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Abstract: This article presented a novel discrete distribution with one parameter derived by the discretization approach and called the

discrete half-logistic distribution. Its probability mass function and hazard function have different shapes. A variety of its statistical

properties, including moments, probability generating function, incomplete moments, and order statistics, were determined

mathematically. Maximum likelihood, moments, and proportion estimation methods were used to estimate its parameter. A simulation

study conducts to check the various estimating method’s performance. By using a real data set, its flexibility is assessed. Lastly, it can

model count data sets in a way that is compared with other distributions that are already in the scientific literature.
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1 Introduction

Statistical models are vital in analyzing count data across diverse subfields within the applied sciences, encompassing
domains such as ecology, environmental studies, and the insurance sector. Count data refers to the numerical
representation of discrete events or occurrences, focusing on the frequency or magnitude of these events rather than their
continuous measurement. These models provide a framework for understanding the underlying patterns and relationships
within count data, enabling researchers to extract meaningful insights and make informed decisions in their fields of
study. In ecology and environmental studies, statistical models facilitate the examination of various ecological
phenomena, such as species abundance, population growth, and biodiversity assessments. These models aid in
elucidating the complex interactions between organisms and their environment, allowing researchers to quantify
ecological processes and investigate the impact of environmental factors on species distribution and ecosystem
dynamics. Moreover, statistical modeling finds applications in studying environmental risks, monitoring pollution, and
assessing the effectiveness of conservation strategies.

In the insurance sector, statistical models are fundamental for risk assessment, pricing, and underwriting purposes.
By analyzing historical data on insurance claims, policyholders’ characteristics, and external factors, these models help
insurance companies quantify and manage risks associated with potential losses. Actuarial modeling, for instance,
employs statistical techniques to estimate the likelihood and severity of specific events, such as accidents, natural
disasters, or health-related claims. Such analyses enable insurers to develop appropriate pricing strategies, determine
reserves, and optimize risk portfolios.

It is required to propose new discrete distributions that have properties that are wanted and desirable qualities. Most
occurrences in nature and other scientific domains each have their unique set of distinguishing traits. Modeling events
such as earthquakes, car accidents, the number of persons killed by a disease, and the number of landslides that occur
may be done using discrete probability distributions. Researchers have developed more flexible distributions to lower the
number of estimate mistakes caused by modeling these data sets.

Traditional discrete distributions like geometric and Poisson and others like them have restricted property sets. As a
result, certain discrete distributions based on well-known continuous models have been developed. Consequently, discrete
distributions have garnered great interest in the statistical literature. As an example, Nakagawa and Osaki [1], El-Morshedy
et al. [2], Kundu and Nekoukhou [3], Roy [4], Krishna and Pundir [5], Nekoukhou and Bidram [6], El-Morshedy et al.
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[7], Chakraborty et al. [8], Eldeeb et al. [9], Para and Jan [10], Almetwally and Ibrahim [11], Hassan et al. [12], Barbiero
and Hitaj [13], Opone et al. [14], and references cited therein.

Even though the literate provides a number of different distributions that can be used to evaluate count data, there
is still a need to develop a more adaptable and appropriate distribution for use in various conditions. This research aims
to present a flexible version of discrete distributions called the discrete half-logistic distribution (DHLD). It has closed
forms for both the survival function (SF) and the hazard function (HF), the HF of the DHLD has multiple shapes, and
as a result, the parameters of the underlying distribution may be modified to fit the majority of different data sets. It has
been shown that this model performs better than both the conventional models (geometric and Poisson) and some of the
recently created models in the literature.

This paper is organized as follows. In Section 2, we explain the method used to derive the PMF, cumulative distribution
function (CDF), and HF of the proposed model along with presenting its PMF and its HF graphically. Section 3 contains
different statistical properties of the proposed model. Three different estimation methods were discussed in detail to
estimate the proposed model parameter in Section 4, while the performance of these methods was tested by a randomly
generated data set in Section 5. A real data set was used to explain the flexibility of the proposed model to other compared
models in Section 6. Finally, concluding remarks for this work were presented in Section 7.

2 The DHLD formulation

The survival function (SF) of the continuous version of the half-logistic distribution is defined as follows

S(x;a) = 2a (a(ex − 1)+ 2)−a , x > 0. (1)

Let X be a discrete random variable, then the PMF of X is defined as follows

P(X = x) = S(x)− S(x+ 1), x = 0,1,2, . . . (2)

By using both Equations (2) and (1), the PMF of DHLD is defined as follows

P(X = x) = 2aa−a

{

e−ax

[

1−

(

a− 2

a

)

e−x

]−a

− e−a(x+1)

[

1−

(

a− 2

a

)

e−(x+1)

]−a
}

, (3)

where the parameter a changes the shape of the distribution. The PMF (3) has different shapes obtained by changing
values of the parameter a as we can see in Figure 1.

The CDF of DHLD is determined as follows

F(x) = P(X ≤ x) = 1− 2a
(

a
(

ex+1 − 1
)

+ 2
)−a

, (4)

so the HF of the DHLD is defined as follows

h(x) = (a(ex − 1)+ 2)−a
(

a
(

ex+1 − 1
)

+ 2
)a
− 1, (5)

and the possible shapes of the HZ for the DHLD are displayed in Figure 2.

3 Statistical properties

This section entails an assessment of the statistical properties inherent to the proposed model, wherein a mathematical
approach is employed to derive each of these attributes. The subsequent paragraphs will discuss the statistical
characteristics and their corresponding mathematical derivations.

3.1 Moments with related measures

The DHLD ordinary moments are defined as follows

µ ′
r = 2aa−a

∞

∑
k=0

(

a+ k− 1

a− 1

)(

a− 2

a

)k
(

1− e−(a+k)
) ∞

∑
x=0

xre−x(a+k). (6)
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Fig. 1: Plots of the PMF of the DHLD by different parametric values.
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Fig. 2: Plots of the HF of the DHLD by different parametric values.

By using Equation (6), we have the first four moments of the DHLD as follows

µ ′
1 = 2aa−a

∞

∑
k=0

(

a−2
a

)k (a+k−1
a−1

)

ea+k − 1
,

µ ′
2 = 2aa−a

∞

∑
k=0

(

a−2
a

)k (
ea+k + 1

)(

a+k−1
a−1

)

(ea+k − 1)
2

,
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µ ′
3 = 2aa−a

∞

∑
k=0

(

a−2
a

)k
(

4ea+k + e2(a+k)+ 1
)

(

a+k−1
a−1

)

(ea+k − 1)
3

,

µ ′
4 = 2aa−a

∞

∑
k=0

(

a−2
a

)k
(

11ea+k + 11e2(a+k)+ e3(a+k)+ 1
)

(

a+k−1
a−1

)

(ea+k − 1)
4

,

which are used to determine variance, coefficient skewness, and coefficient kurtosis, respectively, by the following relation

σ2 = µ ′
2 − (µ ′

1)
2,

δ =
2(µ ′

1)
3 − 3µ ′

2µ ′
1 + µ ′

3
(

µ ′
2 − (µ ′

1)
2
)3/2

,

ε =
−3(µ ′

1)
4 + 6µ ′

2(µ
′
1)

2 − 4µ ′
3µ ′

1 + µ ′
4

(

µ ′
2 − (µ ′

1)
2
)2

.

The index of dispersion (ID) and the coefficient of variation (CV ) are, respectively, determined as follows

ID =
σ2

µ ′
1

, CV =
σ

µ ′
1

.

Table 1 displays the DHLD’s numerical values for mean (µ = µ ′
1), σ2, δ , ε , ID, and CV . These numerical values are

displayed for a variety of a values. From Table 1, we conclude that

–µ and σ2 of the DHLD both tend to increase as the parameter a moves closer and closer to 1.
–The DHLD model is suitable for use in the modeling of data that is right-skewed.
–Both of δ and ε has an increasing-shaped.
–The nature of the DHLD may be described as leptokurtic.
–The ID has an inverse J-shape with an increasing value of a.
–The CV has an increasing shape with an increasing value of a.

Table 1: Some numerical values for the DHLD.

measure↓ a −→ 1 1.3 1.6 1.9 2.2 2.5 2.8 3.2 3.5

µ 0.928327 0.543267 0.320358 0.187628 0.108307 0.0613647 0.0340556 0.0150201 0.00792773

σ2 1.33308 0.711178 0.393556 0.219879 0.122355 0.0673358 0.0365155 0.0157349 0.00819946

δ 2.71545 3.71115 5.4011 8.21271 12.9647 21.2024 35.8895 76.2665 139.312

ε 6.83365 7.91816 9.84765 13.0467 18.3611 27.3871 43.1661 85.6778 151.071

ID 1.43601 1.30908 1.22849 1.17189 1.1297 1.09731 1.07223 1.04759 1.03428

CV 1.24373 1.5523 1.95825 2.49916 3.22963 4.22868 5.61112 8.35139 11.422

The nth central moment of the DHLD is determined as follows

µn = E(x− µ)n =
∞

∑
k=0

(−1)k

(

n

k

)

µ ′k
1 µ ′

n−k

3.2 Probability generating function

The probability generating function of DHLD is determined as follows

PG(z) =
∞

∑
x=0

zx p(x) = 2aa−a
∞

∑
k=0

(

a+ k− 1

a− 1

)(

a− 2

a

)k
(

1− e−(a+k)
) ∞

∑
x=0

zxe−x(a+k)

= 2aa−a
∞

∑
k=0

(

a+ k− 1

a− 1

)(

a− 2

a

)k
(

1− e−(a+k)
) ea+k

ea+k − z
,

by replacing z with et and eit , we have both the moment generating function and the characteristic function of the DHLD.
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3.3 Incomplete moments with related measures

The rth incomplete moments of the DHLD are defined as follows

ωr(t) =
t

∑
x=0

xr p(x) = 2aa−a
∞

∑
k=0

(

a+ k− 1

a− 1

)(

a− 2

a

)k
(

1− e−(a+k)
) t

∑
x=0

xre−x(a+k)

= 2aa−a
∞

∑
k=0

(

a+ k− 1

a− 1

)(

a− 2

a

)k
(

ea+k − 1
)

e(t+2)(−(a+k))

×

(

e(t+1)(a+k)Li−m

(

e−a−k
)

−Φ
(

e−a−k,−m, t + 1
))

, (7)

where Φ(z,s,a) = ∑∞
k=0

zk

(a+k)s and Lin(z) = ∑∞
k=1

zk

kn .

The mean deviation of the DHLD about the mean and about the median (M) are, respectively, determined as follows

Ω1 = 2µ ′
1F(µ ′

1)− 2ω1(µ
′
1), Ω2 = µ − 2ω1(M),

where F(·) is the CDF (4) and ω1(·) is the first incomplete moments.

3.4 Order statistics

The density function of the ith order statistic (OS) of the DHLD is determined as follows

fi:n(x) =
n

∑
r=i

(

n

r

)

[

F(x)r(1−F(x))n−r −F(x− 1)r(1−F(x− 1))n−r
]

= 2a(n−i)

(

n

i

)

×

[

(

(

a
(

ex+1 − 1
)

+ 2
)a
− 2a

)i
(

a
(

ex+1 − 1
)

+ 2
)−an

H1

−((a(ex − 1)+ 2)a
− 2a)

i
(a(ex − 1)+ 2)−an

H2

]

. (8)

and its corresponding CDF is determined as follows

Fi:n(x) =
n

∑
r=i

(n
r )(F(x))r(1−F(x))n−r

=

(

n

i

)

(

1−

(

1

2
a
(

ex+1 − 1
)

+ 1

)−a
)i
(

1

2
a
(

ex+1 − 1
)

+ 1

)−a(n−i)

H1, (9)

where H1 =2 F1

(

1, i− n; i+ 1;1−
(

1
2
a
(

−1+ ex+1
)

+ 1
)a
)

and

H2 =2 F1

(

1, i− n; i+ 1;1−
(

1
2
a(−1+ ex)+ 1

)a
)

are hyper geometric functions.

The PDFs and CDFs of the minimum OS, (Ln), and maximum OS, (Zn), can be determined from Equations (8) and
(9) with i = 1 and i = n, respectively. The limiting distributions of (Ln) and (Zn) are, respectively, determined by Theorem
2.1.5 and 2.1.1 in [15] as follows

lim
n→+∞

P(Ln < dn x) = 1− e−1, dn = F−1

(

−
1

n

)

,

and

lim
n→+∞

P(Zn < Kn x) =











0, x = 0,

e−1, x = 1,

1, x = 2,3, . . . ,

Kn = F−1

(

1−
1

n

)

.
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4 Estimation methods

In this section, we will examine maximum likelihood estimation (MLE), method of moment estimation (MME), and
proportion estimation (PE) as potential solutions to the problem of determining the values of the DHLD’s undetermined
parameters.

Consider X1, . . . ,Xn is a random sample from the DHLD, the corresponding log-likelihood function of PMF (3) is
defined as follows

L =
n

∑
i=1

log
(

2a (a(exi − 1)+ 2)−a
− 2a

(

a
(

exi+1 − 1
)

+ 2
)−a
)

, (10)

then by differentiating Equation (10) with respect to a and equating it by zero, we have

n

∑
i=1

1

2a (a(exi − 1)+ 2)−a
− 2a (a(exi+1 − 1)+ 2)

−a

×
{

2a log(2)(a(exi − 1)+ 2)−a
− 2a log(2)

(

a
(

exi+1 − 1
)

+ 2
)−a

− 2a
[

−aexi+1
(

a
(

exi+1 − 1
)

+ 2
)−a−1

+ a
(

a
(

exi+1 − 1
)

+ 2
)−a−1

−
(

a
(

exi+1 − 1
)

+ 2
)−a

log
(

a
(

exi+1 − 1
)

+ 2
)

]

+ 2a
[

−aexi (a(exi − 1)+ 2)−a−1

+ a(a(exi − 1)+ 2)−a−1
− (a(exi − 1)+ 2)−a

log(a(exi − 1)+ 2)
]}

= 0,

we have a solution of a by solving the last equation, but unfortunately, there is no explicit form for this equation, so we
can use a numerical solution that direct maximizes the log-likelihood function.

For estimating the DHLD unknown parameter a by MME, we should first equate the population mean to the
corresponding sample mean as follows

1

n

n

∑
i=1

xi − 2aa−a
∞

∑
k=0

(

a−2
a

)k (a+k−1
a−1

)

ea+k − 1
= 0, (11)

by solving the previous equation, we have the estimated parameter a by MME.
Consider x1, . . . ,xn be a random sample from the DHLD, which has only one parameter, and the one indicator function

is defined as follows

I(xi) =

{

1, xi = 0

0, otherwise,
(12)

where B = ∑n
i=1 I(xi) denotes the count of zero observations in the sample.

Then by using Equations (4) and (12), we have

P(X ≤ 0) =
B

n
,

then

1− 2a((e− 1)a+ 2)−a =
B

n
,

we have the estimated parameter a by PE by solving the previous equation.

5 Numerical simulation

This section demonstrates the performance of the offered estimate methodologies in Section 4 by using simulated data
sets to estimate the parameter of the DHLD. We generate different random samples (N = 1000) from the DHLD of
different sample sizes (20,80,150,300,500) by using different parameter values as initial values for our generation (a =
(0.1,0.5,0.8,1.2,1.5,2.5)). After each generation, we determine the estimated parameter (â) along with its bias (B) and
mean square error (MSE), and mean relative estimates (MRE). Finally, we determine the average of these measures, which
are presented in Tables 2–4; from these tables, we conclude the following results
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–The estimated parameter â has the consistency property.
–For the three estimation methods, the B, MSE, and MRE have a decreasing shape as the sample size increase.
–For fixed sample size, the B, MSE, and MRE of the three different estimation methods increase as the parameter values
increase.

–The three different estimation methods’ B, MSE, and MRE have large values if the sample size is small (n = 20) and
the parameter value is large (a = 2.5).

Table 2: Numerical values of the average of both â, B, MSE, and MRE.

a = 0.1 a = 0.5
n Est. MLE MME PE MLE MME PE

20 Aâ 0.10381032 0.04248311 0.10496382 0.51167466 0.48488312 0.51055588

AB 0.01658751 0.11072029 0.01753844 0.06980073 0.13541293 0.07008139

AMSE 0.00047015 0.01307526 0.00050746 0.00807306 0.03022653 0.00771704

AMRE 0.16587505 1.10720287 0.17538444 0.13960147 0.27082587 0.14016278

80 Aâ 0.1005217 0.06972104 0.10122178 0.50359118 0.49734124 0.50047697

AB 0.00816773 0.07042358 0.00842866 0.03268806 0.06127153 0.03265338

AMSE 0.00010716 0.00627185 0.00011544 0.00169184 0.00583382 0.00173353

AMRE 0.0816773 0.70423582 0.08428658 0.06537612 0.12254305 0.06530677

150 Aâ 0.10027133 0.07828372 0.10078011 0.50041998 0.49773315 0.50387915

AB 0.00605981 0.0499898 0.00599685 0.02332841 0.04388985 0.02619673

AMSE 5.806e-05 0.00403472 5.783e-05 0.00084789 0.00302352 0.00108147

AMRE 0.06059813 0.499898 0.05996854 0.04665682 0.0877797 0.05239346

300 Aâ 0.10037704 0.09262336 0.10014466 0.50030236 0.49935219 0.50074009

AB 0.00417221 0.03188567 0.00432398 0.01710425 0.0315892 0.01677044

AMSE 2.798e-05 0.00177986 2.867e-05 0.00046645 0.00159547 0.00043449

AMRE 0.04172213 0.31885674 0.04323977 0.03420849 0.06317839 0.03354089

500 Aâ 0.10016362 0.09637877 0.10018917 0.50078277 0.49911329 0.49980601

AB 0.00320219 0.02063464 0.00335311 0.01316718 0.02454106 0.01276683

AMSE 1.651e-05 0.00078133 1.784e-05 0.00026732 0.00093949 0.00025158

AMRE 0.03202186 0.20634642 0.03353114 0.02633436 0.04908212 0.02553366

6 Real data analysis

This section aims to explore the adaptability of the DHLD in terms of fitting real data set. The analyzed data set consists
of n = 64 observations representing the Waiting time between eruptions (in seconds), and it is available on
www.statsci.org/data/oz/kiama.html. The use of the real data set demonstrates the adaptability of the DHLD in
comparison to a variety of well-known distributions like Poisson distribution (PD), Geometric distribution (GD), discrete
Lindley distribution (DLD) [16], discrete gamma distribution (DGD) [17], discrete Weibull distribution (DWD) [1],
discrete Ramos-Louzada distribution (DRLD) [18], discrete Rayleigh distribution (DRD) [4], discrete mixture of gamma
and exponential distribution (DMGED) [19], discrete Burr distribution (DBD) [5], discrete Pareto distribution (DPD) [5],
discrete Burr-Hatke distribution (DBHD) [20] and discrete Lomax distribution (DLoD) [21].

To compare between models, we used different measures such as Akaike IC (A), the correct Akaike information
criterion (C), the Bayesian information criterion (B), and the Hannan information criterion (H) with
Kolmogorov–Smirnov (KS) statistics and its corresponding p-value. Table 5 presents parameter estimates (standard
error) and −L for the investigated data set, in addition to the comparison calculated measures obtained by utilizing MLE.
Compared to other competing distributions, the DHLD provides a close fit to the modeled data set. This is seen by the
fact that the values of all the DHLD measures in this table are small, except for the p-value, which has the highest value.

The log-likelihood function behavior with the DHLD estimated parameter â is provided graphically in Figure 3 (left
panel); we see that it has a unimodal shape with maximum values of this curve at the estimated parameter â value, we
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Table 3: Numerical values of the average of both â, B, MSE, and MRE.

a = 0.8 a = 1.2
n Est. MLE MME PE MLE MME PE

20 Aâ 0.81429289 0.8077769 0.82169913 1.22293254 1.22271265 1.22595772

AB 0.10075187 0.13734235 0.09920438 0.15468604 0.17356367 0.14747972

AMSE 0.01656792 0.03041603 0.01676007 0.04117207 0.04834595 0.0364793

AMRE 0.12593984 0.17167794 0.12400547 0.12890503 0.14463639 0.12289976

80 Aâ 0.80141829 0.80359507 0.80497585 1.21353299 1.20591599 1.20772017

AB 0.05052432 0.06992358 0.05074923 0.07464638 0.08598832 0.07239286

AMSE 0.00400899 0.00776049 0.00410343 0.00905316 0.01211432 0.0086314

AMRE 0.0631554 0.08740447 0.06343654 0.06220532 0.07165693 0.06032738

150 Aâ 0.80436003 0.79752283 0.79946251 1.20373332 1.20311528 1.20418113

AB 0.036321 0.05026319 0.03623703 0.05430534 0.0659743 0.05302421

AMSE 0.00214021 0.00397953 0.00206915 0.00457814 0.00679678 0.00450734

AMRE 0.04540125 0.06282898 0.04529629 0.04525445 0.05497858 0.04418684

300 Aâ 0.8008973 0.8000342 0.80148819 1.2012397 1.2027132 1.20266068

AB 0.02560719 0.03690633 0.0260917 0.03716314 0.04397916 0.03718448

AMSE 0.0010386 0.00214611 0.00106173 0.0021773 0.00303913 0.00210858

AMRE 0.03200898 0.04613291 0.03261463 0.03096929 0.0366493 0.03098706

500 Aâ 0.80034359 0.80260392 0.79992791 1.20149104 1.20233165 1.20159212

AB 0.0202126 0.02906592 0.01974468 0.02872143 0.03297201 0.03024494

AMSE 0.00063984 0.001327 0.00061399 0.00127439 0.00172791 0.00141086

AMRE 0.02526575 0.03633239 0.02468086 0.02393453 0.02747668 0.02520412

conclude that we have a global maximum value of our estimated parameter. We use the Nmaximize function in Wolfram
Mathematica Software, which attempts to find the global maximum solution, and that reveals with the result displayed in
Figure 3 (left panel). In the same figure (right panel), we graphically provide the existence and uniqueness of the estimated
parameter â. The probability-probability (PP) plots of the proposed model with other compared models are presented in
Figure 4, which support the results reported in Table 5. The estimated CDFs were presented graphically in Figure 5, which
also support the results reported in Table 5.
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Fig. 3: Plots of log-likelihood function with existence and uniqueness of estimated DHLD parameter for the eruptions data set.
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Fig. 4: P-P plot of the DHLD and other compared models for the eruptions data set.
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Fig. 5: Fitted CDF of the DHLD and other compared models for the eruptions data set.
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Table 4: Numerical values of the average of both â, B, MSE, and MRE.

a = 1.5 a = 2.5
n Est. MLE MME PE MLE MME PE

20 Aâ 1.55036357 1.56201278 1.55516013 5.31858946 4.44659993 4.5314259

AB 0.20325805 0.23850044 0.20907116 3.06929026 2.19927803 2.28447832

AMSE 0.13490638 0.24254368 0.0742961 26.95421131 13.07753737 13.44406908

AMRE 0.13550536 0.15900029 0.13938077 1.2277161 0.87971121 0.91379133

80 Aâ 1.51681163 1.50151064 1.51090035 2.64972779 2.58060239 2.60369867

AB 0.0967442 0.10245518 0.09478967 0.29935364 0.24032052 0.25454172

AMSE 0.01467609 0.01667349 0.01457611 1.18309694 0.24213961 0.35219041

AMRE 0.06449614 0.06830345 0.06319312 0.11974146 0.09612821 0.10181669

150 Aâ 1.50633676 1.50500006 1.50380541 2.52484788 2.53116172 2.52251102

AB 0.06388323 0.0729854 0.06800988 0.14700026 0.15364345 0.15408628

AMSE 0.00655839 0.00861836 0.0075398 0.0353905 0.07790259 0.03908058

AMRE 0.04258882 0.04865693 0.04533992 0.05880011 0.06145738 0.06163451

300 Aâ 1.50474815 1.50090184 1.50431723 2.51388132 2.51874551 2.5084716

AB 0.04726563 0.05326025 0.04966837 0.10248397 0.10858419 0.10530677

AMSE 0.00366175 0.00440471 0.00383019 0.01743403 0.0195046 0.01870902

AMRE 0.03151042 0.03550683 0.03311225 0.04099359 0.04343368 0.04212271

500 Aâ 1.5021338 1.50081128 1.50225353 2.50842086 2.51028656 2.50634903

AB 0.03605575 0.03921868 0.03673413 0.08105533 0.0802475 0.07591874

AMSE 0.00203902 0.0024415 0.00214846 0.01044542 0.01031853 0.00925252

AMRE 0.02403717 0.02614579 0.02448942 0.03242213 0.032099 0.0303675

Table 5: Numerical analysis for the eruptions data set.

Distribution −L A C B H KS p-value Estimates

DHLD 293.552 589.104 589.169 591.263 589.955 0.103991 0.493169 â = 0.0270688 (0.00333184)

PD 952.542 1907.08 1907.15 1909.24 1907.94 0.501204 < 0.00001 λ̂ = 39.8278 (0.788862)

GD 300.61 603.219 603.284 605.378 604.07 0.184405 0.0257451 λ̂ = 0.0244929 (0.00302389)
DLD 336.734 675.469 675.533 677.627 676.319 0.144288 0.139175 α̂ = 0.0502006 (0.00443668)
DGD 296.224 596.448 596.645 600.766 598.149 0.113873 0.377748 α̂ = 1.673 (0.0799418)

β̂ = 0.0414854 (0.00522843)
DWD 297.327 598.654 598.851 602.972 600.355 0.10499 0.480757 α̂ = 0.992549 (0.00386331)

β̂ = 1.29439 (0.12197)

DRLD 300.603 603.206 603.27 605.364 604.056 0.184372 0.0257855 λ̂ = 39.2831 (5.04203)

DRD 300.61 603.219 603.284 605.378 604.07 0.184405 0.0257451 λ̂ = 0.975507 (0.00302389)
DMGED 298.983 599.967 600.031 602.126 600.817 0.151755 0.104895 α̂ = 0.981248 (0.00205632)
DBD 357.359 718.718 718.915 723.036 720.419 0.463399 < 0.00001 α̂ = 0.954382 (0.247949)

β̂ = 6.35577 (35.3637)
DPD 361.133 724.267 724.331 726.426 725.117 0.474892 < 0.00001 α̂ = 0.746119 (0.0273148)
DBHD 437.051 876.102 876.167 878.261 876.953 0.889213 < 0.00001 α̂ = 0.999634 (0.00242957)
DLoD 301.569 607.138 607.334 611.455 608.839 0.198291 0.0130403 α̂ = 439.016 (134.087)

β̂ = 7.06218×10−6 (0.0000227432)

7 Conclusion

This article introduces a novel one-parameter discrete distribution called the discrete half-logistic distribution (DHLD),
which is constructed based on the discretization approach of the continuous half-logistic distribution. The hazard function
of the DHLD exhibits three possible shapes: increasing, constant, or decreasing. Several well-established mathematical
expansions from the literature were employed to assess its statistical properties to calculate the proposed distribution’s
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selected statistical features. Various estimation methods were employed to estimate the parameter of the DHLD, including
maximum likelihood, moments, and proportion methods. A comprehensive simulation study was conducted to evaluate the
performance of these estimation methods. The simulation study provides valuable insights into the accuracy and efficiency
of each method in estimating the DHLD parameter. Furthermore, the flexibility of the DHLD was investigated using a real
data set. The real data set served as a practical case study to examine the goodness of fit of the DHLD compared to other
competing models. Through careful analysis and comparison, the results indicated that the DHLD outperformed other
models in terms of fitting the real data set, thus highlighting its superior suitability in capturing the underlying patterns
and characteristics of the observed data.

This paper highlights several promising avenues for future research, which have the potential to significantly contribute
to the understanding and application of the proposed model in various fields. These directions encompass expanding
the analysis to the bivariate case, exploring alternative censored methods, adopting Bayesian approaches for parameter
estimation, considering various loss functions, and investigating the application of neutrosophic statistics. Expanding the
analysis to the bivariate case would involve studying the behavior and properties of the proposed model when applied to
two variables simultaneously.
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