s confidence estimation, i.e., MC

for the given instance w is represented by:

 MC(w) = max σ(zk) (3.2)
1≤k≤K

3.3 Data Confidence

Besides considering the model’s prediction score as the confidence or reliability

estimation, we can also use other source of information to further improve the confidence

estimation of the predicted results. In the pre-deep learning era, it was common to use

hand crafted data statistics-based features for prediction confidence estimation in

computer vision model [69, 70, 71]. TF-IDF based approaches have been used in natural

language processing tasks for relating confidence estimation with other metrics such as

recall and precision [72]. Another common approach in the natural language processing

(NLP) field is to consider the rare items with higher importance compared to the items

which occur more frequently. This is utilized in [73] to calculate a new data statistics-

based confidence estimation, WordEC(w) or the evidence content of a word w in a text

corpora, which can be formulated as follows:

 WordEC(w) = −log(freq(w)/MaxFreq) (3.3)

where freq(w) indicates the frequency of the word w and MaxFreq is the frequency of the

word with the most number of occurrences. Here a word with high occurrence frequency

27

will have lower WordEC(w) value where an item with low occurrence frequency will have

higher WordEC(w) score.

This intuitive approach of estimating confidence score from data statistics can be

complimentary to deep neural network-based model confidence scores and be used to

enhance the performance of prediction confidence estimation.

3.4 Prediction Reliability

As discussed before, a reasonable way to estimate a deep neural network-based

classification system’s prediction confidence score is to use the Softmax probability of the

highest scoring class. But this approach can provide unreliable confidence estimation due

to several components in the modern deep neural networks. Calculating confidence scores

in this way often produces high confidence scores for incorrect predictions while

producing low confidence values for correct predictions. Thus, it is important to

investigate new ways to improve the confidence score estimation by correcting the issues

of model confidence estimation approach.

3.5 Combining Model Confidence with Data Confidence

To solve the drawbacks of the straightforward approach to calculate prediction

confidence score, we propose to systematically combine the model confidence term with

the data confidence term. We propose a weighted linear interpolation of the data and model

confidence to calculate the new confidence score which we name word confidence,

WC(wi),

 WC(wi) = α ∗ DC(wi) + (1 − α) ∗ MC(wi) (3.4)

28

Here MC(wi) indicates the Softmax probability score of the model prediction for the input

term wi. The intuition is that combining the data confidence term with the model

confidence will help to boost the confidences of correct model predictions which would

otherwise be lower than a given threshold.

29

CHAPTER 4

CASE STUDY ON NAMED ENTITY RECOGNITION

To evaluate the effectiveness of the proposed method, we applied it to a case study

of the Named Entity Recognition (NER) problem. NER refers to the approach to identify

the key elements from a given text data (i.e., a sequence of word tokens). The text data

can come from electronic documents (e.g., scanned forms) or images which require an

extra pre-processing step such as OCR. An illustration of the NER procedure is shown in

Fig. 4.1.

Fig. 4.1. Flowchart of Named Entity Recognition with confidence estimation.

4.1 Task Definition: NER Recommendation

There are several practical use cases of NER for natural language processing and

biomedical data analyzing tasks. For example, companies like Intuit use NER technology

to extract meaningful information from handwritten paper forms to populate their digital

versions. Currently deep learning-based models such as LSTM, CNN, BERT, etc. have

been successfully used to solve the NER problem. While these models have outperformed

30

the previous traditional models by a high margin, a major limitation of the current deep

learning-based models is that it is often difficult to estimate the reliability of the model’s

predictions. This is a major issue especially for real world applications where it is

important to know how reliable the model prediction is so that humans can intervene in

the unreliable prediction scenarios.

Fig. 4.2. Depiction of NER with confidence estimation

Fig. 4.2 shows the pipeline for a NER system. From the machine learning

perspective, NER task can be considered as a multi-class classification task where the

classes are the predefined entity categories. Like regular deep learning based multiclass

classification models, the common approach for predicting the entity category of a token

is to first pass it through a feature extractor following a classifier module. The output of

the classifier is a logit vector which has the same size as the number of predefined

categories. The logit vector is then passed to a Softmax activation function to generate a

Softmax value for each named entity category in the dataset. The class with the maximum

Softmax value is considered as the predicted category and the corresponding Softmax

value is considered as the estimated model confidence. This is depicted in Fig. 4.2. As

31

discussed in previous chapters, estimating confidence value in such way can produce

unreliable confidence estimation as Softmax function does not provide a well calibrated

confidence measurement. Moreover, several other factors of modern deep neural networks

such as depth, width, weight decay, and Batch Normalization can also affect the predicted

confidence score [74]. In the proposed approach, we fine-tuned the prediction confidence

scores generated by deep neural networks for NER prediction task by leveraging data

statistics and show that the generated confidence score is a better estimation of the model’s

true reliability score.

4.2 Model Confidence for NER

For the NER task, we have experimented with several deep learning models

suitable for the sequence classification problem. In this section, we discuss the different

models used to conduct the experiments. All of these models provide Softmax probabilities

for the predicted class for each input token which we consider as the model confidence for

that particular token. We have used five different models for the NER task, namely CNN,

CNN with character embedding, LSTM, LSTM with character embedding [75], and the

BERT [33] model. Below we describe these models in detail.

 4.2.1 CNN

The CNN model consists of an input word embedding CNN module which takes

each word as input and then transforms them into feature vectors, a CNN context encoder

to learn rich feature representations from word embeddings, and a multilayer perceptron

and Softmax tag decoder module. The detailed architecture of the CNN model can be seen

in Fig. 4.3. Each convolutional block in the model consists of a convolutional layer, a

32

ReLU activation layer, a Dropout layer for regularization, and finally a Batch

Normalization layer for 1D data.

The CNN model has six layers. Each convolutional layer in the convolutional

blocks contains a 3x1 size kernel with one padding and one stride. The word embeddings

are vectors of real values with a length of 300. The first fully connected layer generates a

100-size feature vector and the second fully connected convolutional layer generates 200

size feature vectors.

Fig. 4.3. The CNN model

 4.2.2 CNN with Character Embedding

The CNN with character embedding [9] model is similar to the CNN model except

it uses an extra CNN based character embedding model besides the word embedding

model. Fig. 2.9 shows the character embedding CNN model. The model takes the whole

33

sequence as an input and applies 1D convolution on the character sequence. In this way,

we can generate features directly from the character sequence rather than starting from

words. The character embedding CNN model has kernel size 3 with padding 1 and stride

1. It takes a series of one-hot encoded vectors each representing a character. The one-hot

encoding vector has a length of 27 (26 for the alphabet and 1 for space). The character

embedding CNN then converts each of these one-hot encoded vectors to a 50-dimensional

feature representation. Fig. 4.4 shows the architecture of the CNN model with character

embedding.

Fig. 4.4. CNN with Character Embedding model

 4.2.3 LSTM

The LSTM model used in this research is a bidirectional LSTM [76] for learning

input word embedding as well as contextual features representation along with a multi-

layer perceptron and Softmax tag decoder. The model is depicted in Fig. 4.5.

34

The first fully connected layer takes 300-dimensional word embedding and

converts them to 100-size feature vectors. Each LSTM cell in both the forward LSTM and

backward LSTM model takes 100 size feature vector and again transforms it to a new 100-

size feature vector representation.

Fig. 4.5. LSTM model

 4.2.4 LSTM with Character Embedding

The LSTM with character embedding model is very similar to the LSTM model.

Similar to the CNN with Character Embedding model, it uses an extra CNN based

character encoding module for input feature learning. The details of this model are shown

in Fig. 4.6.

35

Fig. 4.6. LSTM with Character Embedding model

 4.2.5 BERT

In this project, we used the BERT model pretrained on large scale text corpora and

then used it as a feature extractor. We then added a multi-layer perceptron with a Softmax

layer to build the tag decoder and trained it to generate the tag predictions. The BERT

model contains 24 hidden layers and it takes case-sensitive input. The details of this model

can be seen in Fig. 4.7.

36

Figure 4.7. BERT model

For all the models, we use the Softmax activation at the end to get the model’s

confidence. The Softmax activation for the NER task can be described as follows:

 (4.1)

where w is a given input token, zi indicates the logit vector generated for the ith entity by

the model for token w and K indicates the number of target entities. Then, we can formulate

the model confidence for NER for the given token w, MC(w) as follows:

 MC(w) = max σw(zk) (4.2)
1≤k≤K

4.3 Data Confidence for NER

As for NER, the dataset contains a sequence of words or tokens. We used the

following equation to calculate the data confidence of each token in the text corpus.

 DC(wi) = −log((freq(wi) + 1)/freqmax) ∗ β (4.3)

37

where freq(wj) indicates the frequency of the jth term wj in the dataset S and freqmax =

maxjϵNfreq(wj), and β is the min-max normalization factor. The data confidence value

ranges from zero to one. Here, we first find the frequency of each individual term in the

dataset and then use it to calculate the corresponding data confidence score so that more

frequent words get lower scores, and less frequent words get higher data confidence

scores.

4.4 Combining Data Confidence with Model Confidence for NER Pre-diction

Reliability Estimation

Although we proposed to combine the data confidence with model confidence for

enhancing prediction reliability, empirically we found that the straightforward approach

as shown in equation 3.4 does not always work well. This is because the data confidence

DC may not always align with model confidence MC and therefore, simply combining

them linearly cannot constantly provide the desired confidence estimation. As such, we

considered several specific cases and utilized the MC and DC appropriately for each of

these cases. The goal was to get higher confidence, when the model prediction is an

‘Entity’ and the data confidence was also high. On the other hand, we wanted to reduce

the confidence for the cases where the data confidence was low and the model prediction

was not an entity as well. Hence, we revised the approach by using DC and MC to calculate

the word confidence WCg according to different recognition conditions, which is as

follows:

38

𝑊𝑊𝑊𝑊� (𝜔𝜔𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧𝛼𝛼 ∗ 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) + (1 − 𝛼𝛼) ∗ 𝑀𝑀𝑊𝑊(𝜔𝜔𝑖𝑖),

𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) ∗ �1 −𝑀𝑀𝑊𝑊(𝜔𝜔𝑖𝑖)�,
𝑀𝑀𝑊𝑊(𝜔𝜔𝑖𝑖),

1 −𝑀𝑀𝑊𝑊(𝜔𝜔𝑖𝑖),

𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) > 𝜌𝜌
𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∉ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) < 𝛾𝛾
𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) < 𝜌𝜌
𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∉ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) > 𝛾𝛾

Where E indicates the set of the classes which belong to the ‘Entities’ and not to the ‘Other’

categories, and ρ and γ are two thresholds with values in the range [0,1]. In this equation,

ρ will be always higher than γ.

The first case considers the scenario when the data confidence is higher than ρ and

the predicted class is an ‘Entity’. In this case, we used the linear interpolation as shown in

equation 3.4. This is because here we wanted to increase the confidence score so that the

confidence for correct predictions gets higher. For the second case, we considered if the

prediction is ‘Other’ and the data confidence is also lower than γ. Then we first inverse the

model confidence by subtracting it from 1 and then further lowered it by multiplying with

DC. Thus, if we had higher model confidence for non-entities or incorrect predictions, we

would lower the confidence score. The third case is that the prediction is an ‘Entity’ class

but the data confidence DC was actually smaller than ρ. In such a case, we cannot rely on

data confidence and simply use the model confidence MC as the confidence score. Finally,

for the fourth case, we inversed the model confidence, MC to compute the final confidence

score since the prediction is not ‘Entity’ and thus either the prediction is incorrect or the

actual class for the input is ‘Other.’. In that case, we wanted to reduce the confidence score

if the model confidence was high (incorrect prediction of ‘Other’ class) and increase the

confidence score if the model confidence was low (correct prediction of ‘Other’ class).

39

CHAPTER 5

EXPERIMENTAL RESULT ANALYSIS

5.1 Datasets

In this research, we used two public datasets: WNUT’17 [77] and GMB [78] to

evaluate the proposed method. The datasets contained text data with corresponding BIO

(beginning, inside, outside) annotations. BIO annotation is a common format for tagging

words in the corpus for several downstream tasks (e.g. Named Entity Recognition, token

classification, etc.). The ‘B-prefix’ before a tag means the beginning of a chunk, ‘I-prefix’

before a tag means the inside tag of a chunk, and ‘O’ means the current tag is a outside tag

of a chunk. ‘O’ tag is used for the words which are not considered as entity or chunk. In

the following two sections, we will discuss the details of these two datasets.

 5.1.1 WNUT’17

This dataset was introduced by Derczynski et al. [77]. In WNUT’17, the training

data was taken from around 1000 annotated tweets. The development data was taken from

YouTube and the test data split was drawn from Twitter, YouTube, Reddit and Stack

Exchange. Different sources were chosen so that it contained not only noisy user-generated

data, but also included longer text up to 140 characters with different writing styles and

characteristics. The whole dataset was annotated using six entity types as can be seen in

Table 5.1. After applying BIO annotation format, there were a total of 13 NER tags in the

dataset including the ‘Other’ or ‘O’ tag.

40

TABLE 5.1. BIO FORMAT OF ENTITY TYPES IN THE WNUT’17 DATASET
 Categories Total

NER type Person Location Product Creative-work Group Other 6

BIO format B-person B-location B-product B-creative-work B-group O 11

 I-person I-location I-product I-creative-work I-group

TABLE 5.2. BIO FORMAT OF ENTITY TYPES IN THE GMB DATASET

 Categories Total

Geographical
NER type Organization Person

Entity
Geopolitical
 Time indicator Artifact Event

Entity
Natural
 Other 9
Phenomenon

BIO format B-geo B-org B-per B-gpe B-tim B-art B-eve B-nat O 17
 I-geo I-org I-per I-gpe I-tim I-art I-eve I-nat

 5.1.2 GMB

Another large-scale NER dataset that was used in this project was the ‘Groningen

Meaning Bank’ or GMB dataset [78]. The contents of this dataset were taken from Voice

of America (VOA) together with documents from the MASC dataset and the CIA World

Factbook. The updated version of the dataset was released on May 14, 2020. This dataset

can be used for named entity recognition or Part-of-Speech (POS) tagging, as well as to

generate new text features. A total of eight entities were used to annotate the whole dataset,

leading to 17 NER classes including ‘Other’ after using BIO annotation. A list of the 17

NER classes are shown in Table 5.2

5.2 Evaluation Metrics

To evaluate the proposed approach, we designed a new metric called Total Entity

41

Coverage (TEC) for measuring the ratio of instances with high confidence scores. Besides

that, we also used confusion matrices to visualize the prediction performance on individual

entity classification.

 5.2.1 Total Entity Coverage(TEC)

As explained in Chapter 3, the goal of this research was to produce a high

confidence score when the input token is an ‘Entity’ and the model’s entity prediction is

correct. To evaluate the confidence scores estimated by the model, we introduced a new

metric–TEC. TEC produces higher value when the predicted confidence score is higher

than a predefined threshold and the prediction is a correct entity. To better describe TEC,

we first introduce the following three terms:

t: Threshold of prediction confidence c[i]: Confidence of prediction for ith token

St: Set of predictions with confidence higher than t

Now we can formulate TEC for a given entity as follows:

 (5.1)

where Nc is the number of samples in St whose predictions are entities, and the predictions

are correct; and Ne is the number of samples whose ground truth is entity in the entire test

dataset.

We can further describe Ne as follows: Ne = the number of samples in St whose

predictions are correct + samples in St whose predictions are incorrect + samples that are

not in St but the predictions are correct + samples that are not in St and the predictions are

incorrect.

42

Fig. 5.1. Total entity coverage (TEC)

Fig. 5.1 shows the concept of TEC. Here t is the threshold of prediction confidence.

The diamonds in the Fig. depicts the entity tokens. Specifically, the blue diamonds are the

samples in St whose entity predictions are correct and the corresponding confidence scores

are higher than the threshold t. The grey diamonds are the samples in St whose predictions

are incorrect, but the confidence scores are higher than the threshold t. The red diamonds

are the samples that are not in St but having correct entity predictions. Finally, the black

diamonds indicate the samples that are not in St and the corresponding entity predictions

are incorrect.

Larger TECentity value means that more tokens with correct entity predictions are

scored above the confidence threshold t. On the other hand, lower TEC score indicates

either correct entity predictions got lower confidence scores, or incorrect predictions got

higher confidence scores. The goal was to generate more accurate confidence estimation

so that we can achieve higher TEC value than the baseline approach.

43

Fig. 5.2. Confusion matrix for multi-class classification. Fig. taken from [11]

 5.2.2 Confusion Matrix

Both WNUT’17 and GMB contain multiple entity categories. Thus, we used

Confusion Matrix to visualize the performance of the approach and the baseline approach

for each category. An example confusion matrix for multi-class classification problem is

shown in Fig. 5.2. Each entry of the matrix represents the number of instances that the

model predicted with regard to the class marked by the column heading.

The row heading of an entry indicates the ground truth class of the instance(s). The

entries in the matrix are color-coded based on their prediction correctness (i.e., correct

predictions are in green and incorrect predictions are in gray).

5.3 Coding and Experiment Settings

All experiments were conducted on a single NVIDIA V100 TENSOR CORE GPU.

Besides using the pre-developed libraries provided by Python and PyTorch, we leveraged

44

peer researchers’ latest work and their source code shared through GitHub to improve the

implementation efficiency.

For training the CNN and LSTM models, we used a learning rate of 0.015 and

batch size 10. Each model was trained 100 epochs. For optimization we used stochastic

gradient descent optimizer provided by the PyTorch library. The CNN, LSTM, and the

character embedding models were directly adapted from [79]. For training the BERT

model we used a learning rate of 5e−5 and batch size 32. We trained the model for 100

epochs and for optimization we have used Adam optimizer. The BERT Large-cased model

was adapted from Hugging Face PyTorch Transformer library [80]. A code snippet

depicting the proposed model is shown in Fig. 5.3.

Fig. 5.3. Code snippet of the linear interpolation of model and data confidence.

For evaluation, all the experiments were executed five times and the average was

reported in the results. For inference latency, the approach adds negligible (less than a

millisecond) overhead by adding the data confidence term with the model confidence,

making it suitable for practical use cases.

45

5.4 Result Analysis

In this section, we present the experimental results and the findings by applying

the proposed approach on the two datasets WNUT’17 and GMB. To evaluate the roles

played by the model confidence and the data confidence in the combined approach, we

used three different α values: 0.95, 0.9, and 0.85 and two thresholds, 0.85 and 0.9 to

calculate TEC. We considered the model-confidence-only based approach as the baseline

and compared its results with the proposed approach where we calculated an improved

confidence score by combining the model and data confidence.

 5.4.1 TEC Performance and Comparison

Table 5.3 shows the TEC value for five models, CNN, CNN with character

embedding, LSTM, LSTM with character embedding and BERT. As shown in the Table,

the approach performs significantly better than the baseline - model confidence based

approach in terms of TEC score (higher is better) for all the models. The biggest

improvement can be seen for the CNN with Character embedding model where the

approach achieved 44 percent improvement over the baseline approach. The optimum

confidence threshold was 0.85 as this value consistently gave better scores for all the

models. We have also found that the proposed approach was sensitive to the α value and

the best α value for all the models was 0.95. Similarly, we have empirically found the best

value for ρ is 0.85 and for γ the value is 0.2. One interesting observation from Table 5.3 is

that for the baseline approach, BERT produced the highest TEC. For the approach,

however, LSTM with character embedding model produces the highest TEC value, even

though the difference between BERT and LSTM with character embedding was minor.

46

TABLE 5.3. TEC VALUES FOR WNUT17 DATASET WITH ρ = 0.85 AND γ = 0.2

Model Threshold Model
Confidence

Data + Model Confidence

α = 0.95 α = 0.9 α = 0.85
CNN 0.85 0.222 0.338 0.336 0.329

0.9 0.2 0.308 0.304 0.293
CNN + Character embedding 0.85 0.266 0.384 0.384 0.381

0.9 0.233 0.353 0.349 0.340
LSTM 0.85 0.333 0.387 0.387 0.387

0.9 0.313 0.363 0.362 0.361
LSTM + Character embedding 0.85 0.302 0.410 0.409 0.408

0.9 0.278 0.384 0.382 0.381
BERT 0.85 0.377 0.409 0.409 0.408

0.9 0.374 0.405 0.404 0.404

Table 5.4 shows the TEC values for five models CNN, CNN with character

embedding, LSTM, LSTM with character embedding, and BERT model for the GMB

dataset. Similar to the WNUT’17 dataset, the approach again performs better than the

baseline approach. The optimal confidence score threshold and the α value are consistent

with the Wnut’17 dataset. One interesting finding from this Table is that the difference

between the baseline model and the proposed approach is lower for the GMB dataset

compared to the WNUT’17 dataset. This is due to the inherent complexities in the

WNUT’17 dataset as it was collected from highly unstructured social media data and it

was difficult for the models to make accurate predictions. Thus, the approach of combining

data confidence with model confidence can significantly boost the performance by

complementing the model confidence score. On the other hand, even though the GMB

dataset is a much larger dataset compared to WNUT’17, it was still considerably easier

and more structured than the WNUT’17 dataset, which made it easier for the deep learning

47

models to learn the patterns from the data and make accurate predictions. Thus, the

improvement of the approach on the dataset is not that significant.

TABLE 5.4. TEC VALUES FOR GMB DATASET WITH ρ = 0.85 AND γ = 0.2

Model Threshold Model
Confidence

Data + Model Confidence

α = 0.95 α = 0.9 α = 0.85
CNN 0.85 0.767 0.787 0.786 0.785

0.9 0.736 0.738 0.737 0.740
CNN + Character embedding 0.85 0.747 0.767 0.766 0.766

0.9 0.718 0.719 0.718 0.721
LSTM 0.85 0.764 0.781 0.780 0.780

0.9 0.742 0.739 0.738 0.742
LSTM + Character embedding 0.85 0.762 0.783 0.782 0.781

0.9 0.734 0.738 0.738 0.741
BERT 0.85 0.818 0.821 0.821 0.820

0.9 0.806 0.792 0.796 0.797

Fig. 5.4 and Fig. 5.5 present the confusion matrices of the baseline approach and

the proposed approach on WNUT17 dataset using LSTM with character embedding

model. The parameters used in the approaches are: α = 0.95 and threshold = 0.85. Please

note that since the focus in this research was to enhance the prediction scores of the

entities, the matrices presented here were different from the traditional confusion matrices

in that the pictures visualize how many instances in the testing dataset successfully gain

the high prediction scores (i.e., greater than or equal to threshold) with regard to individual

classes rather than the prediction results of the whole testing dataset across the classes. As

we can see from the Figs., the proposed approach performed better than the baseline

approach in terms of this measurement.

48

 5.4.2 Confusion Matrix Performance and Comparison

Fig. 5.4. Confusion matrix of LSTM with character embedding model for the baseline

approach (model confidence only)

For example, Fig. 5.4 shows that in the baseline approach, the total correct

predictions for class ‘B-person’ is 169. After combining model confidence with the data

confidence (Fig. 5.5), the correct predictions for class ‘B-person’ increased from 169 to

207. From the results, we can also see that while the model enhanced the predictions

confidence of more instances, extra errors (i.e., the entries off the diagonal) also incurred

among the instances receiving high prediction scores. Nonetheless, the model still

49

maintained very competitive prediction accuracy. From the perspective of practical

application, this actually leads to another interesting factor to be considered: the trade-off

between the cost saved on labor and time for manual examination and the cost incurred

due to the extra misclassifications. More comprehensive evaluation metrics can be

designed by adding the cost parameter.

Fig. 5.5. Confusion matrix of LSTM with character embedding model for the proposed

approach (model confidence + data confidence)

Fig. 5.6 and Fig. 5.7 show the confusion matrices for the baseline approach and the

proposed approach on the overall best performing model BERT on the GMB dataset.

Again, matrices present how many instances in the testing dataset successfully gain the

50

high prediction scores with regard to individual classes. The parameters used in the models

were: α = 0.95 and threshold = 0.85. Similar to the WNUT’17 dataset, the approach again

performed better than the baseline approach in terms of entities receiving enhanced

prediction scores. For example, Fig. 5.6 shows that for the baseline approach, the total

correct predictions for class ‘B-geo’ is 6313. After combining model confidence with the

data confidence, the correct predictions for class ‘B-geo’ increased from 6313 to 6324, as

shown in Fig. 5.7.

Fig. 5.6. Confusion matrix of BERT model for the baseline approach (model confidence

only)

51

Fig. 5.7. Confusion matrix of BERT model for the proposed approach (model confidence

+ data confidence)

Meanwhile, we also see the same trend as that in the WNUT’17 dataset; with more

entities receiving high prediction scores, extra errors incurred. But the models still

demonstrated very competitive prediction accuracy. One difference between the

WNUT’17 result and the GMB result was that the increasing of the entities receiving high

prediction confidence in GMB was not as many as that in WNUT’17. This should be due

to the different dataset characteristics as aforementioned and the BERT model adopted

which is one of the best deep learning models today for text data processing and therefore,

harder to further improve.

52

Besides the results presented in this chapter, we also conducted experiments based

on different alpha and threshold values. Similar to those shown in Table 5.4 and 5.3 and

Figs. 5.4 to 5.7, the proposed model performed the best in most cases when alpha = 0.95

and threshold = 0.85. Thus, we skip other results in this thesis.

53

CHAPTER 6

CONCLUSION

This thesis originated from a particular application field of machine learning —

the recommendation systems. Sponsored by Intuit Inc., we targeted a relatively

understudied problem of estimating the reliability of modern deep learning model

predictions. We intended to draw attention to this particular area of machine learning

because of the recent advancements in machine learning approaches, especially deep

neural networks, can misled users about the practical applicability of these new machine

learning tools. Considering the Intuit’s research problem and practical application needs,

we proposed a novel approach to significantly enhance the learning model’s prediction

confidence score. The approach efficiently combined the traditional Softmax scores

generated by deep neural networks with data statistics based confidence estimation. To

evaluate the proposed method, we conducted a case study on a popular natural language

processing problem—Named Entity Recognition. We targeted this problem because it is

of the particular interest of Intuit Inc. and many industry companies who need to know the

reliability of their trained models before releasing them to the customers. We also designed

a new evaluation metric TEC to measure the model performances on prediction confidence

estimation. Using a variety of state-of-the-art deep learning models, we applied the

proposed approach to two popular NER datasets: WNUT’17 and GMB. Experimental

results showed that our approach can effectively improve the number of instances

receiving high prediction confidence while maintaining highly competitive model

54

performance in terms of accuracy. Thus, it can drastically reduce the workload and cost

for manual examination of the instances with low prediction scores. We believe that this

work will inspire the machine learning community to pay more attention to this problem

and thereafter advance the field by proposing new approaches to estimate model prediction

reliability.

55

REFERENCES

[1] D. Sarkar, “Robust Word2Vec Models with Gensim & Applying Word2Vec Features

for Machine Learning Tasks.” https://www.kdnuggets.com/2018/04/ robust-

word2vec-models-gensim.html, 2018. [Online; accessed 9-November2022].

[2] D. Sarkar, “Implementing Deep Learning Methods and Feature Engineering for Text

Data: The GloVe Model.” https://www.kdnuggets.com/2018/04/ implementing-deep-

learning-methods-feature-engineering-text-data-glove. html, 2018. [Online; accessed

9-November-2022].

[3] M. Woolf, “Pretrained Character Embeddings for Deep Learning and Automatic

Text Generation.” https://minimaxir.com/2017/04/char-embeddings/, 2017. [Online;

accessed 9-November-2022].

[4] “Deep Convolutional Neural Networks - A Guide.” https:

//www.run.ai/guides/deep-learning-for-computer-vision/ deep-convolutional-neural-

networks, 2018. [Online; accessed 16November-2022].

[5] R. Hachilif, R. Baghdadi, and F. Benhamida, Graduation Thesis Implementing and

Optimizing Neural Networks using Tiramisu. PhD thesis, 06 2019.

[6] D. Liu, “A Practical Guide to ReLU.” https://medium.com/@danqing/ a-practical-

guide-to-relu-b83ca804f1f7, 2017. [Online; accessed 9November-2022].

[7] “Max-pooling / Pooling.” https://computersciencewiki.org/index.php/

Max-pooling_/_Pooling, 2018. [Online; accessed 9-November-2022].

[8] D. Radeˇci´c, “Softmax Activation Function Explained.”

https://towardsdatascience.com/

56

softmax-activation-function-explained-a7e1bc3ad60, 2020. [Online; accessed 9-

November-2022].

[9] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional LSTMCNNs-

CRF,” in Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), (Berlin, Germany), pp. 1064–

1074, Association for Computational Linguistics, Aug. 2016.

[10] J. Alammar, “The Illustrated Transformer.” https://jalammar.github.io/ illustrated-

transformer/, 2018. [Online; accessed 9-November-2022].

[11] “Evaluation measures for multiclass problems.” http://gabrielelanaro.

github.io/blog/2016/02/03/multiclass-evaluation-measures.html, 2016. [Online;

accessed 9-November-2022].

[12] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A

survey and new perspectives,” ACM Computing Surveys (CSUR), vol. 52, no. 1, pp.

1–38, 2019.

[13] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,

business value, and innovation,” ACM Transactions on Management Information

Systems (TMIS), vol. 6, no. 4, pp. 1–19, 2015.

[14] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M.

Lambert, B. Livingston, et al., “The youtube video recommendation system,” in

Proceedings of the fourth ACM conference on Recommender systems, pp. 293–296,

2010.

[15] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,

G. Corrado, W. Chai, M. Ispir, et al., “Wide & deep learning for recommender

57

systems,” in Proceedings of the 1st workshop on deep learning for recommender

systems, pp. 7–10, 2016.

[16] C. Musto, C. Greco, A. Suglia, and G. Semeraro, “Ask me any rating: A contentbased

recommender system based on recurrent neural networks.,” in IIR, 2016.

[17] A. Suglia, C. Greco, C. Musto, M. De Gemmis, P. Lops, and G. Semeraro, “A deep

architecture for content-based recommendations exploiting recurrent neural

networks,” in Proceedings of the 25th conference on user modeling, adaptation and

personalization, pp. 202–211, 2017.

[18] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music

recommendation,” Advances in neural information processing systems, vol. 26, 2013.

[19] G. K. Dziugaite and D. M. Roy, “Neural network matrix factorization,” arXiv preprint

arXiv:1511.06443, 2015.

[20] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet

collaborative filtering,” in Proceedings of the 24th international conference on World

Wide Web, pp. 111–112, 2015.

[21] Y. Ouyang, W. Liu, W. Rong, and Z. Xiong, “Autoencoder-based collaborative

filtering,” in International conference on neural information processing, pp. 284–

291, Springer, 2014.

[22] X. Wang, L. Yu, K. Ren, G. Tao, W. Zhang, Y. Yu, and J. Wang, “Dynamic attention

deep model for article recommendation by learning human editors’ demonstration,”

in Proceedings of the 23rd ACM SIGKDD international conference on knowledge

discovery and data mining, pp. 2051–2059, 2017.

58

[23] S. Zheng, F. Wang, H. Bao, Y. Hao, P. Zhou, and B. Xu, “Joint extraction of entities

and relations based on a novel tagging scheme,” arXiv preprint arXiv:1706.05075,

2017.

[24] S. Seo, J. Huang, H. Yang, and Y. Liu, “Interpretable convolutional neural networks

with dual local and global attention for review rating prediction,” in Proceedings of

the eleventh ACM conference on recommender systems, pp. 297– 305, 2017.

[25] S. Okura, Y. Tagami, S. Ono, and A. Tajima, “Embedding-based news

recommendation for millions of users,” in Proceedings of the 23rd ACM SIGKDD

international conference on knowledge discovery and data mining, pp. 1933–1942,

2017.

[26] J. Tan, X. Wan, and J. Xiao, “A neural network approach to quote recommendation

in writings,” in Proceedings of the 25th ACM International on Conference on

Information and Knowledge Management, pp. 65–74, 2016.

[27] C.-Y. Wu, A. Ahmed, A. Beutel, and A. J. Smola, “Joint training of ratings and

reviews with recurrent recommender networks,” 2017.

[28] F. Ortega, R. Lara-Cabrera, A. Gonza´lez-Prieto, and J. Bobadilla, “Provid-´ ing

reliability in recommender systems through bernoulli matrix factorization,”

Information Sciences, vol. 553, pp. 110–128, 2021.

[29] J. Bobadilla, A. Guti´errez, F. Ortega, and B. Zhu, “Reliability quality measures for

recommender systems,” Information Sciences, vol. 442, pp. 145–157, 2018.

[30] A. Hernando, J. Bobadilla, F. Ortega, and J. Tejedor, “Incorporating reliability

measurements into the predictions of a recommender system,” Information Sciences,

vol. 218, pp. 1–16, 2013.

59

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, highperformance

deep learning library,” Advances in neural information processing systems, vol. 32,

2019.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[34] M. Munikar, S. Shakya, and A. Shrestha, “Fine-grained sentiment classification using

bert,” in 2019 Artificial Intelligence for Transforming Business and Society (AITB),

vol. 1, pp. 1–5, IEEE, 2019.

[35] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube

recommendations,” in Proceedings of the 10th ACM conference on recommender

systems, pp. 191–198, 2016.

[36] C. Chen, X. Meng, Z. Xu, and T. Lukasiewicz, “Location-aware personalized news

recommendation with deep semantic analysis,” IEEE Access, vol. 5, pp. 1624–1638,

2017.

[37] W. Niu, J. Caverlee, and H. Lu, “Neural personalized ranking for image

recommendation,” in Proceedings of the eleventh ACM international conference on

web search and data mining, pp. 423–431, 2018.

[38] T. Alashkar, S. Jiang, S. Wang, and Y. Fu, “Examples-rules guided deep neural

network for makeup recommendation,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 31, 2017.

60

[39] D. Liang, M. Zhan, and D. P. Ellis, “Content-aware collaborative music

recommendation using pre-trained neural networks.,” in ISMIR, pp. 295–301, 2015.

[40] W. Huang, Z. Wu, C. Liang, P. Mitra, and C. L. Giles, “A neural probabilistic model

for context based citation recommendation,” in Twenty-ninth AAAI conference on

artificial intelligence, 2015.

[41] X. Wang, X. He, L. Nie, and T.-S. Chua, “Item silk road: Recommending items from

information domains to social users,” in Proceedings of the 40th International ACM

SIGIR conference on Research and Development in Information Retrieval, pp. 185–

194, 2017.

[42] T. Ebesu and Y. Fang, “Neural citation network for context-aware citation

recommendation,” in Proceedings of the 40th international ACM SIGIR conference

on research and development in information retrieval, pp. 1093–1096, 2017.

[43] Q. Liu, S. Wu, and L. Wang, “Deepstyle: Learning user preferences for visual

recommendation,” in Proceedings of the 40th international acm sigir conference on

research and development in information retrieval, pp. 841–844, 2017.

[44] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu, “What your

images reveal: Exploiting visual contents for point-of-interest recommendation,” in

Proceedings of the 26th international conference on world wide web, pp. 391– 400,

2017.

[45] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based

recommendations on styles and substitutes,” in Proceedings of the 38th international

ACM SIGIR conference on research and development in information retrieval, pp.

43–52, 2015.

61

[46] J. Wen, X. Li, J. She, S. Park, and M. Cheung, “Visual background recommendation

for dance performances using dancer-shared images,” in 2016 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 521–527, IEEE,

2016.

[47] J. Zhou, C. Gurrin, and R. Albatal, “Applying visual user interest pro les for

recommendation & personalisation.(2016),” 2016.

[48] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution of

fashion trends with one-class collaborative filtering,” in proceedings of the 25th

international conference on world wide web, pp. 507–517, 2016.

[49] R. He and J. McAuley, “Vbpr: visual bayesian personalized ranking from implicit

feedback,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30,

2016.

[50] W.-T. Chu and Y.-L. Tsai, “A hybrid recommendation system considering visual

information for predicting favorite restaurants,” World Wide Web, vol. 20, no. 6, pp.

1313–1331, 2017.

[51] W. Yu, H. Zhang, X. He, X. Chen, L. Xiong, and Z. Qin, “Aesthetic-based clothing

recommendation,” in Proceedings of the 2018 world wide web conference, pp. 649–

658, 2018.

[52] J. Lee, S. Abu-El-Haija, B. Varadarajan, and A. Natsev, “Collaborative deep metric

learning for video understanding,” in Proceedings of the 24th ACM SIGKDD

International conference on knowledge discovery & data mining, pp. 481–490, 2018.

62

[53] S. Cao, N. Yang, and Z. Liu, “Online news recommender based on stacked

autoencoder,” in 2017 IEEE/ACIS 16th International Conference on Computer and

Information Science (ICIS), pp. 721–726, IEEE, 2017.

[54] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, “On deep learning for trust-aware

recommendations in social networks,” IEEE transactions on neural networks and

learning systems, vol. 28, no. 5, pp. 1164–1177, 2016.

[55] Y. Pan, F. He, and H. Yu, “Trust-aware collaborative denoising auto-encoder for top-

n recommendation,” arXiv preprint arXiv:1703.01760, 2017.

[56] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua, “Attentive collaborative

filtering: Multimedia recommendation with item-and component-level attention,” in

Proceedings of the 40th International ACM SIGIR conference on Research and

Development in Information Retrieval, pp. 335–344, 2017.

[57] Y. Tay, A. T. Luu, and S. C. Hui, “Multi-pointer co-attention networks for

recommendation,” in Proceedings of the 24th ACM SIGKDD international

conference on knowledge discovery & data mining, pp. 2309–2318, 2018.

[58] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R.

Triebel, P. Jung, R. Roscher, et al., “A survey of uncertainty in deep neural networks,”

arXiv preprint arXiv:2107.03342, 2021.

[59] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify

classification uncertainty,” Advances in neural information processing systems, vol.

31, 2018.

[60] A. Malinin and M. Gales, “Predictive uncertainty estimation via prior networks,”

Advances in neural information processing systems, vol. 31, 2018.

63

[61] M. Raghu, K. Blumer, R. Sayres, Z. Obermeyer, B. Kleinberg, S. Mullainathan, and

J. Kleinberg, “Direct uncertainty prediction for medical second opinions,” in

International Conference on Machine Learning, pp. 5281–5290, PMLR, 2019.

[62] T. Ramalho and M. Miranda, “Density estimation in representation space to predict

model uncertainty,” in International Workshop on Engineering Dependable and

Secure Machine Learning Systems, pp. 84–96, Springer, 2020.

[63] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson, “A simple

baseline for bayesian uncertainty in deep learning,” Advances in Neural Information

Processing Systems, vol. 32, 2019.

[64] K. Osawa, S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R.

Yokota, “Practical deep learning with bayesian principles,” Advances in neural

information processing systems, vol. 32, 2019.

[65] M. Leutbecher and T. N. Palmer, “Ensemble forecasting,” Journal of computational

physics, vol. 227, no. 7, pp. 3515–3539, 2008.

[66] W. S. Parker, “Ensemble modeling, uncertainty and robust predictions,” Wiley

Interdisciplinary Reviews: Climate Change, vol. 4, no. 3, pp. 213–223, 2013.

[67] G. Wang, W. Li, S. Ourselin, and T. Vercauteren, “Automatic brain tumor

segmentation using convolutional neural networks with test-time augmentation,” in

International MICCAI Brainlesion Workshop, pp. 61–72, Springer, 2018.

[68] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren,“Aleatoric

uncertainty estimation with test-time augmentation for medical image segmentation

with convolutional neural networks,” Neurocomputing, vol. 338, pp. 34–45, 2019.

64

[69] L. Zhang and Y. Piao, “Crf-based figure/ground segmentation with pixel-level sparse

coding and neighborhood interactions,” Journal of information and communication

convergence engineering, vol. 13, no. 3, pp. 205–214, 2015.

[70] N. Plath, M. Toussaint, and S. Nakajima, “Multi-class image segmentation using

conditional random fields and global classification,” in Proceedings of the 26th

annual international conference on machine learning, pp. 817–824, 2009.

[71] T. Liu, X. Huang, and J. Ma, “Conditional random fields for image labeling,”

Mathematical Problems in Engineering, vol. 2016, 2016.

[72] Z. Yun-tao, G. Ling, and W. Yong-cheng, “An improved tf-idf approach for text

classification,” Journal of Zhejiang University-Science A, vol. 6, no. 1, pp. 49– 55,

2005.

[73] F. M. Couto, M. J. Silva, and P. M. Coutinho, “Finding genomic ontology terms in

text using evidence content,” BMC bioinformatics, vol. 6, no. 1, pp. 1–6, 2005.

[74] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural

networks,” in International conference on machine learning, pp. 1321– 1330, PMLR,

2017.

[75] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnnscrf,”

arXiv preprint arXiv:1603.01354, 2016.

[76] A. Graves, S. Fern´andez, and J. Schmidhuber, “Bidirectional lstm networks for

improved phoneme classification and recognition,” in International conference on

artificial neural networks, pp. 799–804, Springer, 2005.

65

[77] L. Derczynski, E. Nichols, M. van Erp, and N. Limsopatham, “Results of the

wnut2017 shared task on novel and emerging entity recognition,” in Proceedings of

the 3rd Workshop on Noisy User-generated Text, pp. 140–147, 2017.

[78] J. Bos, V. Basile, K. Evang, N. J. Venhuizen, and J. Bjerva, “The groningen meaning

bank,” in Handbook of linguistic annotation, pp. 463–496, Springer, 2017.

[79] “pytorch-NER.” https://github.com/cswangjiawei/pytorch-NER?fbclid=

IwAR3r4YMbVrv1TWaRPtqscJI3HyEXwUV1vhoAARYW0Co2YRDD9l_rng35E

Os, 2020. [Online; accessed 9-November-2022].

[80] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,

R. Louf, M. Funtowicz, et al., “Huggingface’s transformers: State-ofthe-art natural

language processing,” arXiv preprint arXiv:1910.03771, 2019.

66

CURRICULUM VITA

Prianka Banik

Prairie View A&M University
Department of Computer Science Phone: (832) 416-9488
P.O. Box 519, Prairie View, 77446 Email: prianka.banik.buet@gmail.com

Education

Prairie View A&M University, USA
Masters of Science in Computer Science · (Present, expected graduation date Dec’22)

Bangladesh University of Engineering and Technology, Bangladesh Bachelor of
Science in Computer Science and Engineering · (2013)

Experience
Software Engineer, Mobile Lab 2,Samsung R&D Institute of Bangladesh, Dhaka
(August 1, 2013 - August 31, 2015)

Technical Skills
Languages : Python, C++, Java

Database : MySQL

Deep Learning Frameworks : Pytorch

Publications
Banik P, Dong X, Qian L, Li L, Enhancing Prediction Reliability of Deep Learning
by Data Confidence for Recommendation Systems: A Case Study on Named Entity
Recognition, Under Preparation, 2022.

Naha S, Xiao Q and Banik P and Reza M A, Crandall, D J. Part segmentation of novel
quadruped animals using keypoint guidance. In IEEE Winter Conference on
Applications of Computer Vision (WACV), 2021.

Rahman S, Banik P, Naha S. LDA based paper currency recognition system using
edge histogram descriptor. In 2014 17th International Conference on Computer and
Information Technology (ICCIT) 2014 Dec 22 (pp. 326-331). IEEE.

	Enhancing Prediction Reliability Of Deep Learning By Data Confidence For Recommendation Systems: A Case Study On Named Entity Recognition
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	1.1 Research Background and Recommendation Systems
	1.2 Challenges
	1.3 Method
	1.3.1 Model Confidence
	1.3.2 Data Confidence
	1.3.3 NER as a Practical Application

	1.4 Programming Language
	1.5 Thesis Outline

	RELATED WORKS
	2.1 Feature Extraction of Text Data
	2.1.1 Word Embedding
	2.1.2 Character Embedding

	2.2 Deep Neural Networks
	2.2.1 CNN
	2.2.2 Character Embedding CNN Model
	2.2.3 LSTM
	2.2.4 BERT

	2.3 Deep Learning based Recommendation Systems
	2.4 Confidence Score Estimation of Deep Neural Networks
	2.5 Data Confidence

	METHODOLOGY
	3.1 Approaches to Address the Problem
	3.2 Learning Model Prediction Confidence
	3.3 Data Confidence
	3.4 Prediction Reliability
	3.5 Combining Model Confidence with Data Confidence

	CASE STUDY ON NAMED ENTITY RECOGNITION
	4.1 Task Definition: NER Recommendation
	4.2 Model Confidence for NER
	4.2.1 CNN
	4.2.2 CNN with Character Embedding
	4.2.3 LSTM
	4.2.4 LSTM with Character Embedding
	4.2.5 BERT

	4.3 Data Confidence for NER
	4.4 Combining Data Confidence with Model Confidence for NER Pre-diction Reliability Estimation

	EXPERIMENTAL RESULT ANALYSIS
	5.1 Datasets
	5.1.1 WNUT’17
	5.1.2 GMB

	5.2 Evaluation Metrics
	5.2.1 Total Entity Coverage(TEC)
	5.2.2 Confusion Matrix

	5.3 Coding and Experiment Settings
	5.4 Result Analysis
	5.4.1 TEC Performance and Comparison
	5.4.2 Confusion Matrix Performance and Comparison

	CONCLUSION
	REFERENCES
	CURRICULUM VITA
	Prianka Banik
	Education
	Prairie View A&M University, USA

	Experience
	Technical Skills
	Publications

Accessibility Report

		Filename:

		P. Banik FINAL Thesis 6.7.23.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 1

		Passed manually: 1

		Failed manually: 0

		Skipped: 0

		Passed: 23

		Failed: 7

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Failed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top
