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Abstract: In this article, we developed a new statistical model named as the generalized complementary exponentiated Bell-Touchard

model. The exponential model is taken as a special baseline model with a configurable failure rate function. The proposed model is

based on several features of zero-truncated Bell numbers and Touchard polynomials that can address the complementary risk matters.

The linear representation of the density of the proposed model is provided that can be used to obtain numerous important properties

of the special model. The well-known actuarial metrics namely value at risk and expected shortfall are formulated, computed and

graphically illustrated for the sub model. The maximum likelihood approach is used to estimate the parameters. Furthermore, we

designed the group acceptance sampling plan for the proposed model by using the median as a quality parameter for truncated life tests.

Three real data applications are offered for the complementary exponentiated Bell Touchard exponential model. The analysis of the two

failure times data and comparative study yielded optimized results of the group acceptance sampling plan under the proposed model.

The application to insurance claim data also provided the best results and showed that the proposed model had heavier tail.

Keywords: Actuarial measures; Complementary exponentiated Bell-Touchard; GASP; Maximum-likelihood estimation; Quality

parameter

1 Introduction

Statistical models are the mathematical representations of real-world phenomena to evaluate and interpret data. These
models are developed based on statistical techniques with the goals of describing the connection between variables,
making predictions, and drawing inferences from data. Therefore, the need for novel, flexible, adaptable statistical
models that can handle complex events is common among researchers and practitioners. A wide variety of new
generators, families of distributions, and techniques for parameter induction are proposed in the statistical literature.
These developments also give applied researchers a wider range of model options resulting in better results that are
ultimately more accurate. References [1,2,3,4] provide a comprehensive review of the numerous distinct statistical
techniques to develop novel statistical models. On recently proposed extended flexible families of distribution, there is
some valuable literature available from [5,6,7]. The concept of compounding is a widely used approach to develop new
models as a combination or composition of two or more similar or different models (for detailed illustration, readers are
referred to [2] and [3]). Discretization is another statistical technique to develop statistical models by which continuous
variables are converted into discrete variables. This technique is useful in a variety of circumstances such as lowering
noise, addressing missing data, streamlining the analysis and fulfilling the needs of certain categorical variable-based
algorithms. A discrete Bell distribution that outperforms the Poisson distribution, while maintaining several key Bell
numbers features were recently, proposed by Castellares et al. [8]. Further Fayomi et al. [9] introduced its G class and
presented the compounded EBellE model. Castellares et al. [10] extended the Bell distribution into the Bell-Touchard,
which outperforms other well-known discrete models. The probability mass function (PMF) of the two-parameter
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Bell-Touchard distribution is given by Castellares et al. [10]

P(M = m) =
exp

{

θ
[

1− eζ
]}

ζ mTm (θ )

m!
, m = 0,1,2, · · · , (1)

where ζ and θ > 0 and Tx (.) is the Touchard polynomial. Eq. (1) reduces to the Bell distribution for θ = 1. Due to the
advancement in technology, the production process has accelerated over time in a way that has never been seen before.
Product quality is the crucial aspect of the production process for both the producer and the consumer. A number of
statistical quality control approaches are available to evaluate and enhance the quality of the products. One of the specific
quality control approach known as an acceptance sampling plan (ASP) specifies the least sample size and acceptance and
non-acceptance criteria of a lot. Plans for acceptance sampling are available in many different formats, including variable
acceptance plans, attributes acceptance plans, accelerated plans, gradually progressively plans, and group acceptance
plans (see the references [11,12,13,14,15,16]). The main goal of these strategies is to protect both the manufacturer
and the consumer while evaluating the lot using a small sample size. It is common practice to develop an ASP that
provides standards by which a lot may be approved or disapproved based on sample data. For lot acceptability goals,
the development of ASP is a frequently discussed topic in quality control and reliability. This topic involves a technique
for optimization under restrictions. A group acceptance sampling plan (GASP) constructed on a truncated life test is the
outcome of merging GASP and truncated life testing, which presumes that a product’s lifespan fits a particular probability
distribution. A GASP was given by Jun et al. [11] and is an expanded version of the ordinary acceptance sampling
plan (OASP). Several authors proposed GASP using extended statistical models, here we mention a few, but are not
too limited. Shafiq et al. [17] designed a GASP using the odd Perk exponential distribution and compared the GASP
with the OASP and concluded that the GASP outperformed than the OASP; Algarni [18] illustrated GASP using three
parameters compounded Weibull model; Fayomi et al. [9] proposed GASP based on the exponentiated Bell exponential
(EBellE) model; Tripathi et al. [19] offered a GASP for the inverse log-logistic distribution; Almarashi et al. [20] used the
MOKw-E (Marshall-Olkin Kumaraswamy exponential) model and designed a GASP using median lifetime as a quality
index; Yigiter et al. [21] proposed a GASP based on the compounded Weibull-exponential model; Gadde et al. [22]
used the sized biased Lomax distribution and established a GASP for the resubmitted lot; Rao [23] presented a GASP
using the Marshall-Olkin extended Lomax distribution and Aslam [24] illustrated a GASP using the extended exponential
distribution. There are more expanded ASP under the lifetime distribution examples and thorough demonstrations are
available in the references [25] and [26].

The manuscript is formatted as follows: Section 2 presents the layout of the generalized complementary exponentiated
Bell Touchard (CEBT-G) with motivation. Section 3 contained the illustration of the special model along with the graphical
presentation of the probability density function (PDF) and hazard rate function (HRF). Further, a GASP is offered using the
median as a quality parameter when a product lifetime follows a complementary exponentiated Bell Touchard exponential
(CEBTE) model. Additionally, two of the most popular risk indicators, such as value at risk (VaR) and expected shortfall
(ES), are shown together with the actuarial data. The actual execution of the real-world data of the suggested model is
implemented in Section 4. Finally, Section 5 presents the findings of the study.

2 CEBT-G family with motivations

2.1 Construction

In a variety of real-world contexts, complementary risk models are crucial including industrial reliability, quality
assurance, biomedical research, and actuarial sciences. Generally, in a parallel system of hazards, the models used in
reliability analysis only determine the maximum component lifetime values. Whereas, component failure is reliant on
several risk factors, and it is unknown or unobservant which risk factor is more likely to cause or contribute to
component failure (Basu et al. [27]). These phenomena are known as latent complementary hazards or risks. The key
motivation for the development of the proposed family is a complementary latent risk that can effectively deal with the
proposed family of distribution. If a system has M independent working or functioning subsystems that all operate at a
given specific time. Let’s assume that Wi(i = 1,2, · · ·) stands for the failure time of ith subsystem. Moreover, each
subsystem’s failure time follows a zero truncated Bell-Touchard (ZTBT) distribution with PMF P(M = m) given by

P [M = m] =
exp

[

θ
(

1− eζ
)]

ζ mTm (θ )

m!
(

1− exp
[

θ
(

1− eζ
)]) , m = 1,2, · · · , (2)
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suppose that T represents the maximum time of system failure that is T = max(W1,W2, · · · ,WM). Then the conditional
cumulative distribution function (CDF) of T given M is as follows (following Tahir et al. [3])

F (t|M = m) = P [max(W1, . . .WM)< t|M = m] = [Pa (Tm,m ≤ t)]M = [Ha (t)]M . (3)

Then unconditional CDF of T corresponding to Eq. (3) is as:

F(t) =
∞

∑
m=1

[F (t|M = m)]P(M = m) =
∞

∑
m=1

[Ha (t)]mP(M = m) , (4)

where P(M = m) represents the PMF of the ZTBT distribution given in Eq. (2).

Proposition 1.The expression of CDF of the CEBT-G family using Eq. (4) is given by

F(t) =
exp

[

θ
(

eζHa(t)− 1
)]

− 1

exp
[

θ
(

eζ − 1
)]

− 1
, (5)

where H(x) represents the baseline CDF.

Proof. Using Eq. (2) in Eq. (4), we get

F(t) =
∞

∑
m=1

[Ha (t)]m





exp
[

θ
(

1− eζ
)]

ζ mTm (θ )

m!
(

1− exp
[

θ
(

1− eζ
)])



 , (6)

the above expression can also be expressed as follows:

F(t) =





exp
[

θ
(

1− eζ
)]

(

1− exp
[

θ
(

1− eζ
)])





∞

∑
m=1

(ζ Ha (t))m

m!
Tm (θ ) , (7)

the above expression becomes

F(t) =





exp
[

θ
(

1− eζ
)]

(

1− exp
[

θ
(

1− eζ
)])





[

∞

∑
m=0

(ζ Ha (t))m

m!
Tm (θ )− 1

]

, (8)

following the Castellares et al. [10], the functional connection of Touchard polynomials is expressed in the following
series

exp [θ (ex − 1)] =
∞

∑
m=0

xm

m!
Tm (θ ) , x,θ ∈ R. (9)

Comparing Eq. (8) and Eq. (9), we achieved the desired outcomes of the Proposition 1. This completes the proof. �
Listed below are some reasons for adopting the CEBT-G family that make it interesting

–It has a distinctive productive structure based on the several features of Bell numbers and Touchared polynomials,
which are never considered before.

–The proposed family is based on the genesis of the Bell-Touchard distribution which is appropriate to underline the
over-dispersion (variance>mean) phenomena. The construction of the proposed CEBT-G family is motivated by the
difficulty of complementary risk in the presence of latent risks.

–The special model named CEBTE yields flexible PDF and HRF shapes than the classical exponential model that can
be used in numerous distinct applied fields such as quality control, actuarial science, medicine, economics, finance
and reliability analysis.

–Further, the CEBTE model PDF can be expressed as a linear combination of exponential densities and this trait makes
it possible to quickly derive several properties straightly from the exponential distribution.

–Moreover, the proposed CEBTE model has an elegant closed-form quantile and survival function that can be used in
quality control, economics and medical data sets for better theoretical and empirical real-world solutions.

–The highly skewed data can be better addressed by the proposed special model.
–Several special cases can be extracted from the proposed family of distributions that make it more attractive.

c© 20-24 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


342 M. Imran, J. Mendy: Bell-Touchard Family of Distributions: Applications to...

The PDF corresponding to Eq. (5) is given by

f (t) =
aζ θ h(t) Ha−1 (t) eζHa(t) exp

{

θ
[

eζHa(t)− 1
]}

exp
{

θ
[

eζ − 1
]}

− 1
, (10)

where H(t) and h(t) represent the CDF and PDF of baseline distribution respectively. When a= 1 in Eq. (5) , the CEBT-G
reduces to the CBT-G. When θ = 1 in Eq. (5) , the CEBT-G reduces to the CEB-G. When θ = 1 and a = 1 in Eq. (5) , the
CEBT-G reduces to the CB-G. The pth quantile function (QF) of the CEBT-G family of distribution is given by

Q(p) = H−1
{

ζ−1 ln
{

1+θ−1 ln
[

1+ p
(

exp
{

θ
[

eζ − 1
]}

− 1
)]}} 1

a
, (11)

where H−1(x) is the inverse function of H(x) and p follows the uniform distribution on the interval [0,1]. The well-known
actuarial metrics namely VaR and ES can be derived and computed for the CEBTE model by using the aforementioned
expression of QF as:

VaRq = H−1
{

ζ−1 ln
{

1+θ−1 ln
[

1+ q
(

exp
{

θ
[

eζ − 1
]}

− 1
)]}} 1

a

and

ESq(x) = q−1
∫ q

0
VaRxdx,

where for 0 < q < 1.

3 Development of special Model and Actuarial Metrics

When hazard rates are non-constant and present monotone shapes (Louzada et al. [28]), the classical exponential
distribution is unable to produce improved fits. Nevertheless, numerous research revealed that the extended exponential
distribution or its use as a baseline model yields a better fit (Gupta et al. [29]). Here, we define a new special model
named the CEBTE, using the exponential model as a baseline model. The novel proposed exponential model yields
flexible PDF and HRF shapes. Further, the proposed model is based on several features of Bell numbers and Touchard
polynomials and can address the complementary risk in the presence of latent risks with the motivation of series
structure. The following are the CDF and PDF of the exponential model, respectively, with parameters ϖ > 0 and t > 0

H(t) = 1− e−ϖ t and h(t) = ϖ e−ϖ t .

Let T be a random variable which follows the CEBTE(θ ,ζ ,a,ϖ) distribution for t > 0, and θ ,ζ ,a,ϖ > 0, then its
associated CDF and PDF, respectively, are given by

F(t) =
exp

(

θ
[

eζ(1−e−ϖ t)
a

− 1
])

− 1

exp
(

θ
[

eζ − 1
])

− 1
(12)

and

f (t) =
aζ θ ϖ e−ϖ t (1− e−ϖ t)

a−1
eζ(1−e−ϖ t)

a

exp
(

θ
[

eζ(1−e−ϖ t)
a

− 1
])

exp
(

θ
[

eζ − 1
])

− 1
. (13)
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Fig. 1: PDF’s plots under the CEBTE model at varying parametric values.
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Fig. 2: HRF’s plots under the CEBTE model at varying parametric values.
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The failure rate function of the special model is fascinating for real-world applications in diverse industries since it
can adopt a range of shapes (see Figire 2), such as bathtub and reverse bathtub-shaped, increasing, and decreasing trends.
When a = 1 in Eq. (12) , the CEBTE reduces to the CBTE. When θ = 1 in Eq. (12) , the CEBTE reduces to the CEBE.
When θ = 1 and a = 1 in Eq. (12) , the CEBTE reduces to the CBE. The pth quantile of the exponential distribution is
given by tp =

−1
ϖ ln [1− p], by using Eq. (11), the pth QF of the CEBTE model is as follows:

tp =
−1

ϖ
ln

[

1−
{

ζ−1 ln
{

1+θ−1 ln
[

1+ p
(

exp
{

θ
[

eζ − 1
]}

− 1
)]}} 1

a

]

. (14)

3.1 GASP development using the CEBTE model

3.1.1 Construction

AS ASP decides whether to accept or reject a submitted lot based on the product quality determined by the sample.
Unlike OASP, the GASP is economical as it reduced cost and shortens the length of the test or experiment. Based on the
fact, that GASP offers a stricter product inspection than the OASP because samples are dispersed among multiple groups
and simultaneously tested. Each group is subject to the condition of acceptance to improve product inspection (see the
references [30,?,?]). The mean or median can be used as a quality index to design a GASP. For skewed distribution, the
median is typically preferable (Aslam et al. [32]). Let m represent the median life of the item or product in a respective lot
that is larger than the requisite life, say m0 and we are intrigued in devising a sampling plan. If there is compelling proof
that m > m0 at particular points of consumer risk (β ) and producer risk (γ), we will accept the lot. Otherwise, we must
dismiss the entire lot under inspection. The following steps are involved in designing the GASP based on the truncated
life test

Step 1In order to ascertain that n = gr given a lot sample size, specify the number of groups (g) and then allocate each g

a set of r objects.
Step 2Specify the test duration time t0 and set the action limit (or acceptance number c) for each group.
Step 3Count the frequency of failures (F) for each group after experimenting simultaneously for each of the g groups.
Step 4Approve the lot if F ≤ c.
Step 5If any group experiences F > c, the experiment needs to be stopped, and the lot should be rejected.

According to Stephens et al. [33], the probability of lot approval is as follows:

pa(p) =

[

c

∑
i=0

(

r

i

)

pi [1− p]r−i

]g

, (15)

where p is the likelihood that an item in a group would expire just before t0, and it is determined by inserting Eq. (14) in
Eq. (12).

m =
−1

ϖ
ln

[

1−
{

ζ−1 ln
{

1+θ−1 ln
[

1+ 0.5
(

exp
{

θ
[

eζ − 1
]}

− 1
)]}} 1

a

]

. (16)

Consider

π = ln

[

1−
{

ζ−1 ln
{

1+θ−1 ln
[

1+ 0.5
(

exp
{

θ
[

eζ − 1
]}

− 1
)]}} 1

a

]

, (17)

setting ϖ = −π
m

and t = m0a1 in Eq. (12) and the likelihood of failure is given by

p =

exp

{

θ

[

e
ζ

[

1−eπa1 (r2)
−1

]a

− 1

]}

− 1

exp
{

θ
[

eζ − 1
]}

− 1
. (18)

When r2 and a1 are fixed, whereas r2 = m/m0, p can be calculated for chosen θ , ζ , and a, using Eq. (18). We will
examine the two failure probabilities for the β and γ , denoted as p1 and p2, respectively. Determine the values of the
design parameters (c and g) that concurrently accomplish the subsequent expressions for the particular values of the
constraints θ , ζ , a, r2, a1, β , and γ

p
a

(

p1|
m

m0
=r1

) =

[

c

∑
i=0

(

r

i

)

pi
1 [1− p1]

r−i

]g

≤ β (19)
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and

p
a
(

p2|
m

m0
=r2

) =

[

c

∑
i=0

(

r

i

)

pi
2 [1− p2]

r−i

]g

≥ 1− γ, (20)

where r1 and r2 denote the average ratio of γ to that of consumers, and Eq. (19) and Eq. (20) denote the failure probability
to be applied to the aforementioned equations

p1 =
exp

{

θ
[

eζ [1−eπa1 ]a − 1
]}

− 1

exp
{

θ
[

eζ − 1
]}

− 1
(21)

and

p2 =

exp

{

θ

[

e
ζ

[

1−eπa1 (r2)
−1

]a

− 1

]}

− 1

exp
{

θ
[

eζ − 1
]}

− 1
. (22)

3.1.2 Discussion

The design parameters under GASP are displayed in Tables 2-3, taking two levels of ζ= (1.25, 1.50) and r=(5, 10). The
analysis shows that as β tends to decrease, the groups increased. Furthermore, as r2 rises, the groups decreased quickly.
However, after a certain point, when design parameters remain constant, the likelihood of a lot’s acceptance increases.
Tables 2-3 showed that effect of a1 = (0.5, 1) and r = (5, 10), if β = 0.25, r2=4, a1 = 0.5, ζ = 1.250, and r=5 there are
20 groups or 100 (20×5 = 100) units are required for life testing. On the other side, a significant decrease in the number
of groups may be seen, when r = 10, i.e., 4 groups or 40 (4×10= 40) units are needed for life testing. Likewise, 15 items
should be required for life testing, when a1 = 1 and r = 5, but only 10 items are tested for a1 = 1 and r = 10. Here 10
group is therefore preferred. From Table 1, when using median lifetime as a quality parameter, the CEBTE model predicts
that as true median life increases, the value of the operating characteristic (OC) function, pa(p) increases and the groups
drop for the GASP under consideration. This indicates that the lot being considered will be utilized (accepted) in that case.
This is evident from Table 2, under various parameters values, for β =0.10, a1=1, ζ=1.25, and for r=10.

Table 1: GASP under CEBTE model, for β=0.10, a1=1, ζ=1.25, and for r=10.

r2 2 4 6 8

g 5 2 1 1

c 5 3 2 2

P(a) 0.9564 0.9810 0.9815 0.9914

Here, we demonstrate the hypothetical example and assume that the producer states that the specified value of m0 is
4000 hours, the lifetime of the units follows the CEBTE distribution with parameter ζ = 1.50, the β = 0.25, the γ = 0.05,
the r = 5, and the actual value of m is 8000h. Since an experimenter wants to run a life test experiment for 1000 hours
and we are interested in designing the GASP. We have the following values for the termination ratio(a1) = 0.5, β = 0.25,
and r2 = 8000/4000=2. The design parameters can be calculated as g = 43 and c = 2, by using Table 3. Accordingly, a
sample of size 215 (43 × 5 = 215) should be taken, with 5 units being given to each of the 43 groups. The lot is ultimately
accepted if there are no more than two units that fail in any group before 1000 hours; if there are more than two, the
inspected lot is rejected.
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Table 2: GASP under the CEBTE model, θ = 1.50, a = 0.50 and ζ = 1.250.

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25 2 – – – 44 4 0.9808 32 4 0.9649 3 5 0.9736

4 20 2 0.9831 3 2 0.9799 4 2 0.966 1 3 0.9905

6 5 1 0.9546 3 2 0.9685 4 2 0.9875 1 2 0.9815

8 5 0.9711 1 1 0.9815 2 1 0.9521 1 2 0.9914

0.1 2 – – – 73 4 0.9683 259 5 0.9765 5 5 0.9564

4 33 2 0.9723 4 2 0.9733 15 3 0.9897 2 3 0.9810

6 33 2 0.9903 4 2 0.9923 6 2 0.9813 1 2 0.9815

8 7 0.9598 2 1 0.9634 6 2 0.9904 1 2 0.9914

0.05 2 – – – 95 4 0.9589 337 5 0.9695 – – –

4 43 2 0.9641 5 2 0.9667 20 3 0.9863 2 3 0.9810

6 43 2 0.9874 5 2 0.9904 7 2 0.9782 2 2 0.9633

8 43 0.9937 2 1 0.9634 7 2 0.9888 2 2 0.9828

0.01 2 – – – – – – 517 5 0.9537 – – –

4 535 3 0.9895 7 2 0.9537 30 3 0.9795 2 3 0.9716

6 65 2 0.9810 7 2 0.9866 11 2 0.9659 2 2 0.9633

8 65 2 0.9905 7 2 0.9941 11 2 0.9825 2 2 0.9828

Remark: Cells for a very large sample size are marked with hyphens (–).

Table 3: GASP under the CEBTE model, θ = 1.50, a = 0.50 and ζ = 1.50.

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25 2 43 2 0.9511 7 3 0.9798 22 3 0.9774 2 4 0.9737

4 7 1 0.9747 1 1 0.9773 3 1 0.9544 1 2 0.9884

6 7 1 0.9895 1 1 0.9926 3 1 0.9807 1 1 0.9696

8 7 1 0.9941 1 1 0.9963 3 1 0.9889 1 1 0.9846

0.1 2 792 3 0.9763 12 3 0.9657 36 3 0.9634 3 4 0.9608

4 12 1 0.9570 2 1 0.9552 10 2 0.992 1 2 0.9884

6 12 1 0.9821 2 1 0.9852 4 1 0.9743 1 1 0.9696

8 12 1 0.9899 2 1 0.9927 4 1 0.9853 1 1 0.9846

0.05 2 – – – 15 3 0.9573 47 3 0.9524 7 5 0.986

4 92 2 0.9934 2 1 0.9552 13 2 0.9896 2 2 0.977

6 15 1 0.9777 2 1 0.9852 5 1 0.968 1 1 0.9696

8 15 1 0.9873 2 1 0.9927 5 1 0.9816 1 1 0.9846

0.01 2 – – – 146 4 0.9845 346 4 0.978 10 5 0.9801

4 141 2 0.9899 7 2 0.9919 20 2 0.9841 2 2 0.977

6 23 1 0.9661 3 1 0.9779 7 1 0.9555 2 2 0.9955

8 23 1 0.9807 3 1 0.9891 7 1 0.9744 2 1 0.9694

Remark: Cells for a very large sample size are marked with hyphens (–).

4 Real-life applications

To demonstrate the practical utility of the proposed CEBTE model, real data are applied. The actual data sets are
displayed in Table 4 along with some basic descriptive details. Using median life as a quality indicator is preferable to
obtain better results because the data sets are skewed to the right. Fifty observations of the carbon fiber’s breaking
strength under stress are included in the first data set, expressed in Gba units. Almarashi et al. [20] used the data set
recently and developed, a GASP under the four parameters MOKw-E model. The second data consists of a fleet of 13
Boeing 720 jets’ total number of successive air conditioning system failures is included in the data set. Additionally,
Kumar et al. [34] also used the failure data for lifetime analysis. The third data set shows the survival rates (in days) of
72 guinea pigs exposed to virulent tubercle bacilli. Sivakumar et al. [35] used the same data and proposed the GASP
using odd generalized exponential log-logistic (OGELL) distribution. The data sets are analyzed using R programming
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language and the unknown parameters are estimated via the maximum likelihood approach using widely adopted R
package AdequacyModel. It provides, a comprehensive output analysis including maximum likelihood estimates
(MLEs) with standard errors (SEs), information criterion, and goodness of fit test namely Anderson Darling (AD),
Craḿer-Von Mises (CM), and Kolmogorov-Smirnov (KS) tests. The analysis of the first data as follows

ϖ̂ = 0.4594961(0.08840372), ζ̂ = 2.6202802(1.62993317), â = 0.0118563(0.01164902),

θ̂ = 2.0335270(3.80770608), under KS test, the maximum gap between actual and fitted according to CEBTE model is
0.065441 with p-val=0.9830. The fitted second data yields the MLEs (SEs) ϖ̂ = 0.01047087(0.001014997),

ζ̂ = 2.37034548(0.701730513), â = 0.01406264(0.008131268), θ̂ = 2.68426527(2.051831391), KS=0.075694 and

p-val=0.2316. The fitted third data are as follows: ϖ̂ = 1.183425440(0.136343), ζ̂ = 9.960142689(0.841602),

â = 0.012643574(0.012371), θ̂ = 0.001519992(0.00007972559). The proposed CEBTE model outperformed
(improved KS test 0.065441 and p-val=0.9830) than MOKw-E model, recently used by Almarashi et al. [20] for data set
1, designing GASP with KS=0.0680 and p-val=0.9743. Similarly, the KS test under OGELL distribution fitted to the
survival time data [35] remains 0.089 and p-val=0.617. The proposed CEBTE model again yields a better fit against
OGELL distribution with KS=0.0874 with p-value=0.6402. The graphical representation of the data sets shown in
Figures 3–7 include the plot of estimated PDF, CDF, hazard rate function (HRF), probability-probability (P-P) plot
Kaplan-Meier (K-M) curves, and TTT. Under the CEBTE model, the actual and fitted values for all estimated entities
concur well. By using estimated values, Tables 5–8 demonstrate the GASP when a product’s life follows a CEBTE
model, displaying least design parameters (g and c). The analysis finds revealed that the results are consistent with those
shown in Table 2 and Table 3.

Table 4: Data sets with basic descriptive information’s.

Data-I: Breaking stress of carbon fibers

1.1200 0.1700 0.6400 4.3200 1.2200 0.3700 1.1600 1.4200 0.0900 1.6700

0.1300 0.2500 0.0800 0.0400 2.3500 0.2000 0.7800 0.3400 1.0200 0.1700

1.7600 2.3900 0.5000 1.3500 3.3600 0.4500 0.9000 2.9200 6.5300 1.6200

7.4600 3.1900 2.4900 1.4000 7.4900 0.5700 0.1400 0.6300 5.2300 0.7100

0.6800 0.1200 0.0900 3.4700 5.9300 1.8200 4.2000 7.2900 3.1300 3.4100

Descriptive information

n x0 xm Q1 Q3 x̄ x̃ σ Sk Ku

50 0.0400 7.4900 0.3900 3.0780 1.9750 1.1900 2.1157 1.3253 0.8032

Data-II: Successive failures for the air conditioning system

194.00 413.00 90.00 74.00 55.00 23.00 97.00 50.00 359.00 50.00

130.00 487.00 57.00 102.00 15.00 14.00 10.00 57.00 320.00 261.00

51.00 44.00 9.00 254.00 493.00 33.00 18.00 209.00 41.00 58.00

60.00 48.00 56.00 87.00 11.00 102.00 12.00 5.00 14.00 14.00

29.00 37.00 186.00 29.00 104.00 7.00 4.00 72.00 270.00 283.00

7.00 61.00 100.00 61.00 502.00 220.00 120.00 141.00 22.00 603.00

35.00 98.00 54.00 100.00 11.00 181.00 65.00 49.00 12.00 239.00

14.00 18.00 39.00 3.00 12.00 5.00 32.00 9.00 438.00 43.00

134.00 184.00 20.00 386.00 182.00 71.00 80.00 188.00 230.00 152.00

5.00 36.00 79.00 59.00 33.00 246.00 1.00 79.00 3.00 27.00

201.00 84.00 27.00 156.00 21.00 16.00 88.00 130.00 14.00 118.00

44.00 15.00 42.00 106.00 46.00 230.00 26.00 59.00 153.00 104.00

20.00 206.00 5.00 66.00 34.00 29.00 26.00 35.00 5.00 82.00

31.00 118.00 326.00 12.00 54.00 36.00 34.00 18.00 25.00 120.00

31.00 22.00 18.00 216.00 139.00 67.00 310.00 3.00 46.00 210.00

57.00 76.00 14.00 111.00 97.00 62.00 39.00 30.00 7.00 44.00

11.00 63.00 23.00 22.00 23.00 14.00 18.00 13.00 34.00 16.00

18.00 130.00 90.00 163.00 208.00 1.00 24.00 70.00 16.00 101.00

52.00 208.00 95.00 62.00 11.00 191.00 14.00 71.00

Descriptive information

n x0 xm Q1 Q3 x̄ x̃ σ Sk Ku

188 1.00 603.00 20.750 118.00 92.0745 54.00 107.916 2.1392 5.0231
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Table 5: A GASP under the CEBTE model, θ = 2.0330, a = 0.0118 and ζ = 2.620.

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25 2 – – – – – – – – – – – –

4 37 3 0.9716 7 3 0.9609 8 4 0.9762 3 5 0.9849

6 37 3 0.9633 7 3 0.9876 8 4 0.9788 1 3 0.9584

8 7 2 0.9800 3 2 0.9629 3 3 0.9902 1 3 0.9796

0.1 2 – – – – – – – – – – – –

4 61 3 0.9536 73 4 0.9814 12 4 0.9646 5 5 0.9749

6 61 3 0.9855 12 3 0.9788 12 4 0.9649 3 4 0.9770

8 12 2 0.9660 4 2 0.9509 5 3 0.9837 2 3 0.9597

0.05 2 – – – – – – – – – – – –

4 954 4 0.9815 95 4 0.9759 16 4 0.953 7 5 0.9651

6 80 3 0.9810 15 3 0.9735 16 4 0.9512 4 4 0.9695

8 15 2 0.9576 15 3 0.9884 7 3 0.9772 2 3 0.9597

0.01 2 – – – – – – – – – – – –

4 – – – 146 4 0.9632 75 5 0.9769 10 5 0.9505

6 122 4 0.9712 23 3 0.9597 24 4 0.9818 5 4 0.9620

8 122 3 0.9875 23 3 0.9823 10 3 0.9676 5 4 0.9851

Remark: Cells for a very large sample size are marked with hyphens (–).

Table 6: Proposed GASP under the CEBTE model with least design parameters.

Data-I Data-II Data-III

r2 2 4 6 8 2 4 6 8 2 4 6 8

n – 100 50 50 – 100 50 30 20 10 10 10

g – 10 5 5 – 10 5 3 2 1 1 1

c – 5 4 4 – 5 4 3 1 1 1 0

pa(p) – 0.9505 0.962 0.9851 – 0.9677 0.9765 0.9817 0.963 0.9791 0.9978 0.9994

Table 7: A GASP under the CEBTE model, θ = 2.6843, a = 0.0141 and ζ = 2.3703.

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25 2 – – – – – – – – – – – –

4 42 3 0.9806 7 3 0.9714 9 4 0.9852 2 4 0.9613

6 8 2 0.9735 3 2 0.9507 4 3 0.9842 1 3 0.9712

8 8 2 0.9864 3 2 0.9743 2 2 0.9673 1 3 0.9871

0.1 2 – – – – – – – – – – – –

4 70 3 0.9679 12 3 0.9514 14 4 0.977 5 5 0.9837

6 13 2 0.9573 12 3 0.9862 6 3 0.9763 3 4 0.9858

8 13 2 0.9780 4 2 0.9659 3 2 0.9513 2 3 0.9743

0.05 2 – – – – – – – – – – – –

4 91 3 0.9585 95 4 0.9840 18 4 0.9706 7 5 0.9773

6 91 3 0.9885 15 3 0.9827 7 3 0.9725 4 4 0.9812

8 17 2 0.9714 5 2 0.9576 7 3 0.9882 2 3 0.9743

0.01 2 – – – – – – – – – – – –

4 146 4 0.9755 27 4 0.9562 10 5 0.9677

6 140 3 0.9823 23 3 0.9736 11 3 0.9571 5 4 0.9765

8 25 2 0.9582 23 3 0.9893 11 3 0.9816 3 3 0.9817

Remark: Cells for a very large sample size are marked with hyphens (–).
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Table 8: A GASP under the CEBTE model, θ = 0.00152, a = 0.01264 and ζ = 9.9601.

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25 2 10 1 0.9510 7 3 0.9892 9 2 0.9886 2 1 0.9630

4 2 0 0.9694 1 1 0.9950 1 0 0.9694 1 1 0.9791

6 2 0 0.9900 1 0 0.9645 1 0 0.9900 1 1 0.9978

8 2 0 0.9960 1 0 0.9846 1 0 0.9960 1 0 0.9994

0.1 2 111 2 0.9872 12 3 0.9815 15 2 0.9810 3 4 0.9803

4 16 1 0.9985 2 1 0.9900 5 1 0.9979 1 1 0.9791

6 4 0 0.9802 1 0 0.9645 2 0 0.9802 1 1 0.9978

8 4 0 0.9920 1 0 0.9846 2 0 0.9920 1 0 0.9694

0.05 2 144 2 0.9834 15 3 0.9769 19 2 0.9790 4 4 0.9738

4 20 1 0.9981 2 1 0.9900 6 1 0.9975 1 1 0.9791

6 5 0 0.9753 1 0 0.9645 3 0 0.9704 1 1 0.9978

8 5 0 0.9900 1 0 0.9846 3 0 0.9881 1 0 0.9694

0.01 2 222 2 0.9746 23 3 0.9648 30 2 0.9624 5 4 0.9674

4 31 1 0.9970 3 1 0.9851 9 1 0.9962 2 1 0.9587

6 7 0 0.9656 3 1 0.9985 4 0 0.9608 2 1 0.9955

8 7 0 0.9861 2 0 0.9694 4 0 0.9841 1 0 0.9694

4.1 A comparative study

Recently, Fayomi et al. [9] and Almarashi et al. [20] proposed a GASP using the extended exponential-based distributions
namely the EBellE and the MOKwE distributions respectively. In Table 9, we compare the design parameters of the
proposed GASP based on the CEBTE distribution with the MOKwE by Almarashi et al. [20] and the EBellE by Fayomi
et al. [9] distribution. When β = 0.10, a1 = 1, and r = 10, the proposed CEBTE distribution shows the least design
parameters g and c as compared to the EBellE and the MOKwE distribution. While the real data comparison yields from
Table 8, when β = 0.25, a1 = 1, and r = 10 showing the minimum design parameters and higher OC value against the
OGELL distribution by Sivakumar et al. [35]. The detailed summary of design parameters, OC values and n based on
third data are presented in Table 10. Furthermore, Figure 6 is designed to compare the design parameters of the CEBTE
model versus the MOKwE, EBellE and OGELL models for the r2 = 4. It is quite clear from the Tables 9-10 and Figure
6 that the proposed GASP under the CEBTE model has optimized values of the design parameters as compared to the
MOKwE, EBellE and ODELL models.

Table 9: Comparison between CEBTE, MOKwE and EBellE distributions.

CEBTE MOKwE EBellE

r2 g c pa(p) g c pa(p) g c pa(p)

4 2 3 0.9810 6 5 0.9809 5 5 0.9843

6 1 2 0.9815 3 4 0.9878 2 3 0.9503

8 1 2 0.9914 2 3 0.9794 2 3 0.9800

Table 10: Comparison of the CEBTE and the OGELL distribution using actual data.

CEBTE OGELL

r2 4 6 8 r2 4 6 8

n 10 10 10 n 30 20 10

g 1 1 1 g 3 2 1

c 1 1 0 c 2 1 0

pa(p) 0.9791 0.9978 0.9994 pa(p) 0.9553 0.9868 0.962
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Fig. 3: Estimated plots based on the CEBTE model, Data-I.
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Fig. 4: Estimated plots based on the CEBTE model, Data-II.
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Fig. 5: Estimated plots based on the CEBTE model, Data-III.
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Fig. 6: OC curves of the CEBTE model versus MOKwE, EBellE and OGELL models based on the sample sizes based on the Tables

9-10.

4.2 Actuarial data and risk measures

Recently, Afify et al. [36] used the unemployment insurance-related claims data and applied the alpha power exponentiated
exponential (APEE) distribution. The fitted APEE model showed the goodness-of-fit measures such as AD(0.70096),
CM(0.12743), and KS(0.09917) tests with p-value(0.61833). On the other side, the proposed CEBTE model is fitted to
the same unemployment insurance-related claims data and with improved goodness-of-fit measures such as AD(0.6961),
CM(0.1257), and KS(0.0970) tests with p-value(0.6458) compare to the APEE model. The MLEs of the fitted CEBTE

model are as follows: ϖ̂ = 0.03414481(0.008431383), ζ̂ = 0.33161910(0.261097963), â= 12.76246655(4.345384632),

θ̂ = 6.26096893(5.836776096). The following Figure 7 shows the good agreement between actual and predicted based
on the CEBTE model. Figure 8 shows the graphical illustration of the two commonly used risk measures namely VaR and
ES.
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Fig. 7: Estimated plots based on CEBTE model, Data-IV.
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5 Concluding Remarks

In this article, we presented a new CEBT-G family of distributions by compounding approach. Furthermore, the linear
representation of the densities is presented and can be utilized to determine a number of significant aspects of the special
model. A special model named CEBTE with a flexible failure rate function is presented with the proposed GASP by
taking the median lifetime as a quality parameter. The analysis of the data yields optimized outcomes of the GASP for the
CEBTE model so as the number of groups and acceptance numbers tend to decrease rather than the OC values steadily
increase as the true median life tends to increase. More specifically, the GASP may be used to recruit embedded items for a
trial to be run simultaneously, which will be useful in optimizing the test time and cost as multiple objects can be evaluated
simultaneously. The proposed CEBTE distribution produces convincing results based on the comparison of real data sets
as well. In addition, to enhance the goodness of fit metrics, the suggested model also minimized design parameters to
achieve better lot quality checks within limited financial and time limitations. The proposed family has a closed-form
quantile function, which allows it to be further extended to regression analysis and quantile regression. Special models,
however, can offer potentially better results with over-dispersion data.
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