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ABSTRACT 

Enhancing Prediction Reliability of Deep Learning by Data Confidence for 
Recommendation Systems: A Case Study on Named Entity Recognition 

(May 2023) 

Prianka Banik, B.S., Bangladesh University of Engineering and Technology 
Chair of Advisory Committee: Dr. Lin Li 

Co-Chair of Advisory Committee: Dr. Xishuang Dong 

Reliability is crucial for industrial recommendation systems. Recent advancement 

in deep neural networks has greatly improved the performance of modern 

recommendation systems. However, there is a lack of research on estimating how reliable 

such recommendation systems are in practical scenarios. Due to the blackbox nature of 

the deep learning-based systems, many times additional labor has to be involved to 

examine the prediction accuracy manually, which is costly and time-consuming. To 

address the problem, we propose a novel approach to estimate the model confidence for a 

deep learning-based recommendation system. Our approach utilized data statistics to 

improve the traditional model confidence estimation and maintain the model’s high 

performance. We further proposed a new evaluation metric to properly compare different 

prediction confidence estimation approaches. Experimental results showed that the 

external data statistics could effectively improve the prediction reliability by increasing 

confidence score, which will lead to significant reduction of the time and labors on the 

system’s prediction result examination. 

Index Terms — Prediction Reliability, Recommendation Systems, Deep Learning, 

Data Confidence, Named Entity Recognition  
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CHAPTER 1 

INTRODUCTION 

Thanks to the advancement of data science in the past decade, especially deep 

neural networks, machine learning has been applied to many real-world applications. 

However, a critical understudied aspect about these new machine learning tools is 

estimating the learning model’s prediction reliability. When we use a neural network 

model for prediction (e.g., classifying specific animals from images), we need to know 

how confident the model is about the prediction it has just made (e.g., the image contains 

a dog). This is crucial in industry applications since the learning model may face real world 

data which is sampled from out of the training distribution. If we have a proper way to 

find how reliable the model is, we can either accept the prediction result if the confidence 

is high or intervene if the confidence is low. For classification problems, Softmax 

probability is traditionally used as the estimate of the confidence or reliability score for 

the prediction which is not always reliable (we will discuss Softmax activation function in 

Chapter 2). Thus, in this thesis, we aim at estimating the prediction confidence of deep 

learning models. In the following sections, we will discuss different aspects of this 

research1. 

1.1 Research Background and Recommendation Systems 

This thesis originated from a research project sponsored by Intuit Inc. which 

expects to improve the machine learning models’ prediction reliability for 

 
1 This thesis follows the style of IEEE. 
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recommendation systems on the key entities recognized in electronically scanned financial 

documents. The problem Intuit engineers encountered is that when they applied machine 

learning models for entity recognition, sometimes prediction score of is high on the 

classified entity and sometimes the prediction score is low. It is natural for a machine 

learning model due to its mathematical and optimization-based foundation. However, to 

ensure the entity recognition quality, extra labors are often required to help examine the 

classification results when the prediction score is low. This leads to a significant amount 

of extra time and cost. Thus, how to improve the performance or the prediction confidence 

of the learning systems becomes the key to the research. 

Recommendation systems can be defined as a set of algorithms which can suggest 

relevant information based on data gathered from user interactions [12]. Such systems can 

now be found everywhere in the industry (e.g., Amazon, Yelp, etc.) and they are playing 

important roles in improving customer experiences by providing them with useful and 

relevant information [13, 14, 15]. Due to the popularity and wide usage of the Internet, 

companies and individual entities generate massive amount of contents and sharing them 

with the world. To make most use of these contents, it is crucial to find the most relevant 

contents based on user’s preferences. This is why we are seeing recommendation systems 

everywhere from social networks to online marketing. 

Recommendation systems can be divided into two primary categories, content-

based systems and collaborative filtering based systems [12]. The first category, content-

based recommendations systems [16, 17, 18], focuses on user personal data and finding 

relevant items. On the other hand, the collaborative filtering-based systems match other 
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users information to see the preferences of similar customers to find the relevant item for 

the target user. Collaborative filtering-based approaches [19, 20, 21] include nearest 

neighbor-based approaches, machine learning based classifications systems, and data 

mining techniques etc. Some recent approaches have also combined the two approaches 

to utilize the best of both categories. Also, due to the recent success of deep neural 

networks, they are now widely used in recommendation systems [22, 23, 24, 25, 26, 27]. 

Deep neural networks can understand the input data domain all by themselves by 

extracting rich and semantically meaningful feature representations without any need of 

hand-crafted features. Also, they tend to work better when a lot of training data is available, 

which makes them extremely useful for developing recommendation systems [12]. 

Although many works have been done to improve the effectiveness of 

recommendation systems, the study of estimating the systems’ reliability is still 

insufficient [28, 29, 30], making this research timely, needed, and important. 

1.2 Challenges 

A major problem of the existing deep learning-based recommendation systems is 

that they tend to be overconfident in the predictions. This is due to several components in 

the models and the training pipelines such as Softmax and Batch Normalization. For such 

classification systems, Softmax is often used as the last activation layer which provides a 

probability score for the winning class. It is a common practice to use this probability score 

as a confidence estimation of how reliable the model is about its predictions. However, 

Softmax sometimes produces high confidence values when the prediction is incorrect or 

when the data is out of distribution. Similarly, it often produces low confidence values 



4 

 

when the prediction is correct. Due to these issues, the Softmax probability value of the 

predicted class cannot be considered as a reliable estimation of the model’s actual 

confidence. Understanding how reliable a model predicts is critical in an industrial setting. 

While developing an automation system, if we can understand when a model is not 

confident about its predictions, we can intervene and inspect that particular occurrence. 

This will make the system more reliable and practical for industrial use. 

1.3 Method 

In this thesis, we investigate the problem of estimating model’s prediction 

confidence for deep learning-based classifications systems and propose a novel approach 

to solve this problem. We started with the traditional approach of using Softmax 

predictions from a deep neural network based classifier as the confidence estimation and 

then augmented it by incorporating a novel data statistics term which increased the 

confidence score when the prediction was correct and similarly lowered the confidence 

score when the prediction was incorrect. 

 1.3.1 Model Confidence 

Following the common approach of regular deep learning-based classification 

systems, we also used a Softmax activation function at the end of the model. The Softmax 

activation function takes an input vector of logistic scores generated by the model which 

has the same dimension as the number of classes in the dataset. Then the Softmax function 

generates a probability score for each of the classes by normalizing the exponential of the 

input values. We considered the class with highest Softmax score as the predicted class 

and the corresponding Softmax value as the model confidence estimation. 
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 1.3.2 Data Confidence 

As we have discussed above, the traditional way of estimating model confidence 

using Softmax scores may produce unreliable confidence scores. Thus, we introduced an 

extra term which we call the data confidence and incorporate it with the model confidence 

to predict the final prediction confidence score. The data confidence term is calculated 

based on the data statistics of individual items in the dataset. We designed the data 

confidence term in such a way so that for highly frequent items, we got a lower data 

confidence score and for less frequent items, we got higher data confidence scores. We 

used a linear interpolation to combine the model and data confidence scores. 

 1.3.3 NER as a Practical Application 

To show that the proposed approach can provide more reliable estimation of model 

prediction confidence score, we picked a practical application called, Named Entity 

Recognition (NER), for verification. NER takes unstructured text data and assigns each 

text token to a predefined category of named entity. This is useful for industry which is 

trying to make sense of unstructured text data in the wild using automated systems. It is 

the core of this Intuit’s project and an essential task in natural language processing. 

Accordingly, we proposed a new evaluation metric to correctly quantify the performance 

of a confidence estimation system. With extensive experiments, we have shown that the 

approach performed significantly better than the traditional approach of estimating model 

confidence for NER task. 
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1.4 Programming Language 

All experiments conducted in this research were implemented in Python which is 

a popular computer programming language for machine learning. Python is open source. 

Thus, we did not need to buy any commercial license for developing the methods in 

Python. From the native Python libraries, we have used NumPy for mathematical 

operations, Panda for reading and writing data files and IPDB for debugging purposes. 

The approach is based on deep neural networks which the native Python libraries do not 

support. Thus, we have used PyTorch library as an external deep learning framework [31]. 

The syntax of PyTorch is similar to NumPy. PyTorch provides easy to develop deep neural 

networks as well as training and evaluation packages. PyTorch supports CUDA based 

GPU operations which were essential for training the models swiftly and observe the 

results. 

1.5 Thesis Outline 

The outline of this thesis is as follows: in Chapter 2, we discuss the existing works 

on natural language processing, deep neural networks, recommendation systems, 

confidence score estimation of deep neural networks, and how data statistics can be used 

to estimate confidence scores. We focused on the relevant technologies and methods which 

are explored in the study and provided the context and detailed description of these 

approaches. In Chapter 3, we give a general idea about the proposed approach. We 

highlight the problems of current approaches for reliability score estimation for deep 

neural networks and discuss how data statistics-based information can help to further infer 

a more reliable prediction confidence score. In Chapter 4, we describe the details of the 
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approach and the models that we have used to combine the deep learning model based 

prediction confidence and the data statistics based confidence estimation to generate a 

more reliable confidence estimation for a particular downstream natural language 

processing task - Named Entity Recognition. In Chapter 5, we discuss the experimental 

setup, results, and the findings. Finally, Chapter 6 summarizes the contribution of this 

study and provides useful insights for future work. 
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CHAPTER 2 

RELATED WORKS 

This chapter briefly introduces the technologies used in our research. 

2.1  Feature Extraction of Text Data 

 

Fig. 2.1. Word2Vec word embedding visualization. Fig. taken from [1] 

Extracting semantically meaningful features from training data is the first step for 

any machine learning system. For text mining and natural language processing tasks, the 

data is usually unstructured raw text. To infer meaningful information from the raw data, 

we first need to convert the input to meaningful feature representations. Different aspects 

of textual features can be extracted for Natural Language Processing (NLP) tasks. The 
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state-of-the-art and most frequently used methods are word level and character level 

embeddings. 

 

Fig. 2.2. GloVe word embedding visualization. Fig. taken from [2] 

 2.1.1 Word Embedding 

Word embedding is to extract word level tokens from text input and then generating 

feature representations of these word tokens as the input to the downstream model. The 

feature representations are usually vectors which are either learned using some machine 

learning approach or generated using hand crafted mathematical formulas. These feature 

representations are often referred to as embeddings. Whatever the generation process is, 

the goals of these embeddings or feature representations are to embed grammatical syntax 

and semantics. Such mathematical representations of grammatical meaning can provide 

rich information to perform higher level inference tasks such as part-of-speech 

recognition. There are several existing machine learning systems for extracting word 
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embeddings from text data such as Word2Vec [32] and GloVe. Word2Vec utilizes a neural 

network to either predict a word from its context or predict the context given the target 

word. The first approach is called continuous bag of words (CBOW) and the second 

approach is referred to as skip-gram. In this way, the model learns which words are similar 

in that similar words will have higher vector similarity. GloVe follows a similar approach 

to Word2Vec but also emphasizes on co-occurrence frequencies of words in the training 

text data. Both of these approaches learn meaningful vector representations for words 

which can be seen in the t-SNE (t-distributed Stochastic Neighbor Embedding) plot of the 

word embeddings, as shown in Fig.s 2.2 and 2.1. In Fig. 2.1, we can see that Noah’s sons 

are all in similar locations, as well as word relevant to Egypt. Similarly, in Fig. 2.2, we can 

see similar words such as ham, bacon and so on are positioned closely in the embedding 

space. 

 2.1.2 Character Embedding 

A problem of word level embedding is that if a word is missing in the training data 

or mis-spelled, it will be impossible to extract feature representations for that particular 

word. To solve the problem, finer granularity feature representations are learned from 

characters, which are called character embedding. This embedding contains semantically 

meaningful feature representation for each word. Character embeddings are learned in 

similar fashions such as word embedding by learning the contextual representations of 

each character in the training corpus. Fig. 2.3 shows the t-SNE plot of character 

embedding. Here we can see the number is grouped in the same location where the special 

characters are grouped in another location in the embedding space. Learning such rich 
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embedding is helpful for downstream NLP tasks such as named entity recognition (NER). 

It is a fine-grained approach to learn meaningful feature representation from text data. As 

a character embedding model takes characters as input, it can easily handle out-of-

distribution and mis-spelled words as well as words which had very low frequency in 

training data. This is not possible for models which take words as input. 

 

Fig. 2.3. Character embedding visualization. Fig. taken from [3] 

2.2 Deep Neural Networks 

The main algorithms we studied for prediction reliability enhancement is based on 

deep learning which has been applied to many practical applications today. Over the past 

decade, a good number of deep neural network architectures were designed, featuring 
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different feature extraction and problem-solving strengths (e.g., AlexNet, VGG16, 

GoogLeNET, ResNet, etc.). In the following sections, we will discuss the characteristics 

of the deep neural networks that we studied in this work. 

 

Fig. 2.4. 2D convolutional neural network. Fig. taken from [4] 

 

Fig. 2.5. Depiction of 2D convolution. Fig. taken from [5] 

 2.2.1 CNN 

CNN or convolutional neural networks, as illustrated in Fig. 2.4, are specialized 

models for processing spatial or temporal data. A typical CNN is usually made up of a 
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series of convolutional layers, followed by ReLU activation function and Maxpooling 

layers as can be seen in Fig. 2.5. The main part of a CNN model is the convolutional layer 

which contains learnable kernel matrices which are applied on an input in a sliding window 

manner to generate the next layer output. These kernels are learned through 

backpropagation to extract meaningful feature representations from input data. After each 

convolutional layer, a nonlinear activation function is applied and the most common 

activation function for CNN is rectified linear unit (ReLU), as depicted in Fig. 2.6. Using 

ReLU as activation function helps the model to learn non-linearity while also helping to 

solve the vanishing gradient problem as the activation value after the input greater than 

zero is unbounded. This provides bigger gradient values to train the model effectively. The 

next layer used in CNN is the Maxpooling layer as can be seen in Fig. 2.7. Maxpool 

ensures that the model learns a good summary of the input data while also making the 

input smaller at every step to reduce the computation burden of the whole model. Usually, 

dropout layers (not shown in the Fig.) are added into the network architecture to help 

generalize the model. Finally, for classification CNN models, Softmax activation is used 

at the end to transform the final layer output to class probability vectors. A depiction of 

the Sofmax activation function can be seen in Fig. 2.8. 

 



14 

 

Fig. 2.6. Depiction of 2D ReLU activation function. Fig. taken from [6] 

 

Fig. 2.7. Depiction of 2D maxpooling operation. Fig. taken from [7] 

 

Fig. 2.8. Depiction of the Softmax operation. Fig. taken from [8] 
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Fig. 2.9. Character CNN model. Fig. taken from [9] 

 2.2.2 Character Embedding CNN Model 

The character embedding CNN [9] model is a particular 1D CNN model which 

takes character sequences as input and learns a contextual feature representation or 

embedding for the whole character sequence. Fig. 2.9 shows the character embedding 

CNN model. Before passing to the model, each character is turned into a one-hot encoded 

vector by first generating a vector with all zeros and same size as the alphabet (e.g., 26) 

and then assigning 1 only to the corresponding position of the given character. The 

convolutional layers contain 1D kernels which slide over the character sequence to 

generate the next level output and then like regular CNN model max poling and ReLU 

activation functions are used to learn a single representation for the whole character 

sequence. 
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 2.2.3 LSTM 

LSTM is a form of deep neural network that is specialized in sequential data 

processing such as text, audio, or video. LSTM solves two crucial problems of regular 

recurrent neural networks (RNN). The first problem is the long-term dependency where if 

the input sequence is too long, then regular RNN fails to relate the current term with the 

previous items in the sequence. The second problem is regarding vanishing gradient where 

during backpropagation for long input sequences, the gradient is diminished and as a result 

no real learning can happen. LSTM or long short-term memory networks solve these 

problems by accommodating various memory gates. There are three gates in LSTM, the 

input gate, the forget gate, and the output gate. We depict the inner workings of the three 

gates in a LSTM cell in Fig. 2.10. 

The input gate decides how much information from the current input token should 

be added to the sequence context information. This is useful to include information from 

the important items of the sequence and ignore relatively irrelevant tokens. The forget 

gate, on the other hand, decides which information should be discarded from the context 

to only keep the important information. Finally, the output gate decides how much 

information from the context and current token should be propagated to the current time 

step output. The gates can be mathematically expressed as follows, 

it = σ(wi[ht−1,xt] + bi) (2.1) 

ft = σ(wf[ht−1,xt] + bf) (2.2) 

ot = σ(wo[ht−1,xt] + bo) (2.3) 
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Here, xt indicates the current time step input and the ht−1 indicates the hidden state 

output from the previous LSTM cell. Ct−1 indicates the context vector output from the 

previous time step. σ represents the Sigmoid activation function and tanh represents the 

Tanh activation function. Finally, wi, wf and wo refers to the weights of linear layers 

representing the gates and their corresponding biases are bi, bf and bo respectively. it, ft and 

ot represents current time step output vectors from the input gate, forget gate and output 

gate respectively. Finally, ht and Ct indicate the hidden state output and context output from 

the current time step. By employing these gates, LSTM selectively stores information 

gathered from the inputs at each time steps and stores a semantically meaningful summary 

of the whole sequence in the context vector Ct. These gates allow LSTM to summarize 

much longer sequences compared to regular recurrent neural networks. The activation of 

the forget gate also solves the problem of vanishing gradient during backpropagation by 

remembering that certain information should not be forgotten. For these reasons, we used 

the LSTM model instead of regular RNN models in the work. 

 

Fig. 2.10. LSTM Memory Cell 
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 2.2.4 BERT 

BERT or Bidirectional Encoder Representations from Transformers [33] is a 

modified transformer model to extract rich discriminative feature representations from 

input text data. The main task of the transformer is to transform the input sequence to 

meaningful long-range contextual feature representations, so we can use the learned 

representations for other downstream tasks such as translation from one language to 

another (Figure 2.11), sentence classification, NER etc. 

 

Fig. 2.11. Transformer model. Fig. adapted from [10]. 

The transformer model is based upon an encoder-decoder architecture where the 

encoder part consists of different encoder layers which process each input word and 

produce a feature vector for the corresponding word and then passes it to the decoder layer. 

The inside of the encoder module is two sub-modules: a self-attention layer and a feed 

forward layer which is a regular fully connected layer (Fig. 2.12) 
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Fig. 2.12. Different layers inside Encoder and Decoder. Fig. adapted from [10] 

Each input word first goes through the self-attention layer and then produces the 

next stage feature vector for the corresponding word. For calculating the feature vector, it 

considers all other neighboring words of the current input word. Using the relevant 

contextual words, we can get a more meaningful feature vector for the input word. After 

the Self-Attention layer, the information of the original word may get lost. That is why 

there is a residual connection from the original feature vector to the feature vector 

generated after the Self-Attention layer. After that they are added together and normalized 

to generate the feature representation for the next encoder layer. 

After encoding, the final outputs go to the decoder layer. Decoder network is very 

similar to the encoder network except it has an extra Encoder-Decoder Attention layer, 

which decides which encoder output should get higher weights while decoding. The 

decoder then takes input from the encoder network and can generate a Softmax prediction 

for each individual word as a sequence of predictions (e.g., NER) or just a single prediction 

for the entire input sequence (e.g. Sentiment Classification [34]). 
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BERT uses the transformer model as its base. The model is pre-trained using two 

self-supervised learning tasks. For the first task, it takes a sentence as an input and 

randomly masks some words in the sentence. The model’s goal is to predict the missing 

words. For the second task, it takes two sentences and masks random words in both 

sentences and solves the same problem as before by predicting the missing words. It is 

better than predicting the next or previous word as those tasks will only provide one 

directional learning. But masking random words can have bidirectional contextual 

representation of the input word. These tasks pre-train the model so the model can be used 

for other downstream tasks like NER. 

2.3 Deep Learning based Recommendation Systems 

Deep learning-based recommendation systems refers to the deep neural network 

based approaches where the models can extract semantically meaningful feature 

representation from raw data using only the help of a loss function. The deep learning-

based approaches are now widely used in recommendation systems in the industry [15, 

35, 25]. Zhang et al. [12] provided a comprehensive list of deep learning-based 

recommendation systems when they grouped the systems based on the models used and 

the nature of the input data. 

The simplest form of deep neural networks is based on multilayer perceptron 

networks (MLP). Such models can be used for recommendations systems when the input 

is in the form of a single vector representation. MLP models take the vector as input and 

transform it through multiple layers of neurons to generate the recommendation output. 
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Despite their simplicity, they have been used to process text [36], image [37, 38], audio 

[39], video [35] and network data [40, 41, 42]. 

One of the most used deep neural networks is the CNN. CNNs use convolutional 

kernel-based approach which makes them efficient in terms of number of parameters and 

inference speed. CNNs are mostly famous for visual data recommendation systems such 

as images [43, 44, 45, 46, 47, 48, 49, 50, 51] and videos [52] due to their efficiency and 

capability of learning both local and global information from spatial data. But they have 

also been successfully used to process audio [18], text [22, 23, 24], and recommendation 

systems as well. 

Another popular deep neural network used in recommendation systems are RNN 

models. These models are mostly used to process and recommend sequential data such as 

text data [25, 26, 27]. RNN models take sequence as input and usually use internal 

memories to learn the context of a large sequence for generating recommendations. 

Autoencoders based deep neural networks are also widely used for developing 

recommendation systems [53, 54, 55]. Autoencoder based models usually contains two 

parts, encoder and decoder. The encoder takes an input and learns to project it into an 

embedding space while the decoder takes the embedding as input try to regenerate the 

input. In this way, the autoencoder model can learn powerful feature representations which 

can be used for classification and ranking. 

Finally, attention-based models have emerged as another popular deep neural 

network for recommendation systems. They incorporate an extra attention mechanism to 

focus on only relevant information from input data to make better recommendations. Such 
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systems showed promising results for both spatial [56] and sequential [22, 57] data 

recommendation systems. 

Overall, none of the above approaches targeted the problem of accurately 

estimating the confidence of the model prediction which is a crucial part to make any 

recommendation system reliable and practical for industrial use. 

2.4 Confidence Score Estimation of Deep Neural Networks 

The goal of confidence score estimation approaches for deep neural networks 

(DNN) is to provide the estimate of uncertainty of the model predictions. The existing 

works on DNN confidence score estimation can be divided into several categories [58], 

such as single deterministic methods, Bayesian methods, ensemble methods, and test-time 

augmentation methods. Single deterministic approaches such as [59, 60] use a separate 

module to produce the confidence estimation while training the module end-to-end with 

the original prediction network. Other single deterministic models such as [61, 62] first 

train the original model and then train a separate module to estimate the uncertainty in the 

trained model predictions. Bayesian neural network-based approaches are explored in [63, 

64]. Ensemble networks-based approaches combine multiple networks to better estimate 

the model confidence [65, 66]. Finally, test time augmentation-based approaches [67, 68] 

generate multiple samples from a single test example by performing data augmentation 

and then get the confidence scores of all these samples to get a better measurement of the 

prediction uncertainty. 

Although the above approaches can often estimate the model prediction confidence 

more reliably compared with the traditional approaches, none of them explored the idea 
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of utilizing data statistics to improve the model confidence score estimation approach. In 

this thesis, we have shown that external data statistics-based approaches can significantly 

improve the model confidence estimation. 

2.5 Data Confidence 

There have been very few works to utilize data statistics for directly estimating 

prediction confidence score. Some traditional computer vision-based approaches used 

pixel data statistics to improve model prediction confidence [69, 70, 71]. In the natural 

language processing field, TF-IDF features were used in the context of confidence 

estimation [72]. The most relevant work to the proposed approach is [73]. The authors 

proposed a new data evidence-based approach to produce an independent confidence 

estimation which depends on a input term’s frequency. But none of these approaches 

proposed any efficient way to combine model confidence with data confidence to show 

that they can complement each other and produce a better confidence score. 
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CHAPTER 3 

METHODOLOGY 

In this chapter, we will present the general idea about the proposed approach. A 

case study of the proposed approach on a specific NER task for recommendation systems 

is discussed in Chapter 4. 

3.1 Approaches to Address the Problem 

The Intuit’s research problem, as mentioned in Chapter 1.1, can be tackled from 

two approaches. The first is to design novel machine learning models to achieve better 

classification performance, including higher accuracy and higher prediction scores on the 

real entities. Ideally, if a learning model can constantly achieve 100% prediction accuracy, 

the problem will be solved whether the prediction scores on the entities are low or high. It 

is the goal of the machine learning, but very challenging for the current statistical and 

optimization-based learning model design, especially when the dataset is limited or the 

problem is complicated (e.g., natural language processing). Over the past decade, 

computer scientists have devised sophisticated deep learning architectures which can often 

achieve high prediction accuracy, but these models are still far from perfection. Further 

improving the designs will need the synergy of new datasets, breakthrough of modeling 

theory, and higher computation power. The second way to deal with the problem is to fully 

utilize the latest deep learning techniques for prediction but enhancing the distinction of 

the prediction scores (i.e., increasing the classification confidence of the real entities). This 

method may not drastically improve the model’s prediction performance, but it will 
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effectively address the problem from the perspective of practical implementation, as we 

only need to pay attention to the data with low prediction scores, the more the data 

receiving high prediction confidence, the fewer the extra labors and the less the extra time 

will be needed for manually examining the prediction accuracy. Therefore, more cost will 

be saved for the business running. 

In this thesis, the efforts focused on the second approach. It should be noted that 

while we strengthened the classification confidence score, we also tried to improve the 

learning model’s prediction performance (i.e., accuracy) or at least keep the learning 

model’s performance as competitive as those of the state-of-the-art deep learning models. 

3.2 Learning Model Prediction Confidence 

Almost all deep neural network-based classifications systems (e.g., CNN, LSTM, 

Transformer, etc.) follow a similar pipeline. First, the input is processed by a feature 

extractor backbone which extracts semantically meaningful feature representations from 

the given input. The next step is to pass the feature representation through a classifier 

network, which turns the feature representation into a logit vector with the same size as 

the number of target classes. These logit values can be any real number. The next step in 

the pipeline is a Softmax activation function, which transforms the unbound logit values 

to probability values ranging from zero to one and the sum of all the class probability 

values is one. The Softmax activation function can be described as follows: 

  (3.1) 
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where zk indicates the logit value for class i and K is the number of target classes. The class 

with the maximum Softmax score is considered as the predicted class and the 

corresponding Softmax score is considered as the model’s confidence estimation, i.e., MC 

for the given instance w is represented by: 

 MC(w) = max σ(zk) (3.2) 
1≤k≤K 

3.3 Data Confidence 

Besides considering the model’s prediction score as the confidence or reliability 

estimation, we can also use other source of information to further improve the confidence 

estimation of the predicted results. In the pre-deep learning era, it was common to use 

hand crafted data statistics-based features for prediction confidence estimation in 

computer vision model [69, 70, 71]. TF-IDF based approaches have been used in natural 

language processing tasks for relating confidence estimation with other metrics such as 

recall and precision [72]. Another common approach in the natural language processing 

(NLP) field is to consider the rare items with higher importance compared to the items 

which occur more frequently. This is utilized in [73] to calculate a new data statistics-

based confidence estimation, WordEC(w) or the evidence content of a word w in a text 

corpora, which can be formulated as follows: 

 WordEC(w) = −log(freq(w)/MaxFreq) (3.3) 

where freq(w) indicates the frequency of the word w and MaxFreq is the frequency of the 

word with the most number of occurrences. Here a word with high occurrence frequency 
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will have lower WordEC(w) value where an item with low occurrence frequency will have 

higher WordEC(w) score. 

This intuitive approach of estimating confidence score from data statistics can be 

complimentary to deep neural network-based model confidence scores and be used to 

enhance the performance of prediction confidence estimation. 

3.4 Prediction Reliability 

As discussed before, a reasonable way to estimate a deep neural network-based 

classification system’s prediction confidence score is to use the Softmax probability of the 

highest scoring class. But this approach can provide unreliable confidence estimation due 

to several components in the modern deep neural networks. Calculating confidence scores 

in this way often produces high confidence scores for incorrect predictions while 

producing low confidence values for correct predictions. Thus, it is important to 

investigate new ways to improve the confidence score estimation by correcting the issues 

of model confidence estimation approach. 

3.5 Combining Model Confidence with Data Confidence 

To solve the drawbacks of the straightforward approach to calculate prediction 

confidence score, we propose to systematically combine the model confidence term with 

the data confidence term. We propose a weighted linear interpolation of the data and model 

confidence to calculate the new confidence score which we name word confidence, 

WC(wi), 

 WC(wi) = α ∗ DC(wi) + (1 − α) ∗ MC(wi) (3.4) 
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Here MC(wi) indicates the Softmax probability score of the model prediction for the input 

term wi. The intuition is that combining the data confidence term with the model 

confidence will help to boost the confidences of correct model predictions which would 

otherwise be lower than a given threshold. 
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CHAPTER 4 

CASE STUDY ON NAMED ENTITY RECOGNITION 

To evaluate the effectiveness of the proposed method, we applied it to a case study 

of the Named Entity Recognition (NER) problem. NER refers to the approach to identify 

the key elements from a given text data (i.e., a sequence of word tokens). The text data 

can come from electronic documents (e.g., scanned forms) or images which require an 

extra pre-processing step such as OCR. An illustration of the NER procedure is shown in 

Fig. 4.1. 

 

Fig. 4.1. Flowchart of Named Entity Recognition with confidence estimation. 

4.1 Task Definition: NER Recommendation 

There are several practical use cases of NER for natural language processing and 

biomedical data analyzing tasks. For example, companies like Intuit use NER technology 

to extract meaningful information from handwritten paper forms to populate their digital 

versions. Currently deep learning-based models such as LSTM, CNN, BERT, etc. have 

been successfully used to solve the NER problem. While these models have outperformed 
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the previous traditional models by a high margin, a major limitation of the current deep 

learning-based models is that it is often difficult to estimate the reliability of the model’s 

predictions. This is a major issue especially for real world applications where it is 

important to know how reliable the model prediction is so that humans can intervene in 

the unreliable prediction scenarios. 

 

 

Fig. 4.2. Depiction of NER with confidence estimation 

Fig. 4.2 shows the pipeline for a NER system. From the machine learning 

perspective, NER task can be considered as a multi-class classification task where the 

classes are the predefined entity categories. Like regular deep learning based multiclass 

classification models, the common approach for predicting the entity category of a token 

is to first pass it through a feature extractor following a classifier module. The output of 

the classifier is a logit vector which has the same size as the number of predefined 

categories. The logit vector is then passed to a Softmax activation function to generate a 

Softmax value for each named entity category in the dataset. The class with the maximum 

Softmax value is considered as the predicted category and the corresponding Softmax 

value is considered as the estimated model confidence. This is depicted in Fig. 4.2. As 
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discussed in previous chapters, estimating confidence value in such way can produce 

unreliable confidence estimation as Softmax function does not provide a well calibrated 

confidence measurement. Moreover, several other factors of modern deep neural networks 

such as depth, width, weight decay, and Batch Normalization can also affect the predicted 

confidence score [74]. In the proposed approach, we fine-tuned the prediction confidence 

scores generated by deep neural networks for NER prediction task by leveraging data 

statistics and show that the generated confidence score is a better estimation of the model’s 

true reliability score. 

4.2 Model Confidence for NER 

For the NER task, we have experimented with several deep learning models 

suitable for the sequence classification problem. In this section, we discuss the different 

models used to conduct the experiments. All of these models provide Softmax probabilities 

for the predicted class for each input token which we consider as the model confidence for 

that particular token. We have used five different models for the NER task, namely CNN, 

CNN with character embedding, LSTM, LSTM with character embedding [75], and the 

BERT [33] model. Below we describe these models in detail. 

 4.2.1 CNN 

The CNN model consists of an input word embedding CNN module which takes 

each word as input and then transforms them into feature vectors, a CNN context encoder 

to learn rich feature representations from word embeddings, and a multilayer perceptron 

and Softmax tag decoder module. The detailed architecture of the CNN model can be seen 

in Fig. 4.3. Each convolutional block in the model consists of a convolutional layer, a 
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ReLU activation layer, a Dropout layer for regularization, and finally a Batch 

Normalization layer for 1D data. 

The CNN model has six layers. Each convolutional layer in the convolutional 

blocks contains a 3x1 size kernel with one padding and one stride. The word embeddings 

are vectors of real values with a length of 300. The first fully connected layer generates a 

100-size feature vector and the second fully connected convolutional layer generates 200 

size feature vectors. 

 

Fig. 4.3. The CNN model 

 4.2.2 CNN with Character Embedding 

The CNN with character embedding [9] model is similar to the CNN model except 

it uses an extra CNN based character embedding model besides the word embedding 

model. Fig. 2.9 shows the character embedding CNN model. The model takes the whole 
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sequence as an input and applies 1D convolution on the character sequence. In this way, 

we can generate features directly from the character sequence rather than starting from 

words. The character embedding CNN model has kernel size 3 with padding 1 and stride 

1. It takes a series of one-hot encoded vectors each representing a character. The one-hot 

encoding vector has a length of 27 (26 for the alphabet and 1 for space). The character 

embedding CNN then converts each of these one-hot encoded vectors to a 50-dimensional 

feature representation. Fig. 4.4 shows the architecture of the CNN model with character 

embedding. 

 

Fig. 4.4. CNN with Character Embedding model 

 4.2.3 LSTM 

The LSTM model used in this research is a bidirectional LSTM [76] for learning 

input word embedding as well as contextual features representation along with a multi-

layer perceptron and Softmax tag decoder. The model is depicted in Fig. 4.5. 
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The first fully connected layer takes 300-dimensional word embedding and 

converts them to 100-size feature vectors. Each LSTM cell in both the forward LSTM and 

backward LSTM model takes 100 size feature vector and again transforms it to a new 100-

size feature vector representation. 

 

Fig. 4.5. LSTM model 

 4.2.4 LSTM with Character Embedding 

The LSTM with character embedding model is very similar to the LSTM model. 

Similar to the CNN with Character Embedding model, it uses an extra CNN based 

character encoding module for input feature learning. The details of this model are shown 

in Fig. 4.6. 
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Fig. 4.6. LSTM with Character Embedding model 

 4.2.5 BERT 

In this project, we used the BERT model pretrained on large scale text corpora and 

then used it as a feature extractor. We then added a multi-layer perceptron with a Softmax 

layer to build the tag decoder and trained it to generate the tag predictions. The BERT 

model contains 24 hidden layers and it takes case-sensitive input. The details of this model 

can be seen in Fig. 4.7. 
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Figure 4.7. BERT model 

For all the models, we use the Softmax activation at the end to get the model’s 

confidence. The Softmax activation for the NER task can be described as follows: 

  (4.1) 

where w is a given input token, zi indicates the logit vector generated for the ith entity by 

the model for token w and K indicates the number of target entities. Then, we can formulate 

the model confidence for NER for the given token w, MC(w) as follows: 

 MC(w) = max σw(zk) (4.2) 
1≤k≤K 

4.3 Data Confidence for NER 

As for NER, the dataset contains a sequence of words or tokens. We used the 

following equation to calculate the data confidence of each token in the text corpus. 

 DC(wi) = −log((freq(wi) + 1)/freqmax) ∗ β (4.3) 
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where freq(wj) indicates the frequency of the jth term wj in the dataset S and freqmax = 

maxjϵNfreq(wj), and β is the min-max normalization factor. The data confidence value 

ranges from zero to one. Here, we first find the frequency of each individual term in the 

dataset and then use it to calculate the corresponding data confidence score so that more 

frequent words get lower scores, and less frequent words get higher data confidence 

scores. 

4.4 Combining Data Confidence with Model Confidence for NER Pre-diction 

Reliability Estimation 

Although we proposed to combine the data confidence with model confidence for 

enhancing prediction reliability, empirically we found that the straightforward approach 

as shown in equation 3.4 does not always work well. This is because the data confidence 

DC may not always align with model confidence MC and therefore, simply combining 

them linearly cannot constantly provide the desired confidence estimation. As such, we 

considered several specific cases and utilized the MC and DC appropriately for each of 

these cases. The goal was to get higher confidence, when the model prediction is an 

‘Entity’ and the data confidence was also high. On the other hand, we wanted to reduce 

the confidence for the cases where the data confidence was low and the model prediction 

was not an entity as well. Hence, we revised the approach by using DC and MC to calculate 

the word confidence WCg according to different recognition conditions, which is as 

follows: 
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𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∉ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) < 𝛾𝛾
𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) < 𝜌𝜌
𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 ∉ 𝜀𝜀 & 𝐷𝐷𝑊𝑊(𝜔𝜔𝑖𝑖) > 𝛾𝛾

 

Where E indicates the set of the classes which belong to the ‘Entities’ and not to the ‘Other’ 

categories, and ρ and γ are two thresholds with values in the range [0,1]. In this equation, 

ρ will be always higher than γ. 

The first case considers the scenario when the data confidence is higher than ρ and 

the predicted class is an ‘Entity’. In this case, we used the linear interpolation as shown in 

equation 3.4. This is because here we wanted to increase the confidence score so that the 

confidence for correct predictions gets higher. For the second case, we considered if the 

prediction is ‘Other’ and the data confidence is also lower than γ. Then we first inverse the 

model confidence by subtracting it from 1 and then further lowered it by multiplying with 

DC. Thus, if we had higher model confidence for non-entities or incorrect predictions, we 

would lower the confidence score. The third case is that the prediction is an ‘Entity’ class 

but the data confidence DC was actually smaller than ρ. In such a case, we cannot rely on 

data confidence and simply use the model confidence MC as the confidence score. Finally, 

for the fourth case, we inversed the model confidence, MC to compute the final confidence 

score since the prediction is not ‘Entity’ and thus either the prediction is incorrect or the 

actual class for the input is ‘Other.’. In that case, we wanted to reduce the confidence score 

if the model confidence was high (incorrect prediction of ‘Other’ class) and increase the 

confidence score if the model confidence was low (correct prediction of ‘Other’ class).  
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CHAPTER 5 

EXPERIMENTAL RESULT ANALYSIS 

5.1 Datasets 

In this research, we used two public datasets: WNUT’17 [77] and GMB [78] to 

evaluate the proposed method. The datasets contained text data with corresponding BIO 

(beginning, inside, outside) annotations. BIO annotation is a common format for tagging 

words in the corpus for several downstream tasks (e.g. Named Entity Recognition, token 

classification, etc.). The ‘B-prefix’ before a tag means the beginning of a chunk, ‘I-prefix’ 

before a tag means the inside tag of a chunk, and ‘O’ means the current tag is a outside tag 

of a chunk. ‘O’ tag is used for the words which are not considered as entity or chunk. In 

the following two sections, we will discuss the details of these two datasets. 

 5.1.1 WNUT’17 

This dataset was introduced by Derczynski et al. [77]. In WNUT’17, the training 

data was taken from around 1000 annotated tweets. The development data was taken from 

YouTube and the test data split was drawn from Twitter, YouTube, Reddit and Stack 

Exchange. Different sources were chosen so that it contained not only noisy user-generated 

data, but also included longer text up to 140 characters with different writing styles and 

characteristics. The whole dataset was annotated using six entity types as can be seen in 

Table 5.1. After applying BIO annotation format, there were a total of 13 NER tags in the 

dataset including the ‘Other’ or ‘O’ tag. 
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TABLE 5.1. BIO FORMAT OF ENTITY TYPES IN THE WNUT’17 DATASET 
  Categories    Total 

NER type Person Location Product Creative-work Group Other 6 

BIO format B-person B-location B-product B-creative-work B-group O 11 

 I-person I-location I-product I-creative-work I-group   

 
 

TABLE 5.2. BIO FORMAT OF ENTITY TYPES IN THE GMB DATASET 

 Categories Total 

Geographical 
NER type Organization Person 

Entity 
Geopolitical 
 Time indicator Artifact Event 

Entity 
Natural 
 Other 9 
Phenomenon 

BIO format B-geo B-org B-per B-gpe B-tim B-art B-eve B-nat O 17 
 I-geo I-org I-per I-gpe I-tim I-art I-eve I-nat 

  

 5.1.2  GMB 

Another large-scale NER dataset that was used in this project was the ‘Groningen 

Meaning Bank’ or GMB dataset [78]. The contents of this dataset were taken from Voice 

of America (VOA) together with documents from the MASC dataset and the CIA World 

Factbook. The updated version of the dataset was released on May 14, 2020. This dataset 

can be used for named entity recognition or Part-of-Speech (POS) tagging, as well as to 

generate new text features. A total of eight entities were used to annotate the whole dataset, 

leading to 17 NER classes including ‘Other’ after using BIO annotation. A list of the 17 

NER classes are shown in Table 5.2 

5.2 Evaluation Metrics 

To evaluate the proposed approach, we designed a new metric called Total Entity 
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Coverage (TEC) for measuring the ratio of instances with high confidence scores. Besides 

that, we also used confusion matrices to visualize the prediction performance on individual 

entity classification. 

 5.2.1 Total Entity Coverage(TEC) 

As explained in Chapter 3, the goal of this research was to produce a high 

confidence score when the input token is an ‘Entity’ and the model’s entity prediction is 

correct. To evaluate the confidence scores estimated by the model, we introduced a new 

metric–TEC. TEC produces higher value when the predicted confidence score is higher 

than a predefined threshold and the prediction is a correct entity. To better describe TEC, 

we first introduce the following three terms: 

t: Threshold of prediction confidence c[i]: Confidence of prediction for ith token 

St: Set of predictions with confidence higher than t 

Now we can formulate TEC for a given entity as follows: 

  (5.1) 

where Nc is the number of samples in St whose predictions are entities, and the predictions 

are correct; and Ne is the number of samples whose ground truth is entity in the entire test 

dataset. 

We can further describe Ne as follows: Ne = the number of samples in St whose 

predictions are correct + samples in St whose predictions are incorrect + samples that are 

not in St but the predictions are correct + samples that are not in St and the predictions are 

incorrect. 
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Fig. 5.1. Total entity coverage (TEC) 

Fig. 5.1 shows the concept of TEC. Here t is the threshold of prediction confidence. 

The diamonds in the Fig. depicts the entity tokens. Specifically, the blue diamonds are the 

samples in St whose entity predictions are correct and the corresponding confidence scores 

are higher than the threshold t. The grey diamonds are the samples in St whose predictions 

are incorrect, but the confidence scores are higher than the threshold t. The red diamonds 

are the samples that are not in St but having correct entity predictions. Finally, the black 

diamonds indicate the samples that are not in St and the corresponding entity predictions 

are incorrect. 

Larger TECentity value means that more tokens with correct entity predictions are 

scored above the confidence threshold t. On the other hand, lower TEC score indicates 

either correct entity predictions got lower confidence scores, or incorrect predictions got 

higher confidence scores. The goal was to generate more accurate confidence estimation 

so that we can achieve higher TEC value than the baseline approach. 
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Fig. 5.2. Confusion matrix for multi-class classification. Fig. taken from [11] 

 5.2.2 Confusion Matrix 

Both WNUT’17 and GMB contain multiple entity categories. Thus, we used 

Confusion Matrix to visualize the performance of the approach and the baseline approach 

for each category. An example confusion matrix for multi-class classification problem is 

shown in Fig. 5.2. Each entry of the matrix represents the number of instances that the 

model predicted with regard to the class marked by the column heading. 

The row heading of an entry indicates the ground truth class of the instance(s). The 

entries in the matrix are color-coded based on their prediction correctness (i.e., correct 

predictions are in green and incorrect predictions are in gray). 

5.3 Coding and Experiment Settings 

All experiments were conducted on a single NVIDIA V100 TENSOR CORE GPU. 

Besides using the pre-developed libraries provided by Python and PyTorch, we leveraged 
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peer researchers’ latest work and their source code shared through GitHub to improve the 

implementation efficiency. 

For training the CNN and LSTM models, we used a learning rate of 0.015 and 

batch size 10. Each model was trained 100 epochs. For optimization we used stochastic 

gradient descent optimizer provided by the PyTorch library. The CNN, LSTM, and the 

character embedding models were directly adapted from [79]. For training the BERT 

model we used a learning rate of 5e−5 and batch size 32. We trained the model for 100 

epochs and for optimization we have used Adam optimizer. The BERT Large-cased model 

was adapted from Hugging Face PyTorch Transformer library [80]. A code snippet 

depicting the proposed model is shown in Fig. 5.3. 

 

Fig. 5.3. Code snippet of the linear interpolation of model and data confidence. 

For evaluation, all the experiments were executed five times and the average was 

reported in the results. For inference latency, the approach adds negligible (less than a 

millisecond) overhead by adding the data confidence term with the model confidence, 

making it suitable for practical use cases. 



45 

 

5.4 Result Analysis 

In this section, we present the experimental results and the findings by applying 

the proposed approach on the two datasets WNUT’17 and GMB. To evaluate the roles 

played by the model confidence and the data confidence in the combined approach, we 

used three different α values: 0.95, 0.9, and 0.85 and two thresholds, 0.85 and 0.9 to 

calculate TEC. We considered the model-confidence-only based approach as the baseline 

and compared its results with the proposed approach where we calculated an improved 

confidence score by combining the model and data confidence. 

 5.4.1 TEC Performance and Comparison 

Table 5.3 shows the TEC value for five models, CNN, CNN with character 

embedding, LSTM, LSTM with character embedding and BERT. As shown in the Table, 

the approach performs significantly better than the baseline - model confidence based 

approach in terms of TEC score (higher is better) for all the models. The biggest 

improvement can be seen for the CNN with Character embedding model where the 

approach achieved 44 percent improvement over the baseline approach. The optimum 

confidence threshold was 0.85 as this value consistently gave better scores for all the 

models. We have also found that the proposed approach was sensitive to the α value and 

the best α value for all the models was 0.95. Similarly, we have empirically found the best 

value for ρ is 0.85 and for γ the value is 0.2. One interesting observation from Table 5.3 is 

that for the baseline approach, BERT produced the highest TEC. For the approach, 

however, LSTM with character embedding model produces the highest TEC value, even 

though the difference between BERT and LSTM with character embedding was minor. 
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TABLE 5.3. TEC VALUES FOR WNUT17 DATASET WITH ρ = 0.85 AND γ = 0.2 

Model Threshold Model 
Confidence 

Data + Model Confidence 
   

α = 0.95 α = 0.9 α = 0.85 
CNN 0.85 0.222 0.338 0.336 0.329  

0.9 0.2 0.308 0.304 0.293 
CNN + Character embedding 0.85 0.266 0.384 0.384 0.381  

0.9 0.233 0.353 0.349 0.340 
LSTM 0.85 0.333 0.387 0.387 0.387  

0.9 0.313 0.363 0.362 0.361 
LSTM + Character embedding 0.85 0.302 0.410 0.409 0.408  

0.9 0.278 0.384 0.382 0.381 
BERT 0.85 0.377 0.409 0.409 0.408  

0.9 0.374 0.405 0.404 0.404 
 

Table 5.4 shows the TEC values for five models CNN, CNN with character 

embedding, LSTM, LSTM with character embedding, and BERT model for the GMB 

dataset. Similar to the WNUT’17 dataset, the approach again performs better than the 

baseline approach. The optimal confidence score threshold and the α value are consistent 

with the Wnut’17 dataset. One interesting finding from this Table is that the difference 

between the baseline model and the proposed approach is lower for the GMB dataset 

compared to the WNUT’17 dataset. This is due to the inherent complexities in the 

WNUT’17 dataset as it was collected from highly unstructured social media data and it 

was difficult for the models to make accurate predictions. Thus, the approach of combining 

data confidence with model confidence can significantly boost the performance by 

complementing the model confidence score. On the other hand, even though the GMB 

dataset is a much larger dataset compared to WNUT’17, it was still considerably easier 

and more structured than the WNUT’17 dataset, which made it easier for the deep learning 
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models to learn the patterns from the data and make accurate predictions. Thus, the 

improvement of the approach on the dataset is not that significant. 

TABLE 5.4. TEC VALUES FOR GMB DATASET WITH ρ = 0.85 AND γ = 0.2 

Model Threshold Model 
Confidence 

Data + Model Confidence 
   

α = 0.95 α = 0.9 α = 0.85 
CNN 0.85 0.767 0.787 0.786 0.785  

0.9 0.736 0.738 0.737 0.740 
CNN + Character embedding 0.85 0.747 0.767 0.766 0.766  

0.9 0.718 0.719 0.718 0.721 
LSTM 0.85 0.764 0.781 0.780 0.780  

0.9 0.742 0.739 0.738 0.742 
LSTM + Character embedding 0.85 0.762 0.783 0.782 0.781  

0.9 0.734 0.738 0.738 0.741 
BERT 0.85 0.818 0.821 0.821 0.820  

0.9 0.806 0.792 0.796 0.797 
 

Fig. 5.4 and Fig. 5.5 present the confusion matrices of the baseline approach and 

the proposed approach on WNUT17 dataset using LSTM with character embedding 

model. The parameters used in the approaches are: α = 0.95 and threshold = 0.85. Please 

note that since the focus in this research was to enhance the prediction scores of the 

entities, the matrices presented here were different from the traditional confusion matrices 

in that the pictures visualize how many instances in the testing dataset successfully gain 

the high prediction scores (i.e., greater than or equal to threshold) with regard to individual 

classes rather than the prediction results of the whole testing dataset across the classes. As 

we can see from the Figs., the proposed approach performed better than the baseline 

approach in terms of this measurement.  
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 5.4.2 Confusion Matrix Performance and Comparison 

 

Fig. 5.4. Confusion matrix of LSTM with character embedding model for the baseline 

approach (model confidence only) 

For example, Fig. 5.4 shows that in the baseline approach, the total correct 

predictions for class ‘B-person’ is 169. After combining model confidence with the data 

confidence (Fig. 5.5), the correct predictions for class ‘B-person’ increased from 169 to 

207. From the results, we can also see that while the model enhanced the predictions 

confidence of more instances, extra errors (i.e., the entries off the diagonal) also incurred 

among the instances receiving high prediction scores. Nonetheless, the model still 
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maintained very competitive prediction accuracy. From the perspective of practical 

application, this actually leads to another interesting factor to be considered: the trade-off 

between the cost saved on labor and time for manual examination and the cost incurred 

due to the extra misclassifications. More comprehensive evaluation metrics can be 

designed by adding the cost parameter. 

 

Fig. 5.5. Confusion matrix of LSTM with character embedding model for the proposed 

approach (model confidence + data confidence) 

Fig. 5.6 and Fig. 5.7 show the confusion matrices for the baseline approach and the 

proposed approach on the overall best performing model BERT on the GMB dataset. 

Again, matrices present how many instances in the testing dataset successfully gain the 
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high prediction scores with regard to individual classes. The parameters used in the models 

were: α = 0.95 and threshold = 0.85. Similar to the WNUT’17 dataset, the approach again 

performed better than the baseline approach in terms of entities receiving enhanced 

prediction scores. For example, Fig. 5.6 shows that for the baseline approach, the total 

correct predictions for class ‘B-geo’ is 6313. After combining model confidence with the 

data confidence, the correct predictions for class ‘B-geo’ increased from 6313 to 6324, as 

shown in Fig. 5.7. 

 

Fig. 5.6. Confusion matrix of BERT model for the baseline approach (model confidence 

only) 
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Fig. 5.7. Confusion matrix of BERT model for the proposed approach (model confidence 

+ data confidence) 

Meanwhile, we also see the same trend as that in the WNUT’17 dataset; with more 

entities receiving high prediction scores, extra errors incurred. But the models still 

demonstrated very competitive prediction accuracy. One difference between the 

WNUT’17 result and the GMB result was that the increasing of the entities receiving high 

prediction confidence in GMB was not as many as that in WNUT’17. This should be due 

to the different dataset characteristics as aforementioned and the BERT model adopted 

which is one of the best deep learning models today for text data processing and therefore, 

harder to further improve. 
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Besides the results presented in this chapter, we also conducted experiments based 

on different alpha and threshold values. Similar to those shown in Table 5.4 and 5.3 and 

Figs. 5.4 to 5.7, the proposed model performed the best in most cases when alpha = 0.95 

and threshold = 0.85. Thus, we skip other results in this thesis. 
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CHAPTER 6 

CONCLUSION 

This thesis originated from a particular application field of machine learning — 

the recommendation systems. Sponsored by Intuit Inc., we targeted a relatively 

understudied problem of estimating the reliability of modern deep learning model 

predictions. We intended to draw attention to this particular area of machine learning 

because of the recent advancements in machine learning approaches, especially deep 

neural networks, can misled users about the practical applicability of these new machine 

learning tools. Considering the Intuit’s research problem and practical application needs, 

we proposed a novel approach to significantly enhance the learning model’s prediction 

confidence score. The approach efficiently combined the traditional Softmax scores 

generated by deep neural networks with data statistics based confidence estimation. To 

evaluate the proposed method, we conducted a case study on a popular natural language 

processing problem—Named Entity Recognition. We targeted this problem because it is 

of the particular interest of Intuit Inc. and many industry companies who need to know the 

reliability of their trained models before releasing them to the customers. We also designed 

a new evaluation metric TEC to measure the model performances on prediction confidence 

estimation. Using a variety of state-of-the-art deep learning models, we applied the 

proposed approach to two popular NER datasets: WNUT’17 and GMB. Experimental 

results showed that our approach can effectively improve the number of instances 

receiving high prediction confidence while maintaining highly competitive model 
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performance in terms of accuracy. Thus, it can drastically reduce the workload and cost 

for manual examination of the instances with low prediction scores. We believe that this 

work will inspire the machine learning community to pay more attention to this problem 

and thereafter advance the field by proposing new approaches to estimate model prediction 

reliability.  
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