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Abstract: This study presents a newly developed stochastic SIRI epidemic model, which combines logistic growth with a saturation

incidence rate. This research mainly examines the presence and uniqueness of positive solutions within the formulated model.

Furthermore, we aim to analyze the long-term performance of the system and provide valuable insights into disease extinction in a

population. Our investigation delves into the conditions required for disease extinction, which are crucial in predicting and controlling

the spread of deadly diseases. To substantiate our assertions, we have devised a stochastic Lyapunov function, which serves as a

robust mathematical framework for demonstrating the presence of a discernible stationary ergodic distribution. This mathematical

foundation significantly contributes to the understanding of model behavior. To complement our analytical findings, we conduct

numerical simulations, which reinforce our results and provide a comprehensive understanding of the behavior of our proposed model,

and open new avenues for future research in this area.
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1 Introduction

Epidemics and pandemics have been problems for
humans for a long time. They kill many people, disrupt
society, and hurt the economy. Accurately predicting the
trajectory of an outbreak is crucial to mitigating its
impact, making epidemiologic modeling an essential field
of study. By developing models that accurately capture
the underlying dynamics of infectious disease spread, we
can better understand how an outbreak will progress and
devise effective strategies to control its spread. Recent
advances in computational and statistical techniques have
led to sophisticated models incorporating factors such as
stochasticity, saturation incidence, and logistic growth.
These models can provide realistic estimates of disease
spread and predict the potential impact of various control
measures. As a result, public health officials and
policymakers increasingly rely on epidemiologic
modeling to guide decision-making and resource
allocation during outbreaks.

Mathematical modeling plays a vital role in
epidemiology and has been extensively utilized to
investigate the propagation of contagious diseases.
Mathematical models help us understand the complicated

things that happen when a disease spreads, predict the
spread of epidemics, and evaluate potential control
measures. As such, in the fight against viral infections,
mathematical modeling is an essential tool, enabling us to
develop effective strategies to protect public health.
Kermack and McKendrick [1] pioneered epidemiological
modeling and proposed the deterministic model for
infectious diseases. According to the SIR model [2],
individuals can be classified into discrete groups
depending on their health status: susceptible S individuals
vulnerable to the infectious agent, infectious I individuals
who currently carry the infection, and recovered R

individuals who have developed permanent immunity
against the disease. However, it is crucial to recognize
that some individuals who have previously recovered
from a specific condition or infection may undergo a
waning of their acquired immunity, rendering them
susceptible once again. The development of this concept
has led to the emergence of an adapted variant of the
model recognized as the SIRS model, which holds
significant importance in scientific circles.
Epidemiological studies have extensively employed
mathematical models to gain a comprehensive
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understanding of the transmission dynamics of infectious
diseases. These models serve as invaluable tools in
assessing the efficacy of potential control measures to
mitigate the spread of such diseases across populations.
By employing sophisticated disease propagation models,
scientists can conduct simulations to study the spread of
diseases effectively. This empirically driven research
approach empowers scientists to estimate crucial
parameters; these include the number of people infected,
the duration of the epidemic, and the effectiveness of
various intervention strategies. Ultimately, the SIR and
SIRS models serve as valuable frameworks for
forecasting and managing the propagation of infectious
diseases and are indispensable instruments in the battle
against epidemics. Some diseases can reactivate latent
infections, leading to relapses in previously recovered
individuals and a return to an infectious state. To
accurately model these diseases, SIRI models are
employed. These models account for the cyclical nature
of the infection by incorporating a temporary immune
state between the infectious and susceptible states. The
persistence of infection is a crucial feature of certain
diseases affecting animals and humans, including
tuberculosis in both bovine and human populations and
herpes (see, e.g., [3,4,5,6,7,8]). Tudor [9] investigated a
model incorporating a bilinear incidence function for
herpes infections and provided qualitative analysis.
Moreira and Wang [10] then extended this model to
incorporate nonlinear impact functions. Blower [4]
created a compartmental model to study genital herpes,
where disease transmission is assumed to follow a
standard incidence and the recruitment rate remains
constant. Vargas-De-León [11] conducted a scientific
investigation involving an epidemic model utilizing the
Susceptible-Infectious-Recovered-Immune (SIRI)
framework, with a bilinear incidence rate. The study
maintained a constant total population throughout the
research process. Meanwhile, Michaelis-Menten [12]
introduced a novel concept in epidemic modeling by
introducing a saturated incidence rate g(S)I, where

g(S) = β S (1+αS)−1
. Multiple studies [13,14,15,5,7,2,

16,17,18,19,20] have suggested that implementing the
saturated incidence rate, as proposed by
Michaelis-Menten, is a more suitable approach in
modeling epidemics when compared to the utilization of
bilinear incidence rates. Scientists have developed the
logistic growth model as an improved approach for
modeling population growth. The model demonstrates
exponential growth within a population, which is limited
by the carrying capacity of its environment. At this
juncture, the population growth rate decelerates and
eventually halts as the carrying capacity is reached. The
following equation mathematically represents the logistic
growth model:

dN(t) = rN

(
1− N

K

)
dt.

The provided equation describes the temporal evolution
of a population, represented by the variable N, wherein its
growth rate, denoted by r, plays a pivotal role in
determining the magnitude of population changes over
time. The size of a population is directly related to its
carrying capacity, denoted as K. The significance of this
equation is that it accounts for the negative feedback
effect that occurs when larger populations compete for the
same resources as smaller populations. As populations
near their carrying capacity, the birth of new offspring
exceeds the available resources. Exceeding the carrying
capacity of an environment leads to an unsustainable
population overshoot, which can have dire consequences.
More resources are needed for the entire population,
resulting in a struggle for survival. Consequently, some
individuals face severe hardship and even perish.
According to several studies [21,14,22,23,24,25,26],
logistic growth as a model for the influx of susceptible
individuals is better suited for diseases with a high
mortality rate. In light of this, our working hypothesis is
based on the assumption that the vulnerable population of
any given nation follows the logistic growth model. To
validate this hypothesis, we offer a SIRI epidemic model
with logistic growth that is deterministic, represented by
the following system:




dS =

[
rS

(
1− S

K

)
− µS− β SI

1+αS

]
dt,

dI =

[
β SI

1+αS
− (µ +λ )I+ γR

]
dt,

dR = [λ I− (µ + γ)R]dt.

(1.1)

The parameter denoted as r represents the inherent
growth rate of the susceptible population, which
quantifies the population growth rate unaffected by
external factors. In contrast, the variable denoted as K

signifies the country carrying capacity, representing the
maximum population size that the environment can
sustain, excluding the infected and recovered individuals.
Through the systematic integration of essential variables
and parameters, this sophisticated model is a valuable tool
for gaining profound insights into the complex dynamics
of infectious diseases, particularly their dissemination
patterns within a specific population. It is important to
note that the model assumes a closed population system,
which means that births, deaths, and migration are not

considered. The incidence rate is expressed as
β S

1+αS
,

where β represents the rate at which a particular
phenomenon is transmitted or propagated, while α
denotes the concentration or intensity at which it achieves
half its maximum effect or response. In the context of
infectious diseases, the parameter λ denotes the recovery
rate, indicating the speed at which infected individuals
regain their health. On the other hand, the parameter γ
represents the transition rate of previously non-infected
individuals into a state of infectiousness. This parameter
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is crucial in modeling infectious diseases and
understanding their spread, as it influences how
individuals can become reinfected and continue to spread
the disease within a population. System (1.1) consists of
positive constant parameters, where r > µ . The basic
reproductive number for the system described by equation
(1.1) is defined as follows:

R0 =
β S0

(1+αS0)

[
λ + µ − λ γ

(µ + γ)

] .

Variability or random fluctuations frequently impact
mathematical models of epidemics or other ecological
systems. To account for this variability, several
researchers, such as Peng et al. [27], Daqing et al. [13],
Lahrouz et al. [28,29], Rajas et al. [23], Zhong et al. [24],
and El Idrissi et al. [5,7] have proposed methods to
examine the influence of ambient noise on population
dynamics. After reviewing the prior discourse, we
propose to present a stochastic SIRI model featuring
logistic growth that considers the influence of ambient
noise on the susceptible population, infected individuals,
recovered individuals, and immune segments of the
population. We aim to provide a comprehensive and
scientifically sound approach to modeling the spread of
infectious diseases while also considering the role of
external factors such as environmental noise. The
stochastic SIRI model, featuring logistic growth, can be
expressed in the following manner:




dS =

[
rS

(
1− S

K

)
− µS− β SI

1+αS

]
dt +σ1SdB1,

dI =

[
−(µ +λ )I+

β SI

1+αS
+ γR

]
dt +σ2IdB2,

dR = [−(µ + γ)R+λ I]dt +σ3RdB3.

(1.2)

The stochastic SIRI model with logistic growth employs a
set of mutually independent standard Brownian motions
denoted as Bi(t), and the white noise intensities are
indicated by σi > 0, where i = 1,2,3. Unless otherwise
specified, the article assumes the existence of a complete
probability space denoted as (Ω ,F ,{Ft}t≥0,P), which
incorporates a filtration {Ft}t≥0 that adheres to the
conventional conditions. These prerequisites necessitate
the filtration to be both right-continuous and increasing,
with F0 encompassing all P-null sets. Within this space,
the standard Brownian motions Bi(t) are established, and
the structure

R
d
+ = {(X1, ...,Xd) ∈ R

d |Xi > 0, i = 1, ...,d}.
In a broader context, we investigate the SDE in
d-dimensions for any t ≥ t0

dX = a(X)dt + b(X)dB. (1.3)

The provided stochastic differential equation is governed
by the initial value condition X0 ∈ R

d . The differential

operator L operates on the Lyapunov function
V (X , t) ∈ C2,1(Rd × [t0,∞);R+) within this framework
exhibits two continuous derivatives for the state variable
X and one continuous derivative to time t. The stochastic
differential equation and the associated Lyapunov
function are relevant in various scientific disciplines, such
as control theory and stochastic processes, aiding in the
analysis and understanding of complex dynamic systems.
Then, the resulting expression is:

LV (X , t) =
∂V (X , t)

∂ t
+

d

∑
i=1

ai(X , t)
∂V (X , t)

∂Xi

+
1

2

d

∑
i, j=1

[
bT (X , t)b(X , t)

]
i j

∂ 2V (X , t)

∂Xi∂X j

.

Or

LV = Vt +Vxa+
1

2
Tr
[
bTVxxb

]
,

where

Vt =
∂V

∂ t
, Vx =

(
∂V

∂x1

, ...,
∂V

∂xd

)
,

and

Vxx =

(
∂ 2V

∂xi∂x j

)

d×d

.

By Itô formula, we get

dV = LV.dt +Vxb.dB.

The manuscript follows a structured approach, beginning
with Section 2, which presents a unique global positive
solution for the system described in equation (1.2). In
Section 3, we establish sufficient conditions for disease
extinction. Following that, in Section 4, we conduct an
in-depth analysis of the stochastic system (1.2), aiming to
investigate the presence of an ergodic stationary
distribution. Subsequently, Section 5 provides an in-depth
discussion of our theoretical discoveries and includes
numerical simulations to illustrate them. Finally, a
concise conclusion succinctly outlines the primary
contributions made in this study.

2 The Existence and Uniqueness

In this specialized research section, our primary objective
is to conduct a rigorous investigation into the existence
and uniqueness of a globally positive solution for the
system described in equation (1.2). We will accomplish
this by considering all positive initial values within the
context. This involves investigating the existence and
distinctiveness of such a solution across all possible
scenarios.

Theorem 1.For each X(0) ∈ R
3
+, the system (1.2) admits

a unique and well-defined solution X(t) for all t ≥ 0 and

this solution remains strictly confined within the positive

orthant R
3
+ with a probability of 1, i.e., with absolute

certainty.
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Proof.The local Lipschitz condition is verified by the
system coefficients in (1.2), and for each X(0) ∈ R

3
+,

there is a unique local solution for t ∈ [0,τ∗] a.s., where
τ∗ stands for the time of the explosion (see, e.g., [11] for
further information). Our current objective is to
demonstrate the global nature of this solution, meaning
we must establish the continuity and boundedness of the
solution beyond the interval [0,τ∗], i.e.,

τ∗ = ∞ a.s..

In pursuit of our objective, we consider a sufficiently large
value for n0 ≥ 1 to ensure that S0, I0, and R0 are all within

the specified range

[
1

n0

,n0

]
. We define the stopping time

as per [11] for every integer n ≥ n0,

τk = inf

{
t ∈ [0,τ∗)| min{St , It ,Rt} ≤

1

n
or

max{St , It ,Rt} ≥ n

}
.

In the context of this study, we consistently define
inf /0 = ∞, with /0 representing the empty set as
conventionally understood. It is evident that τn increases
as n → ∞. Define

τ∞ = lim
n→∞

τn,

from which we deduce

τ∗ ≥ τ∞ a.s..

To demonstrate that τ∗ = ∞ and (S, I,R) ∈ R
3
+ almost

surely (a.s.) for each t ≥ 0, verifying the condition
τ∞ = ∞ a.s. is of utmost importance. In case this
statement is incorrect, there must exist a pair of constants,
T > 0 and ε ∈ (0,1), such that

P{τ∞ ≤ T} ≥ ε.

Hence, there exists a certain value n1 ≥ n0 such that

P{τn ≤ T} ≥ ε for all n ≥ n1. (2.1)

Consider V̂ ∈C2(R3
+;R+), where

V̂ (X) =

[
S− a ln

(
S

a

)
− a

]
+[I− ln(I)− 1]

+[R− ln(R)− 1] .

In this particular context, we assign a as a positive
constant, the precise value of which will be chosen later.
Then, using the Itô formula, we obtain

dV̂ (X) = L V̂ dt +σ1(S− a)dB1+σ2(I − 1)dB2

+σ3(R− 1)dB3,

or

L V̂=
(

1− a

S

)[
rS

(
1− S

K

)
− β SI

1+αS
− µS

]
+

aσ2
1

2

+

(
1− 1

I

)[
β SI

1+αS
− (λ + µ)I+ γR

]
+

σ2
2

2

+

(
1− 1

R

)
[λ I− (µ + γ)R]+

σ2
3

2
,

≤ −rS2

K
+

(K + a)r

K
S+

aβ I

1+αS
+ aµ − µI+λ

+2µ + γ +
aσ2

1

2
+

σ2
2

2
+

σ2
3

2
,

≤ sup
S∈(0,∞)

{
S

K

(
− rS+(K+ a)r

)}
+(aβ − µ)I

+aµ +λ + 2µ + γ + 1
2

(
aσ2

1 +σ2
2 +σ2

3

)
.

By choosing a =
µ

β
, we obtain

L V̂ ≤ sup
S∈(0,∞)

{
S

K

(
− rS+(K+ a)r

)}
+ aµ +λ

+2µ + γ +
1

2

(
aσ2

1 +σ2
2 +σ2

3

)
,

∼= K̂.

Here, K̂ represents a positive constant. Hence

dV̂ (X) ≤ K̂dt +σ1(S− a)dB1(t)+σ2(I− 1)dB2(t)

+σ3(R− 1)dB3(t). (2.2)

By integrating both sides of inequality (2.2) over the
interval (0,τn ∧T ) and then taking the expected value, we
get

EV̂ (X(τn ∧T ))≤ V̂ (X(0))+ K̂E(τn ∧T ).

Hence

EV̂ (X(τn ∧T ))≤ V̂ (X(0))+ K̂T. (2.3)

Consider Ωn = {τn ≤ T} for each n ≥ n1. Based on
equation (2.1), it follows that P(Ωn) ≥ ε . For each
ω ∈ Ωn, either S(τn,ω) or I(τn,ω) or R(τn,ω) is equal to

either n or
1

n
. Hence

V̂ [X(τn,ω)] ≥
[
n− a− a ln

(n

a

)]
∧
[

1

n
− a+ a ln(an)

]

∧ [n− 1− ln(n)]∧
[

1

n
− 1+ ln(n)

]
.

Using (2.3), we get

V̂ (X0)+ K̂T ≥ E
[
IΩn(ω)V̂

(
X(τn,ω)

)]
,

≥ ε
[
n− a− a ln

n

a

]
∧
[

1

n
− a+ a ln(an)

]

∧ [n− 1− ln(n)]∧
[

1

n
− 1+ ln(n)

]
,
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where IΩn
represents the characteristic function of set Ωn.

By letting n → ∞, we get

∞ > V̂ (X(0))+ K̂T = ∞.

This is a contradiction. Hene

τ∞ = ∞ a.s..

The proof is completed.

3 Extinction of Disease

This section of epidemic modeling research focuses on
exploring the fascinating concept of extinction. It aims to
establish the necessary criteria to eradicate the disease
being investigated thoroughly.

Theorem 2.For each X(0) ∈ R
3
+. If (r− µ)>

σ2
1

2
, then

limsup
t→∞

1

t
ln




w1I(t)

µ +λ − β S0

1+αS0

+
w2R(t)

µ + γ


≤ v a.s.,

where

v = min

{
µ + γ;(µ +λ )− β S0

1+αS0

}

×




√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
µ + γ;(µ +λ )− β S0

1+αS0

}

×




√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0

− 1


I{√R0>1}

+
β Kσ1

r (1+αS0)

√
r− µ

2
−
[
2
(
σ−2

2 +σ−2
3

)]−1
.

Especially if v < 0, the populations of I and R are

exponentially extinguished with probability 1, that is

lim
t→∞

I(t) = 0 and lim
t→∞

R(t) = 0 a.s..

Furthermore, the distribution denoted as S(t) exhibits

weak convergence to the measure characterized by its

highest density

π(x) = Qx

2(r− µ)

σ2
1

−2

exp

(−2rx

σ2
1 K

)
, x ∈ [0,∞),

where

Q =


σ−2

1

(
Kσ2

1

2r

)2(r− µ)

σ2
1

−1

Γ

(
2(r− µ)

σ2
1

− 1

)



−1

,

as a constant that satisfies

∫ ∞

0
π(x)dx = 1.

Proof.Since the system (1.2) has a positive solution for all
X(0) ∈R

3
+, we get

dS ≤
[

rS

(
1− S

K

)
− µS

]
dt +σ1SdB1. (3.1)

Assume the auxiliary logistic equation with the random
perturbations shown below:

dX =

[
rX

(
1− X

K

)
− µX

]
dt +σ1XdB1(t). (3.2)

Let for all x ∈ [0,∞)

b(x) = rx

(
1− x

K

)
− µx and σ(x) = xσ1(x).

We have
∫

b(u)

σ2(u)
du =

1

σ2
1

∫ [ r

u

(
1− u

K

)
− µ

u

]
du,

=
1

σ2
1

[
(r− µ) ln(x)− rx

K

]
+Q.

Hence

exp

(∫
b(u)

σ2(u)
du

)
= x

r− µ

σ2
1 exp

(
Q− r

σ2
1 K

x

)
.

Clearly, we have

∫ ∞

0

1

σ2(x)
exp

(∫ x

1

2b(u)

σ2(u)
du

)
dx

= C

∫ ∞

0
x

−2+
2(r− µ)

σ2
1 exp

(−2r

σ2
1 K

x

)
dx < ∞, (3.3)

where C = σ−2
1 exp(2Q) is a constant.

Thus, the requirement of Theorem 1.16 in [30] derives
from (3.3). Hence, the stationary system (3.2) solution
has the density provided by

π(x) = Qσ−2
1 x2(r−µ)σ−2

1 −2 exp

(−2r

σ2
1 K

x

)
, x ∈ [0,∞),

where Q is a constant satisfying

∫ ∞

0
π(x)dx = 1 such that

Q =


σ−2

1

(
σ2

1 K

2r

)2(r− µ)

σ2
1

−1

Γ

(
2(r− µ)

σ2
1

− 1

)



−1

.
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Using the ergodic theorem, we can conclude

lim
t→∞

1

t

∫ t

0
x(s)ds =

∫ ∞

0
xπ(x)dx a.s.. (3.4)

By using the stochastic differential equations (SDE)
comparison theorem, as outlined in the work of Peng
[27], it becomes possible to establish the characteristics of
the solution X(t) for equation (3.2), where S(0) > 0. For
each t ≥ 0

X(t)≥ S(t) a.s.. (3.5)

Also, we have

J1 =

∫ ∞

0
xπ(x)dx,

= Qσ−2
1

∫ ∞

0
x

−1+
2(r− µ)

σ2
1 exp

(−2r

σ2
1 K

x

)
dx,

= Qσ−2
1

∫ ∞

0

(
σ2

1 K

2r
t

)−1+2σ−2
1 (r−µ)

×exp

(−σ2
1 K

2r
t

)
dt,

= Qσ−2
1

(
σ2

1 K

2r

)2(r− µ)

σ2
1 Γ

(
2(r− µ)

σ2
1

)
,

=
σ2

1 K

2r

Γ

(
2(r− µ)

σ2
1

)

Γ

(
−1+

2(r− µ)

σ2
1

) ,

=
σ2

1 K

2r

[
−1+

2(r− µ)

σ2
1

]
,

=
K

r

[
(r− µ)− σ2

1

2

]
.

And

J2 =
∫ ∞

0
x2π(x)dx,

= Qσ−2
1

∫ ∞

0
x

2(r− µ)

σ2
1 exp

(−2r

σ2
1 K

x

)
dx,

= Qσ−2
1

∫ ∞

0

(
σ2

1 K

2r

)2(r− µ)

σ2
1 t

2(r− µ)

σ2
1

×exp

(−σ2
1 K

2r
t

)
dt,

thus

J2 = Qσ−2
1

(
σ2

1 K

2r

)2(r− µ)

σ2
1

+1

Γ

(
2(r− µ)

σ2
1

+ 1

)
,

=

(
σ2

1 K

2r

)2 Γ

(
2(r− µ)

σ2
1

+ 1

)

Γ

(
2(r− µ)

σ2
1

− 1

) ,

=

(
σ2

1 K

2r

)2
2(r− µ)

σ2
1

[
−1+

2(r− µ)

σ2
1

]
,

=
K2(r− µ)

r2

[
(r− µ)− σ2

1

2

]
.

Then∫ ∞

0

(
x− S0

)2
π(x)dx

=

∫ ∞

0

[
x2 − 2S0x+(S0)2

]
π(x)dx,

= J2 − 2S0J1 +
(
S0
)2
,

=
K2σ2

1

2r2
(r− µ) .

Also, let

M0 =




0
γ

µ +λ − β S0

1+αS0

λ

(µ + γ)
0


 ,

there exists a left eigenvector corresponding to
√√√√√

λ γ (µ + γ)−1

(µ +λ )− β S0

1+αS0

,

which is represented by

(w1,w2) =


λ (µ + γ)−1

;

√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0


 ,

thus,
√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

(w1,w2) = (w1,w2)M0.

Let P ∈ C 2
(
R

2
+,R+

)
such that

P(R, I) = α1I +α2R,

where

α1 =
w1

µ +λ − β S0

1+αS0

, α2 =
w2

µ + γ
.
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Using the formula of Itô for the function ln(P), we get

d(lnP) = L (lnP).dt +
1

P
[α1σ2IdB2(t)

+α2σ3RdB3(t)] , (3.6)

where

L (lnP) =
α1

P

[
β SI

1+αS
− (λ + µ)I+ γR

]

+
α2

P
[λ I − (µ + γ)R]− α2

1 σ2
2 I2

2P2
− α2

2 σ2
3 R2

2P2
.

Moreover, we have

P2 =

(
α1σ2I

1

σ2

+α2σ3R
1

σ3

)2

,

≤
(
α2

1 σ2
2 I2 +α2

2 σ2
3 R2
)( 1

σ2
2

+
1

σ2
3

)
. (3.7)

And

1

P

{
α1

[
β SI

1+αS
+ γR− (λ + µ)I

]

+α2 [−(µ + γ)R+λ I]}

=
α1I

P

(
β S

1+αS
− β S0

1+αS0

)

+
1

P

{
α1

[
β S0

1+αS
I+ γR− (λ + µ)I

]

+α2 [−(µ + γ)R+λ I]} ,

=
α1β I

P

S− S0

(1+αS)(1+αS0)

+
1

P

{
α1

[
β S0

1+αS
I+ γR− (λ + µ)I

]

+α2 [−(µ + γ)R+λ I]} ,

≤ α1β I

P

X − S0

(1+αS)(1+αS0)

+
1

P





w1

µ +λ − β S0

1+αS0

[
β S0

1+αS
I+ γR− (λ + µ)I

]

+
w2

µ + γ
[−(µ + γ)R+λ I]

}
,

≤ α1β I

P

X − S0

(1+αS)(1+αS0)

+
1

P





w1

µ +λ − β S0

1+αS0

[
γR−

(
λ + µ − β S0

1+αS

)
I

]

+
w2

µ + γ
[λ I− (µ + γ)R]

}
,

≤ β

1+αS0
|X − S0|+ 1

P
(w1,w2)

[
M0(I,R)

T − (I,R)T
]
,

∼= β

1+αS0
|X − S0|+ 1

P




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1




×(w1I +w2R) ,

hence

1

P

{
α1

[
β SI

1+αS
+ γR− (λ + µ)I

]

+α2 [λ I− (µ + γ)R]}

∼= β

1+αS0
|X − S0|+ 1

P




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1




×
[(

µ +λ − β S0

1+αS0

)
α1I +(µ + γ)α2R

]
,

≤ β

1+αS0
|X − S0|+min

{
µ +λ − β S0

1+αS0
; µ + γ

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
(µ +λ )− β S0

1+αS0
;(µ + γ)

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0>1}. (3.8)

In view of (3.7) and (3.8), we get

L (lnP) ≤ β

1+αS0
|X − S0|

+min

{
(µ +λ )− β S0

1+αS0
;(µ + γ)

}
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×




√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
(µ + γ);(µ +λ )− β S0

1+αS0

}

×




√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0

− 1


I{√R0>1}

−
[
2
(
σ−2

2 +σ−2
3

)]−1
. (3.9)

According to (3.6), we have

d(lnP) ≤ min

{
(µ +λ )− β S0

1+αS0
; µ + γ

}

(3.10)

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
(µ +λ )− β S0

1+αS0
;(µ + γ)

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0>1}

+
β

1+αS0
|X − S0|−

[
2(σ−2

2 +σ−2
3 )
]−1

dt

+
1

P
(α1σ2IdB2(t)+α2σ3RdB3) . (3.11)

Integrating (3.10) between (0, t) and multiplying both

sides by
1

t
yields

1

t
lnP(t)− 1

t
lnP(0)

≤ min

{
(µ +λ )− β S0

1+αS0
; µ + γ

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
(µ +λ )− β S0

1+αS0
,(µ + γ)

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0>1}

+
β

(1+αS0)t

∫ t

0
|X(s)− S0|ds

−
[
2(σ−2

2 +σ−2
3 )
]−1

+
1

t

∫ t

0

α1σ2I(s)

P(s)
dB2(s)

+
1

t

∫ t

0

α2σ3R(s)

P(s)
dB3(s),

so

1

t
lnP(t)− 1

t
lnP(0)

≤ min

{
(µ +λ )− β S0

1+αS0
; µ + γ

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
(µ +λ )− β S0

1+αS0
;(µ + γ)

}

×




√√√√√√√

λ γ

µ + γ

µ +λ − β S0

1+αS0

− 1


I{√R0>1}

+
β

(1+αS0)t

∫ t

0
|X(s)− S0|ds

−
[
2(σ−2

2 +σ−2
3 )
]−1

+
M1

t
+

M2

t
, (3.12)

where M1, M2 represent the local martingales such that

M1(t) =
α1σ2

t

∫ t

0

I(s)

P(s)
dB2(s),

and

M2(t) =
α2σ3

t

∫ t

0

R(s)

P(s)
dB3(s).

And their quadratic variations are the following:

< M1,M1 >t = σ2
2

∫ t

0

(
α1I(s)

P(s)

)2

ds,

≤ σ2
2 t,

and

< M2,M2 >t = σ2
3

∫ t

0

(
α2R(s)

P(s)

)2

ds,

≤ σ2
3 t.
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Using the strong law of large numbers for local
martingales [11], we obtain

lim
t→∞

1

t
Mi(t) = 0 a.s., i = 1,2. (3.13)

Or

∫ t

0
xπ(x)dx < ∞ and X(t) is ergodic, we derive

lim
t→∞

1

t

∫ t

0
|X(s)− S0|ds =

∫ ∞

0
|x− S0|π(x)dx, (3.14)

≤
(∫ ∞

0
(x− S0)2π(x)dx

)1

2
.

Using the upper limit on both sides of (3.12) and
combining it with (3.13) and (3.14), we obtain

limsup
t→∞

1

t
ln(P(t))

≤ min

{
µ + γ;(µ +λ )− β S0

1+αS0

}

×




√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0

− 1


I{√R0≤1}

+max

{
(µ + γ);(µ +λ )− β S0

1+αS0

}

×




√√√√√
λ γ (µ + γ)−1

µ +λ − β S0

1+αS0

− 1


I{√R0>1} (3.15)

+
β

(1+αS0)

(
K2σ2

1

2r2
(r− µ)

)1

2

−
[
2(σ−2

2 +σ−2
3 )
]−1

,

∼= v a.s., (3.16)

and this is the necessary assertion. Also, if v < 0, we get

limsup
t→∞

1

t
ln(I(t))< 0 a.s.,

and

limsup
t→∞

1

t
ln(R(t))< 0 a.s..

Hence

lim
t→∞

I(t) = 0 and lim
t→∞

R(t) = 0 a.s..

4 The Stationary Distribution

In this section, our primary objective is to rigorously
establish empirical evidence substantiating the existence

of an ergodic stationary distribution in the solution of the
epidemic model represented by equation (1.2). This result
is based on the well-established theorem presented by
Khasminskii [31]. We investigate the time-homogeneous
Markov process X(t) within the d-dimensional space R

d .
The process is defined by

dX = b(X)dt +
k

∑
r=1

σr(X)dBr.

The stochastic process, represented by X(t), possesses a
diffusion matrix, which can be defined as follows:

A(x) = (ai j(x)) , ai j(x) =
k

∑
r=1

σ i
r(x)σ

j
r (x).

Lemma 1.If there exists an open bounded field U ⊂ R
d

with smooth bounded Γ , then the Markov process X(t)
will have a unique ergodic stationary distribution µ(.),
satisfying the following conditions:

(C1) The matrix of diffusion A is defined and strictly

positive, for each x ∈U,

(C2) There is a non-negative V ∈ C 2, for each x ∈ Uc,

such that

LV (x)< 0, x ∈Uc
.

Define the following important parameters

R
S
0 =

β S0
(
1+αS0

)−1


λ + µ +

σ2
2

2
+ c3

S0σ2
1

2
− λ γ(

µ + γ +
σ2

3

2

)




,

where S0 =
K(r− µ)

r
and c3 are positive constants that

satisfy the criterion of Theorem 4.1.

Theorem 3.If RS
0 > 1 and there is a constant c3 such as

c3 >
β K

r

[
α +

1

S0(1+αS0)2

]
.

Then, for each X(0) ∈ R
3
+, the system (1.2) possesses a

unique stationary distribution µ(.) and is ergodic.

Proof.Let V1 ∈ C 2
(
R

3
+,R

)
such that

V1(X) = ln

(
1

I

)
+ c1 ln

(
1

R

)
− c2S+ c3

[
S− S0

−S0 ln

(
S

S0

)]
+

c3β S0

µ
(I+R) ,

where c1, c2, and c3 represent positive constants, which
will be determined subsequently. By using the Itô formula,

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


782 S. Aznague et al.: A Probabilistic SIRI Epidemic Model Incorporating...

one obtains

LV1 =
−1

I

[
β SI

1+αS
− (λ + µ)I+ γR

]
+

σ2
2

2
+

c1σ2
3

2

−c1

R
[λ I− (µ + γ)R]− c2

[
r

(
1− S

K

)
S− µS

− β SI

1+αS

]
+ c3

[
r

(
1− S

K

)
S− µS− β SI

1+αS

]

−c3S0

S

[
r

(
1− S

K

)
S− µS− β SI

1+αS

]

+
c3S0σ2

1

2
+

c3β 2S0SI

µ(1+αS)
− c3β S0I − c3β S0R,

≤ −β S

1+αS
+λ + µ − γR

I
+

σ2
2

2
− c1λ I

R
+ c1(µ + γ)

+
c1σ2

3

2
+ c3

[
rS

(
1− S

K

)
− µS− rS0

(
1− S

K

)

+µS0

]
− c2

[
rS

(
1− S

K

)
− µS

]
+

c2β SI

1+αS

+
c3β S0I

1+αS
+

c3S0σ2
1

2
+

c3β 2

µ(1+αS)
S0SI

−c3β S0I.

Hence

LV1 ≤ −2
√

c1λ γ +

(
λ + µ +

σ2
2

2
+ c3

S0σ2
1

2

)

+c1

(
γ + µ +

σ2
3

2

)
− β S

1+αS
+

rc2

K
S
(
S− S0

)

+c3

[−r

K

(
S− S0

)2
]
+ c3β S0I+

c2β SI

1+αS

+
c3β 2S0SI

µ(1+αS)
− c3β S0I,

≤ −2
√

c1λ γ +

[
λ + µ +

σ2
2

2
+ c3

S0σ2
1

2

]

+c1

(
µ + γ +

σ2
3

2

)
+

[ −β S

1+αS
+

c2r

K

(
S− S0

)
S

− rc3

K

(
S− S0

)2
]
+

(
c2β +

c3β 2S0

µ

)
SI.

Choosing

c1 = λ γ

(
µ + γ +

σ2
3

2

)−2

.

Then

LV1 ≤ −λ γ

(
µ + γ +

σ2
3

2

)−1

+

[
λ + µ

+
σ2

2

2
+ c3

S0σ2
1

2

]
− β S0

1+αS0
+

[
β S0

1+αS0

− β S

1+αS
+

rc2

K

(
S− S0

)
S− rc3

K

(
S− S0

)2
]

+

(
c2β +

c3β 2S0

µ

)
SI,

≃ −
(
R

S
0 − 1

)[
λ + µ +

σ2
2

2
+ c3

S0σ2
1

2
−λ γ

×
(

µ + γ +
σ2

3

2

)−1
]
+

[
β S0

1+αS0
− β S

1+αS

+
rc2

K
S
(
S− S0

)
− rc3

K

(
S− S0

)2
]

+

(
c2β +

c3β 2S0

µ

)
SI,

∼= −λ̃ +G(S)+

(
c2β +

c3β 2S0

µ

)
SI,

where

λ̃ =

[
λ + µ +

σ2
2

2
+ c3

S0σ2
1

2
−λ γ

(
µ + γ +

σ2
3

2

)−1
]

×
(
R

S
0 − 1

)
> 0,

and

G(S) =
β S0

1+αS0
− β S

1+αS
+

rc2

K
S
(
S− S0

)

− rc3

K

(
S− S0

)2
.

Then

G′(S) =
−β

(1+αS)2
+

rc2

K

(
2S− S0

)

−2rc3

K

(
S− S0

)
.

Let G
′
(S)|S=S0 = 0, we have

c2 =
β K

rS0 (1+αS0)2
.

Moreover, we obtain

G
′′
(S) =

2αβ

(1+αS)3
+

2rc2

K
− 2rc3

K
,

≤ 2αβ +
2r

K
(c2 − c3)< 0.

The validity of the second inequality is established based
on the conditions stated in Theorem 4.1. Hence

c3 > c2 +
αβ K

r
,

=
β K

r

(
α +

1

S0(1+αS0)2

)
,
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and

G(S)≤ G(S0) = 0.

Thus

L V1 ≤−λ̃ +

(
c2β +

c3β 2S0

µ

)
SI,

=−λ̃ + K̃SI,

(4.1)

where

K̃ ∼=
(

c2β +
c3β 2S0

µ

)
> 0.

Define

V2(R) = ln

(
1

R

)
, V3(X) =

1

m+ 1
(S+ I+R)m+1

,

where m stands for a positive constant that satisfies

0 < m <
µ

2× 3m(σ2
1 ∨σ2

2 ∨σ2
3 )

.

Using the formula of Itô to V2 and V3 respectively, we get

LV2 = µ + γ +
σ3

2

2
− λ I

R
, (4.2)

and

LV3 = (S+ I+R)m

[
rS

(
1− S

K

)
− µS− µI− µR

]

+
m

2
(S+ I+R)m−1

(
σ2

1 S2 +σ2
2 I2 +σ2

3 R2
)
,

≤ (S+ I+R)m

[
rS

(
1− S

K

)
− µI− µR

]

+
m

2

(
σ2

1 ∨σ2
2 ∨σ2

3

)
(S+ I+R)m+1

,

≤ rS (S+ I+R)m − r

K
Sm+2 − µIm+1 − µRm+1

+
m

2

(
σ2

1 ∨σ2
2 ∨σ2

3

)
(S+ I+R)m+1

.

Using

∣∣∣∣∣
k

∑
i=1

ai

∣∣∣∣∣

n

≤ kn−1
k

∑
i=1

|ai|n for any n ≥ 1, we get

LV3 ≤ −r

2K
Sm+2 − µ

2
Im+1 − µ

2
Rm+1 − r

2K
Sm+2

−µ

2
Im+1 − µ

2
Rm+1 + rS (S+ I+R)m

+
3mm

2

(
σ2

1 ∨σ2
2 ∨σ2

3

)(
Sm+1 + Im+1

+Rm+1
)
,

∼= −r

2K
Sm+2 − µ

2
Im+1 − µ

2
Rm+1 − r

2K
Sm+2

−µ

4
Im+1 +

3mm

2

(
σ2

1 ∨σ2
2 ∨σ2

3

)
Sm+1

+r (S+ I+R)m
S− µ

4
Rm+1

−
(

µ

4
− 3mm

2

(
σ2

1 ∨σ2
2 ∨σ2

3

))
Im+1

−
(

µ

4
− 3mm

2

(
σ2

1 ∨σ2
2 ∨σ2

3

))
Rm+1

,

≤ −r

2K
Sm+2 − µ

2
Im+1 − µ

2
Rm+1 − r

2K
Sm+2

+
3mm

2

(
σ2

1 ∨σ2
2 ∨σ2

3

)
Sm+1 + rS (S+ I+R)m

−µ

4
Im+1 − µ

4
Rm+1

,

LV3 ≤ − r

2K
Sm+2 − µ

2
Im+1 − µ

2
Rm+1 +B, (4.3)

where

B = sup
(S,I,R)∈R3

+

{
− r

2K
Sm+2 +

3mm

2

(
σ2

1 ∨σ2
2 ∨σ2

3

)

×Sm+1 + r (S+ I+R)m
S− µ

4
Im+1

−µ

4
Rm+1

}
.

Set the C 2− function Ṽ : R3
+ −→R

Ṽ (X) = MV1 (X)+V2(R)+V3 (X) ,

where M represents a strictly positive number sufficiently
large to satisfy the condition:

µ + γ +
σ2

3

2
−Mλ̃ +B ≤−2. (4.4)

Furthermore, it is essential to remark that Ṽ is both
continuous and unbounded, tending towards infinity as
the values of X approach the boundary of R3

+. As a result,
the function must be lower-bounded at a point X0 within
R

3
+. Set the function V ∈ C 2

(
R

3
+,R+∪{0}

)
such that

V (S, I,R) = Ṽ (S, I,R)− Ṽ (S0, I0,R0) .

Using the formula of Itô, we obtain

LV ≤ −Mλ̃ +MK̃SI− λ I

R
− r

2K
Sm+2 − µ

2

(
Im+1

+Rm+1
)
+B+ µ + γ +

σ2
3

2
.
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Using the previous results, we can now construct a
bounded open set Uε that satisfies condition (C2) from
Lemma 1. Specifically, we define Uε as bellow

Uε =

{
X ∈R

3
+ : ε < S <

1

ε
,ε < I <

1

ε
,ε2

< R <
1

ε2

}
,

where 0 < ε < 1 is a sufficiently small number. On the set
R

3
+\Uε , ε may be chosen to be sufficiently small for the

next conditions

ε <
m+ 1

MK̃m
, (4.5)

ε <
µ(m+ 1)

2MK̃
, (4.6)

ε <
m+ 2

MK̃(m+ 1)
, (4.7)

ε <
r(m+ 2)

2KMK̃
, (4.8)

−λ

ε
+D ≤−1, (4.9)

−r

4Kεm+2
+D ≤−1, (4.10)

−µ

4εm+1
+D ≤−1, (4.11)

−µ

2ε2m+2
+D ≤−1, (4.12)

where D is a positive constant that we define explicitly as
(4.16). For simplicity, we can divideR3

+\Uε into six areas:

U1 =
{

X ∈ R
3
+ : S ≤ ε

}
, U2 =

{
X ∈ R

3
+ : I ≤ ε

}
,

U3 =
{

X ∈ R
3
+ : I > ε, R ≤ ε2

}
,

U4 =

{
X ∈ R

3
+ : S ≥ 1

ε

}
, U5 =

{
X ∈ R

3
+ : I ≥ 1

ε

}
,

U6 =

{
X ∈ R

3
+ : R ≥ 1

ε2

}
.

We have

R
3
+\Uε =U1 ∪U2 ∪U3 ∪U4 ∪U5 ∪U6.

Then, we have to prove that LV (X) ≤ −1 on Uc
ε is

equivalent to show it for the six areas mentioned above,
respectively.

Case 1. For each (S, I,R) ∈U1, we have

SI ≤ εI ≤ ε
m+ Im+1

m+ 1
=

εm

m+ 1
+

ε

m+ 1
Im+1

,

thus

LV ≤ −Mλ̃ +
MK̃mε

m+ 1
−
(

µ

2
− MK̃ε

m+ 1

)
Im+1 +B

+µ + γ +
σ2

3

2
,

≤ −1,

which is deduced from (4.4), (4.5) and (4.6). Hence

LV (X)≤−1 for each X ∈U1. (4.13)

Case 2. For every (S, I,R) ∈U2, since

SI ≤ εS ≤ ε
m+ 1+ Sm+2

m+ 2
=

ε(m+ 1)

m+ 2
+

ε

m+ 2
Sm+2

,

hence

LV ≤ −Mλ̃ +
MK̃(m+ 1)ε

m+ 2
−
(

r

2K
− MK̃ε

m+ 2

)
Sm+2

+B+ µ + γ +
σ2

3

2
,

≤ −2+ 1+ 0=−1,

which is deduced from (4.5), (4.7) and (4.8). Therefore

LV (X)≤−1 for all X ∈U2. (4.14)

In addition, we have

L V ≤−λ I

R
− r

4K
Sm+2 − µ

4
Im+1 − µ

2
Rm+1

+MK̃SI− r

4K
Sm+2 − µ

4
Im+1 +B+ µ

+γ +
σ2

3

2
,

≤−λ I

R
− r

4K
Sm+2 − µ

4
Im+1 − µ

2
Rm+1 +D,

(4.15)

where

D ∼= sup
(S,I,R)∈R3

+

{
− r

4K
Sm+2 − µ

4
Im+1 +MK̃SI

+B+ µ + γ +
σ2

3

2

}
. (4.16)

Case 3. For every (S, I,R) ∈U3, using (4.15), we obtain

L V ≤−λ I

R
+D,

≤−λ ε

ε2
+D,

≃−λ

ε
+D,

≤−1,

which results from (4.9). Hence

LV (X)≤−1 for all X ∈U3. (4.17)
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Case 4. For each X ∈U4, we can conclude from (4.15) that

L V ≤ −r

4K
Sm+2 +D,

≤ −r

4Kεm+2
+D,

≤−1,

which is derived from (4.10). So

LV (X)≤−1 for each X ∈U4. (4.18)

Case 5. For each X ∈U5, from (4.15), we obtain

L V ≤ −µ

4
Im+1 +D,

≤ −µ

4εm+1
+D ≤−1,

which results from (4.11). Consequently

LV (X)≤−1 for every X ∈U5. (4.19)

Case 6. For every X ∈U6, we can deduce from (4.15) that

L V ≤ −µ

2
Rm+1 +D,

≤ −µ

2ε2m+2
+D,

≤−1,

which is derived from (4.12). Hence

LV (X)≤−1 for every X ∈U6. (4.20)

Obviously, by using (4.13), (4.14), (4.17), (4.18), (4.19)
and (4.20), we may deduce that given a sufficiently small
ε ,

LV (X)≤−1 for every X ∈ R
3
+\Uε .

Thus, the condition (C2) of Lemma 1 is satisfied. The first
condition (C1) of Lemma 1 must be verified. The matrix
of diffusion of system (1.2) is written as:

A =




σ2
1 S2 0 0

0 σ2
2 I2 0

0 0 σ2
3 R2


 .

Choosing

ω̃ = min
X∈Ūk⊂R

3
+

{
σ2

1 S2
,σ2

2 I2
,σ2

3 R2
}
.

We have for each X ∈ Ūk, ξ ∈R
3

3

∑
i, j=1

ai j (X)ξiξ j = (σ1S)2ξ 2
1 +(σ2I)2ξ 2

2 +(σ3R)2ξ 2
3 ,

≥ ω̃‖ξ‖2,

where

Ūk =

[
1

k
,k

]
×
[

1

k
,k

]
×
[

1

k
,k

]
.

Hence, the initial condition, identified as (C1) in Lemma 1,
has been successfully satisfied. Subsequently, through the
application of Lemma 1, the system (1.2) is demonstrated
to have a distinct ergodic stationary distribution denoted as
µ(.). This concludes the proof.

5 Computational Simulations

To ascertain the efficacy of our findings, we will conduct
numerical simulations using the Milstein scheme [32] as
the computational method. Specifically, we will discretize
equation (1.2) according to the following scheme





Sk+1 = Sk +

[
rSk

(
1− Sk

K

)
− µSk −

β SkIk

1+αSk

]
∆ t

+σ1Sk

√
∆ tτ1,k +

σ2
1

2
Sk(τ

2
1,k − 1)∆ t,

Ik+1 = Ik +

[
β SkIk

1+αSk

− (µ +λ )Ik + γRk

]
∆ t

+σ2Ik

√
∆ tτ2,k +

σ2
2

2
Ik(τ

2
2,k − 1)∆ t,

Rk+1 = Rk +[λ Ik − (µ + γ)Rk]∆ t

+σ3Rk

√
∆ tτ3,k +

σ2
3

2
Rk(τ

2
3,k − 1)∆ t,

where τi,k (i = 1,2,3) are N (0,1)-distributed
independent random variables.
Example 1. We choose r = 0.7, µ = 0.1, β = 0.4, α = 0.2,
λ = 0.035, γ = 0.04, σ1 = 0.4, σ2 = 0.45 and σ3 = 0.4.
These values assume Theorem 2 satisfied. Namely,

r− µ = 0.6 >
σ2

1

2
, ν =−0.58 < 0.

Therefore, the Theorem 2 can be obtained. From Fig. 1, it
can be easily seen that the disease dies out in the
population.
Example 2. We choose r = 0.7, µ = 0.1, β = 0.6,
α = 0.2, λ = 0.035, γ = 0.04, σ1 = 0.1, σ2 = 0.2, and
σ3 = 0.15. Through straightforward computation, we
have determined that Rs

0 = 2.38 > 1. Hence, the condition
stipulated in Theorem 4.1 is satisfied. Accordingly, we
conclude from Theorem 4.1 that the system (1.2) has a
unique ergodic stationary distribution µ(.), which implies
the persistence of all individuals. This is illustrated in Fig.
3. It is important to note that the density estimates
computed at times t = 3000, t = 5000, and t = 7000 are
highly consistent, implying that they can be considered
dependable approximations of the stationary distribution
of system (1.2).

6 Perspective

Our investigation aimed to analyze the dynamics of a
stochastic SIRI epidemic model, considering logistic
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Fig. 1. Trajectories of S(t), I(t), and R(t) for system 1.2 in
example 1.

growth and saturated incidence. By conducting a
comprehensive and rigorous analysis, we have confirmed
the existence of positive global solutions for this
stochastic epidemic model.
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Fig. 2. Trajectories of S(t), I(t), and R(t) for system 1.2 in
example 2.

Additionally, we have established adequate conditions
under which the disease is expected to become extinct,
thereby contributing to a more comprehensive
comprehension of system behavior.
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Fig. 3. Kernel density functions of S(t), I(t) and R(t) of
system 1.2 respectively at time 3000, 5000 and 7000.

In our study, we devised a Lyapunov function to
enhance the analysis and establish appropriate criteria for
an ergodic stationary distribution concerning the positive
solutions within the stochastic epidemic model referred to
as (1.2).

Our comprehensive investigation has yielded crucial
insights into the dynamics of the stochastic SIRI epidemic
model under diverse conditions. Remarkably, when
minimizing the level of white noise in the system, a
distinct ergodic stationary distribution emerges,
signifying the stochastic persistence of the disease.
Conversely, an excessive amount of white noise can lead
to the extinction of the disease.

The implications of our research are significant for
epidemic control and management, as our findings
contribute valuable knowledge to ongoing efforts to
mitigate the spread of infectious diseases. To support and
validate our results, we conducted rigorous numerical
simulations.
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Essaâdi University (UAE).

Adel Settati is an
esteemed full professor of

mathematics at the Faculty of Sciences and Technology
(FSTT) in Tangier, Morocco. He completed his doctoral
studies in probability at the renowned University of
Rennes 1 in France. Dr. Settati’s primary research
interests revolve around dynamic systems, applied
probability, and stochastic epidemic systems. His research
contributions in these fields have been significant, and he
has authored numerous research papers in high-impact
scientific journals.

Aadil Lahrouz is a
distinguished full professor of mathematics at the Faculty
of Sciences and Technology (FSTT) located in Tangier,
Morocco. Dr. Lahrouz’s primary research interests
revolve around dynamic systems, applied probability, and
stochastic epidemic systems. His research contributions in
these fields have been significant, and he has authored
numerous research papers in high-impact scientific
journals.

Mhamed El Merzguioui
holds the distinguished
position of a full professor
of mathematics within
the Faculty of Science and
Technology (FSTT) located
in Tangier, Morocco. He has
earned an Advanced Graduate
Degree in the specialized field
of mathematical modeling
concerning infiltration and the

transfer of pollutants through stochastic fissures present
amid two distinct porous mediums.

Jamal El Amrani
is a highly esteemed
full professor of mathematics
at the Faculty of Science
and Technology (FSTT)
in Tangier, Morocco. He
holds an Advanced Graduate
Degree in Mathematical
Modeling and Numerical
Mechanics. Since 2012, he
has been actively pursuing a

Ph.D. in Applied Mathematics at the Department of
Mathematics within FSTT.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The Existence and Uniqueness
	Extinction of Disease 
	The Stationary Distribution
	Computational Simulations 
	Perspective

