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Abstract: This paper introduces a new generalization of the Lindley distribution introduced by [1], using the basic idea of 
[2] and along the lines of [3]. The new distribution is a compound of the Lindley and logarithmic distributions. We refer to 
the new model as the logarithmic-Lindley (Log-L) distribution. This model is capable of modeling various shapes of aging 
and failure criteria. The properties of the Log-L model are discussed, and the maximum likelihood estimation method is 
used to evaluate the parameters involved. Finally, the usefulness of the new model for modeling reliability data is 
illustrated using a two real data sets with simulation study. 
Keywords: Lindley distribution; logarithmic distribution; maximum likelihood estimation; order statistics; Rényi entropy.

1 Introduction 

Lifetime distribution represents an attempt to describe, mathematically, the length of the life of systems or devices. 
Lifetime distributions are most frequently used in many fields as medicine, engineering ...etc. Many parametric models 
such as exponential, gamma and Weibull have been frequently used in statistical literature to analyze lifetime data. But 
there is no clear motivation for the gamma and Weibull distributions. They only have more general mathematical closed 
forms than the exponential distribution with one additional parameter. 

Recently, the one parameter Lindley distribution has attracted the researchers for its use in modeling lifetime data. It has 
been observed in several papers that this distribution has performed excellently. The Lindley distribution was originally 
proposed by [1] in the context of Bayesian statistics, as a counter example of fiducial statistics. One can glean it as a 
mixture of exponential(𝜃) and gamma(2, 𝜃). 

Some of the advances in the literature of Lindley distribution are given by [4] who has introduced a two-parameter 
weighted Lindley distribution and has pointed that Lindley distribution is particularly useful in modeling biological data 
from mortality studies. Mahmoudi et al. [5] proposed generalized Poisson-Lindley distribution. Bakouch et al. [6] come up 
with extended Lindley distribution, [7] introduced a two-parameter Lindley distribution. [8] proposed a new two parameter 
lifetime distribution. Hassan [9] introduced a convolution of Lindley distribution. Elbatal et al. [10] proposed a new 
generalized Lindley distribution. Afify and Alizadeh [11] proposed the odd Dagum Lindley distribution. Al-Babtain et al. 
[12] introduced Weibull Marshall-Olkin power-Lindley distribution. Furthermore, Al-Babtain et al. [13] proposed the 
discrete version of the continuous Lindley called natural discrete Lindley (NDL) as a mixture of geometric and negative 
binomial distributions. Almazah et al. [14] addressed the reliability properties of the NDL distribution. Hosseini et al. [15] 
studied the weighted-Lindley distribution. 

Definition 1 A random variable 𝑋 is said to have the Lindley distribution with parameter (𝜃) if its probability density 
function (pdf) is defined as 

																																																				𝑔	(𝑥) = 	
𝜃)

𝜃 + 1
(1 + 	𝑥)𝑒-./,			𝑥 > 0, 𝜃 > 0																																																																										(1) 

while the corresponding survival, or reliability, function is given by 

																																																																								𝐺	(𝑥) =
𝜃 + 1 + 𝜃𝑥

𝜃 𝑒-./,				𝑥 > 0.																																																																						(2) 

The hazard rate function (hrf) is 

																																																																									𝑟(𝑥) =
𝜃)(1 + 𝑥)
𝜃 + 1 + 𝜃𝑥 	,					𝑥 > 0.																																																																																									(3) 

In the context of reliability and survival analysis, [3] proposed a transformation of a distribution 𝐺	(𝑥; 𝜃) that introduces a 
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new parameter 𝛼 > 0. This transformation is defined through the cumulative distribution function (cdf). 

																																																																									𝑓(𝑥; 𝜃, 𝛼) =
𝐺(𝑥; 𝜃)

𝐺(𝑥; 𝜃) + 𝛼𝐺(𝑥; 𝜃)
.																																																																																			(4) 

The interpretation of the parameter 𝛼 is given in [3] in terms of the behavior of the ratio of hazard rates of 𝐺 and 𝐹. This 
ratio is increasing in 𝑥 for 𝛼 ≥ 1 and decreasing in 𝑥 for 0 < 𝛼 < 1. This transformation is then proposed for the 
exponential and Weibull distributions in [3] in order to generate more flexible models for lifetime data. Clearly, for 𝛼 = 1, 
𝐺 and 𝐹 coincide. 

A lot of papers had been published by using Marshall-Olkin (M-O) transformation given in (4). Alice and Jose [16] 
introduced M-O extended semi-Pareto model and studied its geometric extreme stability. Semi-Weibull distribution and 
generalized Weibull distributions are considered by [17]. Ristic et al. [18] introduced and studied the M-O gamma 
distribution. Ghitany et al. [19] proposed the M-O extended Lomax distribution. The M-O beta distribution as an extension 
of the basic distribution with four parameters was presented by [20]. Gomez-Deniz [21] presented a new generalization of 
the geometric distribution using the M-O scheme. Garcia et al. [22] defined a generalized normal distribution by applying 
this transformation to a normal distribution G. Afify et al. [23] proposed the M-O additive Weibull distribution. Nassar et 
al. [24] proposed the M-O alpha power family. The M-O power generalized Weibull and M-O odd Burr III-G are 
introduced by [25] and [26], respectively. 

Pappas et al. [2] introduced a new generalization which is derived along the lines of [3]. Accordingly, starting with a 
survival function (sf)	 𝐺(𝑥), then the usual device of adding a new parameter results in another sf	𝐹(𝑥) defined by 

																																																						𝐹(𝑥) =
ln[	1 − (1 − 𝑝)𝐺(𝑥)]

ln(𝑝) ,			𝑥 ∈ ℝ, 𝑝 > 0,																																																																														(5) 

and when 𝑝 → 1, the distribution reduces to the base distribution 𝐺(𝑥). If 𝑓(𝑥)	and ℎ(𝑥) are the pdf and hrf corresponding 
to 𝐹(𝑥), then 

																																																									𝑓(𝑥) =
(𝑝 − 1)	𝑔(𝑥)

[	1 − (1 − 𝑝)𝐺(𝑥)]ln	(𝑝)
, 𝑥 ∈ 	ℝ, 𝑝 > 0																																																															(6) 

and 

																																																																		ℎ(𝑥) =
(𝑝 − 1)	𝐺(𝑥)	𝑟(𝑥)

	[	1 − (1 − 𝑝)𝐺(𝑥)]	ln	[1 − (1 − 𝑝)𝐺(𝑥)]
,																																																								(7) 

where ℎ(𝑥) is the hrf corresponding to 𝑓(𝑥). It is worth mentioning that [27] followed this idea to provide the Lomax-
logarithmic distribution. The aim of this paper is to introduce a new generalization of Lindley distribution [1]. This 
generalization is called logarithmic-Lindley (Log-L) distribution and it is flexible enough to model different types of 
lifetime data having different forms of failure rate. The new model can accommodate both decreasing and increasing failure 
rates as its antecessors, as well as unimodal and bathtub shaped failure rates. 

The rest of this paper will cover the following topics adequately: Section 2 introduces the pdf and the sf of the Log-L 
distribution, then gives an interpretation of the new model. We investigate the reliability analysis of the new model via 
Section 3 which includes the hrf with its shapes, the cumulative hrf and the mean residual lifetime. Section 4 presents the 
statistical properties of the Log-L distribution. The Log-L parameters are estimated via the maximum likelihood estimation 
method in Section 5. Section 6 presents a simulation study. Section 7 provides two applications illustrating the performance 
of the new proposed model that are applied on different real data sets. Finally, Section 8 presents some conclusions. 

2 A Lindley Extension Model 

In the following, Lindley distribution is extended by adding a new shape parameter, 𝑝 > 0, using Equations (5) through (7). 
Now, substituting (2) into (5) and doing the necessary simplifications gives the sf of the Log-L distribution as 

																																																							𝐹(𝑥) = 	
ln L1 − (1 − 𝑝) M.NON./

.NO
P 𝑒-./Q

ln(𝑝) , 𝑥 > 0,																																																																(8) 

where 𝜃> 0 is a scale parameter and 𝑝 > 0 is a shape parameter. Then the pdf corresponding to (8) is readily found to be 
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																																											𝑓(𝑥) =
𝜃)(𝑝 − 1)

(𝜃 + 1) ln(𝑝)	S
(1 + 𝑥)𝑒-./

1 − (1 − 𝑝) MON.N./
.NO

P 𝑒-./
T , 𝑥 > 0, 𝜃, 𝑝 > 0.																																							(9)	

 

Note that the Log-L distribution is an extended model to analyze more complex data and it generalizes some of the widely 
used distributions. The Lindley distribution is clearly a special case when	p → 1. 

Interpretation: For 𝑝 ∈(0,1), the pdf given by (9) can be obtained as a compound of the logarithmic and the Lindley 
distributions. According to [28] and [29], suppose that 𝑋O,𝑋), ...,𝑋W are 𝑌 iid (independent and identically distributed) 
lifetime random variables in a series system each with pdf (1), and let 𝑌 be a random variable distributed according to the 
logarithimc distribution with probability mass function (pmf) defined as 

𝑝(𝑌 = 𝑦) =
−(1 − 𝑝)W

𝑦𝑙𝑛𝑝 ,			𝑦 ∈ ℕ, 𝑝 ∈ (0,1).	 

Now, the conditional distribution function of (𝑋|𝑌) is given by 

𝑓(𝑥|𝑦) = 𝑦𝑔(𝑥)^𝐺(𝑥)_
W-O

=
𝑦𝜃)(1 + 𝑥)
1 + 𝜃 + 𝜃) 	`

1 + 𝜃 + 𝜃𝑥
1 + 𝜃 	𝑒-./a

W

	, 

where	𝑔(𝑥) and 𝐺(𝑥) are the pdf and the sf corresponding to Lindley distribution and given by (1) and (2), respectively. 

Then, the joint distribution of the random variables 𝑋 and 𝑌, denoted by 𝑓	(𝑥, 𝑦), is obtained as 

𝑓(𝑥, 𝑦) = 𝑓(𝑥|𝑦). 𝑝(𝑌 = 𝑝) =
−𝜃)(1 + 𝑥)

(1 + 𝜃 + 𝜃𝑥) ln(𝑝) b
(1 − 𝑝) `

1 + 𝜃 + 𝜃𝑥
1 + 𝜃 a 𝑒-./c

W

. 

Hence, it can be found the marginal pdf of	𝑥 as follows 

																										𝑓(𝑥) =d𝑓(𝑥, 𝑦)
e

WfO

=
−𝜃)(1 + 𝑥)

(1 + 𝜃 + 𝜃𝑥) ln(𝑝)db(1 − 𝑝) `
1 + 𝜃 + 𝜃𝑥
1 + 𝜃 a 𝑒-./c

W.

WfO

 

											=
−𝜃)(1 + 𝑥)

(1 + 𝜃 + 𝜃𝑥) ln(𝑝)	S
(1 − 𝑝) MON.N./

ON.
P 𝑒-./

1 − (1 − 𝑝) MON.N./
ON.

P 𝑒-./
T

W

 

=
𝜃)(𝑝 − 1)

(1 + 𝜃) ln(𝑝)	S
(1 + 𝑥)𝑒-𝜃𝑥

1 − (1 − 𝑝) MON.N./
.NO

P 𝑒-./
T	, 

which is the pdf of the Log-L distribution given by (1). 

Figure 1 illustrates some of the possible shapes of the pdf of the Log-L distribution for different values of the parameters 𝜃 
and	𝑝 chosen from the ranges specified in Equation (9). 

 
 

FIG. 1: The density function plots of the Log-L distribution. 

3 Reliability Analysis  
In this section, we present the hrf with its different shapes, the cumulative hrf (chrf) and the mean residual lifetime for the 
Log-L distribution. 



382                                                                                                                F. Alzawq et al.: A New Log Lindley Distribution … 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

Let 𝑋 be the lifetime of a device (or a component in a system). Suppose a component follow that 𝑋 has a pdf as in (9). One 
of the most important characteristics of 𝑋 is its hrf, ℎ(𝑥), which is defined by 

ℎ(𝑥) = lim
∆/→j

𝑃𝑟(𝑥 < 𝑋 < 𝑥 + ∆𝑥|X > x)	
∆𝑥 = lim

∆/→j

𝐹(𝑥 + ∆𝑥) − 𝐹(𝑥)
∆𝑥. 𝑅(𝑥) =

𝑓(𝑥)
𝑅(𝑥),			 

which provides information about a small interval after time 𝑥(𝑥 + ∆𝑥). Using the previous definition or by substituting (2) 
and (3) into (7), the hrf of a random variable 𝑋~Log − L(θ, p) is given by 

																																						ℎ(𝑥) =
(𝑝 − 1) M .!

.NO
P (1 + 𝑥)𝑒-./

L1 − (1 − 𝑝) M.NON./
.NO

P 𝑒-./Q ln L1 − (1 − 𝑝) M.NON./
.NO

P 𝑒-./Q
.																																				(10) 

By taking the limits of (10) when 𝑥 → 0 and when 𝑥 → ∞, we have 

lim
/→j

ℎ(𝑥) =
𝑝 − 1
𝑝 ln(𝑝) ×

𝜃)

𝜃 + 1 =
𝑝 − 1
𝑝 ln(𝑝)	 lim/→j 𝑟

(𝑥), 

and 

lim
/→e

ℎ(𝑥) = lim
/→e

𝑟(𝑥), 

it follows from (10) that 

																																											
𝑝 − 1
𝑝 ln(𝑝) 	𝑟

(𝑥) ≤ ℎ(𝑥) ≤ 𝑟(𝑥); 𝑥 > 0, 𝑝 ≥ 1,	 

and 

																																											𝑟(𝑥) ≤ ℎ(𝑥) ≤
𝑝 − 1
𝑝 ln(𝑝) 𝑟

(𝑥); 𝑥 > 0, 𝑝 ∈ (0,1). 

 

Hence, using the ratio w(x)
y(x)

, 𝑥 > 0, it can be shown that z(/)
{(/)

	is increasing for	𝑝	 ≥ 	1	and decreasing for 𝑝 ∈  (0,1). Figure 2 
illustrates the behavior of the hrf of the Log-L distribution at different values of the parameters involved. 

 
FIG. 2: Increasing, decreasing, unimodal and bathtub shapes for the hrf of the Log-L distribution. 

 

Therefore, the new distribution can accommodate both decreasing and increasing failure rates as its antecessors, as well as 
unimodal and bathtub shaped failure rates. 

 

Many generalized models have been proposed in reliability literature through the relationship between the reliability 
function 𝐹(𝑥) and its chrf, denoted by 𝐻(𝑥), given by 𝐻(𝑥) 	=	— ln𝐹	(𝑥). Then, the chrf of the Log-L distribution is 
given by 
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																																																										𝐻(𝑥) = ln	[ln(𝑝)] − ln bln ~1 − (1 − 𝑝) `
𝜃 + 1 + 𝜃𝑥
𝜃 + 1 a 𝑒-./�c.																																						(11)	

 

The additional lifetime given that the component has survived up to time 𝑥 is called the residual life function of the 
component, then the expectation of the random variable that represent the remaining lifetime is called the mean residual 
lifetime (MRL) and it is given by 

																																																									𝑚(𝑥) = 𝐸(𝑋 − 𝑥|𝑋 ≥ 𝑥) = �
1

𝐹(𝑥)
� 𝑡	𝑓(𝑡)𝑑𝑡	
e

/

� − 𝑥.																																																			(12) 

While the hrf provides information about a small interval after time	𝑥	(just	after	𝑥), the MRL considers information about 
the whole interval after 𝑥	(all	after	𝑥). The MRL as well as the hrf or the reliability function are very important as each of 
them can be used to characterize a unique corresponding life time distribution 

The MRL function 𝑚(𝑥) for Log-L random variable can be derived in the following steps. 

Now, 

																																																� 𝑡	𝑓(𝑡)𝑑𝑡 =
𝜃)(𝑝 − 1)

(𝜃 + 1)	ln	(𝑝)

e

/
�

(𝑡 + 𝑡))𝑒-.�

L1 − (1 − 𝑝) M1 + .�
.NO

P 𝑒-.�Q
𝑑𝑡.																																							(13)	

e

/
 

Using the expansion (1 − 𝑧)-O = ∑ 𝑧𝑖e
�fj , |z| < 1,	one has 

																																																			b1 − (1 − 𝑝) `1 +
𝜃𝑡

𝜃 + 1a 𝑒
-.�c

-O

=d(1 − 𝑝)�
e

�fj

`1 +
𝜃𝑡

𝜃 + 1a	
�𝑒-�.�	.																																		(14) 

Similarly, using the expansion (1 + 𝑏)� = ∑ M𝑗𝑖P ,
e
�fj  one can have 

																																																																														1 +
𝜃 + 𝑡
𝜃 + 1

�

=d`
𝑗
𝑖a (

𝜃
𝜃 + 1)

�-�
e

�fj

	𝑡�-�.																																																																			(15) 

Hence, one can rewrite (14) as  

																																			b1 − (1 − 𝑝) `1 +
𝜃𝑡

𝜃 + 1a 𝑒
-.�c

-O

= 	dd`
𝑗
𝑖a (1 − 𝑝)

�
e

�fj

`
𝜃

𝜃 + 1a
�-�e

�fj

𝑡�-�𝑒-�.�.																																		(16) 

Substitute (16) into (13) and do the necessary simplifications, one has 

																									� 𝑡. 𝑓(𝑡)𝑑𝑡 =
𝜃)(𝑝 + 1)

(𝜃 + 1) ln(𝑝)

e

/
dd`

𝑗
𝑖a

e

�fj

(1 − 𝑝)�NO
e

�fj

`
𝜃

𝜃 + 1a
�-O

� (𝑡�-�NO + 𝑡�-�N))𝑒-(�NO)
e

/
𝜃𝑡.														(17) 

Evaluating the integral ∫ (𝑡�-�NO + 𝑡�-�N))𝑒-(�NO).�𝑑𝑡e
/ 	 by using the substitution 𝑢 = 𝜃(𝑗 + 1), 

� (𝑡�-�NO + 𝑡�-�N))𝑒-(�NO).�𝑑𝑡 = � 𝑡�-�NO + 𝑒-(�NO).�
e

/
𝑑𝑡 +

e

/
� 𝑡�-�N)𝑒-(�NO).�
e

/
𝑑𝑡. 

Then, using 

𝐴 = � 𝑡�-�NO𝑒-(�NO).�𝑑𝑡
e

/
	

and      

𝐵 = � 𝑡�-�N)𝑒-(�NO).�𝑑𝑡
e

/
. 

Then, 

																																																𝐴 =
1

[𝜃(𝑗 + 1)]�-�NO	 	� 𝑢�-�NO𝑒-�
e

.(�NO)/
𝑑𝑢 =

𝑟(𝑗 − 𝑖 + 2, 𝜃(𝑗 + 1)𝑥)
[𝜃(𝑗 + 1)]�-�NO .																																					(18) 
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Also, 

																																															𝐵 =
1

[𝜃(𝑗 + 1)]�-�N) 	� 𝑢�-�N)𝑒-�
e

.(�NO)"
𝑑𝑢 =

𝑟(𝑗 − 𝑖 + 3, 𝜃(𝑗 + 1)𝑥)
[𝜃(𝑗 + 1)]�-�N) ,																																							(19) 

where 𝑟(𝑎, 𝑏) is the higher incomplete gamma function, and defined by 𝑟(𝑎, 𝑏) = ∫ 𝑥 -O𝑒-/𝑑𝑥.e
¡  

Substituting (18) and (19) into (17) and doing the necessary simplifications, gives 

											� 𝑡	𝑓(𝑡)𝑑𝑡 =
(𝑝 − 1)
ln(𝑝) 	×dd𝑖𝐶𝑗[𝜃(𝑗 + 1)Г(𝑗 − 𝑖 + 2, 𝜃(𝑗 + 1)𝑥) + Г(𝑗 − 𝑖 + 3, 𝜃(𝑗 + 1)𝑥)],

e

�fj

																				(20)
e

�fj

e

/
 

where ∑ ∑ 𝑖𝐶𝑗	e
�fj

�
�fj is a constant term, and it is denoted by 

∑ ∑ 𝑖𝐶𝑗 = ∑ ∑
M�
�
P(O-¤)#(ON.)$%#%&

(�NO)#%$'(
e
�fj

e
�fj

e
�fj

e
�fj . 

Finally, collecting all of the above evaluations the MRL of the Log-L distribution can be written as 

𝑚(𝑥) =
(𝑝 − 1)

ln L1 − (1 − 𝑝) M.NON./
.NO

P 𝑒-./Q

×dd{𝑖𝐶𝑗			[𝜃(𝑗 + 1)Г(𝑗 − 𝑖 + 2, 𝜃(𝑗 + 1)𝑥) + Г(𝑗 − 𝑖 + 3, 𝜃(𝑗 + 1)𝑥)]} − 𝑥.																												(21)
e

�fj

e

�fj

 

4 Statistical Properties  
This section investigates the statistical properties of the Log-L distribution such as the moments, the moment generating 
function, the quantiles and median, order statistics, Lorenz and Bonferroni curves and Rényi entropy. 

4.1 Moments 

The 𝑟�znon-central moment of the Log-L distribution is given by 

																																	𝐸(𝑋{) = �́�{ =
𝜃)(𝑝 − 1)
(𝜃 + 1) ln 𝑝�

(𝑥{ + 𝑥{NO)𝑒-./

L1 − (1 − 𝑝) M1 + ./
.NO

P 𝑒-./Q

e

j
𝑑𝑥,								𝑟 = 1,2, …																									(22) 

Using the expansion (1 −		)-O = 	∑ 𝑧�e
�fj ,	one has 

																																										b1 − (1 − 𝑝) `1 +
𝜃𝑥
𝜃 + 1a 𝑒

-./c
-O

=d(1 − 𝑝)� `1 +
𝜃𝑥
𝜃 + 1a

�

𝑒-�./.																																						(23)	
e

�fj

 

Similarly, using the expansion (1 + 𝑏)� = ∑ M𝑗𝑖P 𝑏
�,e

�fj  we can have 

																																																																										`1 +
𝜃𝑥
1 + 𝜃a

�

=dM𝑗𝑖P `
𝜃

1 + 𝜃a
�

𝑥�.																																																																										(24)	
e

�fj

 

Substitute (23) and (24) into (22), gives us  

																																							𝜇{ª = 	
𝜃)(𝑝 − 1)
(𝜃 + 1) ln 𝑝	ddM𝑗𝑖P (1 − 𝑝)

� `
𝜃

1 + 𝜃a
�

� (𝑥{N� + 𝑥{N�NO)𝑒-(�NO)./𝑑𝑡.																								(25)
e

j

e

�fj

e

�fj

 

Finally, evaluating the integral 

� (𝑥{N� + 𝑥{N�NO)𝑒-(�NO)./𝑑𝑡	.
e

j
 

and doing the necessary simplifications the 𝑟�z non-central moment of the Log-L distribution can be written as 
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																																											𝜇{ª =
(𝑝 − 1)
𝜃{ ln 𝑝 	ddS

M𝑗𝑖P (1 − 𝑝)
�[𝜃(𝑗 + 1) + 𝑟 + 𝑖 + 1](𝑟 + 𝑖)!

(1 + 𝜃)�NO(𝑗 + 1){N�N) T
e

�fj

.																																																(26)
e

�fj

 

Depending on (26), we can conclude the basic statistical properties of the Log-L distribution as follows. 

(𝑖) The mean, 𝜇Oª 	= 𝜇, and the variance, 𝑉𝑎𝑟(𝑋), of the Log-L random variable 𝑋 are, respectively, given by 

																																																										𝜇 =
(𝑝 − 1)
𝜃 ln 𝑝 dd

𝑗! (1 − 𝑝)�[𝜃(𝑗 + 1) + 𝑖 + 2](𝑖 + 1)
(1 + 𝜃)�NO(𝑗 + 1)�N®(𝑗 − 𝑖)! ¯

e

�fj

																																															(27)
e

�fj

 

and           

𝑉𝑎𝑟(𝑋) = 	𝜇)́ 	−	𝜇Ó, 

where 𝜇)ª  is the second non-central moment and given by 

																																											𝜇)ª =
(𝑝 − 1)
𝜃) ln 𝑝 dd

𝑗! (1 − 𝑝)�[𝜃(𝑗 + 1) + 𝑖 + 3](𝑖 + 2)(𝑖 + 1)
(1 + 𝜃)�NO(𝑖 + 1)�N°(𝑗 − 𝑖)! ¯

e

�fj

�

�fj

.																																															(28) 

(𝑖𝑖) The 𝑛�z central moments 𝜇�can be obtained easily from the 𝑟�z	moments through the relation 

𝜇� = 𝐸(𝑥 − 𝜇)� = 	d(𝑛𝑟)(−𝜇)
�-{�́�{.

�

{fj

 

Then the 𝑛�z central moment of the Log-L distribution is given by 

																																										𝜇/ =
(𝑝 − 1)
ln 𝑝 dddS

M𝑗𝑖P 𝑡
®(1 − 𝑝)�[𝜃(𝑗 + 1) + 𝑟 + 𝑖 + 1](𝑟 + 𝑖)

𝜃®(1 + 𝜃)�NO(𝑗 + 1){N�N)	𝑟! T .																																							(29)
e

�fj

e

�fj

e

{fj

 

4.2 The Quantiles 

Let 𝑋 be a random variable with cdf associated with (9). Then, the quantile function (qf), 𝑥±, defined by 𝐹	(𝑥𝑞) 	= 	𝑞	is the 
root of the equation 

																																																																		`
𝜃 + 1 + 𝜃𝑥±

𝜃 + 1 a 𝑒-./) = ³
1 − 𝑝O-±

1 − 𝑝 ´ ,				0 < 𝑞 < 1.																																																					(30) 

Substituting, 𝑦±	f-O-.-./),	we can rewrite (30) as 

																																																																	𝑦±𝑒W± = −(𝜃 + 1)𝑒-(.NO) ³
1 − 𝑝O-±

1 − 𝑝 ´ ,				0 < 𝑞 < 1.																																																			(31) 

Hence, the solution of 𝑦±is  

																																																𝑦± = 𝑊 −(𝜃 + 1)𝑒-(.NO) ³
1 − 𝑝O-±

1 − 𝑝 ´¯ , 0 < 𝑞 < 1,																																																														(32) 

where 𝑊(. ) is the Lambert 𝑊 function, see [30] for more details about the properties of the Lambert 𝑊 function. Inverting 
(32), one has 

																																																				𝑥± = −1 −
1
𝜃 −

1
𝜃𝑊¶−(𝜃 + 1)𝑒-(.NO) ³

1 − 𝑝O-±

1 − 𝑝 ´· ,				0 < 𝑞 < 1.																																						(33) 

Remark 1 A particular case of (33) at 𝑝	 → 	1 gives the qf of the Lindley distribution; see Jodra (2010), as 

																																																																				𝑥± = −1 −
1
𝜃 −

1
𝜃𝑊 M−(𝜃 + 1)𝑒-(.NO)(1 − 𝑞)P.																																																									(34) 

When 𝑞 = 0.5 in (33), one can obtain the median of the distribution as 
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																																																																			𝑥j.¸ = −1 −
1
𝜃 −

1
𝜃𝑊³

−(𝜃 + 1)𝑒-(.NO)

1 + ¹𝑝
´.																																																																						(35) 

A series expansion for (33) around 𝑞	 = 	1 can be obtained as 

																																																																																					𝑥± = −1 −
1
𝜃 −

1
𝜃 d

(−𝑛)�-O

𝑛!

e

�fO		

,																																																																						(36) 

where 𝑧 = −(𝜃 + 1)𝑒-(.NO) MO-¤
&%)

O-¤
P. These kind of expansions for computing 𝑊(. ) are widely available, for example, 

ProductLog[.] in Mathematica software. 

 

4.3 Distribution of Order Statistics 

 Let 𝑋O𝑋) ……𝑋� denote n independent random variables from a distribution function 𝐹º(𝑥) 	= 	1	—	𝐹º	(𝑥) with pdf 
𝑓º(𝑥), and then the pdf of 𝑋(�)	 (the j order sample arrangement) is given by 

																																						𝑓º(#)	(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)! 𝑓º
(𝑥)[𝐹º(𝑥)]�-O[1 − 𝐹º(𝑥)]�-�, 𝑗 = 1,2, …																																					(37) 

Using (8) and (9) into (37), then the pdf of 𝑋(�)	 according to the Log-L distribution is given by  

𝑓º(#)	(𝑥) =
𝑛!	(𝑝 − 1) M .!

.NO
P (1 + 𝑥)𝑒-./

(𝑗 − 1)! (𝑛 − 𝑗)! [ln(𝑝)]�-�NO
»ln L1 − (1 − 𝑝) M.NON./

.NO
P 𝑒-./Q¼

�-�

L1 − (1 − 𝑝) M.NON./
.NO)

P 𝑒-./Q
 

× ½1 −
ln L1 − (1 − 𝑝) M.NON./

.NO
P 𝑒-./Q

ln(𝑝) ¾

�-O

	,																																					(38)	 

Therefore, the pdf of the largest order statistic 𝑋(�)and the smallest order statistic 𝑋(O) are, respectively, given by 

									𝑓º(-)	(𝑥) =
𝑛
ln 𝑝 S

(𝑝 − 1) M .!

.NO
P (1 + 𝑥)𝑒-./

1 − (1 − 𝑝) M.NON./
.NO

P 𝑒-./
T S1 −

ln[1 − (1 − 𝑝)(.NON./
.NO

)𝑒-./

ln(𝑝) T

�-O

																																																				(39) 

and 

𝑓º(O)(𝑥) =
𝑛	(𝑝 − 1) M .!

.NO
P (1 + 𝑥)𝑒-./

[ln(𝑝)]� L1 − (1 − 𝑝) M.NON./
.NO)

P 𝑒-./Q
~ln b1 − (1 − 𝑝) `

𝜃 + 1 + 𝜃𝑥
𝜃 + 1 a𝑒-./c�

�-O

.																																												(40)		 

 

4.4 Measures of Inequality  

In this section, Lorenz and Bonferroni curves are introduced as measures of inequality.  

Lorenz and Bonferroni curves are the most widely used inequality measures in income and wealth distribution. In fact, 
Lorenz and Bonferroni curves are depending on the length-biased distribution with pdf 𝑓∗(𝑥) defined by 

𝑓∗(𝑥) =
𝑥	𝑓(𝑥)
𝜇 , 

where 𝑓(𝑥) is the pdf of the base distribution with mean 𝜇. 

Accordingly, Lorenz and Bonferroni curves, denoted by 𝐿(𝑥) and 𝐵(𝑥) respectively, are defined by 

																																																																			𝐿(𝑥) =
𝑓∗(𝑥)
𝜇 ,															and															𝐵(𝑥) =

𝑙(𝑥)
𝑓(𝑥),																																																										(41) 

where 𝐹∗(𝑥) cdf of the length-biased distribution. 
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Now, we shall derive the expressions of 𝐿(𝑥) and 𝐵(𝑥)	based on 𝐹∗(𝑥) and 𝐹∗(𝑥) for Log-L distribution. It is easily shown 
that the pdf of the length biased distribution according to the Log-L distribution can be obtained as follows. 

																																𝑓∗(𝑥, 𝜃, 𝑝) =
𝑥	𝑓∗(𝑥, 𝜃, 𝑝)

𝜇 =
𝜃)(𝑝 − 1)

𝜇(𝜃 + 1)In(𝑝) S
(𝑥 + 𝑥))𝑒-./

1 − (1 − 𝑝) M.NON.Ã�
.NO

P 𝑒-./
T																																						(42) 

Which cdf 𝐹∗(𝑥) given by 

														𝐹∗(𝑥) 	=
(𝑝 − 1)
𝜃𝜇	In𝑝 dd

M𝑗𝑖P (1 − 𝑃)
�

(1 + 𝜃)�NO(𝑗 + 1)�N®

e

�fj

e

�fj

[𝜃(𝑗 + 1)𝛾(𝑖 + 2, 𝜃(𝑗 + 1)𝑥) + 𝛾(𝑖 + 3, 𝜃)𝑗 + 1)𝑥],																			(43) 

  where 𝛾(𝑎, 𝑏)  is the lower incomplete gamma function defined by    𝛾(𝑎, 𝑏) = ∫ 𝑢 -O𝑒-�	𝑑𝑢¡
  	 

It follow from (8), (41) and (43) that 𝐿(𝑥) and 𝐵(𝑥) are 

															𝐿(𝑥) =
(𝑝 − 1)
𝜃𝑢)	ln𝑝dd

M𝑗𝑖P (1 − 𝑃)
�

(1 + 𝜃)�NO(𝑗 + 1)�N®

e

�fj

e

�fj

[𝜃(𝑗 + 1)𝛾(𝑖 + 2, 𝜃(𝑗 + 1)𝑥) + 𝛾(𝑖 + 3, 𝜃)𝑗 + 1)𝑥]																				(44) 

and 

																B(x) =
(𝑝 − 1)

𝜃𝑢) 	Mln 𝑝 − ln »1 − L1 − 𝑝 M.NON./�
.NO

P 𝑒-./�Q¼P
 

																								×dd
M𝑗𝑖P (1 − 𝑃)

�

(1 + 𝜃)�NO(𝑗 + 1)�N®

e

�fj

e

�fj

[𝜃(𝑗 + 1)𝛾(𝑖 + 2, 𝜃(𝑗 + 1)𝑥) + 𝛾(𝑖 + 3, 𝜃(𝑗 + 1)𝑥)].																																			(45) 

 

4.5 Rényi Entropy 

If 𝑋	is a random variable having an absolutely continuous cdf  𝐹(𝑥) and pdf 𝑓(𝑥), then the basic uncertainty measure for 
distribution F (called the entropy of F) is defined as [𝑇(𝑥) 	= 	𝐸[— ln(𝑓	(𝑥))]. Statistical entropy is a probabilistic measure 
of uncertainty or ignorance about the outcome of a random experiment, and is a measure of a reduction in that uncertainty. 
Abundant entropy and information indices, among them the Rényi entropy, have been developed and used in various 
disciplines and contexts. Information theoretic principles and methods have become integral parts of probability and 
statistics and have been applied in various branches of statistics and related fields. 

Rényi entropy is an extension of Shannon entropy. Rényi entropy of the Log-L distribution is defined to be  

																																																																			𝛾Ç(𝑓(𝑥, 𝜃, 𝑝) =
lnÈ∫ 𝑓Çe	

j (𝑥; 𝜃, 𝑝)𝑑𝑡É
1 − 𝑣 ,																																																																						(46)	

       

where 𝑣	 > 	0 and 𝑣	 = 	1. Rényi entropy tends to Shannon entropy as  𝑣 → 1. Now  

																																								� 𝑓Ç
e

j
(𝑥, 𝜃, 𝑝)𝑑𝑟 = 

𝜃)(𝑝 − 1)
(𝜃 + 1) ln(𝑝)	¯

Ç

�
(1 + 𝑥)ÇË-Ç./

L1 − (1 − 𝑝) M1 + ./
.NO

P 𝑒-./Q
Ç 𝑑𝑥

e

j
.																													(47) 

Using the following expansions 

																																	b1 − (1 − 𝑝) `1 +
𝜃𝑥
𝜃 + 1a 𝑒

-./c
Ç

=dd`
𝑣 + 𝑗 − 1

𝑗 a `
𝑗
𝑖a

e

�fj

e

�fj

(1 − 𝑝)� `
𝜃

𝜃 + 1a
�

𝑥�𝑒-�./																								(48) 

and 

																																																																																				(1 + 𝑥)Ç = dM
𝑣
𝑘P 𝑥

Í
e

Ífj

.																																																																																						(49) 
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  Then Equation (47) cab be written follows 

									� 𝑓Ç
e

j
(𝑥, 𝜃, 𝑝)𝑑𝑟 = 

𝜃)(𝑝 − 1)
(𝜃 + 1)ln(𝑝)	¯

Ç

d M
𝑣
𝑘P`

𝑣 + 𝑗 − 1
𝑗 a `

𝑗
𝑖a (1 − 𝑝)

� `
𝜃

𝜃 + 1a
e

�,Í,�fj

� 𝑥�NÍ
e

j

𝑒 − (𝑗 + 𝑣)./𝑑𝑥.								(50) 

           
 

Evaluating the integral in (50) using the gamma function. Then, collecting all of the above evaluations and substituting in 
(46), the Rényi entropy of the Log-L distribution can be defined as 

																												𝑟ÇÈ𝑓(𝑥, 𝜃, 𝑝)É = 𝑣ln `
𝑝 − 1	
ln	(𝑝)a + ln S d

ÈÇÍÉ M
ÇN�NO)

� P È��É𝜃
)Ç-Í-O(1 − 𝑝)�(𝑖 + 𝑘)�

(𝜃 + 1)ÇNO(𝑗 + 𝑣)�NÍNO

e

�,Í,�fj

T.																												(51) 

5 Estimation of the Parameters  
In this section, we introduce the method of likelihood to estimate the parameters involved. 

Let X1, X2, ..., Xn be a sample size 𝑛 from Log-L distribution. Then the likelihood function is given by 

																								ℓ =Ï𝑓𝑖(𝑥) =
�

�fO

`
1
ln 𝑝a

�

(𝑝 − 1)� ³
𝜃)

𝜃 + 1´
� ∏ (1 + 𝑥𝑖)𝑒 − 𝜃∑ 𝑥��

�fO
�
�fO

∏ L1 − (1 − 𝑝) M.NON./$
.NO

P 𝑒-./$Q�
�fO

.																															(52) 

Hence, the log-likelihood function, ℒ= ln ℓ, becomes 

																ℒ = −𝑛 ln[ln 𝑝] + 𝑛 ln(𝑝 − 1) + 𝑛 ln(
𝜃2
𝜃 + 1) +	Òln(1 + 𝑥�) − 𝜃	d𝑥�

Ó

ÔfO

�

�fO

−dln b1 − (1 − 𝑝) `
𝜃 + 1 + 𝜃𝑥�
𝜃 + 1 a𝑒-./$c

�

�fO

.																																																																																																			(53) 

Therefore, the maximum likelihood estimators (MLEs) of 𝜃 and 𝑝 are derived from the derivatives of ℒ. They should 
satisfy the following equations 

																														
𝜕ℒ
𝜕𝜃 =

𝑛(𝜃 + 2)
𝜃(𝜃 + 1) −d𝑥� +d

𝑥�[1 − (𝜃 + 1)(𝜃 + 1 + 𝜃𝑥�)]𝑒-./$
𝜃 + 1

�

�fO

�

�fO

= 0																																							(54)	

  

       

and 

 

																																				
𝜕ℒ
𝜕𝑝 =

𝑛
𝑝 − 1 −

𝑛
𝑝 ln 𝑝 −d

(𝜃 + 1 + 𝜃𝑥�)𝑒-./$

1 − (1 − 𝑝) M.NON./$
.NO

P 𝑒-./$

�

�fO

= 0.																																																											(55)					 

To solve the Equations (54) and (55), it is usually more convenient to use nonlinear optimization algorithms such as quasi-
Newton algorithm to numerically maximize the log-likelihood function.  

6 Simulation Analysis 

The performance of the MLEs of the Log-L parameters are addressed in this section using some numerical simulations in 
terms of the sample size 𝑛. The Log-L distribution is simulated using its qf (33) given in Section 4.3. 

Using the software 𝑅 programming language 𝑅 (𝑅 Core Team, 2020), 5,000 random samples from the Log-L distribution 
are generated with four sample sizes 𝑛 = 80, 200, 300 and 𝑛 = 450. The true values of the Log-L parameters are selected 
as follows: 𝜃 = (0.3, 0.5, 0.75,1.5, 2.75, 1.0, 3.5) and 𝑝 = (0.2, 0.55, 0.85, 1.5, 2.3, 3.4). Tables 1 and 2 report the averages 
estimates (AvEs) of the parameters along with the  averages mean square errors (MSEs), MSEsÈ𝜹ÚÉ = O

Û
∑ È𝜹Ú� − 𝜹É

)Û
�fO , 
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averages absolute biases (ABs), ABsÈ𝜹ÚÉ = O
Û
∑ Ý𝜹Ú� − 𝜹ÝÛ
�fO ,  and averages mean relative estimates (MREs), MREsÈ𝜹ÚÉ =

O
Û
∑ Ý𝜹Ú� − 𝜹Ý/𝜹Û
�fO , where 𝜹 = (𝜃, 𝑝)à. These measures are calculated for all sample sizes and all values of the parameters 𝜃 

and 𝑝. Tables 1 and 2 illustrate that the MLEs of the Log-L parameters are stable and consistent. Additionally, these tables 
reveal that the MSEs, ABs, and MREs of the parameters decay toward zero as the sample size increases. 

TABLE 1: Simulation results of the Log-L distribution for different parametric values 

Parameters 
𝑛 

𝜃á �̂� 𝜃á �̂� 𝜃á �̂� 𝜃á �̂� 

𝜃 𝑝 AvEs MSEs ABs MREs 

0.3 0.2 80 0.31694  0.47511 0.00484  0.56080 0.05050  0.34580 0.16833  0.72902 

  200 0.30612  0.23971 0.00152  0.02257 0.03022  0.09617 0.10073  0.48087 

  300 0.30477 0.22955 0.00096  0.01191 0.02432  0.07602 0.08107  0.38008 

  450 0.30297 0.21704 0.00061  0.00629 0.01953  0.05779 0.06511  0.28896 

0.3 0.55 80 0.32000 0.75793 0.00552 0.39156 0.05217 0.41232 0.17389 0.88604 

  200 0.30631 0.69968 0.00153 0.29321 0.03011 0.31391 0.10038 0.47075 

  300 0.30452 0.64739 0.00099 0.13052 0.02466 0.23753 0.08219 0.43187 

  450 0.30323 0.61038 0.00065 0.06479 0.02007 0.18321 0.06692 0.33311 

0.3 0.85 80 0.32222 1.01622 0.00619 0.52327 0.05531 0.55096 0.18435 0.59525 

  200 0.30751 0.97259 0.00163 0.44290 0.03120 0.43305 0.10402 0.42711 

  300 0.30407 0.93921 0.00099 0.34428 0.02482 0.38449 0.08272 0.35234 

  450 0.30278 0.87512 0.00065 0.17860 0.02026 0.29967 0.06754 0.25256 

0.5 0.2 80 0.52835 0.34414 0.01276 0.28226 0.08495 0.21685 0.16990 1.08424 

  200 0.50914 0.23712 0.00389 0.01867 0.04869 0.09208 0.09739 0.46042 

  300 0.50665 0.22642 0.00258 0.01043 0.03999 0.07267 0.07997 0.36337 

  450 0.50552 0.21828 0.00174 0.00627 0.03289 0.05764 0.06577 0.28821 

0.5 0.55 80 0.53181 0.76405 0.01749 1.48602 0.08717 1.64056 0.17434 1.80103 

  200 0.51130 0.69381 0.00417 0.23556 0.05044 0.30085 0.10087 0.54701 

  300 0.50767 0.64185 0.00275 0.11564 0.04094 0.22977 0.08189 0.41776 

  450 0.50422 0.60405 0.00170 0.06149 0.03252 0.17530 0.06503 0.31872 

0.5 0.85 80 0.53346 1.46405 0.01683  0.58199 0.08981 0.46405 0.17962  0.45770 

  200 0.51238 1.13346 0.00449 0.43574 0.05173 0.33302 0.10346  0.37410 

  300 0.50857 1.01583 0.00284 0.34175 0.04176 0.28401 0.08352 0.27403 

  450 0.50626 0.88029 0.00182  0.17991 0.03361 0.15130 0.06722 0.13074 

0.5 1.5 80 0.53570 2.71889 0.01910 2.45475 0.09244 1.71799 0.18488 1.47866 

  200 0.51153 2.09601 0.00472 1.57981 0.05255 1.07495 0.10511 0.71664 

  300 0.50859 1.85834 0.00312 1.54067 0.04349 0.76869 0.08698 0.51246 

  450 0.50461 1.69813 0.00187 0.66356 0.03415 0.56213 0.06830 0.37476 

0.75 0.2 80 0.79190 4.21120 0.02699 45.44993 0.12180 0.28820 0.16240 1.44102 

  200 0.76333 0.23580 0.00913 0.01917 0.07412 0.09001 0.09882 0.45007 
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 TABLE 2: Simulation results of the Log-L distribution for different parametric values 

  300 0.75965 0.22154 0.00549 0.00891 0.05825 0.06704 0.07766 0.33521 

  450 0.75505 0.21372 0.00369 0.00528 0.04821 0.05428 0.06428 0.27142 

0.75 0.55 80 0.80049 1.76526 0.04028 1.55808 0.13162 1.76527 0.17549 3.20957 

  200 0.76739 0.69323 0.00967 0.23350 0.07624 0.29956 0.10165 0.54465 

  300 0.75985 0.63381 0.00594 0.10589 0.06108 0.22196 0.08144 0.40357 

  450 0.75660 0.60247 0.00379 0.05377 0.04851 0.16890 0.06468 0.30710 

0.75 0.85 80 0.80130 1.91428 0.04728 1.83225 0.13229 1.91429 0.17639 2.25210 

  200 0.76797 1.10107 0.00973 0.75523 0.07653 0.49104 0.10205 0.57770 

  300 0.76089 0.99511 0.00605 0.28771 0.06092 0.36124 0.08123 0.42499 

  450 0.75863 0.94993 0.00399 0.16551 0.04956 0.28478 0.06608 0.33504 

0.75 1.5 80 0.80482 3.26588 0.05376 8.00336 0.13935 1.26588 0.18579 8.43926 

  200 0.76823 2.08548 0.01087 5.31825 0.07941 1.05180 0.10588 0.70120 

  300 0.76397 1.84341 0.00686 1.34647 0.06475 0.74802 0.08633 0.49868 

  450 0.75973 1.72140 0.00421 0.65376 0.05106 0.55650 0.06808 0.37100 

Parameters 𝑛 𝜃á �̂� 𝜃á �̂� 𝜃á �̂� 𝜃á �̂� 
𝜃 𝑝 AvEs MSEs ABs MREs 

1.5 0.2 80 1.58833 0.31284 0.11347 0.12525 0.25339 0.17741 0.16893 0.88706 
  200 1.53281 0.23395 0.03700 0.01480 0.14979 0.08429 0.09986 0.42143 
  300 1.51950 0.22105 0.02432 0.00864 0.12312 0.06623 0.08208 0.33115 
  450 1.51210 0.21342 0.01499 0.00466 0.09660 0.05102 0.06440 0.25508 
1.5 0.55 80 1.59117 2.01895 0.12011 4.86218 0.25555 1.66083 0.17037 3.01969 
  200 1.53332 0.66852 0.03671 0.16771 0.14929 0.26742 0.09953 0.48621 
  300 1.52170 0.62507 0.02411 0.08918 0.12169 0.20338 0.08113 0.36979 
  450 1.51411 0.59757 0.01497 0.04837 0.09647 0.15984 0.06432 0.29061 
1.5 0.85 80 1.59639 1.77159 0.13199 7.33083 0.26281 1.71735 0.17520 2.02041 
  200 1.53779 1.06834 0.03812 0.50950 0.15217 0.45179 0.10145 0.53151 
  300 1.52815 0.99321 0.02483 0.25813 0.12326 0.34322 0.08217 0.40379 
  450 1.51355 0.93476 0.01602 0.13721 0.10019 0.26742 0.06679 0.31461 
1.5 1.5 80 1.60249 5.08890 0.14791 1.23925 0.26966 1.07962 0.17978 1.38641 
  200 1.53368 1.96510 0.04025 1.02425 0.15411 0.90472 0.10274 0.60315 
  300 1.52343 1.77345 0.02583 1.00369 0.12519 0.66413 0.08346 0.44276 
  450 1.51440 1.67079 0.01650 0.52903 0.10081 0.51629 0.06721 0.34419 
1.5 2.3 80 1.60556 3.39512 0.17702 2.63373 0.27651 2.29512 0.18434 1.97877 
  200 1.53401 3.14273 0.04309 1.00506 0.15971 1.56762 0.10647 0.68157 
  300 1.52444 2.78803 0.02636 0.03332 0.12657 1.11692 0.08438 0.48562 
  450 1.51530 2.60310 0.01709 0.01595 0.10248 0.85686 0.06832 0.37255 
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7 Applications 

In this section, we use two real data sets to show that the Log-L distribution can be better than the Lindley distribution and 
other non-nested models such as Lindley-exponential by [31], new generalized Lindley (NGL) by [10], Weibull and 
weighted Lindley by [4]. 
7.1 Data Set 1 
The first data set represents an uncensored data set corresponding to remission times (in months) of a random sample of 
128 bladder cancer patients reported in [32]. These data are addressed by [33]. In order to compare the six distributions, we 
consider criteria like AIC (Akaike information criterion), AICC (corrected Akaike information criterion) and BIC 
(Bayesian information criterion) for the two data sets. We also consider the Kolmogorov-Smirnov (KS) statistic. The better 
distribution corresponds to smaller AIC, AICC and BIC values: 

AIC = 2𝑘 − 2𝑖, AICC = AIC +
2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1 			and				BIC = −2𝑖 + 𝐾 log(𝑛), 	 

where 𝑘 is the number of parameters in the statistical model, 𝑛 the sample size and 𝑖 is the maximized value of the log-
likelihood function under the considered model. 
Table 3 shows MLEs of the parameters to each one of the six fitted distributions with their standard errors (S.E.) for data 
set with 95% confidence interval, while Table 4 represents the values of −ℒ, AIC, BIC, AICC and KS. 
The values in Table 4 indicate that the Lo-L is a strong competitor to other distributions used here for fitting the data set. A 
density plot compares the fitted densities of the models with the empirical histogram of the observed data (Fig. 3). The 
fitted density for the Log-L model is closer to the empirical histogram than the fits of the other models. 
 

TABLE 3. The MLEs and S.E. of the parameters with 95% CI for data set 1 
Model Parameter estimates  S.E. 95% CI 

Log-L 
0.1238 0.0186 [0.0872, 0.1604] 

0.0979 0.0472 [0.0053, 0.1906] 

Lindley Exponential 
0.1093 0.0137 [0.0824, 0.1363] 

1.5687 0.1638 [1.2476, 1.8898] 

1.5 3.4 80 1.62842 4.47498 0.23805 1.00127 0.29189 4.47498 0.19460 1.49166 
  200 1.54597 4.10715 0.04494 0.49161 0.16133 2.31825 0.10755 0.77275 
  300 1.52521 3.73738 0.02732 0.66812 0.12902 1.58327 0.08601 0.52776 
  450 1.52050 3.49487 0.01774 0.31720 0.10439 1.19979 0.06960 0.39993 
0.3 1.5 80 0.32462 7.25657 0.00745 2.62443 0.05724 2.25656 0.19078 1.83771 
  200 0.30810 2.14692 0.00182 1.88845 0.03265 1.13286 0.10882 0.75524 
  300 0.30460 1.84945 0.00108 1.62774 0.02575 0.77844 0.08582 0.51896 
  450 0.30332 1.72992 0.00074 0.79045 0.02139 0.59799 0.07128 0.39866 
0.5 1.5 80 0.53695 2.70146 0.02044 2.21170 0.09298 2.01465 0.18597 2.34310 
  200 0.51228 2.10550 0.00473 1.94844 0.05277 1.07444 0.10554 0.71629 
  300 0.50848 1.85383 0.00303 1.51587 0.04279 0.76900 0.08559 0.51266 
  450 0.50441 1.69997 0.00194 0.72683 0.03463 0.57168 0.06926 0.38112 
0.75 1.5 80 0.80271 2.71733 0.05245 3.87108 0.13672 6.11733 0.18229 4.07822 
  200 0.76786 2.03921 0.01060 2.53648 0.07969 1.00678 0.10625 0.67119 
  300 0.76284 1.83426 0.00679 1.37205 0.06405 0.74251 0.08540 0.49501 
  450 0.75846 1.71167 0.00428 0.71168 0.05131 0.55866 0.06841 0.37244 
1.5 1.5 80 1.61364 2.46324 0.15165 1.60352 0.27552 1.36860 0.18368 1.57907 
  200 1.53840 1.97694 0.04154 1.37073 0.15801 0.92044 0.10534 0.61363 
  300 1.52464 1.78708 0.02493 1.07877 0.12239 0.66557 0.08159 0.44372 
  450 1.51652 1.68431 0.01698 0.58691 0.10198 0.52405 0.06798 0.34936 
2.75 1.5 80 2.93546 2.27728 0.56415 1.99830 0.49444 1.27728 0.17980 1.51818 
  200 2.81671 1.91105 0.13457 1.96676 0.28367 0.83513 0.10315 0.55675 
  300 2.79057 1.75528 0.08661 0.92530 0.22890 0.62860 0.08324 0.41907 
  450 2.77315 1.64879 0.05736 0.48235 0.18863 0.48956 0.06859 0.32637 
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NGL 

0.1827 0.0355 [0.1130, 0.2525] 

4.6807 1.3080 [2.1169, 7.2445] 

1.3243 0.1718 [0.9874, 1.6611] 

Weibull 
1.0478 0.0676 [0.9153,1.1803] 

0.1045 0.0093 [0.0862, 0.1229] 

Weighted-Lindley 
0.1594 0.0172 [0.1257, 0.1931] 

0.6827 0.1115 [0.4640, 0.9014] 

Lindley 0.1960 0.0123 [0.1718, 0.2202] 

 

 

(a) (b) 
FIG. 3. (a) Estimated densities of data set 1. (b) Empirical, Log-Lindley, Lindley, Weibull, Lindley exponential, NGL, and 

Weighted-Lindley cdf of data set 1. 

 
FIG4. Probability-probability plots for the Log-Lindley, Lindley, Weibull, Lindley-exponential, weighted Lindley and 
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NGL distributions of data set 1. 
TABLE 4. The goodness of fit measures values under considered models based on data set 1 

Model -ℒ AIC AICC BIC KS 

Log-L 411.7701 827.5403 827.6363 833.2443 0.0619 

Lindley- Exponential 412.0493 828.0985 828.1945 833.8026 0.0621 

NGL 412.7503 831.5006 831.6942 840.0567 0.0740 

Weibull 414.0869 832.1738 832.2698 837.8778 0.0701 

Weighted Lindley 416.4422 836.8845 836.9805 842.5885 0.0925 
 
7.2 Data Set 2 
The data represents 46 repair times (in hours) for an airborne communication transceiver and available in [34]. Table 5 
shows parameter MLEs and S.E. to each one of the six fitted distributions for data set 2 with 95% confidence interval, 
while Table 6 lists the values of −ℒ, AIC, BIC, AICC and KS. 
The values in Table 4, indicate that the Log-L is a strong competitor to other distributions used here for fitting data set. 
  
TABLE 5. The MLEs and S.E. of the parameters with 95% CI for data set 2 

Model Parameter estimates S.E. 95% CI 

Log-L 
0.2473 0.0640 [0.0872, 0.1604] 

0.0694 0.0313 [0.0080, 0.1307] 

Lindley-Exponential 
0.242675 0.05649785 [0.1319393, 0.3534108] 

1.460206 0.2715473 [0.9279731, 1.992438] 

NGL 

 0.3552648 0.1721713 [0.01780907, 0.6927206] 

 3.089682 3.338087 [2.02514, 9.632333] 

 1.058484 0.2930719 [0.4840632, 7.601135] 

Weibull 
 0.960359 0.06812665 [0.8268308, 1.093887] 

 0.2546432 0.1467211 [0.02586985, 0.4834164] 

Weighted Lindley 
 0.3551453 0.06812665 [0.221617,0.4886735] 

 0.7471963 0.1867211 [0.381223,1.11317] 

Lindley  0.4242097 0.04852818 [0.3290945, 0.519325] 

 
TABLE 6. The goodness of fit measures values under considered models based on data set 2 

Model −ℒ AIC AICC BIC KS 

Log-L 94.39982 192.7996 193.124 196.1774 0.1212 

Lindley- Exponential 94.614 193.2284 193.5527 196.6062 01488 

NGL 96.13662 198.2732 198.9399 203.3399 0.1621635 

Weibull 95.51136 195.0227 195.0347 198.4005 0.1224559 

Weighted Lindley 98.04943 200.0989 200.4232 203.4766 0.1722701 

Lindley 98.79132 199.5826 199.6879 201.2715 0.2156951 
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A density plot compares the fitted densities of the models with the empirical histogram of the observed data (Fig. 5). The 
fitted density for the Log-L model is closer to the empirical histogram than the fits of the Lindley distribution and other 
non-nested models. 

  

(a) (b) 
FIG. 5. (a) Estimated densities of data set 1. (b) Empirical, Logarithmic-Lindley, Lindley, Weibull, Lindley-exponential, 

NGL, and weighted Lindley cdf’s of data set 2. 
 

 
FIG. 6. Probability plots for the Logarithmic-Lindley, Lindley, Weibull, Lindley-exponential, weighted Lindley and NGL 

distributions of data set 2. 

8 Conclusion  

The logarithmic-Lindley distribution is proposed to extend the Lindley distribution. An obvious reason for generalizing a 
standard distribution is because the generalized form provides larger flexibility in modeling real data. We derive 
expansions for the moments, moment generating function, hazard rate function, reversed hazard rate function, cumulative 
hazard rate function, mean residual lifetime distribution, quantiles, Lorenz curves, Bonferroni curves, order statistics, and 
Rényi entropy. The estimation of parameters is approached by the method of maximum likelihood. A numerical simulation 
study is presented to explore the performance of the maximum likelihood estimates. Two applications of the logarithmic-
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Lindley distribution to real data show that the new distribution can be used quite effectively to provide better fits than the 
Lindley distribution and other non-nested models such as Lindley-exponential, weighted Lindley, Weibull and new 
generalized Lindley distributions.  
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