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Abstract

We propose a new measure of underlying inflation that provides real-time information 

on asymmetric risks in the outlook for inflation. The asymmetries are generated by 

nonlinearities induced by economic activity. The new indicator is based on a multivariate 

regime-switching framework estimated using disaggregated sub-components of euro 

area HICP and has several additional advantages. First, it is able to swiftly infer abrupt 

changes in underlying inflation. Second, it helps track turning points in underlying inflation 

on a timely basis. Third, the proposed indicator also performs satisfactorily vis-à-vis 

several criteria relevant to inflation monitoring.

Keywords: underlying inflation, asymmetric risks, regime-switching, Bayesian methods.

JEL classification: E17, E31, C11, C22, C24.



Resumen

Se propone una nueva medida de la inflación subyacente que informa, en tiempo real, 

sobre los riesgos asimétricos en las previsiones de inflación. Las asimetrías son generadas 

por no linealidades inducidas por la actividad económica. El nuevo indicador se basa en 

un modelo multivariante de cambio de regímenes que se estima conjuntamente sobre 

subcomponentes del IAPC del área del euro y tiene numerosas ventajas adicionales. 

Primero, es capaz de inferir rápidamente cambios abruptos en la inflación subyacente. 

En segundo lugar, ayuda a realizar un seguimiento oportuno de los puntos de inflexión 

(turning points) en la inflación subyacente. En tercer lugar, el indicador propuesto muestra 

un desempeño satisfactorio con respecto a varios criterios relevantes para el seguimiento 

de la inflación.

Palabras clave: inflación subyacente, riesgos asimétricos, cambio de regímenes, 

métodos bayesianos.

Códigos JEL: E17, E31, C11, C22, C24.
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1 Introduction

Underlying inflation indicators are widely used by central banks, in particular the European

Central Bank (ECB) and the US Federal Reserve (Fed), in their monitoring of inflation develop-

ments and in their communication (see e.g. Ehrmann, Ferrucci, Lenza, and O’Brien, 2018 or, in

the context of the recent ECB strategy review, ECB, 2021). For instance, the ECB forward guid-

ance for interest rates between July 2021 and the eventual lift-off in July 2022, had relied, inter

alia, on the observed developments of underlying inflation as a condition for lift-off (see Lane,

2021). Underlying inflation is also a key input to calibrate ECB policy tightening faced with the

ongoing persistent inflationary episode (see Lagarde, 2023, Lane, 2023, Villeroy de Galhau, 2023).

Underlying or “core” inflation –even absent a single definition agreed upon by all analysts –can

be broadly defined as the persistent component in inflation.1 One attractive feature of a core in-

flation measure, for communication purposes, is to capture in a single and replicable number the

current trend in inflation, without resorting to an explicit forecast exercise. Underlying inflation

is essentially an empirical concept –albeit some relations to structural macroeconomic models can

be traced out– and, typically, a number of alternative indicators of underlying inflation are simul-

taneously used in a given institution.

Model-based indicators of underlying inflation have been typically built upon the assumption

of linearity in the dynamics of prices – although there are several works that emphasize the impor-

tance of accounting for state-dependence when modelling inflation (e.g. Ascari and Haber (2022),

Cavallo, Lippi, and Miyahara (2023), Klenow and Kryvtsov (2008) and Eichenbaum, Jaimovich,

and Rebelo (2011)). In addition, the recent abrupt surge in energy prices and raw material prices,

and the subsequent rapid pass-trough to other items in the consumption basket, challenges the as-

sumption that underlying inflation can only exhibit smooth changes over time, that are commonly

characterized by a random walk.

This paper develops an empirical model of euro area inflation, resulting in a new indicator of

1In this paper, we use indifferently the terms underlying inflation and core inflation. We view core inflation and
underlying inflation as embodying the same concept, but acknowledge that a common practice is to use “core inflation”
to refer to the specific measure excluding food and energy.
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underlying inflation. This indicator, labeled ICARIS (Indicator of Core by Aggregating Regimes of

Inflation Sub-components), is based on estimating a regime-switching model at the sectoral level,

relying on special aggregates sub-indices of inflation. The indicator draws on information from all

components of Consumer Price Index (CPI).2 The approach is flexible enough to produce a level

of trend inflation that can vary on a large grid of values, and to capture transitions from low to high

underlying inflation regimes that can be either smooth or abrupt. These features are particularly

relevant in views of the shocks to inflation during the last decade in advanced economies, and

in particular to capture the possible changes in regimes following the post-covid 19 crisis, and

the consequences of the invasion of Ukraine by Russia. A main feature –that is induced by the

parametric and non linear structure– of our indicator is that it also allows for a characterization

of risks: at a given point in time, the outlook for inflation is predicted to be either upward or

downward skewed.

Our paper is related to a large literature on core inflation –and trend inflation– indicators where

three broad approaches can be distinguished. First, exclusion-based and reweighting-based mea-

sures. This type of approach has been used since the 1970s and its main idea is, based on the

distribution of the different sectoral inflation rates, or COICOP subclasses, to exclude some of

them from the inflation measure.3 The most traditional exclusion-base indicator is the “inflation

excluding food and energy” which permanently assigns a zero weight to both food and energy

items. Alternatively, it is possible to remove at each date the items for which the inflation rate of

the different classes (or sub-classes) lie in the tails of the cross classes (or sub-classes) distribu-

tion. An early reference for this kind of approach is the well known “trimmed mean” indicator

of Bryan and Cecchetti (1994). Also, Lalliard and Robert (2022) propose the “fine core” that is

based on trimming individual items exhibiting the largest historical volatility. Some alternative,

reweighting-based measures, replace CPI weights by weights based on persistence, or by the de-

gree of price stickiness from the micro data.

2We here use the Harmonized Indices of Consumer Prices (HICP), published by EUROSTAT, the common measure
used across countries for CPI in the euro area.

3The Classification of Individual Consumption According to Purpose (COICOP) is the international reference
classification of household expenditure.

3
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Second, trend-cycle decomposition (i.e. time series smoothing methods). Examples include

the exponential smoothing approach put forward by Cogley (2002), or the unobserved component

(UC) model by Stock and Watson (2007). Also, Chan, Koop, and Potter (2016) propose tai-

lored UC models to produce bounded measures of trend inflation. In the same vein, Chan, Clark,

and Koop (2018) complement UC models with exogenous information from survey expectations.4

Also, Mertens (2016) allows the inclusion of the term structure of interest rates in a model to

estimate trend inflation for the US economy.

A third set of approaches is based on models that combine time-series and the cross-section

distribution of price changes, most often using factor models. A subset of this literature restricts

the input variables to the different classes (or sub-classes) of inflation indices, as in Stock and

Watson (2016) –a prominent recent reference which also includes an overview of the literature–. A

recent indicator in this vein, for the US economy, is the Multivariate Core Trend by Almuzara and

Sbordone (2022).5 Another subset considers including other macroeconomic variables in the factor

analysis (see, for instance, the euro area core inflation indicator of Cristadoro, Forni, Reichlin, and

Veronese, 2005).

In the case of the euro area, on which our empirical application focuses, Ehrmann, Ferrucci,

Lenza, and O’Brien (2018) summarize the underlying inflation measures typically used at the ECB,

emphasizing two recently developed approaches. First, the so-called “super core” measure that is

based on a subset of items of HICP inflation excluding energy and food that are deemed sensitive to

slack. Second, the “Persistent and Common Component of Inflation” (PCCI) indicator, proposed

by Bańbura and Bobeica (2020), that relies on factor models.

In relation to this large literature our approach has two main characteristics: (1) it relies on

regime switches to identify periods of sustained high and low inflation, and (2) the proposed core

inflation measure relies on a disaggregate, bottom-up approach. In particular, core inflation is

computed by aggregating the regime-dependent persistent components over sub-indices of inflation

4A similar approach is evaluated for the case of the euro area in Bańbura, Leiva-León, and Menz (2021).
5Also, one prominent measure produced by the New York Fed is the Underlying Inflation Gauge (UIG) (Amstad,

Potter, and Rich, 2014).

4
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using their corresponding weights on headline HICP.

On the methodological side, our paper is related to the literature on regime shifts as we rely on

Markov-switching models. In particular, we build upon the approach of Leiva-León, Pérez-Quirós,

and Rots (2020), used to analyze downside risks to the global business cycle, and propose a new

decomposition of inflation into a regime-dependent persistent component and temporary fluctua-

tions. Unlike the standard Markov-switching approach, we let each regime of inflation, either low

or high, to be characterized by its unique degree of inflation strength.6 Also, our framework al-

lows information on real activity to inform about the transitions between regimes of high and low

inflation.7

Our indicator comes with a number of advantages with respect to the existing measures of

underlying inflation. First, the regime switching approach allows for non-linearity in inflation

dynamics. To our knowledge, this is the first indicator of trend or underlying inflation built in

this set-up. Incidentally, we do not assume trend inflation follows a unit root process, by contrast

with an assumption often adopted in trend-cycle decompositions of inflation. Our approach is in

this respect in better accordance with the non explosive inflation behavior in inflation targeting or

price-stability oriented monetary jurisdictions.

Second, depending on the synchronization between the different special aggregates of inflation,

the transition from (say) low underlying inflation regime to higher inflation regime could be either

smooth or immediate. This is a particularly relevant feature in the current situation. In this vein, we

document an asymmetric propagation pattern of euro area inflationary pressures over time. Tran-

sitions from a high- to a low-inflation regime are smooth and sequential across sub-components of

HICP. Instead, transitions from low- to high-inflation regime are immediate, implying a simulta-

neous switch across HICP sub-components.

Third, given its nonlinear nature, our approach allows for inferences on structural breaks with-

out the need of restricting the sample on a priori grounds, as the regimes are endogenously inferred

6Recently, Lopez-Salido and Loria (2020) have used a (standard) Markov-switching approach to analyze headline
inflation regimes for the US. Although, the focus of their analysis primarily relies on quantile regressions.

7In doing so, we let the transition probabilities to exhibit time-variation, introduced by Filardo (1998).

5
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from the data. This feature is particularly important when producing real-time inferences of un-

derlying inflation during unprecedented episodes, such as the abnormally high euro area inflation

rates observed since late 2021.

Most importantly, our framework can be also used to measure asymmetric tails risks associated

with future underlying inflation. Such asymmetry results from the induced non-linearity in our

model. This is a feature that could be of high relevance for policy in projection exercises carried

out, or from the point of view of a “risk management” perspective, particularly, during periods of

high uncertainty.

In addition to the above distinctive features of ICARIS, our measure is also comparable in

terms of properties associated with existing euro area underlying inflation indicators. For example,

it contains information from all the different components of inflation indices at any given date.

Also, it has a competitive performance when used to forecast HICP inflation.8

While we emphasize that our model, and the associated underlying inflation measure is a

reduced-form and essentially an empirical device, a brief discussion of relation with more struc-

tural macroeconomic framework or models is warranted.9 Our approach is well suited to accom-

modate changes in inflation target; to acknowledging there are persistent trends in relative prices,

and that the inflation dynamics is well captured by a succession of “regimes”(such as the low infla-

tion regime in the euro area in the 2014-2020 period) without a full synchronization across sectors.

We also have to acknowledge some theoretical limitations: the links between cross-inflation spe-

cial aggregates indices are only captured in a simplified manner, and we do not implement the

restriction that in the (very) long run, relative prices are expected to reach a steady state.
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method. Section 3 presents the results obtained applying our approach to disaggregated euro area

inflation. Section 4 presents our indicator of underlying inflation and investigate its properties

when used in a real-time context and for risk assessment. Section 5 compares our indicator with

8To evaluate core inflation indicators, we rely on forecast performance, following inter alia Crone, Khettry, Mester,
and Novak (2013) and Clark (2001).

9From a theoretical standpoint, menu cost models predict that inflation will behave non linearly, depending on the
size of marginal cost shocks, see e.g. Alvarez, Lippi, and Passadore (2016).
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model. This is a feature that could be of high relevance for policy in projection exercises carried
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high uncertainty.
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existing indicators. Section 6 concludes.

2 A Regime-based Persistence-Noise Decomposition

A widely used approach to decompose inflation into transitory and permanent fluctuations is

the unobserved component (UC) model, where the permanent component is assumed to follow

a random walk and the transitory component typically behaves according to autoregressive pro-

cesses.10 Despite the usefulness of this type of decomposition, it has an important shortcoming.

The persistent component relies on a slow-moving process that is not able to swiftly adapt to abrupt

changes in underlying inflation pressures, and precludes providing timely assessments for policy

makers when needed the most. Also, inferences obtained by means of UC models are typically

subject to a large amount of revisions when used in a real-time context. This section introduces a

new framework to model inflation referred to as Persistence-Noise decomposition. The proposed

modelling approach (i) takes into account the inherent nonlinear nature of the inflationary process,

(ii) provides a robust estimation of inflation persistence, (iii) produces inferences of turning points

in inflation, (iv) helps to quantify asymmetric risks associated with future developments of infla-

tion, and (v) accounts for the role that covariates such a current and lagged real activity have in

determining inflation dynamics.

2.1 The Model

Our empirical framework consists of decomposing the annual rate of inflation associated with

each sub-aggregate of the HICP into two components.11 The first component is designed to mea-

sure the persistence inherent in inflation dynamics. Instead, the second component refers to the

temporal deviations of the observed special aggregate inflation rate from its persistent component,

we refer to these deviations as noise. We assume that inflation transitions over two states of nature,
10For variants of this kind of model see for example, Stock and Watson (2007) or Chan, Koop, and Potter (2013).
11We will refer hereafter to the sub-aggregates we consider as “special aggregates” as we design a specific partition

of the HICP relevant for our purpose as detailed in Section 3.
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defined as “low” and “high” inflation regimes. Also, we assume that the strength (weakness) of a

high (low) inflation regime might change over time, implying that each regime is uniquely char-

acterized. Accordingly, the annual inflation rate of the i-th special aggregate of the HICP can be

expressed as follows,

πi,t = µi,t +νi,t , (1)

where µi,t denotes the persistent component and νi,t denotes the noisy deviations of inflation.

Estimates will be carried out at the monthly frequency. We choose to model on year-on-year

inflation (the inflation measure typically of interest to policy makers) rather than monthly rates of

change since seasonal patterns render the monthly inflation rate extremely noisy, and would blur

identification of regimes.12 Resulting serial correlation is accommodated through allowing for

autocorrelation in the shock process νi,t .

The persistent component of inflation is intended to shed light on two questions that apply to

each special aggregate: (i) is inflation experiencing a high- or a low-inflation regime? and (ii) how

strong or weak is being such a high- or a low- inflation regime? Therefore, we assume that µi,t

evolves according to the following nonlinear process:

µi,t = µi0,τi0(1− si,t)+µi1,τi1si,t , (2)

where si,t is a discrete latent variable that dictates the state of nature of the inflation rate of the

i-th special aggregate, that is, low-inflation regime, when si,t = 0, and high-inflation regime, when

si,t = 1. The terms µi0,τi0 and µi1,τi1 denote the expected inflation rate during the τi0-th low-inflation

regime and the τi1-th high-inflation regime, respectively, associated with the i-th special aggregate.

These parameters inform about the degree of strength of inflationary pressures at a given regime.

Each regime-dependent mean is treated as a random variable that is assumed to be normally dis-

12Official seasonally adjusted data are not available at all dis-aggregate levels of the HICP.
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tributed,

µi0,τi0 ∼ i.i.d.N (δi0,τi0 ,σ
2
i0,τi0

), (3)

µi1,τi1 ∼ i.i.d.N (δi1,τi1 ,σ
2
i1,τi1

), (4)

where δiκ,τiκ and σ2
iκ,τiκ

denote the first and second moments that characterize their distribution,

for κ = {0,1}. That is, for the i-th special aggregate, each low-inflation and high-inflation regime

has its own unique mean, which is independent from the ones associated with other episodes.

This is a key feature of our framework since it allows to fit regime-switching models to highly

heterogeneous inflation dynamics without the need of assuming more than two regimes, which

would complicate both the estimation of the model and the interpretation of the multiple inferred

regimes.

Inferences on the value of si,t provide assessment on the type of inflationary regime that the

i-th special aggregate exhibits at time t. Following Filardo (1998), the latent state si,t is assumed

to follow a first order Markov chain with a time-varying transition probability matrix given by

P(si,t = k|si,t−1 = j,zt) =




qi(zt) 1− pi(zt)

1−qi(zt) pi(zt)


 , (5)

where pi(zt) = P(si,t = 1|si,t−1 = 1,zt) and qi(zt) = P(si,t = 0|si,t−1 = 0,zt) are the probabilities of

staying in high-inflation and low-inflation regimes, respectively. The vector zt represents a set of

exogenous information that influences the regime transitions of inflation. Consequently, the infor-

mation contained in zt can be used to provide timely inference about changes in the momentum of

inflation. Based on the notion of the Phillips curve, we let zt contain information on contempora-

neous and lagged real economic activity. We view this set-up as a parsimonious way to incorporate

a common dynamics to sub-components of the HICP.

The transition probabilities are assumed to follow a latent variable version of a Probit specifi-

9
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cation, that is,

P(si,t = 1) = P(s∗i,t ≥ 0). (6)

The latent variables s∗i,t , for i = 1, ...,n, are assumed to depend on common and idiosyncratic com-

ponents through the following factor structure,

s∗1,t = λ′
1,zzt +λ1,0 +λ1,ss1,t−1 +u1,t , (7)

...

s∗n,t = λ′
n,zzt︸ ︷︷ ︸

common

+λn,0 +λn,ssn,t−1 +un,t︸ ︷︷ ︸
idiosyncratic

,

with ui,t ∼ i.i.d.N (0,1) and Cov(ui,t ,u−i,t) = 0, ∀i. Accordingly, the time-varying transition prob-

abilities can be expressed as,

pi,t = 1−Φ(λi,0 −λ′
i,zzt −λi,s), (8)

qi,t = Φ(λi,0 −λ′
i,zzt), (9)

where Φ(•) makes reference to the CDF of a Normal distribution.13

The noise component accounts for the accumulation of disturbances induced by the computa-

tion of the year-on-year growth rate of the corresponding price sub-index. Hence, to account for

this type of dynamics, we assume that νi,t follows an invertible moving average (MA) process,

νi,t = εi,t +
Q

∑
q=1

θi,qεi,t−q, εi,t ∼ i.i.d.N (0,σ2
i ). (10)

Given that this decomposition is jointly applied to the different special aggregates of HICP, exhibit-

ing substantially heterogeneous dynamics, we keep a parsimonious specification in our empirical

13Previous works, such as Stock and Watson (2016), have relied on estimating the trend component of inflation in a
multivariate setting by relying on common factors. In that respect, our modelling approach is similar in spirit. How-
ever, instead of capturing common movements in inflation, we let the common factors represent sources of information
that, according to economic theory, influence the current and future inflation dynamics.
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application and set the same number of lags for all the cases, Q = 1.14 This feature along with the

invertibility condition, |θi| < 1, ∀i, allows the annual inflation rate to have an alternative infinite-

order autoregressive process representation, AR(∞), with time-varying mean,

(1−θiL+θ 2
i L−θ 3

i L+ ...)(πi,t −µi,t) = εi,t , (11)

where µi,t evolves according to Equation (2). Consequently, πi,t remains a non-stationary process

due to the regime changes in its mean. This feature is particularly attributed to the uniqueness of

µi0,τi0 and µi1,τi1 , as they are locally inferred. Next, we show in detail how the regime-dependent

means are estimated along with the rest of elements involved in the model.

The non-stationary nature of πi,t provides flexibility when modelling abrupt changes and un-

precedented dynamics of inflation, especially, in a real-time context. Yet, its underlying persistent

component, µi,t , represents a purged signal that informs about the “average”, or trend, inflation

within a given regime, that is dictated by latent variable si,t .

2.2 Bayesian Inference

The multivariate model is estimated with Bayesian methods by relying on a Metropolis-within-

Gibbs sampler. In this section, we summarize the employed estimation algorithm that provides

the posterior densities associated with both parameters and latent states involved in the multivari-

ate persistence-noise decomposition model. Let Y = {π1,t , ...,πn,t}T
t=1 contain all the available

data; similarly, let S = {s1,t , ...,sn,t}T
t=1 and S∗ = {s∗1,t , ...,s

∗
n,t}T

t=1 be the collection of the latent

regimes and latent variables, respectively. Also, let µ = {µ1,t , ...,µn,t}T
t=1 contain the information

on the regime-dependent means associated with high- and low-inflation regimes. All the param-

eters that specify the model are collected in Θ =
{

σ2
1 , ...,σ

2
n ,θ1, ...,θn,λ1, ...,λn

}
, where λi =

(λi,0,λi,z,λi,s), for i = 1, ...,n. Given data Y and prior distributions for the parameters contained in

14A higher order in the moving average process can be set at the cost of increasing parameter uncertainty. In addition
allowing a MA(11) process to fully accommodate the year-on-year nature of the inflation rate considered would induce
severe computational complications.
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vector Θ, we rely on the following iterative procedure to generate L draws of {Θ(l),S(l),S∗(l),µ(l)}L
l=1.

Step 1: Given Y , S(l−1), S∗(l−1),and µ(l−1), generate Θ(l) using the Gibbs sampler with a

Metropolis step.

1.1: Draw σ2(l)
i , for i = 1, ...,n, by using a conjugate Inverse Gamma prior distribution.

1.2: Draw θ (l)
i , for i = 1, ...,n, with a Metropolis step by using a Uniform prior distri-

bution, following Chan (2013).

1.3: Draw λ
(l)
i , for i = 1, ...,n, by using a conjugate Normal prior.

Step 2: Given Y , S(l−1), µ(l−1) and Θ(l), generate s∗(l)i,t , for i= 1, ...,n, by applying the approach

proposed in Filardo (1998).

Step 3: Given Y , S∗(l−1), µ(l−1) and Θ(l), generate s(l)i,t , for i= 1, ...,n, by applying the algorithm

proposed in Kim and Nelson (1999).

Step 4: Given Y , S(l), S∗(l−1), and Θ(l), generate µ(l)
i,t , for i = 1, ...,n, by applying a modified

version of the algorithm proposed in Leiva-León, Pérez-Quirós, and Rots (2020).

The algorithm proposed in Leiva-León, Pérez-Quirós, and Rots (2020) is designed for inferring

business cycle phases of heterogeneous magnitude with data expressed on month-on-month growth

rates. However, the employed procedure cannot be directly extrapolated to the analysis of year-on-

year inflation rate dynamics. In what follows, we show in detail how to implement Step 4 of the

algorithm proposed in this paper. Details on Step 1, Step 2 and Step 3 of the algorithm along with

the information on the prior distributions are presented in Appendix A.

For the i-th special aggregate of the HICP, we apply the partition of the time domain into

the low-inflation regimes, τi0 = 1, ...,Ni0, and high-inflation regimes, τi1 = 1, ...,Ni1, as dictated

by the current realization of the state indicator S(l), and treat each episode separately. Then, for

each individual episode, we sample its corresponding inflation mean by only using the information

associated with such time span, defined by, πτi0 = {πi,t}t∈τi0 and πτi1 = {πi,t}t∈τi1 . In doing so, we
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use the diffuse normal prior distribution N (aκ ,bκ), which combined with the likelihood yields

the posterior density N (δiκ,τiκ ,σ2
iκ,τiκ

), with,

σ2
iκ,τiκ =

(
b−1

κ +
1

σ2
i

1′τiκ (Hτiκ H′
τiκ )

−11τiκ

)−1

, (12)

δiκ,τiκ = σ2
iκ,τiκ

(
b−1

κ aκ +
1

σ2
i

1′τiκ (Hτiκ H′
τiκ )

−1πτiκ

)
, (13)

where 1τiκ denotes a vector of ones of length equal to the number of observations in πτiκ , while

Hτiκ is a square matrix of size equal to the number of observations in πτiκ , and defined by

Hτiκ =




1 0 0 · · · 0

θi 1 0 · · · 0

0 θi 1 · · · 0
... . . . ...

0 0 · · · θi 1




, (14)

for κ = {0,1}. Note that the role of the band matrix Hτiκ is “whitening” the serially correlated

innovations induced by the year-on-year growth rate of the price index. The posterior density

is then used to generate draws of µi0,τi0 and µi1,τi1 , as described in equations (3) and (4), respec-

tively. To avoid problems of label switching, we follow Leiva-León, Pérez-Quirós, and Rots (2020)

and identify regimes of high and low inflation by constraining the draws of the regime-dependent

means at each iteration of the algorithm. In particular, they have to comply with the following two

restrictions:

Restriction 1 : µi1,τi1 > µi0,τi0

Restriction 2 :




µi1,τi1 > µi0,τi0−1; if the sample begins with a high-inflation regime

µi0,τi0 < µi1,τi1−1; if the sample begins with a low-inflation regime

Appendix A also provides an example that illustrates the sequence of regime-dependent means
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tively. To avoid problems of label switching, we follow Leiva-León, Pérez-Quirós, and Rots (2020)

and identify regimes of high and low inflation by constraining the draws of the regime-dependent

means at each iteration of the algorithm. In particular, they have to comply with the following two
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assumed in the current context.

3 Nonlinear Persistence of Disaggregated Inflation

In this section, we apply our model to the different sub-components of HICP and document a

large amount of heterogeneity in terms of inflation persistence. To estimate the regime-switching

model at the disaggregated level, we rely on HICP inflation data at monthly frequency and bro-

ken down by “type of product” into 11 specific categories, which are related to some “special

aggregates” indices of inflation published by EUROSTAT. This breakdown is associated to the

4-categories typically used by the ECB for analytical purposes: “energy”, “food”, “Non-energy

industrial goods”, and “services”, but goes to a further level of disaggregation. The breakdown we

use has the advantage that all considered sub-components are relatively similar in terms of their

HICP weights, which is an important feature for the computation of the ICARIS indicator in next

section.15 If the weight of one of the special aggregate stands out, this could make the indicator

bias towards the persistent dynamics of that aggregate.

Table 1 shows the 11 specific aggregates (or sub-components) we consider, as well as theirs

weights and some descriptive statistics associated with our sample period –January 1999 to March

2023. The average HICP weight over the specific sub-components is (by construction) 9.1 per-

cent. Special aggregate “processed food, including alcohol and tobacco” is the one with the higher

weight (15.5%), while “services related to communication” is the one with the lower one (2.2%).

There is a high degree of heterogeneity between the different special aggregates both, regarding

the mean and the standard deviation of the inflation rates. “Energy” and “Unprocessed Food”

are the sub-components that have the highest average inflation rate (4.98% and 2.48%, respec-

tively), while there is one special aggregate that exhibits negative average inflation rate, “services

related to communication” (−1.82%). Regarding the volatility of the inflation rates across special

15We do not consider the disaggregation by COICOP categories as at the division levels categories merge items that
belong to quite different economic structures and inflation dynamics; e.g. “Transports” would include both purchases
of cars and purchases of gasoline.
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Table 1: HICP and special aggregates: weights, mean and volatility

Aggregate Special aggregate Weights
Average inflation

rate (%)
standard
deviation

HEADLINE
INFLATION

——- 100 1.98 1.67

FOOD





Processed food including
alcohol and tobacco

15.48 2.46 1.95

Unprocessed food 4.50 2.48 2.61

ENERGY Energy 10.23 4.98 9.74

SERVICES





Related to communication 2.23 −1.82 1.92

Related to housing 9.52 1.84 0.49

Related miscellaneous 9.23 2.11 1.00

Related to recreation 15.25 2.45 1.31

Related to transport 7.31 2.45 0.49

NON-ENERGY
INDUSTRIAL
GOODS (NEIG)





Durables 9.49 0.26 1.29

Non-durables 6.86 1.62 1.03

Semi-durables 9.91 0.73 1.06

Note: The descriptive statistics are based on monthly year-on-year growth rates. The sample corresponds to
1999M1-2023M03. The weights correspond to the year 2023.

aggregates, as expected, “energy” and “food” related items are the more volatile ones. For this

reasons, these two items are typically removed when computing the exclusion-based measures of

core inflation.

Regarding the information driving the time variation in the transition probabilities, we proxy

real activity with the year on year growth rate of euro area Industrial Production Excluding Con-

struction, xt . In particular, we let the transition probabilities be potentially influenced by current

and past real economic activity and let zt = (xt ,xt−1, ...,xt−p)
′, with p = 11.

We apply the model in equations (1)-(10) to the HICP special aggregates listed in Table 1.

Figure 1 displays the persistent component of euro area inflation at the disaggregated level, pointing

to a substantial amount of heterogeneity both over time and across categories. The estimates show

that the proposed framework is flexible enough to adapt to the wide variety of inflationary dynamics

embedded in the different types of goods and services.

Regime changes in some special aggregates, such as “Non-energy Durable Goods”, are more

recurrent than in others, as in “Services: Housing”.16 Also, the evolving magnitudes of the per-

16The probabilities of low-inflation regime for each special aggregates of HICP are reported in Figure B-1. Note
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sistent component of some categories are more asymmetric than others. For example, “Processed

food” exhibits quite different magnitudes across high-inflation regimes and similar magnitudes

across low-inflation regimes, while “Services: Recreation” displays relatively similar magnitudes

both across high- and low-inflation regimes, with exception of the last part of the sample.

Given the flexible nonlinearity embedded in the proposed model, the estimated persistent com-

ponent of some special aggregates of HICP promptly reacts to recent unprecedented developments

induced inter alia by the war in Ukraine. In particular, items “Non-energy: Durables” and “Non-

energy: Nondurables” goods exhibited dynamics consistent with a structural break in early 2022.

The timeliness of the inferences on regime changes in inflation along with assessments on

its associated strength might be key for policy makers. Our approach proves to be robust when

employed in a real-time context. The persistent components of the special aggregates computed

only with information available up to the time of estimation are reported in Figure B-3, placed

in Appendix B for the sake of space. The real-time estimates show similar dynamics to the ones

obtained with the full sample, this is the case for all especial aggregates and time spans.17

that it is uncommon for all the sub-components to be in the same type of inflation regime at the same time. During
the last part of the sample almost all the aggregates face a high-inflation regime with a high probability. The “services
related to miscellaneous” item is specific, having shown a relatively steady year-on-year inflation rates since 2008
without increasing significantly in the first half of 2022. This category includes items related to education, health, care
of child and elderly people. Illustrating such heterogeneity, Figure B-2 plots the probability of low-inflation regime
weighted across special aggregates.

17Also, the underlying probabilities of low-inflation regime for the special aggregates of HICP are plotted in Figure
B-4 of the same appendix.
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Figure 1: Persistent Component of HICP Special Aggregates

Note. The figure plots the persistent component of inflation associated with the different special aggregates of HICP.
The persistent components are obtained with the proposed regime-switching model. The red area makes reference
to the posterior density and the black lines its median. Each chart also plots the year-on-year growth rate of the
corresponding sub-component price index for reference purposes (solid gray lines). The sample covers 1999:01-
2023:03.

17

Figure 1: Persistent Component of HICP Special Aggregates

Note. The figure plots the persistent component of inflation associated with the different special aggregates of HICP.
The persistent components are obtained with the proposed regime-switching model. The red area makes reference
to the posterior density and the black lines its median. Each chart also plots the year-on-year growth rate of the
corresponding sub-component price index for reference purposes (solid gray lines). The sample covers 1999:01-
2023:03.

17



BANCO DE ESPAÑA 21 DOCUMENTO DE TRABAJO N.º 2319

sistent component of some categories are more asymmetric than others. For example, “Processed

food” exhibits quite different magnitudes across high-inflation regimes and similar magnitudes

across low-inflation regimes, while “Services: Recreation” displays relatively similar magnitudes

both across high- and low-inflation regimes, with exception of the last part of the sample.

Given the flexible nonlinearity embedded in the proposed model, the estimated persistent com-

ponent of some special aggregates of HICP promptly reacts to recent unprecedented developments

induced inter alia by the war in Ukraine. In particular, items “Non-energy: Durables” and “Non-

energy: Nondurables” goods exhibited dynamics consistent with a structural break in early 2022.

The timeliness of the inferences on regime changes in inflation along with assessments on

its associated strength might be key for policy makers. Our approach proves to be robust when

employed in a real-time context. The persistent components of the special aggregates computed

only with information available up to the time of estimation are reported in Figure B-3, placed

in Appendix B for the sake of space. The real-time estimates show similar dynamics to the ones

obtained with the full sample, this is the case for all especial aggregates and time spans.17

that it is uncommon for all the sub-components to be in the same type of inflation regime at the same time. During
the last part of the sample almost all the aggregates face a high-inflation regime with a high probability. The “services
related to miscellaneous” item is specific, having shown a relatively steady year-on-year inflation rates since 2008
without increasing significantly in the first half of 2022. This category includes items related to education, health, care
of child and elderly people. Illustrating such heterogeneity, Figure B-2 plots the probability of low-inflation regime
weighted across special aggregates.

17Also, the underlying probabilities of low-inflation regime for the special aggregates of HICP are plotted in Figure
B-4 of the same appendix.
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Figure 1: Persistent Component of HICP Special Aggregates

Note. The figure plots the persistent component of inflation associated with the different special aggregates of HICP.
The persistent components are obtained with the proposed regime-switching model. The red area makes reference
to the posterior density and the black lines its median. Each chart also plots the year-on-year growth rate of the
corresponding sub-component price index for reference purposes (solid gray lines). The sample covers 1999:01-
2023:03.
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4 A Measure of Underlying Inflation

4.1 The ICARIS

We construct our indicator of underlying inflation averaging the persistent components associ-

ated with all the special aggregates of HICP. Hence, the ICARIS can be defined as:

πCore
t =

N

∑
i=1

ωi,t µi,t , (15)

where µi,t refers to the persistent component of the special aggregate inflation index i, as defined in

Equation (2), and ωi,t denotes the weight of the same special aggregate employed in the construc-

tion of the HICP. Note that the HICP weights are time varying, changing every year in January and

staying constant over the year. Such an approach is in the spirit of Stock and Watson (2016), who

also compute aggregate trend inflation as a weighted average of the trend inflation rates (modelled

as random walks) of seventeen components of the Personal Consumption Expenditure (PCE) price

index for the US.

Chart A of Figure 2 plots our measure of core inflation. The ICARIS is characterized by a

strong persistence induced by the Markov chains upon which it is constructed. This is an appealing

feature as this underlying inflation measure is not influenced by erratic movements often displayed

in the inflation rates of special aggregates. Despite its persistence, the ICARIS is able to rapidly

adjust to new inflation environments. For example, this is the case when the euro area transitioned

from a sustained period of high to a sustained period of low inflation over the course of 2013.

Based on these two features, our measure of underlying inflation can be also interpreted as a

“locally inferred trend inflation”, since it measures the average strength of inflation, but taking into

account different states of nature.18

18In principle, this indicator of underlying inflation could be affected by transitory measures such as change in the
VAT rate due to the computation of the year-on-year changes in the price indices. However, this concern is alleviated
in the case of the euro area, since fiscal measures such as VAT rates are not synchronized across countries. Hence,
changes in VAT are not likely to induce a quantitatively sizable movement in the area wide inflation rate. Besides,
note that some standard core inflation measures like inflation excluding food and energy (or even trimmed means) are
themselves prone to temporary shocks following such indirect tax changes.

18
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Figure 2: Indicator of Core by Aggregating Regimes of Inflation Sub-components
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(b) Historical Decomposition
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Note. Chart (a) plots the proposed measure of core inflation. The red area makes reference to the posterior density and
the black line its median. The ICARIS is obtained as a weighted average across the persistent components of inflation
associated with the special aggregates of HICP. The HICP euro area inflation is also plotted with the dashed blue line,
for reference purposes. Chart (b) shows the historical contribution of each special aggregate to the computation of the
ICARIS. The sample covers 1999:01-2023:03.

19

4 A Measure of Underlying Inflation

4.1 The ICARIS

We construct our indicator of underlying inflation averaging the persistent components associ-

ated with all the special aggregates of HICP. Hence, the ICARIS can be defined as:

πCore
t =

N

∑
i=1

ωi,t µi,t , (15)

where µi,t refers to the persistent component of the special aggregate inflation index i, as defined in

Equation (2), and ωi,t denotes the weight of the same special aggregate employed in the construc-

tion of the HICP. Note that the HICP weights are time varying, changing every year in January and

staying constant over the year. Such an approach is in the spirit of Stock and Watson (2016), who

also compute aggregate trend inflation as a weighted average of the trend inflation rates (modelled

as random walks) of seventeen components of the Personal Consumption Expenditure (PCE) price

index for the US.

Chart A of Figure 2 plots our measure of core inflation. The ICARIS is characterized by a

strong persistence induced by the Markov chains upon which it is constructed. This is an appealing

feature as this underlying inflation measure is not influenced by erratic movements often displayed

in the inflation rates of special aggregates. Despite its persistence, the ICARIS is able to rapidly

adjust to new inflation environments. For example, this is the case when the euro area transitioned

from a sustained period of high to a sustained period of low inflation over the course of 2013.

Based on these two features, our measure of underlying inflation can be also interpreted as a

“locally inferred trend inflation”, since it measures the average strength of inflation, but taking into

account different states of nature.18

18In principle, this indicator of underlying inflation could be affected by transitory measures such as change in the
VAT rate due to the computation of the year-on-year changes in the price indices. However, this concern is alleviated
in the case of the euro area, since fiscal measures such as VAT rates are not synchronized across countries. Hence,
changes in VAT are not likely to induce a quantitatively sizable movement in the area wide inflation rate. Besides,
note that some standard core inflation measures like inflation excluding food and energy (or even trimmed means) are
themselves prone to temporary shocks following such indirect tax changes.

18



BANCO DE ESPAÑA 23 DOCUMENTO DE TRABAJO N.º 2319

Chart B of Figure 2 plots the historical contribution of each HICP sub-component to the

ICARIS, based on Equation (15). At every time period, the contribution of each sub-component

depends on three elements: (i) the inference on its inflationary state, measured by the latent variable

si,t , (ii) its inflationary strength, measured by the corresponding regime-dependent mean µi, and

(iii) its importance in the consumption basket, measured by ω,it .19 A key advantage of the ICARIS

is that it accounts for all sub-components of HICP, unlike exclusion measures of core inflation that

omit information from energy and food categories. These two sub-components typically play a

relevant role in driving underlying inflationary pressures. This is particularly the case in the recent

context, as the historical decomposition of the ICARIS points out.

A feature worth to be noticed is the increasing role of non-energy industrial goods (NEIG) in

explaining the ICARIS during the last part of the sample. The persistent component associated with

the NEIG special aggregates “Durables” and “Nondurables” have historically remained relatively

stable until mid-2021, when started to register unprecedented levels (see Figure 1). This unusual

behavior might be the reflection of the effect of supply bottlenecks in combination with record high

energy prices. Other salient features are the stabilization of underlying inflation since the late 2022

and the abrupt decline in March 2023, induced by the fall in the persistent component of energy

prices, as shown in Figure 1.

4.2 Real-timeliness

Since the probability of being in each inflation regime and the level of the permanent compo-

nent in the corresponding inflation regime needs to be re-estimated each time a new observation

is included for monitoring purposes, there is potential for major revisions of ICARIS. In order to

study this possibility, we recursively estimate the ICARIS expanding the window by one month at

a time for the last ten years of the sample under consideration. Hence, the first estimated vintage

runs from January 1999 to April 2013, the second from January 1999 to May 2013 and we con-

19For reference purposes, Figure B-5 of Appendix B reports the contribution of each special aggregate to HICP
growth.
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tinue to expand the window until the entire sample, from January 1999 to March 2023, is covered.

Figure B-6, placed in the Appendix B for the sake of space, plots all the estimated vintages –120

in total–. Until mid-2021, before the latest surge in inflation, ICARIS shows no major revisions,

pointing to our proposed measure of underlying inflation as a robust estimate. As expected, since

the second half of 2021 revisions have been more frequent. This reflects the recent acceleration of

inflation, a pattern almost any model will have difficulty to predict. In this context, ICARIS has

been adapting to the new information and raising the estimated permanent component accordingly.

Next, we analyze the properties of the posterior distribution of ICARIS obtained in real time

and evaluate its usefulness to anticipate turning points in inflation. For reference purposes, we

define regimes of high and low inflation in real time. In doing, so we apply a univariate version of

our regime switching model to aggregate headline HICP inflation.20 When the estimated regime

probability of low inflation is higher than one half, that period is defined as a low-inflation regime.

Otherwise, it is defined as a high-inflation regime.21 Note that the employed dating of inflation

regimes does not have revisions as it is computed in real time, in the spirit of the procedure followed

when dating recessions by the NBER Business Cycle Dating Committee. The estimates infer two

episodes of sustained low inflation in the euro area, the first one occurred between 2013 and 2017,

and the second one between 2020 and 2021.

Figure 3 plots the real-time sequence of statistics of the posterior distribution of the ICARIS.

Chart A plots its median that corresponds to the level of the indicator discussed above, and that we

defined as the “real-time ICARIS”. This is a nonlinear measure of underlying inflation computed

only with the information available at the time of estimation and that has no revisions. Note that

the real-time ICARIS peaked in 2023:02, signaling the beginning of a potential downward trend in

underlying inflation, which might be key for policy makers to keep monitoring.

20As the estimated regimes are used only for reference purposes, we keep the univariate specification parsimonious
and assume constant, instead of time-varying, transition probabilities associated with the Markovian latent variable
that dictates the inflation regimes.

21The real-time probability of low-inflation regime is shown in Figure B-7 of Appendix B.
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Chart B of Figure 3 plots the variance of ICARIS that displays substantial time-variation. Note

the variance reflects both the “cross sector” dispersion across the persistent components in the

respective sectors, and the “within sector” uncertainty attached to the estimation of each spe-

cial aggregate persistent component. Interestingly, while this is not a property imposed by the

proposed framework, transitions from one regime of inflation to another occur gradually across

sub-components, that is why the variance exhibits sustained increases prior to such transitions.

The evolving dispersion of the distribution of the ICARIS can be also interpreted as the degree

of internal decoupling of inflationary pressure across the items in the consumption basket. Note

that upward pressures –transitions from low- to high-inflation regimes– are rapidly spread across

items, while downward pressures –transitions from high- to low-inflation regime– take slightly

more time to materialize. This feature is reflected in the asymmetric jumps observed in the evolv-

ing cross-sectional volatility of ICARIS in that increases take place faster that declines. Also, when

comparing the spikes that the variance of the ICARIS distribution, referred to as its uncertainty, ex-

hibits over time with the dating of headline inflation regimes, we can see a closely related pattern.

Increases in the uncertainty embedded in ICARIS helps to anticipate turning points in headline

inflation in real time.

On top of time-varying dispersion of the distribution of underlying inflation, ICARIS is able

to produce evolving asymmetries in that distribution, which can be measured by its skewness.

This is a feature that linear models are by construction not able come along with. In particular,

an important aspect is that the sign of the skewness varies over time, as indicated in Chart C

of Figure 3. Prior to the transition from low- to high-inflation regime of 2017, the skewness

of ICARIS displayed significantly positive values, pointing to upward pressures in underlying

inflation. Conversely, the ICARIS skewness exhibited mostly negative values prior to the transition

from high- to low-inflation regime of 2020 signaling upcoming downward underlying inflationary

pressures. In the recent observations prior to March 2023, despite the elevated level of underlying

inflation, and the high background uncertainty, our indicator suggested a negative skewness of

ICARIS.
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Figure 3: ICARIS in Real Time

(a) Level

(b) Uncertainty

(c) Asymmetry

Note. Chart (a) plots the median of the posterior density of the ICARIS, estimated in a real-time fashion, that is, using
only the amount of information available at the time of estimation. Chart (b) plots the variance of the posterior density
of the real-time ICARIS for each point in time (right axis). Chart (c) plots the skewness of the posterior density of the
real-time ICARIS for each point in time (right axis). In all charts, the HICP euro area inflation is also plotted with the
dashed blue line, for reference purposes (left axis). The yellow area makes reference to low-inflation regimes, defined
by a real-time probability of low inflation higher than 0.5 according to the estimates in Figure B-7. The sample covers
2013:04-2023:03.
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Chart B of Figure 3 plots the variance of ICARIS that displays substantial time-variation. Note

the variance reflects both the “cross sector” dispersion across the persistent components in the

respective sectors, and the “within sector” uncertainty attached to the estimation of each spe-

cial aggregate persistent component. Interestingly, while this is not a property imposed by the

proposed framework, transitions from one regime of inflation to another occur gradually across

sub-components, that is why the variance exhibits sustained increases prior to such transitions.

The evolving dispersion of the distribution of the ICARIS can be also interpreted as the degree

of internal decoupling of inflationary pressure across the items in the consumption basket. Note

that upward pressures –transitions from low- to high-inflation regimes– are rapidly spread across

items, while downward pressures –transitions from high- to low-inflation regime– take slightly

more time to materialize. This feature is reflected in the asymmetric jumps observed in the evolv-

ing cross-sectional volatility of ICARIS in that increases take place faster that declines. Also, when

comparing the spikes that the variance of the ICARIS distribution, referred to as its uncertainty, ex-

hibits over time with the dating of headline inflation regimes, we can see a closely related pattern.

Increases in the uncertainty embedded in ICARIS helps to anticipate turning points in headline

inflation in real time.

On top of time-varying dispersion of the distribution of underlying inflation, ICARIS is able

to produce evolving asymmetries in that distribution, which can be measured by its skewness.

This is a feature that linear models are by construction not able come along with. In particular,

an important aspect is that the sign of the skewness varies over time, as indicated in Chart C

of Figure 3. Prior to the transition from low- to high-inflation regime of 2017, the skewness

of ICARIS displayed significantly positive values, pointing to upward pressures in underlying

inflation. Conversely, the ICARIS skewness exhibited mostly negative values prior to the transition

from high- to low-inflation regime of 2020 signaling upcoming downward underlying inflationary

pressures. In the recent observations prior to March 2023, despite the elevated level of underlying

inflation, and the high background uncertainty, our indicator suggested a negative skewness of

ICARIS.

23

Chart B of Figure 3 plots the variance of ICARIS that displays substantial time-variation. Note

the variance reflects both the “cross sector” dispersion across the persistent components in the

respective sectors, and the “within sector” uncertainty attached to the estimation of each spe-

cial aggregate persistent component. Interestingly, while this is not a property imposed by the

proposed framework, transitions from one regime of inflation to another occur gradually across

sub-components, that is why the variance exhibits sustained increases prior to such transitions.

The evolving dispersion of the distribution of the ICARIS can be also interpreted as the degree

of internal decoupling of inflationary pressure across the items in the consumption basket. Note

that upward pressures –transitions from low- to high-inflation regimes– are rapidly spread across

items, while downward pressures –transitions from high- to low-inflation regime– take slightly

more time to materialize. This feature is reflected in the asymmetric jumps observed in the evolv-

ing cross-sectional volatility of ICARIS in that increases take place faster that declines. Also, when

comparing the spikes that the variance of the ICARIS distribution, referred to as its uncertainty, ex-

hibits over time with the dating of headline inflation regimes, we can see a closely related pattern.

Increases in the uncertainty embedded in ICARIS helps to anticipate turning points in headline

inflation in real time.

On top of time-varying dispersion of the distribution of underlying inflation, ICARIS is able

to produce evolving asymmetries in that distribution, which can be measured by its skewness.

This is a feature that linear models are by construction not able come along with. In particular,

an important aspect is that the sign of the skewness varies over time, as indicated in Chart C

of Figure 3. Prior to the transition from low- to high-inflation regime of 2017, the skewness

of ICARIS displayed significantly positive values, pointing to upward pressures in underlying

inflation. Conversely, the ICARIS skewness exhibited mostly negative values prior to the transition

from high- to low-inflation regime of 2020 signaling upcoming downward underlying inflationary

pressures. In the recent observations prior to March 2023, despite the elevated level of underlying

inflation, and the high background uncertainty, our indicator suggested a negative skewness of

ICARIS.

23
To provide a more concrete illustration of the type of information contained in the evolving

skewness of the ICARIS, Figure 4 plots the posterior densities at several selected dates. On the

verge of the transitions to a low-headline inflation regime (as in 2019), the distribution becomes

left-skewed, pointing to downside risks. Conversely, prior to the transitions to a high-headline

inflation regime (as in 2016 or 2021), the distribution becomes right-skewed, consistent with upside

risks. This is an indication that the ICARIS provides relevant real-time information about the risks

of transitioning from one regime of headline inflation to another. The very last data point in our

sample (March 2023) suggests a downward shift in underlying inflation: it was precedented in

January and February by distributions of the ICARIS that were skewed to the left.

4.3 Risk Assessment

A more comprehensive approach to risk assessment relies on considering the current trend and

direction of underlying inflation, as compared to the contemporaneous value of the indicator. By

construction, non model-based approaches such as exclusion-based measures (e.g. the trimmed

means) do not come by themselves with an indication of the current short or medium term trend.

Typical trend-cycle decompositions (such as UC model), while they are based on models able to

generate forecasts, generally rely on a random walk process for trend inflation. Therefore, they are

not particularly informative with that respect, as trend inflation is by construction expected to stay

constant at any horizon.22 By contrast, our indicator comes with a non trivial expected future path,

driven by the transition probabilities and the expected value of the persistent component.

Induced by the nonlinear nature of the estimated persistent component of inflation, our model

can be used to quantify asymmetric tail risks associated with future inflation dynamics. Specif-

ically, h-steps ahead projections of the persistent component of the i-th HICP special aggregate

inflation can be computed by exploiting the Markovian property of the corresponding state vari-

22For this reason, medium term forecast of inflation or trend inflation associated to such indicators are rarely made
explicit.
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Figure 4: Posterior Densities of ICARIS in Real Time for Selected Periods
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(c) From low- to high-inflation regime in 2021
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Note. The figure plots the posterior density of ICARIS for selected episodes that make reference to periods when euro
area inflation transitioned from one regime to another. Low-inflation regimes are defined by a real-time probability of
low inflation higher than 0.5 according to the estimates in Figure B-7. All the posterior densities shown in the figure
are computed in real time, that is, by employing only information available up to the time of estimation.
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To provide a more concrete illustration of the type of information contained in the evolving

skewness of the ICARIS, Figure 4 plots the posterior densities at several selected dates. On the
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generate forecasts, generally rely on a random walk process for trend inflation. Therefore, they are

not particularly informative with that respect, as trend inflation is by construction expected to stay

constant at any horizon.22 By contrast, our indicator comes with a non trivial expected future path,

driven by the transition probabilities and the expected value of the persistent component.

Induced by the nonlinear nature of the estimated persistent component of inflation, our model

can be used to quantify asymmetric tail risks associated with future inflation dynamics. Specif-

ically, h-steps ahead projections of the persistent component of the i-th HICP special aggregate

inflation can be computed by exploiting the Markovian property of the corresponding state vari-

22For this reason, medium term forecast of inflation or trend inflation associated to such indicators are rarely made
explicit.
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able, si,t , that is,

µi,T+h = µ̄i0,τi0(1−P(si,T+h))+ µ̄i1,τi1P(si,T+h), (16)

P(si,T+h) = ∑
si,T+h−1

P(si,T+h|si,T+h−1,zT+h)P(si,T+h−1), (17)

for h = 1, ...,H, where P(si,T+h) are the regime probabilities computed with the Hamilton (1989)

filter, P(sT+h|sT+h−1,zT+h) are the transition probabilities defined in equations (8) and (9), and

µ̄κ,τκ are the last regime-dependent means observed at the end of the sample, T , for κ = {0,1}.

Note that the time-varying transition probability associated with T +h depends on the future value

of the exogenous information, zT+h, that is, future real economic activity. Due to the complexity

that forecasting real activity entails, adding to the complexity of our set-up , we take a simple ap-

proach and assume that ẑT+h = E(zT+h|ΨT ) = zT , ∀h, where ΨT denotes the set of information

available up to time T .23 Since the framework is estimated in a Bayesian fashion, we are able

to simulate the posterior density of µi,T+h, denoted by f (µi,T+h). Accordingly, h-step ahead pro-

jections of the permanent component associated to each special aggregate can be computed using

equations (16)-(17), and then aggregated using Equation (15). Given the employed Bayesian esti-

mation framework, this procedure provides the posterior density associated with each of the h-step

ahead projections of the ICARIS.

Chart A of Figure 5 plots the expected path of the level of underlying inflation at a one year

horizon, initiated from various points in the sample. Assessed from the point of view of the final

sample date (2023:03), the ICARIS has a downward expected forward path. Moreover, the peak

of the real-time ICARIS in 2023:02 confirms the view by many analysts that core inflation is set

to decline in the medium term. We underline this is the outcome of a reduced-form model, that

takes into account an effect of real activity on inflation, but does not explicitly take on board the

monetary response to the current shock, which could subsequently be interpreted in the model as

a further regime shift in inflation.

23Filardo (1998) proposes the inclusion of an auxiliary equation to model, and project, the exogenous information
driving the transition probabilities, ẑT+h. We leave such an extension for future research.
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Chart B of Figure 5 plots the mounting uncertainty associated with future underlying inflation.

The Mounting Uncertainty (MU) index is constructed by, first, computing the variance of the real-

time projected density of ICARIS, and then, averaging those values over the horizon h = 1, ...,H,

for each time period.24 The MU index, that has no revisions as it is constructed in real time, can be

interpreted as a timely overall assessment of the uncertainty associated with upcoming inflationary

pressures. Perhaps, its most salient feature is associated with the sustained increased in uncertainty

that started in mid-2021, reaching its historical maximum value in early 2022.

Next, we explore the skewness in the distribution of the one-year ahead projected underlying

inflation. We compute what we coin as the Asymmetric Inflationary Risk (AIR) indicator, that

is the average of the projected ICARIS’s skewness over the entire projection horizon.25 The AIR

index can be interpreted as a summary statistics about both the direction and size of risks associated

with future inflationary pressures.26 Chart C of Figure 5 plots the AIR indicator computed in

real time along with headline HICP inflation for comparison purposes. Positive values of the

AIR at time t indicate right skewness in the projected underlying inflation, and implies expected

upward inflationary pressures over the projection horizon, t +1, ..., t +H. AIR positive values are

represented with red bars in the chart. Analogously, when the AIR exhibits negative values, it

implies left skewness in the projected underlying inflation, which suggests upcoming downward

inflationary pressures over the same projection horizon. Negative AIR values are represented by

the blue bars the chart. As a general rule of thumb, if the skewness of a given distribution is

between -0.5 and 0.5, it could be considered as approximately symmetric. Instead, if the skewness

is higher (lower) than 0.5 (-0.5), the distribution is considered as asymmetric. Hence, for reference

purposes, we include in Chart C of Figure 5 two lines associated with the values 0.5 and -0.5 of

the AIR indicator.
24We consider a one-year ahead horizon, H = 12. The variance of the projected density of ICARIS computed in

real time is shown in Chart A of Figure B-8.
25We follow a similar procedure to the one used to compute the MU index, however, instead of using the variance

of the projected density of ICARIS, we use its skewness. The skewness of the projected density of ICARIS computed
in real time is shown in Chart B of Figure B-8.

26Note that the AIR index might exhibit some sensitivity to the length of the projection horizon. However, this
sensitivity decreases as the projection horizon increases. The reason for this is that at longer horizons the densities of
the projected ICARIS becomes symmetric, and consequently, its associated skewness approaches zero.
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Figure 5: Outlook of Underlying Inflation in Real Time

(a) Projected Underlying Inflation

(b) Mounting Uncertainty

(c) Asymmetric Inflationary Risks

Note. The projections of ICARIS in Chart (a) are obtained as a weighted average of the projections of the persistent
component of inflation associated with the different special aggregates of HICP. The projections are computed based
on equations (16)-(17). The Mounting Uncertainty (MU) index in Chart (b) is computed based on the average variance
–over the projection horizon– of the predictive density of ICARIS, computed in real time (right axis). The Asymmetric
Inflationary Risk (AIR) index in Chart (c) is computed by the average skewness –over the projection horizon– of the
predictive density of ICARIS, computed in real time (right axis). The figure also plots the HICP euro area inflation
with the black solid line, for reference purposes (left axis). The yellow area makes reference to low-inflation regimes,
defined by a real-time probability of low inflation higher than 0.5 according to the estimates in Figure B-7. The sample
covers 2013:04-2023:03.
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We comment on a few of recent episodes to illustrate how the AIR can be interpreted in practice.

In March 2016, the AIR took values larger than 0.5 signaling upcoming upward inflation pressures

associated with a one-year-ahead projection horizon. Such pressures materialized in December

2016, when headline HICP entered a high-inflation regime. Also, in March 2019 the AIR started

to report values smaller than -0.5, pointing to upcoming downward inflation pressures over the

course of one year ahead. Again, such pressures did materialize when inflation switched from a

high- to a low-inflation regime, in May 2020. It is worth to emphasize that the signals provided

by the AIR are constructed in real time, that is, by using only information available at the time of

estimation.

Focusing on the COVID period, in September 2020 the AIR already reported a value higher

than 0.5, indicating an upcoming switch from low- to high-inflation regime. This transition oc-

curred, but earlier than expected, in March 2021. Also, despite the unprecedented upward trend

in inflation that started in the second half of 2021, the AIR indicator started to signaling down-

side risks since June 2021, implying that by mid 2022 inflation pressures would ease. However,

in February 2022 the inflation landscape was exogenously changed as a consequence of the Rus-

sian invasion of Ukraine, a development our framework captures with a temporal surge in the AIR

in March 2022. Since then, downward risks reported by the AIR have been predominant, and

consistent with the downward trend in headline inflation observed since November 2022.

Overall, the ICARIS provides a measure of the level of underlying inflation along with its

density that contains new useful information for both (i) assessing upcoming turning points in

headline inflation and (ii) measuring asymmetric risks in inflationary pressures.
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4.4 The Role of Real Activity on Measuring Inflation Risks

The ability of the AIR indicator to provide accurate assessments on the risks associated with

future inflation dynamics heavily depends on the information of current and past real activity,

collected in zt , driving the probabilities of transition from one regime to another. We illustrate

the role played by real activity in the quantification of inflation risks with an exercise that consists

on estimating the AIR indicator using the same framework with only one change in the set of

information contained in zt . In particular, instead of assuming that zt contains information on

both contemporaneous and lagged real activity, we assume that it contains only information on

contemporaneous activity, that is, zt = xt .

Chart A of Figure 6 plots the “alternative” AIR indicator computed by letting the transition

probabilities depend on contemporaneous, and no lagged, real activity. When comparing the

“benchmark” AIR indicator –plotted in Figure 5– with the “alternative” AIR indicator –plotted

in Figure 6–, two main differences arise. The first, and most important, one makes reference to

the timing of the inferred asymmetric risks. While the benchmark AIR indicator provides accurate

inferences about the future direction of inflation, taking positive (negative) values about a year

before headline inflation significantly rises (declines), the alternative AIR indicator provides ac-

curate assessment on risks associated with the current state of inflation. That is, the alternative

AIR indicator takes positive (negative) values when inflation is just about to significantly rise (de-

cline). In this respect, while the benchmark AIR indicator can be used to provide a medium-term

assessment on inflation risks, the alternative AIR indicator provides valuable information on “now-

casting” risks associated with current inflation dynamics, which can be useful in a highly uncertain

environment.

The ability of the employed variable proxying real activity in helping to generate accurate infla-

tion risk assessments can be rationalized by simply looking at their joint dynamics. Chart B Figure

6 plots the growth rate of Industrial Production along with the HICP inflation, for comparison pur-

poses. The chart shows a leading behaviour of real activity with respect to inflation. Such a leading

behaviour induces changes in the transition probabilities that help to construct projections of the
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persistent components of special HICP aggregates inflation rates that are highly informative about

their future regime changes, and consequently, about the future underlying inflation dynamics,

measured by the projected ICARIS.

4.5 Tracking Regime Changes in Underlying Inflation

The analysis presented in the previous sections has been centered on the construction of a mea-

sure of underlying inflation and on evaluating its properties. An additional piece of information

that could also be of use for policy makers is prompt evaluation regarding whether they are oper-

ating in a regime of high or low underlying inflation. This is not a trivial task as both underlying

inflation and the regime indicator are latent variables, that have to be jointly inferred.

In this section, we turn our attention to building real-time inferences on regimes of high and

low underlying inflation. In doing so, we rely on our empirical framework, described in Section

2, and employ the information contained in the time-varying transition probabilities associated

with each special aggregate of HICP. Specifically, we construct a weighted average of the latent

variables s∗i,t , upon which the Probit specification in Equation (7) are constructed, and let

S∗t =
N

∑
i=1

ωi,t s∗i,t . (18)

Then, we construct the probability of high-underlying inflation regime, PCore
t , by employing the

Bayesian draws of S∗(l)t generated with the estimation algorithm, as follows,

PCore
t =

1
L

L

∑
l=1

I(S∗(l)t ≥ 0), (19)

where I(•) denotes an indicator function and L is the total numbers of draws used in the Bayesian

estimation procedure.

Figure 7 shows the estimated probability of high-underlying inflation regime along with, for

comparison purposes, the real-time ICARIS, headline and standard (HICPX) core inflation. It
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Figure 6: Real Activity and Underlying Inflation Risks

(a) Asymmetric Inflationary Risks: Version with Current Real Activity Only
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Note. Chart A plots the measure of asymmetric inflationary risks associated with the euro area inflation, computed
without using information on lagged economic activity and real time. Positive values (red bars) indicate upcoming
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Excluding Construction for the Euro Area (right axis). The sample covers 1999:01-2023:03.
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persistent components of special HICP aggregates inflation rates that are highly informative about
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Figure 7: Real-Time Probability of High-Underlying Inflation Regime
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Note. The figure plots the real-time probability of high-underlying inflation regime with the solid red line (aligned
with the right axis). The figure also plots the headline HICP inflation and the HICPX core inflation for references
purposes (aligned with the left axis). The sample covers 2013:04-2023:03.

results that the model identifies (in real time), over the post 2013 period two neat low inflation

episodes: the first one spans the 2014 to 2017 period, and the second on spans the end-2020 to

mid 2021 period. The current episode is also clearly identified from mid-2021, as a high inflation

episode, with the transition having operated swiftly. Note the period 2017 to mid-2019 is not

unambiguously classified by the model, reflecting diverging sectoral dynamics.
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persistent components of special HICP aggregates inflation rates that are highly informative about

their future regime changes, and consequently, about the future underlying inflation dynamics,

measured by the projected ICARIS.

4.5 Tracking Regime Changes in Underlying Inflation

The analysis presented in the previous sections has been centered on the construction of a mea-

sure of underlying inflation and on evaluating its properties. An additional piece of information

that could also be of use for policy makers is prompt evaluation regarding whether they are oper-

ating in a regime of high or low underlying inflation. This is not a trivial task as both underlying

inflation and the regime indicator are latent variables, that have to be jointly inferred.

In this section, we turn our attention to building real-time inferences on regimes of high and

low underlying inflation. In doing so, we rely on our empirical framework, described in Section

2, and employ the information contained in the time-varying transition probabilities associated

with each special aggregate of HICP. Specifically, we construct a weighted average of the latent

variables s∗i,t , upon which the Probit specification in Equation (7) are constructed, and let

S∗t =
N

∑
i=1

ωi,t s∗i,t . (18)

Then, we construct the probability of high-underlying inflation regime, PCore
t , by employing the

Bayesian draws of S∗(l)t generated with the estimation algorithm, as follows,

PCore
t =

1
L

L

∑
l=1

I(S∗(l)t ≥ 0), (19)

where I(•) denotes an indicator function and L is the total numbers of draws used in the Bayesian

estimation procedure.

Figure 7 shows the estimated probability of high-underlying inflation regime along with, for

comparison purposes, the real-time ICARIS, headline and standard (HICPX) core inflation. It
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5 Comparing with Alternative Core Inflation Measures

We finally compare our indicator against several commonly used measures of euro area under-

lying inflation: HICP inflation excluding food and energy (HICPX), ECB’s “Supercore” and PCCI

(Persistent and Common Component of Inflation) as well as trimmed means and the weighted me-

dian measures. In this section, we also illustrate the differences that tend to arise when estimating

underlying inflation with linear and nonlinear models.

5.1 Descriptive Statistics

First, we simply inspect the dynamics of the different core inflation measures, and report, in

Table 2, some descriptive statistics. Figure 8 plots our measure along with the various commonly

used measures of euro area core inflation, showing that our indicator stays in the range spanned by

other indicators.27

Table 2: Measures of Underlying Inflation: Descriptive Statistics

Aggregate Average inflation rate (%) standard deviation
coefficient of
variation

Mean absolute
change

HEADLINE INFLATION 2.04 1.89 0.93 0.23

HEADLINE INFLATION
EXC. FOOD AND ENERGY

1.51 0.87 0.57 0.14

PCCI OVERALL 1.99 0.96 0.48 0.10

HICP-SUPERCORE 1.71 1.01 0.59 0.11

ICARIS 1.94 1.51 0.78 0.09

Note: The statistics are based on year-on-year growth rates at the monthly frequency. The sample covers 2002:01-
2023:03. The coefficient of variation is the standard deviation divided by the average inflation rate. The mean
absolute change is the average of the absolute value of the first difference of each inflation measure, see Bańbura
and Bobeica (2020).

27For comparability purposes, the chart does not report real-time but the last vintage corresponding to 2023:03, due
to the unavailability of real-time vintages of some underlying inflation measures.
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The ICARIS has lower high-frequency movements than other indicators. This feature material-

izes in the lowest mean absolute change reported in Table 2. In this respect, the high persistence of

the ICARIS facilitates the assessment of underlying inflation, especially, when facing an environ-

ment of highly volatile price developments. Also, the ICARIS displays substantial medium-range

variation over the sample, reflected in the largest values of standard deviation and coefficient of

variation among underlying inflation measure. This is due to the fact that the ICARIS tends to be

in the lower (upper) bound of the range of core inflation measures during regimes of low (high)

inflation, a feature that results from its regime-dependent nature. In fact, this feature allows the

ICARIS to provide timelier assessments of turning points in inflation dynamics than the other core

inflation measures. For example, during the 2014-2015 low-inflation episode, the ICARIS fell

more markedly than other indicators, and stayed at the bottom of the range, providing stronger

signals of deflationary risks than other indicators. By contrast during the period 2017-2019 the

ICARIS located close to the upper part of the range, providing support to the progress towards

reaching the inflation target.28 Focusing on the recent period, the ICARIS jumped up earlier than

other measures in 2021, and the pick up was somewhat higher in 2022. This recent signal of the

ICARIS pointing to a downward reversion, as the one identified by the PCCI measure, confronts

to the still increasing trajectory of other underlying inflation indicators.

When specifically comparing the ICARIS with the traditional HICPX, our measure shows more

stability and is typically above the HICPX, closer to the inflation target established by the ECB.29

The sample average of the ICARIS is 1.94%, while that of the HICPX is 1.51%, as reported in

Table 2. In the context of the ECB having an objective of 2% defined in terms of the medium term

value for headline HICP, we view the absence of a systematic average bias with the HICP, as one

advantage of our measure over the HICPX.

28During the second half of 2020, Germany cut value added taxes. This cut had a relatively high transitory impact
on the evolution of most of the underlying inflation measures. Although, the ICARIS was relatively less affected.

29In pursuit the price stability, the objective of the ECB was initially keeping the inflation rate below, but close to,
2% over the medium-term. In July 2021, the objective was changed to a symmetric medium-term inflation target of
2%.

35



BANCO DE ESPAÑA 36 DOCUMENTO DE TRABAJO N.º 2319

The ICARIS has lower high-frequency movements than other indicators. This feature material-

izes in the lowest mean absolute change reported in Table 2. In this respect, the high persistence of

the ICARIS facilitates the assessment of underlying inflation, especially, when facing an environ-

ment of highly volatile price developments. Also, the ICARIS displays substantial medium-range

variation over the sample, reflected in the largest values of standard deviation and coefficient of

variation among underlying inflation measure. This is due to the fact that the ICARIS tends to be

in the lower (upper) bound of the range of core inflation measures during regimes of low (high)

inflation, a feature that results from its regime-dependent nature. In fact, this feature allows the

ICARIS to provide timelier assessments of turning points in inflation dynamics than the other core

inflation measures. For example, during the 2014-2015 low-inflation episode, the ICARIS fell

more markedly than other indicators, and stayed at the bottom of the range, providing stronger

signals of deflationary risks than other indicators. By contrast during the period 2017-2019 the

ICARIS located close to the upper part of the range, providing support to the progress towards

reaching the inflation target.28 Focusing on the recent period, the ICARIS jumped up earlier than

other measures in 2021, and the pick up was somewhat higher in 2022. This recent signal of the

ICARIS pointing to a downward reversion, as the one identified by the PCCI measure, confronts

to the still increasing trajectory of other underlying inflation indicators.

When specifically comparing the ICARIS with the traditional HICPX, our measure shows more

stability and is typically above the HICPX, closer to the inflation target established by the ECB.29

The sample average of the ICARIS is 1.94%, while that of the HICPX is 1.51%, as reported in

Table 2. In the context of the ECB having an objective of 2% defined in terms of the medium term

value for headline HICP, we view the absence of a systematic average bias with the HICP, as one

advantage of our measure over the HICPX.

28During the second half of 2020, Germany cut value added taxes. This cut had a relatively high transitory impact
on the evolution of most of the underlying inflation measures. Although, the ICARIS was relatively less affected.

29In pursuit the price stability, the objective of the ECB was initially keeping the inflation rate below, but close to,
2% over the medium-term. In July 2021, the objective was changed to a symmetric medium-term inflation target of
2%.

35

The ICARIS has lower high-frequency movements than other indicators. This feature material-

izes in the lowest mean absolute change reported in Table 2. In this respect, the high persistence of

the ICARIS facilitates the assessment of underlying inflation, especially, when facing an environ-

ment of highly volatile price developments. Also, the ICARIS displays substantial medium-range

variation over the sample, reflected in the largest values of standard deviation and coefficient of

variation among underlying inflation measure. This is due to the fact that the ICARIS tends to be

in the lower (upper) bound of the range of core inflation measures during regimes of low (high)

inflation, a feature that results from its regime-dependent nature. In fact, this feature allows the

ICARIS to provide timelier assessments of turning points in inflation dynamics than the other core

inflation measures. For example, during the 2014-2015 low-inflation episode, the ICARIS fell

more markedly than other indicators, and stayed at the bottom of the range, providing stronger

signals of deflationary risks than other indicators. By contrast during the period 2017-2019 the

ICARIS located close to the upper part of the range, providing support to the progress towards

reaching the inflation target.28 Focusing on the recent period, the ICARIS jumped up earlier than

other measures in 2021, and the pick up was somewhat higher in 2022. This recent signal of the

ICARIS pointing to a downward reversion, as the one identified by the PCCI measure, confronts

to the still increasing trajectory of other underlying inflation indicators.

When specifically comparing the ICARIS with the traditional HICPX, our measure shows more

stability and is typically above the HICPX, closer to the inflation target established by the ECB.29

The sample average of the ICARIS is 1.94%, while that of the HICPX is 1.51%, as reported in

Table 2. In the context of the ECB having an objective of 2% defined in terms of the medium term

value for headline HICP, we view the absence of a systematic average bias with the HICP, as one

advantage of our measure over the HICPX.

28During the second half of 2020, Germany cut value added taxes. This cut had a relatively high transitory impact
on the evolution of most of the underlying inflation measures. Although, the ICARIS was relatively less affected.

29In pursuit the price stability, the objective of the ECB was initially keeping the inflation rate below, but close to,
2% over the medium-term. In July 2021, the objective was changed to a symmetric medium-term inflation target of
2%.

35

Figure 8: Measures of Underlying Inflation
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Note: The range of core inflation measures is computed taking into account the maximum and the minimum, at each
month, of the year-on-year inflation rate among the following measures: HICPX; HICP excluding energy, food, travel-
related items and clothing; Supercore; PCCI for HICP; PCCI for HICPX; trimmed mean 10%, trimmed mean 30%;
and weighted median. All of these measures are available from the ECB Statistical Data Warehouse.

5.2 Forecast Performance

An additional element we rely on to benchmark our underlying inflation measure is its forecast

performance with respect to future headline inflation. In this respect, we follow the approach of

Blinder and Reis (2005) and estimate the following regression:

πt+h = α +βxt +ut+h. (20)

where πt+h is the HICP year-on-year inflation in t +h , xt is a measure of underlying inflation, and

ut+h is a forecast error. We focus on the forecast horizon h = 12. As in Crone, Khettry, Mester,

and Novak (2013), we use a fixed-window rolling regression technique to evaluate the forecast

accuracy. The motivation for doing so is, by letting the parameters of Equation (20) evolve over

time, to allow for structural changes in inflation dynamics. Specifically, the first forecast regression

we run uses information from January 2002 to December 2012 in order to produce the forecast of

December 2013. Then, we move the fixed-window by one month and use the sample period from
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The ICARIS has lower high-frequency movements than other indicators. This feature material-

izes in the lowest mean absolute change reported in Table 2. In this respect, the high persistence of

the ICARIS facilitates the assessment of underlying inflation, especially, when facing an environ-

ment of highly volatile price developments. Also, the ICARIS displays substantial medium-range

variation over the sample, reflected in the largest values of standard deviation and coefficient of

variation among underlying inflation measure. This is due to the fact that the ICARIS tends to be

in the lower (upper) bound of the range of core inflation measures during regimes of low (high)

inflation, a feature that results from its regime-dependent nature. In fact, this feature allows the

ICARIS to provide timelier assessments of turning points in inflation dynamics than the other core

inflation measures. For example, during the 2014-2015 low-inflation episode, the ICARIS fell

more markedly than other indicators, and stayed at the bottom of the range, providing stronger

signals of deflationary risks than other indicators. By contrast during the period 2017-2019 the

ICARIS located close to the upper part of the range, providing support to the progress towards

reaching the inflation target.28 Focusing on the recent period, the ICARIS jumped up earlier than

other measures in 2021, and the pick up was somewhat higher in 2022. This recent signal of the

ICARIS pointing to a downward reversion, as the one identified by the PCCI measure, confronts

to the still increasing trajectory of other underlying inflation indicators.

When specifically comparing the ICARIS with the traditional HICPX, our measure shows more

stability and is typically above the HICPX, closer to the inflation target established by the ECB.29

The sample average of the ICARIS is 1.94%, while that of the HICPX is 1.51%, as reported in

Table 2. In the context of the ECB having an objective of 2% defined in terms of the medium term

value for headline HICP, we view the absence of a systematic average bias with the HICP, as one

advantage of our measure over the HICPX.

28During the second half of 2020, Germany cut value added taxes. This cut had a relatively high transitory impact
on the evolution of most of the underlying inflation measures. Although, the ICARIS was relatively less affected.

29In pursuit the price stability, the objective of the ECB was initially keeping the inflation rate below, but close to,
2% over the medium-term. In July 2021, the objective was changed to a symmetric medium-term inflation target of
2%.
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related items and clothing; Supercore; PCCI for HICP; PCCI for HICPX; trimmed mean 10%, trimmed mean 30%;
and weighted median. All of these measures are available from the ECB Statistical Data Warehouse.

5.2 Forecast Performance

An additional element we rely on to benchmark our underlying inflation measure is its forecast

performance with respect to future headline inflation. In this respect, we follow the approach of

Blinder and Reis (2005) and estimate the following regression:

πt+h = α +βxt +ut+h. (20)

where πt+h is the HICP year-on-year inflation in t +h , xt is a measure of underlying inflation, and

ut+h is a forecast error. We focus on the forecast horizon h = 12. As in Crone, Khettry, Mester,

and Novak (2013), we use a fixed-window rolling regression technique to evaluate the forecast

accuracy. The motivation for doing so is, by letting the parameters of Equation (20) evolve over

time, to allow for structural changes in inflation dynamics. Specifically, the first forecast regression

we run uses information from January 2002 to December 2012 in order to produce the forecast of

December 2013. Then, we move the fixed-window by one month and use the sample period from
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36February 2002 to January 2013 and produce the forecast of January 2014, and so on. We follow this

procedure using different measures of inflation as regressor, xt : HICP, HICPX, trimmed mean at

10%, the weighted median, PCCI, supercore and ICARIS. The second column of Table 3 reports

the pseudo-real time Root Mean Square Error (RMSE) obtained from the forecasting exercise,

showing that the predictive performance of the ICARIS is in line with that of the other underlying

inflation measures under consideration.

A second exercise we run follows Clark (2001) and Bańbura and Bobeica (2020). We evaluate

the ability of ICARIS to predict the 12 months ahead headline inflation by estimating the following

regression:

πt+h −πt = γ +δ (xt −πt)+ et+h. (21)

As highlighted by Clark (2001), under this regression todays’ gap between the measure of underly-

ing inflation and headline inflation would predict the future change in headline inflation. Focusing

on the R2 of this regression, reported in the third column of Table 3, the ICARIS produces the

largest value, implying a higher predictive content of future changes in headline inflation than that

of the other measures.

5.3 Linear versus Nonlinear Inflation Modelling

We turn now to illustrate the differences of our framework when compared to the random-

walk alternative and to evaluate the importance of accounting for nonlinearities when modelling

inflation dynamics. For this purpose, we employ the proposed Regime-based Persistence-Noise

decomposition to breakdown the overall headline HICP euro area inflation into its permanent and

transitory fluctuations.

We decompose the euro area HICP year-on-year inflation rate into its persistent and noise

components with our nonlinear model, using data from 1999:01 to 2023:03. Chart A of Figure 9

plots the persistent component of euro area inflation, showing two distinct features. First, there is

clear evidence of turning points in inflation dynamics. Second, not all high-inflation regimes have
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Table 3: Predicting twelve month ahead inflation

Indicator RMSE
Atractor properties

R2 Intercept Slope

HICP 2.529

HICPX 2.665 0.069 0.454∗∗∗ 0.55∗∗∗

Trimmed 10% 2.644 0.006 0.267∗∗ 0.455∗

Weighted median 2.726 0.030 0.31∗∗∗ 0.447∗∗∗

PCCI 2.187 0.190 0.127 1.075

Supercore 2.726 0.058 0.37∗∗∗ 0.53∗∗∗

ICARIS 2.306 0.412 0.289∗∗∗ 2.706∗∗∗

Note: The RMSE correspond to the forecasting exercise based on Equation (20) (see Crone, Khettry, Mester, and
Novak (2013)). The attractor properties correspond to the forecast exercise based on Equation (21), and make
reference to the R2 coefficients, the intercepts (γ) and slope coefficients (δ ) of Equation (21). ∗, ∗∗ and ∗∗∗ denotes
a 10%, 5% and 1% confidence level for a significant difference from 0, for γ , and from 1, for δ (see Bańbura and
Bobeica (2020)). All the metrics are computed for the sample 2013:12-2023:03.

the same degree of strength, neither all low-inflation regimes have the same degree of weakness.

That is, each regime, either high or low, is uniquely characterized by its corresponding magnitude

of inflation rate. This is an important feature that is especially relevant in the current context, when

inflation in the euro area has reached historical values.

In order to evaluate the robustness of the estimated persistent component of inflation when

facing a real-time environment, we reestimate the nonlinear model by using expanding windows

of data for the last ten years of our sample, that is, from 2012:11 until 2023:03. Chart B of Figure 9

plots the vintages of the recursively estimated persistent component, which exhibit relatively minor

historical revisions as new information is incorporated into the model. This feature suggests that

the proposed framework is able to provide reliable and prompt assessments of inflation persistence.

Our methodology also performs favorable when compared to UC models. Charts C and D

of Figure 9 show the estimated persistent component of inflation obtained with a “standard” UC

model both with the full sample and in real-time, respectively.30 The full-sample estimates of the

30The employed UC model breaks down inflation rate into persistent and temporary components, πt = τt + ct ,
where the persistent component follows a random walk, τt = τt−1 + ξt , and the temporary component follows an
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Bobeica (2020)). All the metrics are computed for the sample 2013:12-2023:03.

the same degree of strength, neither all low-inflation regimes have the same degree of weakness.

That is, each regime, either high or low, is uniquely characterized by its corresponding magnitude

of inflation rate. This is an important feature that is especially relevant in the current context, when

inflation in the euro area has reached historical values.

In order to evaluate the robustness of the estimated persistent component of inflation when

facing a real-time environment, we reestimate the nonlinear model by using expanding windows

of data for the last ten years of our sample, that is, from 2012:11 until 2023:03. Chart B of Figure 9

plots the vintages of the recursively estimated persistent component, which exhibit relatively minor

historical revisions as new information is incorporated into the model. This feature suggests that

the proposed framework is able to provide reliable and prompt assessments of inflation persistence.

Our methodology also performs favorable when compared to UC models. Charts C and D

of Figure 9 show the estimated persistent component of inflation obtained with a “standard” UC

model both with the full sample and in real-time, respectively.30 The full-sample estimates of the

30The employed UC model breaks down inflation rate into persistent and temporary components, πt = τt + ct ,
where the persistent component follows a random walk, τt = τt−1 + ξt , and the temporary component follows an

38

Figure 9: Persistent Component of Headline Inflation
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(b) Nonlinear Model: Real Time Revisions
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(c) Linear Model: Full Sample
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(d) Linear Model: Real Time Revisions
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Note. Charts A and B plot the full-sample and real-time vintages of the persistent component obtained with the
proposed regime-switching model, respectively. HICP inflation is decomposed into a regime-switching mean and a
moving average process. Charts C and D plot the full-sample and real-time vintages of the persistent component
obtained with a UC model, respectively, where inflation is decomposed into a random walk and an autoregressive
process. All charts also report the HICP inflation for comparison purposes. The full-sample estimates cover 1999:01-
2023:03. The real-time vintages are estimated recursively by adding one month of information at a time and covering
the last ten years of data, 2013:04-2023:03.

autoregressive process of order two, ct = ρ1ct−1 +ρ2ct−2 +ζt . The model is estimated with Bayesian methods.
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persistent component obtained with the linear model are highly imprecise. This is mainly induced

by the sizeable upward trend of inflation observed at the end of the sample. Due to the linearity

assumption, the last “atypical” observations basically distort the entire history of the estimated

persistent component, inducing a large uncertainty on the estimates. Our nonlinear framework

does not suffer from these issues as the underlying persistent component is locally inferred in a

piecewise fashion. Moreover, the real-time vintages of the persistent component obtained with the

UC model present considerably large historical revisions, which preclude to deliver time consistent

assessments of trend inflation. These results suggest that a “standard” UC linear model fails to

provide a reliable estimation of the persistent component of euro area inflation.31

A natural comparison that arises is between the ICARIS and the persistent component obtained

using only aggregate headline HICP, plotted in Charts A and B of Figure 9. Although both mea-

sures follow somewhat similar dynamics, there are important differences. The ICARIS exhibits

more variability from month to month reflecting that it emerges from a weighted average across

the permanent components estimated for each of the special aggregates. Moreover, the transition

of the ICARIS from one inflation regime to another occurs in a smoother way than that of the

persistent component of headline HICP. This smoother transition represents a key piece of infor-

mation when evaluation potential internal decoupling patterns of headline HICP inflation, and also

to mount a narrative on the main drivers of inflationary pressures.

6 Concluding Remarks

We propose a new measure of core inflation based on a regime-switching framework, for the

euro area. Given its inherent nonlinearity, our measure is able to shed some light on features of

underlying inflation that have not be covered by existing measures. In particular, our measure is

able to provide accurate real-time inferences on turning points in inflation. It can also be used to

generate timely and robust inference on asymmetric risks associated with future developments of

31Similar insights are obtained when using UC models that allow for stochastic volatility in the innovations. The
estimates are available upon request.

40

persistent component obtained with the linear model are highly imprecise. This is mainly induced

by the sizeable upward trend of inflation observed at the end of the sample. Due to the linearity

assumption, the last “atypical” observations basically distort the entire history of the estimated

persistent component, inducing a large uncertainty on the estimates. Our nonlinear framework

does not suffer from these issues as the underlying persistent component is locally inferred in a

piecewise fashion. Moreover, the real-time vintages of the persistent component obtained with the

UC model present considerably large historical revisions, which preclude to deliver time consistent

assessments of trend inflation. These results suggest that a “standard” UC linear model fails to

provide a reliable estimation of the persistent component of euro area inflation.31

A natural comparison that arises is between the ICARIS and the persistent component obtained

using only aggregate headline HICP, plotted in Charts A and B of Figure 9. Although both mea-

sures follow somewhat similar dynamics, there are important differences. The ICARIS exhibits

more variability from month to month reflecting that it emerges from a weighted average across

the permanent components estimated for each of the special aggregates. Moreover, the transition

of the ICARIS from one inflation regime to another occurs in a smoother way than that of the

persistent component of headline HICP. This smoother transition represents a key piece of infor-

mation when evaluation potential internal decoupling patterns of headline HICP inflation, and also

to mount a narrative on the main drivers of inflationary pressures.

6 Concluding Remarks

We propose a new measure of core inflation based on a regime-switching framework, for the

euro area. Given its inherent nonlinearity, our measure is able to shed some light on features of

underlying inflation that have not be covered by existing measures. In particular, our measure is

able to provide accurate real-time inferences on turning points in inflation. It can also be used to

generate timely and robust inference on asymmetric risks associated with future developments of

31Similar insights are obtained when using UC models that allow for stochastic volatility in the innovations. The
estimates are available upon request.
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Figure 9: Persistent Component of Headline Inflation
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Note. Charts A and B plot the full-sample and real-time vintages of the persistent component obtained with the
proposed regime-switching model, respectively. HICP inflation is decomposed into a regime-switching mean and a
moving average process. Charts C and D plot the full-sample and real-time vintages of the persistent component
obtained with a UC model, respectively, where inflation is decomposed into a random walk and an autoregressive
process. All charts also report the HICP inflation for comparison purposes. The full-sample estimates cover 1999:01-
2023:03. The real-time vintages are estimated recursively by adding one month of information at a time and covering
the last ten years of data, 2013:04-2023:03.

autoregressive process of order two, ct = ρ1ct−1 +ρ2ct−2 +ζt . The model is estimated with Bayesian methods.
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persistent component obtained with the linear model are highly imprecise. This is mainly induced

by the sizeable upward trend of inflation observed at the end of the sample. Due to the linearity

assumption, the last “atypical” observations basically distort the entire history of the estimated

persistent component, inducing a large uncertainty on the estimates. Our nonlinear framework

does not suffer from these issues as the underlying persistent component is locally inferred in a

piecewise fashion. Moreover, the real-time vintages of the persistent component obtained with the

UC model present considerably large historical revisions, which preclude to deliver time consistent

assessments of trend inflation. These results suggest that a “standard” UC linear model fails to

provide a reliable estimation of the persistent component of euro area inflation.31

A natural comparison that arises is between the ICARIS and the persistent component obtained

using only aggregate headline HICP, plotted in Charts A and B of Figure 9. Although both mea-

sures follow somewhat similar dynamics, there are important differences. The ICARIS exhibits

more variability from month to month reflecting that it emerges from a weighted average across

the permanent components estimated for each of the special aggregates. Moreover, the transition

of the ICARIS from one inflation regime to another occurs in a smoother way than that of the

persistent component of headline HICP. This smoother transition represents a key piece of infor-

mation when evaluation potential internal decoupling patterns of headline HICP inflation, and also

to mount a narrative on the main drivers of inflationary pressures.

6 Concluding Remarks

We propose a new measure of core inflation based on a regime-switching framework, for the

euro area. Given its inherent nonlinearity, our measure is able to shed some light on features of

underlying inflation that have not be covered by existing measures. In particular, our measure is

able to provide accurate real-time inferences on turning points in inflation. It can also be used to

generate timely and robust inference on asymmetric risks associated with future developments of

31Similar insights are obtained when using UC models that allow for stochastic volatility in the innovations. The
estimates are available upon request.

40

inflation. Our measure is comparable to existing measures in terms of general dynamics and ability

to forecast headline inflation. Against this backdrop, we view our indicator as a relevant addition

to the existing set of indicators of underlying inflation that are used to inform policy makers on

latent inflationary pressures.

Several extensions of the proposed framework could be considered in order to study specifics

aspects of inflation risks. One example would be the inclusion of more economic fundamentals in

the set of information driving the transition probabilities (zt) –such as monetary policy or exchange

rates–, and thus influencing risks associated with upcoming inflationary pressure. Another exten-

sion would be, as in Filardo (1998), to include auxiliary equations to jointly infer future values of

the forcing variables of the regime-switching process, and potentially increase the accuracy of the

inferences. We leave these possible extensions for further research.
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Appendix – For Online Publication Only

A Estimation Algorithm

The estimation algorithm relies on Bayesian methods and uses the Gibbs sampler, with a

Metropolis step, to simulate the posterior distribution of both parameters and latent variables that

characterize the model. Note that the element that links the persistence-noise decomposition asso-

ciated with each special aggregate inflation is the vector zt . The fact that zt is exogenously treated

in the model makes tractable the sampling of all the elements involved in the proposed medium-

size multistate Markovian framework. In particular, conditional on zt the elements of the model

can be independently sampled equation by equation, that is, for i = 1, ...,n. Accordingly, given a

sample period t = 1,2, . . . ,T , let the vectors of observed variables, latent regime, latent variable,

and persistent component associated with the i-th special aggregate be defined as

Ỹi,T = [yi,1 yi,2 . . . yi,T ], (A-1)

S̃i,T = [si,1 si,2 . . . si,T ], (A-2)

S̃∗
i,T = [s∗i,1 s∗i,2 . . . s∗i,T ], (A-3)

µ̃i,T = [µi,1 µi,2 . . . µi,T ], (A-4)

respectively. Each iteration of the Gibbs sampler consists of the following steps applied for i =

1, ...,n:

Step 1.1: Sample σ2
i from Pr(σ2

i |Ỹi,T , S̃i,T , S̃∗
i,T , µ̃i,T ,θi,λi). To sample the variance of in-

novations driving the noise component, we use the conjugate Inverse-Gamma prior distribution,

IG(η ,v), and generate draws from the posterior distribution

σ2
i ∼ IG(η̄ , v̄); (A-5)

45

where

η̄ = η +
T
2

and v̄ = v+
1
2
(Ỹi,T − µ̃i,T )

′ (Hi,T H′
i,T
)−1

(Ỹi,T − µ̃i,T ), (A-6)

and Hi,T is a squared matrix of size equal to the number of observations in the full sample, T , that

follows the same band structure as the one defined in Equation (14).

Step 1.2: Sample θi from Pr(θi|Ỹi,T , S̃i,T , S̃∗
i,T , µ̃i,T ,σ2

i ,λi). By assuming a uniform prior on

the interval (−1,1), θi ∼U(−1,1), the conditional distribution is defined by

Pr(θi|Ỹi,T , S̃i,T , S̃∗
i,T , µ̃i,T ,σ2

i ,λi) ∝ Pr(Ỹi,T |S̃i,T , S̃∗
i,T , µ̃i,T ,σ2

i ,λi,θi)1(|θi|< 1), (A-7)

where 1(·) denotes an indicator function and the likelihood is given by

Pr(Ỹi,T |S̃i,T , S̃∗
i,T , µ̃i,T ,σ2

i ,θi,λi)= |2πσ2
i Hi,T H′

i,T |
1
2 exp

(
− 1

2σ2
i
(Ỹi,T − µ̃i,T )

′(Hi,T H′
i,T )

−1(Ỹi,T − µ̃i,T )

)
.

(A-8)

We simulate the conditional density by relying a Metropolis-Hastings step. Specifically, we

use the Gaussian proposal N (θ̂i,Vi,θ ), where θ̂i denotes the median of the conditional density,

Pr(θi|Ỹi,T , S̃i,T , S̃∗
i,T , µ̃i,T ,σ2

i ,λi), and Vi,θ is the inverse of the negative Hessian evaluated at the

mode. The mode θ̂i can be obtained numerically and Vi,θ is computed by using finite difference

methods, see Chan (2013).

Step 1.3: Sample λi from Pr(λi|Ỹi,T , S̃i,T , S̃∗
i,T , µ̃i,T ,σ2

i ,θi). Conditional S̃∗
i,T , each equation in

(7) becomes an independent linear regression. Hence, to generate draws of λi we use the normal

prior distribution N (aλ ,bλ ), which combined with the likelihood yields the posterior density

N (δi,λ ,σ2
i,λ ), with
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where
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T
2
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1
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transition probabilities, pi(zt) and qi(zt), can be generated from a Normal CDF by using equations

(8) and (9).

Step 2: Sample S̃i,T from Pr(S̃i,T |Ỹi,T , S̃∗
i,T , µ̃i,T ,σ2

i ,θi,λi). In this step, we adapt the simula-

tion smoother proposed in Kim and Nelson (1999) for the case of time-varying transition proba-

bilities. First, we run the Hamilton (1989) filter and save the corresponding regime probabilities—

denoted by Pr(si,t |Fi,t), for t = 1, . . . ,T —where Fi,t = {Yi,τ}t
τ=1 denotes the sequence of data up

to and including period t. Next, by letting Z̃i,T = [z1 z2 . . . zT ] be the vector of exogenous informa-

tion driving the transition probabilities, we generate draws of the Markovian variable S̃i,T from the

following conditional distribution,

Pr(S̃i,T |Z̃T ,Fi,T ) = Pr(si,1,si,2, ...,si,T |Z̃T ,Fi,T )

= Pr(si,T |Z̃T ,Fi,T )Pr(si,T−1,si,T−2, ...,si,1|si,T , Z̃T ,Fi,T )

= Pr(si,T |Fi,T )Pr(si,T−1|si,T , Z̃T ,Fi,T )Pr(si,T−2,si,T−3, ...,si,1|si,T ,si,T−1, Z̃T ,Fi,T )

= Pr(si,T |Fi,T )Pr(si,T−1|si,T , Z̃T ,Fi,T )Pr(si,T−2|si,T ,si,T−1, Z̃T ,Fi,T )

...Pr(si,1|si,T ,si,T−1, ...,si,2, Z̃T ,Fi,T )

= Pr(si,T |Fi,T )Pr(si,T−1|si,T , Z̃T ,Fi,T−1)Pr(si,T−2|si,T−1, Z̃T−1,Fi,T−2)

...Pr(si,1|si,2, Z̃2,Fi,1)

= Pr(si,T |Fi,T )Pr(si,T−1|si,T ,zT ,Fi,T−1)Pr(si,T−2|si,T−1,zT−1,Fi,T−2)

...Pr(si,1|si,2,z2,Fi,1)

= Pr(si,T |Fi,T )
T−1

∏
t=1

Pr(si,t |si,t+1,zt+1,Fi,t). (A-11)

The first term on the right-hand-side of the above equation is obtained from running the Hamilton

filter, computing the regime probabilities and selecting the element for t = T . The product in the
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second term is computed according to:

Pr(si,t |si,t+1,zt+1,Fi,t) =
Pr(si,t ,si,t+1,zt+1|Fi,t)

Pr(si,t+1,zt+1|Fi,t)

∝ Pr(si,t+1|si,t ,zt+1)Pr(si,t |Fi,t); t = T −1,T −2, . . . ,1,(A-12)

where Pr(si,t+1|si,t ,zt+1) corresponds to the time-varying transition probabilities of si,t , that is,

pi(zt) and qi(zt), and Pr(si,t |Fi,t) is saved after running the Hamilton filter. Then, we compute

Pr(si,t = 1|si,t+1,zt+1,Fi,t) =
Pr(si,t+1|si,t = 1,zt+1)Pr(si,t = 1|Fi,t)

∑1
j=0 Pr(si,t+1|si,t = j,zt+1)Pr(si,t = j|Fi,t)

; (A-13)

and generate a random number from a U [0,1] distribution. If that number is less than or equal to

Pr(si,t = 1|si,t+1,zt+1,Fi,t), we set si,t = 1, otherwise si,t = 0.

Step 3: We follow the approach of Filardo (1998) and rely on the data augmentation method

to generate draws of the latent variable S̃∗
i,T . In particular, given the values of λi and the inequality

constraint in Equation (6), draws of S̃∗
i,T are generated from the corresponding truncated standard

Normal distribution.

Step 4: The law of motion of the regime-dependent means driving the persistent component of

inflation, in Equation (2), can be alternatively expressed as follows:

µi0,t = (1−di0,t)µi0,t−1 +di0,t µi0,τ0 , (A-14)

µi1,t = (1−di1,t)µi1,t−1 +di1,t µi1,τ1 , (A-15)

where the indicator variables di0,t and di1,t are defined as

di0,t =

{
1 when si,t = 0, si,t−1 = 1 , di1,t =

{
1 when si,t = 1, si,t−1 = 0

The time domain t = 1, ...,T is partitioned into N0 low-inflation regimes and N1 high-inflation

regimes, where a low-inflation regime is followed by a high-inflation regime, which, in turn, must
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be followed by another low-inflation regime. The mean µi0,τ0 represents the expected value of

inflation, πi,t , during the τ0-th low-inflation regime, for τ0 = 1, ...,N0, and µi1,τ1 corresponds to the

τ1-th high-inflation regime, for τ1 = 1, ...,N1.

Suppose that period t corresponds to a τ0-th low-inflation regime, so that si,t = 0. In this case,

the inflation rate of the i-th special component is expected to equal the low-inflation regime mean

µi0,τ0 . The high-inflation regime mean µi1,τ1 has no effect: we assume that it remains the same as

during the τ1-th high-inflation regime that was right before the τ0-th low-inflation regime. When

the τ0-th low-inflation regime ends, its corresponding mean µi0,τ0 becomes ineffective and a new

high-inflation regime mean µi1,τ1+1 determines the expected value of the inflation rate πi,t . To give

an illustrative example, suppose that the economy begins in a high-inflation regime. Then, for

t = 1, ...,T , the values of µi1,τ1 and µi0,τ0 described in Figure A-1 would be applicable.

Figure A-1: Illustration of Regime Changes with Heterogeneous Means

Note. The figure plots a simulated time series that exhibits regime changes with heterogeneous regime-dependent
means.

Given that the first episode in the illustration with simulated data corresponds to a high-inflation

regime, the initial value of the low-inflation regime mean µ0,τ0 , prior to the beginning of the sample,

can be treated as an additional parameter and estimated within the proposed algorithm. To generate

inferences on the initial condition of the regime-dependent means, defined as µ̄ , we use the diffuse
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Table A-1: Moments of prior distribution

Parameter Description Distribution a b
µ0,τ0 Mean inflation in low-inflation regime N (a,b) 0 1000
µ1,τ1 Mean inflation in high-inflation regime N (a,b) 1 1000

µ̄ Initial condition of regime-dependent means N (a,b) 0 1
λi Probit regression coefficients N (a,b) 0 I
σ2 Variance of innovations IG(a,b) 3 2
θ Moving average coefficient U(a,b) −1 1

Note: this table reports prior parameters.

normal prior distribution N (ā, b̄), which combined with the likelihood yields the posterior density

N (δ̄ , σ̄2), with,

σ̄2 =

(
b̄−1 +

1
σ2

)−1

, (A-16)

δ̄ = σ̄2
(

b̄−1ā+
π1

σ2

)
. (A-17)

The time-varying means defined in equations (A-14)-(A-15) are the ones used to run the Hamilton

filter in Step 2 of the algorithm.

The employed parameters of the prior distributions are reported in Table A-1. Steps 1–4 are

repeated for M = 10,000 iterations and the first M0 = 2,000 iterations are discarded to avoid the

potential influence of initial conditions. The set of M∗ = 8,000 draws constitute the posteriors

densities associated with both parameters and latent variables.
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B Additional Figures

Figure B-1: Probability of Low-Inflation Regime for Special Aggregates of HICP: Full Sample
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Note. The figure plots the probability of low-inflation regime computed with the full sample (right axis). The
probability is computed as the mean of the draws of the latent state, si,t , associated with each iteration of the employed
Gibbs sampler. Each chart also plots the year-on-year growth rate of the corresponding sub-component price index for
reference purposes (left axis). The sample covers 1999:01-2023:03.
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Figure B-2: Weighted Probability of Low-Inflation Regime for Special Aggregates of HICP: Full
Sample
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Note. The figure plots the weighted average probability of low inflation regime associated with the special aggregates
of HICP (right axis). The HICP euro area inflation is also plotted for reference purposes (left axis). The sample covers
1999:01-2023:03.
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Figure B-3: Persistent Component of Inflation for Special Aggregates of HICP: Real Time
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Note. The figure plots the persistent component of inflation associated with the different special aggregates of HICP,
computed in a real-time fashion, that is, using only the information available at the time of estimation. The persistent
components are obtained with the proposed regime-switching model. Each chart also plots the year-on-year growth
rate of the corresponding sub-component price index for reference purposes. The sample covers 2012:11-2023:03.

53



BANCO DE ESPAÑA 53 DOCUMENTO DE TRABAJO N.º 2319

Figure B-4: Probability of Low-Inflation Regime for Special Aggregates of HICP: Real Time
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Note. The figure plots the probability of low-inflation regime computed in a real-time fashion, that is, using only the
information available at the time of estimation (right axis). The probability is computed as the mean of the draws of the
latent state, st , associated with each iteration of the employed Gibbs sampler. Each chart also plots the year-on-year
growth rate of the corresponding sub-component price index for reference purposes (left axis). The sample covers
2013:04-2023:03.
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Figure B-5: Contributions of specific aggregates to HICP growth
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Note. Contribution each special aggregate to the year-on-year inflation rate of headline HICP. The sample covers
1999:01-2023:03.

Figure B-6: ICARIS: Real-time Vintages

Note: The figure plots the vintages of ICARIS estimated recursively in a real-time fashion, that is using only the
amount of information available at the time of estimation. The red solid line corresponds to the last vintage in the
sample corresponding to 2023:03. The HICP euro area inflation is also plotted for reference purposes. The yellow
area makes reference to low-inflation regimes, defined by a real-time probability of low inflation higher than 0.5
according to the estimates in Figure B-7. The sample covers 2013:04-2023:03.
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Figure B-7: Headline Inflation Turning Points

Note. The figure plots the real-time probability of low-inflation regime (right axis), which is computed as the mean
over the draws of the latent state, st , generated from the Gibbs sampler. The red area represents its corresponding
density, which is generated by using the draws of the regime probability associated with each iteration of the Gibbs
sampler. HICP euro area inflation is also plotted for reference purposes (left axis). The time span corresponds to
2013:04-2023:03.
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Figure B-8: Projections of ICARIS in Real Time

(a) Variance

(b) Skewness

Note. Chart (a) plots the variance of the projected posterior density of the ICARIS for each point in time (right axis).
Chart (b) plots the skewness of the projected posterior density of the ICARIS for each point in time (right axis). In
all charts, the HICP euro area inflation is also plotted for reference purposes (left axis). The projections of density of
ICARIS are obtained as a weighted average of the projections of the persistent component of inflation associated with
the different special aggregates of HICP. The projections are computed based on equations (16)-(17). The yellow area
makes reference to low-inflation regimes, defined by a real-time probability of low inflation higher than 0.5 according
to the estimates in Figure B-7. The sample covers 2013:04-2023:03.
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