A formulation of optimal control problem with quasi-geometric discounting

Takaaki Aoki*

Abstract

In the previous paper, I characterized some dynamic aspects on dynastic utility incorporating two-sided altruism with discrete-time OLG settings. In its extension, hereby I formulate the continuous-time version of the optimal control problem with quasi-geometric discounting.

Keywords: Continuous-time, Dynamic inconsistency, Quasi-geometric discounting. JEL classification: CO2

1. Introduction

In my previous paper (Aoki (2015)), I described a dynamics of one-sector growth model with an OLG setting under two-sided altruism, where we a modified Euler equation for dynamic inconsistency was derived. To be natural, the model with dynamic inconsistency proves to be equivalent to that with quasi-geometric discounting (as in Krussel et al. (2003)). There I focused on self-consistency, differentiability, and fragility against recursive perturbation of policy/value functions, in a local area around any arbitrary fixed point. The indeterminacy of self-consistent policy functions, as proved in Krussel et al. (2003), suggests that a slight functional perturbation might not necessarily result in the contraction in the sup norm to the original one.

In the present note, I extend the model to a continuous-time case (as in Ekeland et al. (2006)), but with a finite, nonzero lifetime for each generation, as the first step for investigating its dynamic properties, especially the fragility/robustness against perturbation from some of self-consistent value functions in some functional spaces.

1. Discrete-time model with quasi-geometric discounting: Review

At first, we review a discrete-time model with quasi-geometric discounting, as discussed in Krussel et al. (2003) and Aoki (2015). Assume that time is now finite and discrete as period $t=0,1,\dots,T$, each generation ($t=0,1,\dots,T-1$.) lives only for each single period t, and that discount factors are $\beta\mu$ for the second period, but β 's afterwards. Then

The *objective function* of generation *t* is:

 $V_{t,T}(k) = u(c_t) + \beta \mu u(c_{t+1}) + \beta^2 \mu u(c_{t+2}) \cdots + \beta^{T-t-1} \mu u(c_{T-1}) + \beta^{T-t} \mu \Phi(k_T).$ (1)

Here c_t and k_t are the consumption and capital stock at period t, respectively, and $u(\cdot)$ is a utility function. $\Phi(\cdot)$ is the value function at terminal period T.

We also define a following modified objective function:

 $\tilde{V}_{t,T}(k) = u(c_t) + \beta u(c_{t+1}) + \beta^2 u(c_{t+2}) \cdots + \beta^{T-t-1} u(c_{T-1}) + \beta^{T-t} \Phi(k_T).$ (2)

^{*} Niigata Sangyo University, Dept. of Economics, Karuigawa 4730, Kashiwazaki, 945–1393, Japan, Phone: +81–257–24– 6655 E-mail: taoki@econ.nsu.ac.jp

The corresponding value functions to the above value functions, $V_{t,T}(k_t)$ and $\tilde{V}_{t,T}(k_t)$, are also defined as $W_t(k_t)$ and $\tilde{W}_t(k_t)$, respectively.

Then generation t solves:

$$W_{t}(k_{t}) = \max_{\substack{c_{t} \\ s.t. \ k_{t+1} = f(k_{t}) + (1-\delta)k_{t} - c_{t}.}} (3)$$

where

 $\widetilde{W}_t(k_t) = (1/\mu) W_t(k_t) + (1 - 1/\mu) u(\hat{c}_t).$ (4)

Here \hat{c}_t is the solution in c_t of the above problem. $u(\cdot)$ is a utility function, and δ is a depreciation rate. Then *the modified Euler equation* is derived as:

$$-u' ((f-g_t)(k)) + \beta u' ((f-g_{t+1}) \circ g_t(k)) [(\mu f' - (\mu - 1)g_{t+1}') \circ g_t(k)] = 0.$$
(5)

2. Continuous-time model with quasi-geometric discounting

Now we move to the continuous-time case. The assumptions of the model are as following.

Assumptions:

- The world starts at t = 0, and ends at $t=T(=n\Delta T)$, during which there exist n periods with interval ΔT , and n corresponding generations.
- Each of *n* generations $(i=0,1,\dots,n-1)$ lives only for one period. The life of generation *i* starts at time $t = i\Delta T$ and ends at time $t = (i+1)\Delta T$.

$$t = 0 \qquad \Delta T \qquad 2\Delta T \qquad 3\Delta T \qquad 4\Delta T \qquad (n-2)\Delta T \qquad (n-1)\Delta T \qquad n\Delta T (= T)$$
Generation 0 1 2 3 $n-2 \qquad n-1$
Fig. 1 Time course in continuous-time model

Fig. 1 Time course in continuous-time model

- Discount *factor* function of each generation $\beta(s)$ as a function of *s*, time from its birth. (So for generation *i*, *s*=0 when *t* = *i* ΔT .)
- *Objective function* of generation n-l ($l=1,2,\dots,n$.):

$$V_{n-l}(k_{n-l}^{0}) = \int_{0}^{l\Delta T} e^{-\int_{0}^{s} \beta(s') ds'} u(c(s)) ds + e^{-\int_{0}^{l\Delta T} \beta(s') ds'} \Phi(k_{n}^{0}), \tag{6}$$

where

 k_{n-l}^0 : Initial capital of generation n-l,

 $\Phi(k_n^0)$: Value of capital (k_n^0) at the terminal period $t=T(=n\Delta T)$.

Then the corresponding value function for generation n-l (W_{n-l}) is calculated as:

$$W_{n-l}(k_{n-l}^{0}) = \max_{\{c(t)\}_{0}^{\Delta T}, \{k(t)\}_{0}^{\Delta T}} \left(\int_{0}^{\Delta T} e^{-\int_{0}^{s} \beta(s')ds'} u(c(s)) ds + e^{-\int_{0}^{\Delta T} \beta(s')ds'} \widetilde{W}_{n-l+1}(k_{n-l+1}^{0}) \right).$$
(7)
s.t. $\dot{k}(s) = f(k(s)) - c(s)(-\delta k(s)), k(0) = k_{n-l}^{0}, k_{n-l+1}^{0} = k(\Delta T) (k_{n}^{0} \text{ is not fixed}).$

Here let $(\{\hat{c}_{n-l}(k_{n-l}^0,s)\}_{s=0}^{\Delta T}, \{\hat{k}_{n-l}(k_{n-l}^0,s)\}_{s=0}^{\Delta T})$ be the solutions of $\{c(s)\}_0^{\Delta T}, \{k(s)\}_0^{\Delta T}$ in the above problem. Then define the subsequently realized paths of consumption and capital until the terminal period

 $t = T(= n\Delta T)$, given k_{n-l}^0 , the initial capital of generation n-l, as $\{\tilde{c}_{n-l}(k_{n-l}^0, s)\}_{s=0}^{l\Delta T}$ and $\{\tilde{k}_{n-l}(k_{n-l}^0, s)\}_{s=0}^{l\Delta T}$. Then the modified value of V_{n-l} , transformed according to the discount structure of generation n-l-1 (the preceding generation), is represented as:

$$\widetilde{W}_{n-l}(k_{n-l}^{0}) = \int_{0}^{l\Delta T} e^{-\int_{0}^{s} \beta(s' + \Delta T) ds'} u\left(\widetilde{c}_{n-l}(k_{n-l}^{0}, s)\right) ds + e^{-\int_{0}^{l\Delta T} \beta(s' + \Delta T) ds'} \Phi\left(\widetilde{k}_{n-l}(k_{n-l}^{0}, l\Delta T)\right).$$
(8)

Now we assume, for simplicity, that discount factor is β_0 during the own life of the current generation n-l, but β_1 afterwards. That is, $\beta(s')=\beta_0$ for $0 \le s' \le \Delta T$, and $\beta(s')=\beta_1$ for $\Delta T \le s' \le l\Delta T$, where $\beta_0/\beta_1 \equiv \mu$. Note that $\beta(s'+\Delta T)=\beta(s'+2\Delta T)$ for $0 \le t'$. (The discount structure after one period is the same as that after two periods.) Then now the Bellman equations can be constructed as:

$$W_{n-l}(k) = \max_{\{c(s)\}_{0}^{\Delta T}, \{k(s)\}_{0}^{\Delta T}} \left(\int_{0}^{\Delta T} e^{-\beta_{0}s} u(c(s)) dt + e^{-\beta_{0}\Delta T} \widetilde{W}_{n-l+1}(k(\Delta T)) \right), \quad (9)$$

s.t. $\dot{k}(s) = f(k(s)) - c(s)(-\delta k(s)), k(0) = k,$

and

$$\begin{split} \widetilde{W}_{n-l}(k) &= e^{(\beta_0 - \beta_1)\Delta T} W_{n-l}(k) + \int_0^{\Delta T} \left[e^{-\beta_1 s} - e^{-\beta_0 s + (\beta_0 - \beta_1)\Delta T} \right] u(\hat{c}_{n-l}(k,s)) ds \\ &= e^{\beta_1(\mu - 1)\Delta T} W_{n-l}(k) + \int_0^{\Delta T} \left[e^{-\beta_1 s} - e^{\beta_1(\mu - 1)\Delta T - \beta_1 \mu s} \right] u(\hat{c}_{n-l}(k,s)) ds. \end{split}$$
(10)

In *time consistency*, if it occurred, we could drop the subscripts n-l and n-l+1 from the above equation. Then the corresponding Hamilton–Jacobi–Bellman equation is derived just as in the ordinary case, but only for $0 \le t \le \Delta T$.

$$W(k) = \max_{\{c(t)\}_{0}^{\Delta T}, \{k(t)\}_{0}^{\Delta T}} \left(\int_{0}^{\Delta T} e^{-\beta_{0}t} u(c(t)) dt + e^{-\beta_{0}\Delta T} \widetilde{W}(k(\Delta T)) \right), \quad (11)$$

$$s.t. \ \dot{k}(t) = f(k(t)) - c(t)(-\delta k(t)), k(0) = k.$$

$$\left(\{ \hat{c}(k,t) \}_{t=0}^{\Delta T}, \{ \hat{k}(k,t) \}_{t=0}^{\Delta T} \right) = \arg_{\{c(t)\}_{0}^{\Delta T}, \{k(t)\}_{0}^{\Delta T}} \left(\int_{0}^{\Delta T} e^{-\beta_{0}t} u(c(t)) dt + e^{-\beta_{0}\Delta T} \widetilde{W}(k(\Delta T)) \right) \right) \quad (12)$$

$$\widetilde{W}(k) = e^{(\beta_{0} - \beta_{1})\Delta T} W(k) + \int_{0}^{\Delta T} \left[e^{-\beta_{1}t} - e^{(\beta_{0} - \beta_{1})\Delta T - \beta_{0}t} \right] u(\hat{c}(k,t)) dt$$

$$= e^{\beta_{1}(\mu - 1)\Delta T} W(k) + \int_{0}^{\Delta T} \left[e^{-\beta_{1}t} - e^{\beta_{1}(\mu - 1)\Delta T - \beta_{1}\mu t} \right] u(\hat{c}(k,t)) dt \quad (13)$$

5. Final remarks

This note formulates the continuous-time optimal control problem with quasi-geometric discounting. The results shown here will help analytical investigations including the existence or robustness of time-consistency, which are still left for future work.

References

Krusell P. and Smith A. A. (2003) "Consumption–savings Decisions with Quasi–geometric Discounting", Econometrica, 71–1, 365–375.

Ekeland I. and Lazrak A. (2008) "Equilibrium Policies When Preferences Are Time Inconsistent", arXiv:math/0808.3790v1.

Aoki, T. (2015) "Some Mathematical Properties of the Dynamically Inconsistent Bellman Equation: A Note on the Two-sided Altruism Dynamics", *Journal of Mathematics and System Science*, Vol. 5, No. 1, pp. 1–16.