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Abstract: This research introduces a novel six-parameter model called the McDonald Generalized Power Weibull
distribution. The model contains several sub-models that prove highly valuable in modeling real-life scenarios, including
the McDonald Weibull, McDonald exponential, McDonald Nadarajah-Haghighi, beta generalized power Weibull
distribution, and Kumaraswamy generalized power distributions, among others. The proposed model demonstrates
suitability in modeling survival/reliability data, accommodating various hazard failure rates such as increasing, decreasing,
unimodal (upside-down bathtub), modified bathtub, and reversed J-shape. Various properties of the new model are
investigated, including moments, quantiles, incomplete moments, moment-generating functions, and order statistics. The
maximum likelihood estimation method is employed to estimate the model parameters. The study concludes by illustrating
the flexibility of the proposed model through the use of lifetime data to demonstrate its applicability.

Keywords:  Bathtub, flexibility, = generalized power  Weibull, quantile, and maximum likelihood

1 Introduction

Probability distributions are integral part of modeling real data. The capacity of a distribution to describe different data sets
relies on the flexibility of the model. Real data comes with different characteristics that are non-monotonic in nature. The
complex nature of lifetime data renders the classical models unfit to model such data sets [1]. Modifications are therefore
carried out on these classical distributions to improve upon their flexibility and performance. For researchers to achieve this
desired flexibility, existing distributions are modified to produce new distributions with higher flexibility and performance.
This can be achieved using different techniques. One such method is the introduction of additional shape parameters to the
baseline model aimed at enhancing its skewness and varying its tail weight [2]. An important characteristic of making
extensions to a distribution is to inject some amount of flexibility into the baseline distribution. This will increase its
capacity in fitting data that suitably cannot be fitted by the baseline model [3]. Developing new extended distributions to
model both non-monotonic and monotonic failure rates is therefore necessary.

Extended distributions are more appropriate for modeling lifetime data in various fields such as finance, economics,
engineering, biology, medicine, and manufacturing compared to non-extended distributions. Recent studies have introduced
several generalized distributions that fall into this category. Examples include the extended cosine generalized family of
distributions [4], the odd inverse exponential class of distributions [3], the exponentiated power generalized Weibull power
series family of distributions [5], the generalized power generalized Weibull distribution [6], the McDonald modified
Weibull distribution [7], the McDonald extended Weibull distribution [8], and the McDonald normal distribution [9],
among others.

The proposed generalized power Weibull distribution by [10] demonstrated various shapes of failure rates, including
increasing, decreasing, and bathtub-shaped patterns. Therefore, the generalized power Weibull distribution is not suitable
for accurately modeling datasets that exhibit modified bathtub shapes, reversed J-shapes, or right-skewed failure rates.

Consider a random variable represented by X which follows a generalized power Weibull (GPW) distribution,
characterized by its probability density function (PDF) and cumulative distribution function (CDF). The PDF and CDF of
the GPW model are respectively given:

t(x) = gdpx? (1 + px?)*™ (=)

and

(1)
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Where € and ¢ are shape parameters and ? is a scale parameter.

This study focuses on the examination and development of the McDonald GPW distribution (MGPWD). The purpose
behind developing this distribution is to enhance the capability of the GPW to model datasets that exhibit both non-
monotonic and monotonic failure rates. Additionally, the aim is to derise a distribution that can effectively handle datasets
with varying levels of skewness and kurtosis. The remaining sections of the paper are organized as follows: Section 2
presents the development of the PDF and CDF for the MGPWD and the sub-models associated with the MGPWD. Section
3 addresses the mixture representation of the PDF. Statistical properties of the MGPWD are explored in Section 4.
Parameter estimation and Monte Carlo simulation techniques are discussed in Section 5. Section 6 focuses on the
application of the MGPWD to real-world data. Finally, concluding remarks are provided in Section 7.

2. The New Model
In this section, the PDF and CDF of the MGPWD are developed using the GPW model as the baseline distribution. If

t(x) and T(x) are the baseline PDF and CDF, then the PDF of McDonald’s generalized family of distribution as
defined by [9] and [7] is presented as:

f(x, u,v, Z) = ﬁ)v)t(x)Tuz—l (.X) {1 _Tz(x)}v_

, 3)
1

)= 9T@  Blu,v)= j X (1=x)""

where dx 0 is the beta distribution and ¥ ~ 0,v>0 and Z > 0 represents the

shape parameters of the generalized family of distributions. The parameters ¥ , Vand Z are additional shape parameters

that regulate the skewness as well as the lightness of the tail weight. It is essential to note that when 2 = 1 the beta family

is realized [11]. Also, when ¥ = 1 , the Kumaraswamy family is obtained [12]. A significant attribute of the McDonald
generalized family of distributions is the lightness of their tails’ weight due to the increase in the number of shape
parameters.

X ~MG(u,v,z,0)

For X being a random variable having a density equation (3) and denoted as in which @ represents a

vector of parameters. The CDF corresponding to equation (3) is:

T(x)"
J. xl—u (1 _x)v—ldx

0

F(x,u,v,z)=1_ _(u,v)=
(o) =1, ()= o

T(x)

j X (1=x)""dx
0

I . (u,v)=
=) B(u,v) . o : :
where , represents the incomplete beta distribution ratio [13]. The CDF in
hypergeometric function form as stated by [13] is defined as:

F(x)z—2E(u,l—v;u+l;T(x)z)
, “)

L (u,viz5x) = L(z) Zw: alC +j)l—‘(.v+ /) X—J' I(u)= J.xuileixdx
T(@)r(v)i= T(z+/) J*  and 0 is the gamma function. The PDF
of the MGPWD can be obtained by substituting equations (1) and (2) into equation (3) to obtain:
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£ L \Uz-1 o \Z
flruv.z.e.4, <o>:%”“’)w*a+¢x¢y—1el—<ww> (1) [1_ (1-e) }
u,v

v-1

» (9

Wmmx>Qu>Qv>Qz>Q5>Q¢>de¢>Q

Figure 1 illustrates several desired shapes manifested by the PDF of the MGPWD. These shapes encompass a reversed J-
shape, right skewed, nearly symmetric, increasing monotonically, and platykurtic shapes of different kurtosis.
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Fig.1: PDF shapes of the MGPWD
By substituting equation (2) into equation (4), the CDF of the MGPWD is obtained as follows:

(1 —eL(lwx"’f )"Z ]
F(x,u,v,z,g, ¢,§0) = ) (u,l—v;u +1;(1 _ o Urey’ ) )

uB(u,v) ’ ©)
Wmmx>Qu>Qv>Qz>Q€>Q¢>de¢>Q_
The CDF can also be defined as,
F(x)=1 ()| (a.b)
l1—e
(7

The CDF defined in equation (7) is very useful in the calculation of the quantile function of the distribution and subsequent
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generation of random numbers. The survival function of the MGPWD is given as,

1-(+oa?y* |
I-e

uB(u,v)

S(x):]- 2 b (u,l—v;u+l;(1—e1—<1+<ox¢>f )j
®)

Figure 2 displays the hazard failure rate associated with the MGPWD. The hazard function exhibits various appropriate
shapes such as monotonically increasing and decreasing patterns, bathtub-shaped patterns, upside-down bathtubs, and
modified bathtubs. The hazard rate function of the MGPWD is mathematically represented as follows:

v—1

zeppxt (14 gudy e [ graved T [1 ~(1=ererenr) }

uB(u,v)— (1 _ e )uz

u

h(x)z

2By (u,l —viu+ 1;(1 — elf(lﬂpx‘”)f )Zj
©)
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Fig. 2: Hazard function failure rates of the MGPWD

The reverse hazard function refers to the division of the probability density by the cumulative density. It represents the
conditional density of an immediate failure, given that the failure occurred. The reverse hazard function is given as,

— v—1
zegpx? (1 + px?)°! ey’ |:1 _ ey :I”Z ! |:1 _ (l _ ety )z:l

F(x)=

(1 —e1*(1+¢X“‘)” )uz
_ sy \7
, B [u,l—v;thtl;(l—e1 (+ox") ) j
u

(10)

2.1 Sub-divided models of the MGPWD

The MGPWD converges to different important distributions given that its parameters vary. The MGPWD has some known
X ~ MGPWD(u,v,z,&,4,0)

special sub-models. For . The following sub-models are obtained.

1. For €= 1 , the PDF reduces to the MacDonald Weibull distribution (MW)
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2. For €= 1 and ¢ = l , the PDF becomes MacDonald exponential distribution (ME)

3. For = 1 , the PDF reduces to MacDonald Nadarajah-Haghighi distribution (MNH)

4. For €= 1 and P = 2 , the PDF reduces to MacDonald Rayleigh distribution (MR)

5. For z=1 , the MGPWD becomes the Beta Generalized power Weibull distribution (BGPW)

6. For €= 1 and Z =1 , the MGPWD becomes the Beta Weibull distribution (BW)

7. For €= 1 , = 1 and 2= 1, the PDF reduces to Beta exponential distribution (BE)

8 ForZ=land ¥~ 1 , the MGPWD becomes the Beta Nadarajah-Haghighi distribution (BNH)

9. For €= 1 , 2= lang = 2 , the PDF reduces to Beta Rayleigh distribution (BR)

10. For 4= 1 , the MGPWD reduces to the Kumaraswamy generalized power Weibull distribution (KGPW)
11. For 4= 1 and € = 1 , the MGPWD reduces to Kumaraswamy Weibull distribution (KW)

12. For 4= 1 , €= 1 and P= 1 , the PDF of the MGPWD becomes the Kumaraswamy exponential distribution (KE)
13. U= 1 and P= 1 , the MGPWD reduces to the Kumaraswamy Nadarajah-Haghighi distribution (KNH)

14, U= 1 , €= 1 and P = 2 , the PDF reduces to the Kumaraswamy Rayleigh distribution (KR)

3. Representation of the PDF in Mixture form

The mixture form of the PDF of the MGPWD is presented in this section. The mixture form of representing the PDF is
essential in the development of the statistical properties of the new distribution.

Lemma 1. The density function of the MGPWD in a mixture form is given as,

St 2) = =8P (1 ot DTS el
B(u,v) i=0 j=0 (11

w,»,-=(—1)"+f[vf1J z(u+'l-)_1 |

! J

where

- =S
Proof. Using binomial series expansion =0 ! where "1 7, then

e g o)

substituting the expanded form back into equation (5) gives,

fou,z,6,0,0) = 59 W1+ x) e (') (l—el'(1+‘/”‘¢)g)uz1 y (_1) Vfl ((1_61—(1%«’)‘ )le
i

(M,V) i=0

This is simplified as,
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Zg¢(px¢71 dne—1 _(I—(l+px®)*) = fv-1 1-(1+px?)*
b b b ,g’ 2 = 1+ ¢ _1 1_ w
S(v.z6..0) === (L gxf) e 20|, (e

Expanding further using the last term gives,

(1 _ ey’ )Z(“H‘)l _ i(—l)i (z (u +.i) - 1] ej(lf(lﬂpw ))

z(u+i)71

J= J
Substituting and simplifying gives,

0 © +)

ZEpp 4 $ye-1 v=l)(z (” +i ) A
f(xu,v,z,6,0,0) =———x"" (1+px") -1 _ ‘ e
B(u,v) ;;‘( ) i J

and the PDF is finally represented as,

f(X,u,v, z,&, ¢, (p) = ﬂ)ﬂ—l (1 + ¢x¢)s—1Zza)ije(i+j)(1—(1+¢x¢)ﬂ)
B(u,v) i=0 j=0

4. Statistical properties of the MGPWD

This section provides an overview of several statistical properties associated with the MGPWD. The properties encompass
the quantile, the moment, moment generating function, incomplete moment, and order statistics.

4.1 Quantile function

The quantile function, denoted as o , 1S a mapping that takes a probability value P and returns the corresponding

threshold value * such that the random draws from the CDF fall below probability P The quantile function is applied
in the generation of random numbers.

Lemma 2. The quantile function of the MGPWD is
1
1 ¢ &
x, =| — l—log(l—(Q(u ) (p)) j ~1|| ,pelo,1]
@ .
. (12)
Proof. Given a strictly monotonic function, the quantile function Q , returns a threshold value * below which random

<x <F(x L F(x).
draws from the given CDF could fall p percent of the time. Q(p ) if and only if p ( ) Therefore if ( ) 1s
continuous and strictly monotonically increasing, the inequalities are replaced by equality. Hence, the quantile function can

be written in terms of p as;

O(p)=F"(p)

Thus,

F X )= ] z u,v)= p
(+) ) (10.)

This implies;

[1 ) j = O, (»)
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h .
This reduces by multiplying both sides by the Z " toot to give,

1 61*(1+¢x¢)€ _ (Q(uv) (p))% |

Rearranging and making * the subject results into,

x = é {1—log[l—(Q(usv)(p))%J}%—1

which completes the proof.

4.2 Moment

Vo

The moments in statistical analysis are very useful when it comes to the calculation and determination of central tendencies
and measures of dispersion.

Proposition 1. If X ~MGPWD ,the I’ 4 moment of the random variable X is

o & & %o (rep(e-k)
M, B(u V)Z;Z@Jke (] [—,]+lj,r:1,2,...

i=0 j=0 k=0 &p

(13)
r+¢ )
ik (V=1 5 +l /
Wy = (_1) o . ¢
' i Jj Jj+ J+1
where
Proof. The non-central 7 4 moment is defined as,
u = E[X’J = Ix’f(x)dx
0 (14)
Using the mixture form for the PDF in equation (11) and substituting it into equation (14) gives,
' T r Z8 N — —1_(i+7)(1=(1+px?)*
=[x 2SS 1 gt
0 B(M,V) i=0 j=0 (15)

Factorizing the constants,

L ZEPP NS [ g pre-t (i+))1-(+px*)7)
= o. | xx" A+oex e dx
Hr " B(u,v) ;z ”! (%)

Jj=0
Simplifying gives,
: zedp ivj [ _rigl Pyl —(i+7)(1-(1+gx% )
U = ZZa)i.e j (1+px?) dx
B(M,V) i=0 j=0 ’ 0

Considering the integral part and let,

© (i V1 N
1= 2 14 guty e 00 gy
0

Also, let
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:(i-l—j)(l-uoy’”)g.

Then

1 u Ve
X=3— -1
@ [jHJ

Differentiating ¥ with respect to X,

dZ = sppx’” (j+1)(1+(ox¢)g_l

o

This implies,
du

epox’ (j+ 1)(1 + gox¢)

=dx

-1

Substituting dx into the integral yields,

) o
Zza)ijewrjj.xre—u dl/l
0

H, B(u V) i =0 J+1)(1+§0x¢)€—1

Putting the expression for * in equation (13) gives,
1 N K
\ Z e ; u _, au
PRER of PP A1 B Y| G
B(u,v) j+1 (]+1)

i=0 j=0 o | P

This reduces to,

2 & T % u Ve , du
Hr B(uv)zzw”e ((p] j (m] - ¢ (j+1)

i=0 0

Using the binomial theorem identity. This power series converges for /? >0 and

)
—_— <1
j+1

Thus . It follows that

>

i=0 j

e O

Further simplification gives,

(16)
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o U w ///’ e d
e ¢ e
Ho " B, V);JZ; ’ ( j /+1k0 [ }{(ﬁlj} (j”).

This yields,

r+¢(e—k)
' 2 0o o o . v 1 9 . 1 % 0 r+¢(.€—k)7] .
s e e

4.3 Moment Generating Function

~ . . .M .
Proposition 2. If X ~MGPWD for any integer value, the moment generating function =~ ¥ (t) 1S

z l+j1 r+¢ k)
M)~ Gy B2 bj F[%” ”],

&l

(17)

Proof. The moment-generating function is defined as follows;

= E[etX] = Te’x
0

Using the Taylor series:

w=r 5|

(18)

r=0 ]"!
This implies,
0 tr ,
MX(t)zz(;r—!E[X ]

=E(X7)
H as given in equation (13) and substituting it into the expression gives,

o e s A o e

r=0 i= jOk:O &g

Simplifying gives,

MX(t)zB(um)zzzz%“’”’“ew(lj¢F[M’J+1]

i=0 j=0 k=0 r=0 1"} o &g
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4.4 Incomplete Moment

Proposition 3. If X ~MGPWD then the incomplete moment is

s
z - = r—ok ) e

i=0 j=0 k=0 (19)
h
Proof. The 7 [ incomplete moment of the random variable X s presented as follows,
M (y)=E| X" /X >
(v)=E| ] 0

This is further simplified as,

M, (y) = jx’f(x)dx
Y . (21
Substituting equation (13) into equation (21) yields,

_zZEPp g1 )1 G(HD)A=(+x? )
M = E E 1 d.
r(y) B(u,b) == Ix I+ ex™) "

Factorizing gives,

( )_ Z€¢¢ ZZ j+lTxr+¢l (1+ ¢x¢)£71 e*(.i+1)(1+‘/)x‘b)g dx

10]0 y (22)

. TV
=(j+1)(1+ox*) ” q)ll[%}/_l} .

u
Setting , then

Differentiating ¥ with respect to * gives,

du
epox”™ (j+ 1)(1 + ¢x¢)

dx =

-1

u—(j+)(1+9y*)
Substituting the expressions for ¥ and dx into equation (22), X 0U D ypg X2V (] )( e ) .

zedp & I Al u 4 ¢ ¢,1 AN du
;. _B(uv ZZ e J ) o [—] -1 X (1+(px) e —

i=0 j=0 (j+l)(l+(py 5 ]‘l'l 8¢¢)x¢_1 (]+1)(1+¢x¢)
Simplifying gives,
. (Y f/
J —1 —1 €_“du
; +
( j+l)(1+(py¢) J

ZZ

leO ]+1
(23)
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Dealing with the integral expression,

Y Y z
I= j (—j -1 e"du

NAWAR!
(_/‘+1)(1+¢7y¢) J

Using the Binomial expansion for the expression in the integral,

u % % = k /(ﬁ u % %ik
) ) 2o (F)E)

Substituting the expansion into equation (22) gives,

© o . . w y v
M, (y) - B(; V) ‘/’%ZZZ% (_l)k ({?je’“ J‘ £—j e "du
) )g |

(j+1)(l+¢zy¢ J + 1

Further simplification gives;

/I rghrap |
z - & o u
e A W) A Ly I

i=0 j=0 k=0 (j+l)(l+(py¢)g
Thus,
v
B z 7& 7"—¢k+8¢ . s\
() B S | o[ A e

4.5 Order statistics

In most cases, certain sample values, such as the smallest, largest, or middle observations from a random sample, carry
significant information about the entire population. For instance, knowing the highest recorded floodwater or the lowest
recorded income can be valuable when making development plans. Similarly, the median price of houses sold in the past
year can aid in estimating the cost of living. The statistical estimation of these extreme or central values is referred to as
order statistics.

h
Proposition 4. If X has the MGPWD, then the 7 ! order statistic of the MGPWD is given by:

fX(r)(X):B(a,b)?iﬁ_lr’;'( .Mii (n rJ(b—‘lj(c(j-l-ka)—lJ

=1 j=1 k=1 i J

r+i-1

=y \*
[xﬁ 1+ APy e } (1 ‘ ) . F (a,l—b;a + 1;(1 _ -l )j
aB(a,b)

24)

ER)

th Lo . .
The ¥ order statistic of the random sample " is the random variable ~ ") , Where

X(l) S X(Z) X(n) : . .
is the ordered sample. Accordingly, the PDF of 7 is,
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fX(r)(x)Zm[F O] IR C) A E: ) 25)

Using the Binomial expansion for the term,
n—r ~— i|n—r i
-reo)” =S 0]
i=l
Then substituting it into equation (25) gives,

n—r

Sron(X)= mi(—l)l( ; j[FX(x)]l[FX(x)]’ﬁ((x)'

It is then simplified as,

n—r

o= S [ I ] )

Substituting equations (5) and (6) into equation (26) produces,

(26)

r+i-1

n! n—r n-r (1 - e(l_(l’r/h‘ﬂ ) )ac
i - —axPy \°
fx )= WZ(—I)[ l. jwzﬁ[a,l—b;aﬂ;(l—e(‘ v >)j

l ac-1 c b-1
C(Zﬂ - 1(1+/1x’8)a o1 (1=(1+ 27 ) (l_e(l—(Hixﬂ)“) (1_(1_8(1—(1+/1x/’)“) j
B(a b)

Using Binomial expansion, for the last expression,

[1 - (1 - e(l’(”“ﬂ ) )c )b_l — i (_1)‘7 [b . IJ (1 - e(l—(lmxﬂ ) )c:i
J= J .

Substituting it back gives,

n n—r

= N O

r+i-1

(1_ (=(1+-Ax%) ) .
aB(a b) ,F (a,l—b;a+l;(1_e(1—(1+zxﬂ)a) ) y

fX(r)(x) =

s 3 Ba c(j+a)—1
(l—i-lxﬁ)“ 1 (1=(1+AxPy* (l_e(l (14+4xP) ) }

Again, using Binomial expansion for the last expression,
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s YU cli+a)— a1
(l_el—(lmx)J :Z(_l)k[ (]+ ) lj e( ( )]

k

Substituting it back gives,

ot e EEE ()

=1 k=1 J

c(j+a)-1)| capi (14 APy e |
k B(a,b)

r+i—1

(1 —et ety )ac a [a, 1-b;a+1; (1 _ pl-aaxye ) j

aB(a,b)

It is then simplified as,

cafiin!

- 1) - <
B(a,b)(n—r)!(r—l)';;;( ) [ J
b—1 C(j+a)—l e . a_le((lf(lJrﬂxﬁ)“)k 9

D R A

(1 — e(l_(lJrﬂ“xﬂ ) )ac c
> (a, 1—5b;a+1; (1 _ e a+axy* ) )

aB(a,b)

fX(r) (%)=

r+i—1

5. Estimation of the Parameters

This section considers the method of parameters estimation and the Monte Carlo simulation procedure.

5.1 Maximum Likelihood estimation

In this section, the Maximum likelihood estimates (MLE) of the unknown parameters of the MGPWD are derived. Let the

likelihood function of the MGPWD of the random sample X, Xy X, b

T (.0
i=1
The logarithm of the likelihood function is obtained as,

K:n10g8+nlog¢+nlog(o+nlogz+nlog[l“(u+v)]—n10gF(u)—

nlogF v 1 Zx +(&e— 1 Z(l+¢x ) (1_(1+¢xi¢)s)+
(uz—l)znllog(l_el(l+¢x‘¢)5]+(v—1)i 1—(1—5(”“”’4’)8 j .

i=1 i=l1

27)
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Taking the partial derivative of equation (27) with respect to Uu,v,z,¢, ¢ and ? gives the score functions as:

o ny (u+v)—ny (u)+ Zilog{l - e1_<l+w"¢)g }
Ou i : (28)

o _ 1,//(u+v +m// Zloglz ( (vt j}+210gx

e 29)
j— o) j log| 1-(1+¢x’)’
%=z+u210g(1 o) j 1 u Z( [ - }
Z z i=1 i=1 1—(1+¢7x,-¢)£j
I-|1-e
[ . (30)
1 (1+<px ) 10 |: 1 i| P £
. gl |1+ ox, 1+ ¢x,

(% Zlog(lﬂox ) (uz—l)z ( ) (Z ) -
88 & i=1 i=1 1_[1_€l(l+¢xi¢) \J

Zeli(H(MiVﬁ)a [1 ~ (1 B ep(mpr)e jz‘ J]Og |:(1 N (Dx,-¢ )5 :| (1 + (/)xl}iﬁ )g

. 1- (l - el_(1+“”‘f¢)g j
. 31

oY n n (010g[xi]xi¢

AL | 1

op ¢ plog[x,]x! + (&~ ); ot

g o) cotoels ot (o)
i=1 1— el_(lwxg)

) s\ z-1
n el—(1+(px,.¢) (1_61(1+¢X?) j g¢log[xl.]xi¢ (1+(0X,¢)€—1

(v=1)

e z
i= 1—(1+¢x!
1—(1—6 ( )]
. (32)
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8€ n
= —1
P x! +(& )Zl+¢x +

. P P &—1
(uz—l)ze (1+gpxl.)
i=1

1—(1+g0x? )g

1—(1+(oxlf’é )g

—(v—l)x
l1—e

1—(1+oxf ) 1—(1+oxf )

| ze l—e ex! (l + px! )g_1

2. Z

i=1 1—(1+oxf )

1—-|({1—e€

z—1

; (33)

where v represents the digamma function.

By setting each of these equations to zero and then solving them concurrently produces the maximum likelihood estimates
of the parameters. With regards to the interval estimation of the model parameters, the observed information matrix,

J(0) i obtained. Thus,

Juu Juv Juz Jus Ju¢ Juqo

va Jvz ng Jv¢ pr

J_ 1 ( H) _ : . Jzz ']zg Jz¢ ‘]z(p
. . o Je Iy Iy

J¢¢ J¢<ﬂ

JW/’

5.2 Monte Carlo Simulation

In this section, Monte Carlo simulation studies is carried out to analyze the performance of the maximum likelihood
estimates of the parameters. The average bias (AB) and root mean square error (RMSE) of the estimates were computed
and examined. The simulation was done by using different parameters values as well as varying the sample size. The
random numbers of the model were obtained using the quantile function given in equation (12) with the aid of R software.
The simulation process was repeated for N = 1000 times each containing sample sizes n = 30, 50, 80, 120, 150, 200 and

u=04,v=07,2=0.5=02¢=08,p=0.1__,

250. The values of first and second sets of parameter values are

u=0.6,y=09,2=0.7,6=04,=03,p= 1'Orespectively. The AB and the RMSE of the parameters are

computed using the relation:

1 &4
AB:NZ(Q_—H)

i=1

and

RMSE =
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where O=u,v,z,&,¢ and ¢

The values of AB and RMSE for the parameters’ estimates are presented in Table 1. It shows the
values of the AB and RMSE of the parameters u,v,z,&,¢,¢ for different sample sizes. It is observed

that these estimates decrease and approach zero as the sample size increases. This indicates that the
maximum likelihood estimates possess asymptotic properties. Consequently, they can be utilized for
constructing confidence intervals.

Table 1: Monte Carlo simulation results for the two sets of parameter values

I 11
Parameter n AB RMSE AB RMSE
30 3.0419 5.2633 5.2858 6.7411
50 1.2420 3.0746 3.0315 5.1567
80 0.4387 0.7158 1.2092 2.9947
u 120 0.3674 0.5064 0.3759 0.4845
150 0.3145 0.4123 0.3418 0.3975
200 0.2625 0.3426 0.3033 0.3800
250 0.2312 0.2627 0.2116 0.2394
30 2.3189 4.0663 3.9776 5.6581
50 1.2149 2.9505 3.3257 5.0885
80 1.1194 2.1033 19118 2.6794
v 120 1.0997 1.9592 1.2251 1.7848
150 0.6668 1.2358 1.2047 1.6612
200 0.3684 0.4262 1.1030 1.6134
250 0.2603 0.3798 0.6019 0.6390
30 49871 6.7317 3.8349 5.3319
50 4.5047 6.1565 2.8025 4.3763
80 2.9093 4.5538 24214 4.2944
2z 120 2.2189 4.2923 1.5473 3.1494
150 1.6670 3.2069 1.3353 3.0258
200 1.4356 3.1316 1.3165 2.9934
250 0.8665 1.2805 0.3995 0.4781
30 0.2639 0.3260 0.4355 0.7069
50 0.1661 0.2439 0.3627 0.6258
80 0.1503 0.2205 0.2693 0.4221
é 120 0.1478 0.2180 0.2207 0.3361
150 0.1397 0.1936 0.1806 0.2477
200 0.1086 0.1342 0.1387 0.1607
250 0.0744 0.1282 0.1105 0.1309
30 0.0452 0.0531 0.1981 0.2473
50 0.0433 0.0458 0.1619 0.2233
80 0.0338 0.0402 0.1417 0.1683
¢3 120 0.0333 0.0397 0.0996 0.1140
150 0.0326 0.0375 0.0848 0.0928
200 0.0242 0.0292 0.0788 0.1140
250 0.02007 0.0266 0.0668 0.0851
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30 7.2214 7.9138 8.1848 8.5424
50 5.8551 7.1599 4.1605 5.8196
80 5.0445 6.5723 4.1325 5.7640
& 120 2.9026 4.7361 3.5166 5.2485
150 2.0983 4.1371 3.1063 4.9733
200 1.0959 3.1342 3.0019 4.5498
250 0.7368 0.9918 2.3424 4.1036

6. Applications of the MGPWD

This section investigates the applications of the MGPWD in two sets of reliability data. The goodness
of fit statistics of the MGPWD is compared to its sub-models, and other existing models obtained from
[14]. These are the exponentiated generalized exponential Dagum (EGED), the McDonald Dagum
(McD) distribution, and the exponentiated Kumaraswamy Dagum (EKD) using Kolmogorov-Smirnov
(K-S), Crame'r-von (W") Mises distance value, as well as AIC, BIC, and AICc statistics. To test the

goodness-of-fit of the distributions, the maximized values of the log-likelihood (¢, ) , the K-S statistics
with their respective p-values, the AIC, AICc and the BIC. These criteria have the following forms:

2k(k+1

% and BIC=-2In/, (k)+kln(n), where k is the
n — f—

number of parameters and » is the sample size. The estimates of the MGPWD parameters were

obtained with the aid of the subroutine mle2 using the bbmle package in [15].

AIC=-2In¢, (k)+2k, AICc=-2A4IC+

6.1 Data on yarn

The first data set represents the failure times of 100 cm polyester/viscose yarn which were subjected to
2.3% strain level in textile experiment with the aim of assessing the tensile resistance ability of the
yarn. The data is obtained from [16] and Pal and [17]. The observations are as follows: 86, 175, 157,
282, 38, 211, 497, 246, 393, 198, 146, 178, 220, 224, 337, 180, 182, 185, 396, 264, 251, 76, 42, 149,
65, 93, 423, 188, 203, 105, 653, 264, 321, 180, 151, 315, 185, 568, 829, 203, 98, 15, 180, 325, 341,
353,229, 55, 239, 124, 249, 364, 198, 250, 40, 571, 400, 55, 236, 137, 400, 195, 38, 196, 40, 124, 338,
61, 286, 135, 292, 262, 20, 90, 135, 279, 290, 244, 294, 350, 131, 88, 61, 229, 597, 81, 398, 20, 277,
193, 169, 264, 121, 166, 246, 186, 71, 289, 143, and 188.

The descriptive statistics of the yarn data are shown in Table 3. The mean failure time of the data is
observed as 223.1 with median and standard deviation values as 197 and 144.8 respectively. The data
is right skewed and moderately peaked as compared to the normal distribution.

Table 1: Descriptive statistics of yarn data

Mean Median Standard deviation Skewness Kurtosis

223.1000 197.0000 144.8000 1.3600 3.0000

The TTT transform graph for the yarn data is presented in Figure 5. The graph indicates that hazard
rate function for the yarn data has an increasing hazard failure rate.
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Fig. 1: TTT transform plot of the yarn data set

Table 4 shows the maximum likelihood estimates of the parameters of the MGPWD,
MWD, BGPWD, BWD, KGPWD, KWD, EGED, McD and EKD for the yarn data set. The results in
Table 4 indicates that two parameters, (« and f) of the parameters MCGPWD are significant at the

5% level of significance.

Table 2: Maximum likelihood estimate for the yarn data

Model LAZ b o & 2 2
MGPW 11.4820 0.6791 2.5278 2.7017 0.6948 0.0133
(0.0202) (0.7369) (0.1557) (1.8911) (0.2411) (0.0126)
MW 12.2145 1.3827 0.2343 0.9192 0.0096
(0.0633) (1.4482) (0.1968) (0.3943) (0.0204)
BGPW 3.2697 0.8918 2.7413 0.6734 0.0131
(1.0992) (1.1326) (1.5230) (0.0687) (0.0132
BW 2.4967 0.9363 0.9795 0.0088
(1.5607) 0.8164) (0.3326) (0.0156)
KGPW 5.5733 3.5504 1.1308 0.6406 0.0226
(4.1756) (3.2422) (0.9573) (0.4067) (0.0572)
KW 5.9366 3.2971 0.6852 0.0196
(2.6769) (2.6889) (0.3165) (0.0523)

a y) B 6 ¢ d
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EGED 0.0260 75.3100 0.0170 3.5130 45.6920 0.0900
(0.0070) (0.0070) (0.0050) (0.6310) (0.0360) (0.0110)
A 5 B a b ¢
McD 0.0270 39.4130 98.7800 0.3330 25.0420 46.2760
(1.848x107)  (9.647x107) (2.180x10°) (1.504x10™") (4.507x10™*) (4.654x10°)
& A 5 é 0
EKD 46.1090 39.4130 5.1880 0.2030 31.1690
(1.2950) (5.0060) (0.961) (0.0400) (11.023)

The log-likelihood, goodness of fit statistics and information criteria of the fitted distributions have
been examined and the results are presented in Table 5. The model that has the highest value of the

log-likelihood (/) and the least values of the K-S, W*, AICc, BIC, and AIC gives a better fit to the
yarn data. The MGPWD is said to have performed better in fitting the yarn data than the other models
as shown in Table 5.

Table 3: Log-likelihood and goodness of fit statistics of the yarn data set

Model ] AIC AlCc BIC K-S A
MGWP  -625.6300 1258.2550 1258.1580 1265.8860 0.0590 0.1099
MW -626.4500 1262.9090  1263.5470  1275.9350 0.1019 0.1534
BGPW  -625.6600 1261.3140 1261.9520  1274.3400 0.0878 0.1125
BW - 626.42 1260.844 1261.265 1271.264 0.1026 0.1512
KGPW  -625.6400 1261.2890 1261.9270 1274.3150 0.0884 0.1139
KW - 625.68 1259.368 1259.789 1269.789 0.0901 0.1166
EGED  -628.1700  1268.336  1269.5530  1283.9670 0.1240 0.2490
MCD -628.2000  1268.3990 12696160  1284.0300 0.1280 0.2850
EKD -653.9600 1317.9130 1318.8160 1330.9380 0.1780 0.9850

*Bolded means best based on the selection criteria.

Figure 6 displays the histograms depicting the densities of the fitted models and the empirical
cumulative distribution functions. Additionally, the CDFs of the fitted models for the yarn data are
also presented in the plot.
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Fig.2: PDFs and CDFs plots of the yarn data set

Also, the variance-covariance matrix for the parameter estimates of the MGPWD for the yarn data is
given as follows;

4.089x10*  3.778x107°  2.010x107°  3.614x107° —4.204x10° 7.361x107°
3.778x107°  5.431x107"  6.307x107° —5.096x107° —5.854x107° —5.835x107
2.010x107°  6.307x107%  2.426x107%  1.130x10" —3.335x1072 1.455x10°°
3.614x107 —-5.096x102 1.130x107" 3.576 -3.236x10"  3.598x10°°
—4.204x107 —5.854x107 —3.335x107 -3.236x10" 5.813x107> —2.144x10"°
7.361x107° —5.835x107° 1.455x107°  3.598x10° —2.144x107 1.583x107°

The variances of the maximum likelihood estimates of the parameters of the MGPWD are:

var(&) —4.089x10™ var(iS) —5.431x10™", var(é) = 2.426x102, var(&) ~3.576,

Var(B)=5.8l3><10_2, and Var(K)=1.583><10_5_ The 95% confidence intervals for the parameters

a,b,c,a, B and y of the MGPWD are estimated and presented respectively as follows: (11.4820,
11.5216), (0.7652, 2.1234), (2.226, 2.8330), (0, 6.4082), (0.2222, 1.1674) and (0, 0.0380).

The P-P plot of the fitted models is shown in Figure 7. The plots show that the MGPWD has
performed better in fitting the yarn data better veras compared to other models.
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Fig.3: P-P plots of the yarn data set

6.2 Data set on failure times of appliances

The second data set applied to the MGPWD is obtained from [18]. The data consist of failure times for
36 appliances subjected to an automatic life test. The observations are as follows: 11, 1990, 2831, 35,
2223,3034, 49, 2327, 3059, 170, 2400, 3112, 329, 2451, 3214, 381, 2471, 3478, 708, 2551, 3504, 958,
2565, 4329, 1062, 2568, 6367, 1167, 2694, 6976, 1594, 2702, 78,46, 1925, 2761 and 13403.

The descriptive statistics are shown in Table 6. The mean failure rate was observed to be 2757 with
median and standard deviation values of 2511 and 2569 respectively. The results from Table 6 further
show the appliance data set is positively skewed and highly peaked than the normal distribution.

Table 4: Descriptive statistics of the appliance data

Mean Median Standard deviation Skewness Kurtosis
2757.0000 2511.0000 2569.0000 2.3800 7.8800
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Figure 8 illustrates the TTT transform curve of the appliance dataset. The curve showcases a convex
shape initially, followed by a concave shape, and then another convex shape. This pattern indicates
that the failure rate of the dataset exhibits a modified bathtub.
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Fig.4: TTT transform plots of the appliance data

Table 7 presents the maximum likelihood estimates for the parameters of the MGPWD and other fitted
models for the appliance dataset. The corresponding standard errors are provided in brackets. for the
MGPWD and the other models fitted to the appliance data set. Upon examining Table 7, it can be
observed that the majority of the parameters are statistically significant at a 5% level of significance
considering the standard errors.

Table 5: Maximum likelihood parameter estimates for the appliance data

Model a b p & ,/6\’ 2
MGPW 0.3663 7.8374 5.2830 3.7109 0.4531 0.0044
(0.1894) (0.0031) (0.0042) (0.0032) (0.1540) (0.0063)
MW 0.3137 11.0593 5.5835 0.5478 0.0086
(0.1798) (0.0040) (0.0122) (0.2042) (0.0163)
BGPW 1.4915 2.0429 2.0235 0.6512 0.0018

(0.8839) (0.2355) (1.3350) (0.2742) (0.0045)
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BW 1.6156 0.9638 0.7216 0.0049
(0.4852) (0.7613) (0.1498) (0.0095)
KGPW 27.7274 7.5513 1.2248 0.1955 0.1652
(152798)  (4.3676) (0.4375) (0.0589) (0.0855)
KW 5.7371 2.2307 0.5340 0.0085
(0.2850) (1.6303) (0.2778) (0.0258)
(2.6769)
a A Y 0 ¢ d
EGED 0.001 27.1980 4.5600 2.8380 20.8660 0.0700
(1.00x10*)  (0.001) (0.8470) (0.1230 (0.0100) (0.0030)
A S : a b ¢
McD 1.4270 3.4550 1.2750 10.5050 0.0640 500.5560
(0.0920) (0.2120) (6.8750)  (56.9060)  (0.0120) (6.7960)
& A S 4 0
EKD 5.5620 12.6830 3.7160 0.1280 11.6090
(1.5170) (2.1580) (0.7550) (0.029) (3.9220)

Table 8 reveals that the MGPWD provided a superior fit to the appliance data compared to the other
models. This can be deduced from its highest log-likelihood value and smallest values of AIC, BIC,
AICc, W*, and K-S.

Table 6: Log-likelihood, the goodness of fit statistics, and information criteria of the appliance
data

Model [ AIC AlCc BIC K-S A

MGWPD  -320.5400 653.0836 655.9801  662.5847 0.1831 0.2704
MWD -320.7700  653.5427 656.4392  663.0438 0.1937 0.2826
BGPWD  -321.6100 655.2193 658.1158  664.7204 0.2186 0.3184
BWD -322.5100 657.0155 659.9120  666.5166 0.2174 0.3571
KGPWD  -322.9200 657.8478 660.7444  667.3490 0.1963 0.3720
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KWD -322.2300 656.4619 659.3585  665.9630 0.2081 0.3456
EGED -328.8700  669.7400 670.9570  679.2410 0.2530 0.5690
McD -356.4800  724.9550 728.9500  734.4560 0.3470 0.9860
EKD -341.6500  693.2950 694.1980  701.2130 0.2690 0.9250

*Bolded means best based on the selection criteria.

Figure 9 displays histograms overlaid with the densities of the fitted models, as well as the empirical
CDFs of the fitted models of the appliance data. It is noticeable that the MGPWD distribution closely
resembles the empirical density and CDF of the appliance dataset.
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Fig. 5: PDFs and CDFs of the appliance data

The variance-covariance matrix for the parameter estimates of the MGPWD for the appliance data is
represented by;

3.5876x107  —5.6731x10™" -5.7509x10* -5.9090x10™* -2.6819x10° 1.1125x107
-5.6731x10™"  9.3446x10°  1.0902x10°  9.8306x10°  4.6105x10™* —1.8959x107
i ~5.7509x10*  1.0902x10°  1.7970x10°  1.1827x10°  6.0876x10™* -2.4448x10~
-5.9090x10™"  9.8306x10°  1.1827x10”°  1.0366x10°  4.8986x10™* -2.0104x10~
—2.6819x107  4.6105x10™*  6.0876x10™*  4.8986x10*  2.3704x107> -9.6685x107*
1.1125x10°  —1.8959x107° —2.4448x10”° -2.0104x10” -9.6685x10™" 3.9591x107

The variances of the maximum likelihood estimates of the appliance data of the MGPWD are as

var(b)=9.3446x10"
(2) ,

follows: Var(gz) =3.5876

x1072,

var(c)=1.7970x10°°
(¢ »

var(&)=1.0366x10-5, var(ﬁ):z.37o4><10‘2 and var(i)=3.9591x10‘5. The 95% confidence
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intervals for the parameters a,b,c,a, 8 and Awere estimated and restively given as (0, 0.7375),
(7.8313, 7.8435), (5.2748, 5.2912), (3.7046, 3.7153), (0.1513, 0.7549) and (0, 0.0168).

Figure 10 shows the P-P plots for the fitted models. It can be observed that MGPWD gives a better fit
to the data as it most part of its point on the diagonal line.
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Fig. 6: P-P plots of the appliance data

7. Conclusion

The research introduced and examined the statistical properties of the MGPWD, a distribution with
several sub-models that find applications in survival and reliability data analysis. Various statistical
properties such as moments, incomplete moments, quantiles, moment generating functions, and order
statistics were derived for the MGPWD. The parameters of the model were estimated using maximum
likelihood estimation. The plots of the probability density function and hazard functions indicated that
the proposed model is well-suited for modeling survival and reliability data sets exhibiting both
monotonic and non-monotonic failure rates. The application of the MGPWD was demonstrated using
real-world data, highlighting its practicability. Further research is recommended to explore alternative
estimation methods for the proposed model.
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