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Abstract: This paper proposes using maximum entropy approach to estimate the parameters of the Kumaraswamy 
distribution subject to moment constraints. Kumaraswamy [7] introduced the double pounded probability density function 
which was originally used to model hydrological phenomena. It was mentioned that this probability density function is 
applicable to bounded natural phenomena which have values on two sides. The distribution share several properties with 
the beta distribution and it has the extra advantages that is possesses a closed form distribution function, but it remained 
unknown to most statisticians until it was developed by Jones [6] as a beta-type distribution with some tractability 
advantages in particular as it has fairly simple quantile function and it has explicit formula for L-Moment. Using the 
principle of maximum entropy to propose new estimators for the Kumaraswamy parameters and compared with maximum 
likelihood and Bayesian estimation methods. A simulation study is performed to investigate the performance of the 
estimators in terms of their mean square errors and their efficiency. 
 
Keywords: Principle of maximum entropy, Maximum Likelihood, Bayes, Kumaraswamy distribution. 
 
1 Introduction 

In 1948, the concept of entropy as an uncertainty measure was developed by Shannon [12]. Jaynes [5] utilized Shannon 
formula for the entropy to suggest the estimation of the unknown density by maximizing the entropy using the exact 
amount of information provided by the data. The maximum entropy approach for estimating density function is considered 
by many to be a very powerful tool for approximating the density function (such as, Miller and Horn [9], Hall and Presnell 
[3], Wu [22], Phillips et al [11] and Dudik et al [2]). 

Singh et al [17] and Singh and Rajagopal [18] showed that according to principle of maximum entropy (POME) if we have 
reasons to assume the mathematical formula for the density function except for some unknown parameters. Then we can 
use the maximum entropy principle to estimate the parameters of this distribution utilizing the information available in the 
data. They suggested a way of utilizing the data together with POME to estimate the parameters and offered an approach 
and used to derive a number of distributions in the analysis of hydrological data compared with maximum likelihood 
estimation method, and they showed that their approach is good the compared method.  

   Singh and Chowdhury [14] used the POME for estimating the Gamma distribution parameters. Singh and Guo [15] and 
[16] used the POME for estimating the three and two parameters generalized Pareto distribution. 

A lot of natural phenomena either they have upper and lower bounds or that we are only interested in the double bounded 
observable part. In hydrological journal, Kumaraswamy [7] introduced a distribution to describe double bounded random 
phenomena with application in hydrology. This kept this distribution away from the attention until it was brought to the 
attention by Jones [6]. The distribution shares several properties with the beta distribution but it has extra advantage that is 
possess a closed form cumulative distribution function. Furthermore, it has fairly simple quantile function which lead to a 
simple formula for generating random samples from the Kumaraswamy distribution. Also it has explicit formulas for the L-
Moments (see jones [6]). Mitnik [10] obtained the distribution form moments and proved the closeness under 
exponentiation and linear transformation. 

Sundar [19] applied the Kumaraswamy probability density function to describe the ocean wave statistics, and estimate the 
most probable maximum wave height, a new generalized distributions family described  by Cordeiro and Castro [1] named 
as the Kw-inverse Gaussian, Kw-Weibull , Kw-gamma, Kw-normal, and Kw-Gumbel distribution. Hussian [4] performed 
estimation with respect to ranked set sampling for the Kumaraswamy distribution using Bayesian technique and maximum 
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likelihood function. Tahir et al [20] constructed many families of distributions through a new flexible generalized family, 
and investigated the properties of a new flexible Kumaraswamy (NFKw) as a new model distribution, and estimate the 
model parameters by maximum-likelihood, then applied NFKw model for three data sets. 

This paper proposes the approach of principle of maximum entropy, also follows Singh approach to estimate the two 
parameter Kumaraswamy distribution based on simple random sample. In order to check the behavior efficiency of 
estimators based on POME, Monte Carlo simulation has been conducted compared with the maximum likelihood and 
Bayes methods.  

The present paper is organized as follows. In section 2, we propose the principle of maximum entropy approach. In section 
3, derivation of parameter estimation by POME. In section 4, we consider estimation of Kumaraswamy distribution 
parameters. In section 5, simulation study. Finally, we summarize our results in section 6. 

2. The Principle of Maximum Entropy (POME) 

The Shannon entropy of a continuous distribution with the density function 𝑓(𝑥; 𝜃) given by the function 𝐻(𝑥) expressed 
as; 

𝐻(𝑥) = −* 𝑓(𝑥; 𝜃) 𝑙𝑛 𝑓(𝑥; 𝜃)	𝑑𝑥		
/

0/
 

(1) 

 

where 𝐻(𝑥) is the  𝑓(𝑥; 	𝜃) entropy function, and it considered as an average  of  −𝑙𝑛𝑓(𝑥; 	𝜃). 

   The maximum entropy principle, introduced by Jaynes [5], as a rational approach for making inference based on current 
state of knowledge, states, in short, that the probability distribution that describes a system is that one with the largest 
entropy subject to given information. Since must use the maximum Shannon’s entropy probability distribution, consistent 
to just known information and whatever constraints, so we choose the Shannon’s maximum entropy function. The 
distribution 𝐻(𝑥) is referred  as MaxEnt distribution. In analyzing the maximum entropy problem, Verdogo Lazo and 
Rathie [21] relied on the fact that if, 

 

𝑓(𝑥) = 𝑒𝑥𝑝{𝜆5 + 𝜆7𝑔7(𝑥) +⋯+ 𝜆:𝑔:(𝑥)} 

then  

 

𝐻(𝑥) = −{𝜆5 + 𝜆7𝐸𝑔7(𝑋) +⋯+ 𝜆:𝐸𝑔:(𝑋)} 

Where 

 

𝐸𝑔>(𝑋) = * 𝑔>(𝑋)𝑓(𝑥)	𝑑𝑥
/

0/
 

 

and constructed a table of deferential entropies for several continuous probability distributions. 

3. Derivation of Parameter Estimation by POME 

According to Singh el al. [17] "The POME method involves population expectations, whereas the MLE method involves 
sample averages. If population is replaced by a sample then the two methods would yield the same parameter estimates", 
and they derived some univariate distributions as a direct consequence of POME given a set of 𝑚 constraints 𝐶> as, 

 

𝑐> = * 	𝑔>(𝑥)
/

0/
	𝑓(𝑥)	𝑑𝑥, 𝑖 = 1, 2, … ,𝑚 

where 𝑔>(𝑥) are some functions whose averages over 𝑓(𝑥) are specified, then the maximum of 𝐻(𝑥) in (1) subject to the 
conditions of 𝑐> is given by, 
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𝑓(𝑥) = exp J−𝜆5 −K 𝜆>	𝑔>(𝑥)
L

>M7
N 

 

 

where 𝜆> 𝑖	 = 	0, 1, . . . , 𝑚, are the Lagrange multipliers which are determined in terms of 𝑐> . Inserting 𝑓(𝑥) in the definition 
of total probability, 

* exp J−𝜆5 −K 𝜆>	𝑔>(𝑥)
L

>M7
N

/

0/
	𝑑𝑥 = 1 

 

which leads to, 

𝜆5 = ln* exp S−K 𝜆>	𝑔>(𝑥)
L

>M7
T

/

0/
 

 

Then multipliers of Lagrange according to 𝑐> by, 

 

−
𝜕𝜆5
𝜕𝜆>

= 𝑐> 
(2) 

 

and also, 

𝜕V𝜆5
𝜕𝜆>V

= 𝑣𝑎𝑟	[𝑔>(𝑥)]; 

 

			
𝜕V𝜆5
𝜕𝜆>𝜕	𝜆\

= 𝑐𝑜𝑣	^𝑔>(𝑥), 	𝑔\(𝑥)_, 𝑖 ≠ 𝑗 

(3) 

 

With estimated multipliers of Lagrange from (2) and (3), the pdf in 𝑓(𝑥) is uniquely defined. Clearly, this procedure can be 
applied to derive any probability density function for which appropriate constraints can be found. Following this procedure, 
Singh et al. ([14], [17], [18], [15], [16], [13]) have derived a number of distributions used in hydrology as; Gamma, two and 
three Pareto parameters. Kumphon [8] also estimated the unknown Kappa distribution parameters using maximum 
likelihood also maximum entropy. 

4. Estimation of Kumaraswamy Distribution Parameters 

Kumaraswamy [7] introduced a double bounded continuous probability family of distributions takes values on [0,1] 
interval, denoted by 𝐾𝑤(𝛼, 𝛽) distribution and has cumulative distribution function of the form,  

 

𝐹gh(𝑥; 𝛼, 𝛽) = 1 − (1 − 𝑥i)j 

 

and probability density function given by, 

 

𝑓gh(𝑥; 𝛼, 𝛽) = 𝛼	𝛽	𝑥i07	(1 − 𝑥i)j07,			0 ≤ 𝑥 ≤ 1		𝑎𝑛𝑑		𝛼, 𝛽 > 0	 

			 

(4) 

where 𝛼 and 𝛽	are shape parameters. 
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We used Kumaraswamy distribution in equation (4) to introduce a new POME estimator compared with the maximum 
likelihood and Bayesian methods of estimation. 

4.1 Maximum Likelihood Estimation 

Let 𝑥7 …𝑥: be a 𝐾𝑤 distribution sample, with 𝛼 and	𝛽 shape parameters. The shape parameters likelihood function for the 
observed samples is 

𝐿n(𝛼, 𝛽|𝑿) = 𝛼:𝛽:q𝑥\i07q(1 − 𝑥\i)j07
:

\M7

:

\M7

 

 

and the log-likelihood function for α, β parameters will be 

  

𝑙𝑜𝑔𝐿(𝛼, 𝛽|𝑿) = 𝑛 log𝛼 + 𝑛 log𝛽 + (𝛼 − 1)∑ log 𝑥\ + (𝛽 − 1)∑ logu1 − 𝑥\iv	:
\M7

:
\M7   

 

The estimators of the parameters denoted by 𝛼w	and 𝛽x		obtained by likelihood solution of the following equations 

 

𝑛
𝛼 +Klog 𝑥\ − (𝛽 − 1)K

𝑥\i log 𝛼
u1 − 𝑥\iv

= 0
:

\M7

:

\M7

								

 

𝑛
𝛽 +Klogu1 − 𝑥\iv = 0

:

\M7

 

So that we have, 

 

𝛽xy =
−𝑛

∑ logu1 − 𝑥\izv:
\M7

 

 

𝑛
𝛼w
+Klog 𝑥\ − u𝛽x − 1v log 𝛼wK

𝑥\iz

u1 − 𝑥\izv
= 0

:

\M7

:

\M7

 

Numerical methods are used to give solution for the equations and their properties. 

 

4.2 Bayesian Estimation  

The shape parameters estimators of 𝛼 and 𝛽, using Bayesian method, as 𝛼 and 𝛽 have prior distributions 𝐺𝑎𝑚𝑚𝑎(𝑎7, 𝑏7) 
and 𝐺𝑎𝑚𝑚𝑎(𝑎V, 𝑏V) where the probability density function denoted by, 

 

𝜋7(𝛼) =
𝑏7~�

Γ(𝑎7)
𝛼~�07	𝑒0��i 

 
 

𝜋V(𝛽) =
𝑏V~�

Γ(𝑎V)
𝛽~�07	𝑒0��j 
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Where (𝑎7, 𝑏7) and (𝑎V, 𝑏V) are assumed to be known. Based on the above likelihood function obtained by 𝐿n(𝛼, 𝛽|𝑿) and 
the prior form, then 	𝛼 and 𝛽 joint density could be denoted by, 

 

𝐿n(𝛼, 𝛽|𝑿) = 𝐿(𝛼, 𝛽/𝑋)𝜋7(𝛼)𝜋V(𝛽) = 𝐾7𝑍 

where 𝐾7is constant and 

 

𝑍 = 𝛼:�~�07	𝛽:�~�07𝑒𝑥 𝑝 �−𝑏7𝛼 − 𝑏V𝛽 + (𝛼 − 1)K𝑙𝑜𝑔 𝑥\ + (𝛽 − 1)K𝑙𝑜𝑔u1 − 𝑥\iv
:

\M7

:

\M7

�. 

 

So that, the 𝛼 and  𝛽 joint posterior density function derived by, 
 

𝜋n(𝛼, 𝛽|𝑿) =
𝑍

∫ ∫ 𝑍	𝑑𝛼	𝑑𝛽/
5

/
5

 

 

Therefore, the posterior density of α and β respectively are, 

 

𝜋i(𝛼|𝑿) =
∫ 𝑍	𝑑𝛽/
5

∫ ∫ 𝑍	𝑑𝛼	𝑑𝛽/
5

/
5

 

 

 

𝜋j(𝛽|𝑿) =
∫ 𝑍	𝑑𝛼/
5

∫ ∫ 𝑍	𝑑𝛼	𝑑𝛽/
5

/
5

 

 

So that, the estimators for α and β by using Bayes technique are defined as	𝛼w�	, 𝛽x� . 

 

𝛼w� = 𝐸(𝛼|𝑿) =
∫ ∫ 𝛼	𝑍	𝑑𝛽/

5
/
5 	𝑑𝛼

∫ ∫ 𝑍	𝑑𝛼	𝑑𝛽/
5

/
5

 
 

(5) 

 

𝛽x� = 𝐸(𝛽|𝑿) =
∫ ∫ 𝛽	𝑍	𝑑𝛼/

5
/
5 	𝑑𝛽

∫ ∫ 𝑍	𝑑𝛼	𝑑𝛽/
5

/
5

 

 

 

(6) 

 

Simulation studies will be used to study the properties of these estimators. 

 

4.3 Principle of Maximum Entropy 

The Kumaraswamy distribution entropy obtained through three steps; First, the specification of constraints. Second, 
constructions the function form of the entropy. Finally, finding how constraints are related with the distribution parameters. 
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4.3.1 Conducting constraints. 

The Kumaraswamy distribution entropy derived by inserting the probability density in equation (4) into (1), such that 
Shannon entropy can be expressed as, 

 

𝐻[𝑓(𝑥)] = −* 𝑓(𝑥; 𝜃)[𝑙𝑛 𝑓(𝑥; 𝜃)]𝑑𝑥
7

5
 

 

𝐻(𝑓) could be considered as the mean of −ln	 𝑓(𝑥). 

 

𝐻(𝑓) = −* {ln𝛼𝛽𝑓(𝑥) + (𝛼 − 1) ln 𝑥 𝑓(𝑥) + (𝛽 − 1) ln(1 − 𝑥i)𝑓(𝑥)}𝑑𝑥	
7

5
 

 

so, 

𝐻(𝑓) = − 𝑙𝑛 𝛼𝛽* 𝑓(𝑥)	𝑑𝑥 − (𝛼 − 1)* 𝑙𝑛 𝑥 𝑓(𝑥)
7

5
𝑑𝑥 	− (𝛽 − 1)* 𝑙𝑛(1 − 𝑥i)𝑓(𝑥)𝑑𝑥

7

5

7

5
 

 

and, 

𝑐> = * 	𝑔>(𝑥)
/

0/
	𝑓(𝑥)	𝑑𝑥 = 𝐸[	𝑔>(𝑥)],					𝑖 = 1,2, … ,𝑚 

                   

So that Kumaraswamy appropriate constraints are; 

 

1. ∫ 𝑓(𝑥)𝑑𝑥 = 17
5  

 

2. ∫ ln	𝑥 𝑓(𝑥)𝑑𝑥 = 𝐸 ln 𝑥7
5  

  

3. ∫ ln(1 − 𝑥i)𝑓(𝑥)𝑑𝑥7
5 = 𝐸 ln(1 − 𝑥i) 

 

4.3.2 Entropy function construction 

Kumaraswamy distribution PDF corresponding to equation (4) and consistent with POME could be written as: 
 

𝑓(𝑥) = 𝑒𝑥𝑝 �−𝜆5 −K𝜆>

L

>M7

𝑔>(𝑥)� 

 

𝑓(𝑥) = 𝑒𝑥𝑝[−𝜆5 − 𝜆7 ln 𝑥 − 𝜆V ln(1 − 𝑥i)] (7) 
 

where 𝜆5 and 𝜆7, 𝜆V are Lagrange multipliers. Then using	∫ 𝑓(𝑥)𝑑𝑥 = 17
5 , so 
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* 𝑒𝑥𝑝[−𝜆5 − 𝜆7 ln 𝑥 − 𝜆V ln(1 − 𝑥i)]𝑑𝑥 = 1
7

5
 

 

such that, 

𝑒𝑥𝑝(𝜆5) = * 𝑒𝑥𝑝[−𝜆7 ln 𝑥 − 𝜆V ln(1 − 𝑥i)]
7

5
𝑑𝑥 

 

 

(8) 

𝑒𝑥𝑝(𝜆5) = * 𝑥0��	(1 − 𝑥i)0��
7

5
 

 

 

(9) 

𝑒𝑥𝑝(𝜆5) = 	
1

(1 − 𝜆7)(1 − 𝜆V)
  

(10) 

 

The zeroth multiplier takes the form, 

𝜆5 = 𝑙𝑛 J
1

(1 − 𝜆7)(1 − 𝜆V)
N		  

(11) 

 

Using 𝑒𝑥𝑝(𝜆5)  as in equation (10) in (7) identify,  

 

𝑓(𝑥) = 𝑒𝑥𝑝(−𝜆5) 𝑥0��(1 − 𝑥i)0�� 
 

 

𝑓(𝑥) = (1 − 𝜆7)(1 − 𝜆V)𝑥0��(1 − 𝑥i)0�� (12) 

 

Comparing with Kumaraswamy pdf in (4) we get; (1 − 𝜆7) = 𝛼 and (1 − 𝜆V) = 𝛽 

Using logarithm of 𝑓(𝑥) in (12) leads to, 

 

ln 𝑓(𝑥) = ln(1 − 𝜆7)(1 − 𝜆V)−𝜆7 ln 𝑥			 − 𝜆V ln(1 − 𝑥i) 

 

   Therefore, the entropy 𝐻(𝑓) of the Kumaraswamy distribution using Lagrange multipliers follows: 

 

𝐻(𝑓) = −* 𝑓(𝑥) 𝑙𝑛 𝑓(𝑥)𝑑𝑥
7

5
 

 

𝐻(𝑓) = −* [𝑙𝑛(1 − 𝜆7)(1 − 𝜆V)−𝜆7 𝑙𝑛 𝑥	 − 𝜆V 𝑙𝑛(1 − 𝑥i)]
7

5
𝑓(𝑥)𝑑𝑥	

= −𝑙𝑛(1 − 𝜆7)(1 − 𝜆V)+𝜆7𝐸( 𝑙𝑛 𝑥)	 + 𝜆V 𝐸	𝑙𝑛(1 − 𝑥i) 

 

 
 

(13) 
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4.3.3 Finding the distribution parameters relation with the constraints equations 

Following Singh et al [17] derived the relation between constraints and shape parameters by differentiating the equation of 
entropy denoted by 𝐻(𝑓), then equating these derivatives to zero, also using the constraints depending on distribution 
parameters and Lagrange multipliers,. Taking partial differentiation of (13) depending on	𝜆7 and 𝜆V and zero equating the 
differentiation yields, 

 
𝜕𝐻
𝜕𝜆7

=
1

1 − 𝜆7
+ 𝐸(𝑙𝑛 𝑥) = 0 

 

(14) 

 
𝜕𝐻
𝜕𝜆V

=
1

1 − 𝜆V
+ 𝐸	𝑙𝑛(1 − 𝑥i) = 0 

 

(15) 

 

equations (14) to (15) yields, respectively, 

 

−E(ln 𝑥) =
1

1 − 𝜆7
	  

(16) 

 

−𝐸	ln(1 − 𝑥i) =
1

1 − 𝜆V
												  

(17) 

 

Equations (16) and (17) are the POME estimation equations. Alternatively, the equation form (16) and (17) could be 
conducted by differentiating the zeroth Lagrange coefficient with regard to 𝜆7 and 𝜆V, then equating the derivative to zero. 
Equation (8) could be identified by, 

 

𝜆5 = ln∫ 𝑒𝑥𝑝[−𝜆7 ln 𝑥 − 𝜆V ln(1 − 𝑥i)]
7
5 𝑑𝑥, 

 

𝜆5 = ln* 𝑥0��	(1 − 𝑥i)0��
7

5
𝑑𝑥 

 

(18) 

 

Taking the derivative of (18) respect to	𝜆7 and	𝜆V: 

 

∂λ5
∂λ7

=
∫ 𝑥0��	(1 − 𝑥i)0�� ln 𝑥07 𝑑𝑥7
5

∫ 𝑥0��	(1 − 𝑥i)0��𝑑𝑥7
5

 

 

 
∂λ5
∂λ7

= 𝐸	(ln 𝑥07) = −𝐸 ln 𝑥 
 

(19) 

and, 



J. Stat. Appl. Pro. 13, No. 1, 131- 144 (2023) / http://www.naturalspublishing.com/Journals.asp                                                        139 
 

 
 
         © 2024 NSP 
           Natural Sciences Publishing Cor. 

 

 
∂λ5
∂𝜆7V

= 𝑣𝑎𝑟 ln 𝑥 
 

(20) 

Also,  

 

𝜕𝜆5
𝜕𝜆V

=
∫ 𝑥0��	(1 − 𝑥i)0�� 𝑙𝑛(1 − 𝑥i)07 𝑑𝑥7
5

∫ 𝑥0��	(1 − 𝑥i)0��𝑑𝑥7
5

 

 

 
𝜕𝜆5
𝜕𝜆V

= −𝐸 𝑙𝑛(1 − 𝑥i)	  

(21) 

 
𝜕𝜆5
𝜕𝜆VV

= 𝑣𝑎𝑟 𝑙𝑛(1 − 𝑥i)  

(22) 

 

From equation (11), 

𝜆5 = −ln(1 − 𝜆7) − ln(1 − 𝜆V)  

 
𝜕𝜆5
𝜕𝜆7

=
1

1 − 𝜆7
	 (23) 

 

and, 
∂λ5
∂𝜆7V

=
1

(1 − 𝜆7)V
 (24) 

 

 
𝜕𝜆5
𝜕𝜆V

=
1

1 − 𝜆V
					 (25) 

 

and 
∂λ5
∂𝜆VV

=
1

(1 − 𝜆V)V
 (26) 

 

Equating equation (19, 23), (20, 24), (21, 25) and (22, 26) leads to: 

 

𝐸{	ln 𝑥} = −
1

1 − 𝜆7
	 (27) 

 



140                                                                      M. R. Mahmoud,  A. M. Saad: Estimation of Kumaraswamy Distribution … 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

 

𝐸{ln(1 − 𝑥i)} = −
1

1 − 𝜆V
		 (28) 

and, 

 

𝑣𝑎𝑟 ln 𝑥 =
1

(1 − 𝜆7)V
		 (29) 

 

 

𝑣𝑎𝑟 ln(1 − 𝑥i) =
1

(1 − 𝜆V)V
	 (30) 

 

which is the same as equation (16, 17).  

Using (1 − 𝜆7) = 𝛼 and (1 − 𝜆V) = 𝛽 and the equations from (27) to (30) one gets, 

 
𝐸[ln 𝑥]
𝑣𝑎𝑟 ln 𝑥 = 𝛼w	 

(31) 

 

𝐸�lnu1 − 𝑥izv�
𝑣𝑎𝑟 ln(1 − 𝑥iz)

= 𝛽x		 
(32) 

 

Equations (31) and (32) are the POME-based estimation equations. 

5. Simulation Study  

Since it is not possible to assess the estimation process through the analysis of real life data, it was decided to run a 
simulation study for this purpose. Simulation studies are performed on a large number generated data sets and the results of 
them are summarized. Safely and efficiently results of simulation studies are compared to actual parameters values used in 
the generation of data and are therefore verified easily for each group of parameters values and each sample size considered 
(low, moderate and large). 10000 samples were generated and analyzed estimates of the parameters were obtained via 
numerical solutions of the maximizing equations of the likelihood function.  

Using simulated data with 10000 repetitions and different values of α and β to obtain principle of maximum entropy, 
maximum likelihood and Bayes estimates of the distribution parameters of the Kumaraswamy also the estimators 
performance are compared based on several values of the parameters α = 0.5	and	2 and β = 0.5, 1.5	and	3.5. The 
comparison is conducted through the MSEs and the efficiency of αz and	β� . The results are reported in Tables 1, 2, 3 and 4 in 
the following section. 

6. Results and Conclusions 

The problem of unknown parameters estimation based on POME is considered in this paper for Kumaraswamy distribution. 
For the comparison purpose, Bayesian and Maximum Likelihood estimation methods are used. It is observed from the 
simulation study, when choosing 𝛼 = 2 we found that in many cases the POME estimates perform better than the Bayes 
and ML estimates relative to their MSE, and the MSEs decreased when sample size increase. Based on 𝛼 = 0.5 it is 
observed that in all cases the POME estimates relative to MSE and efficiency can be better  than Bayes estimates, and the 
MSE decreased when sample size increase, so the unknown parameters estimates efficiency of the Kumaraswamy 
distribution under POME approach increased with the sample size. 
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The results are reported in the following tables. 

Table 1: MSEs for Kw distribution estimators for population with	𝛂 = 𝟐, and the prior hyper-
parameter	(𝐚𝟏, 𝐚𝟐, 𝐛𝟏, 𝐛𝟐) = (𝟐, 𝟐, 𝟑, 𝟑). 

n 𝜷  POME MSE MLE MSE Bayes MSE 

20 

0.5 
𝜶z 2.4212 1.8255 1.0563 1.0122 0.4167 2.5121 

𝜷¡ 0.6385 0.1060 0.4176 0.0257 0.4803 0.0094 

1.5 
𝜶z 2.766 2.093 1.418 0.3926 0.5316 2.1635 

𝜷¡ 1.921 0.9854 1.149 0.1347 0.6328 0.0185 

3.5 
𝜶z 3.434 4.2635 1.0189 0.9694 1.4223 0.3617 

𝜷¡ 4.4992 5.362 1.6194 3.5572 1.9964 2.3339 

         

30 

0.5 
𝜶z 2.1859 0.9358 1.0127 1.0189 0.4069 2.5413 

𝜷¡ 0.5951 0.0606 0.4008 0.0177 0.4691 0.0068 

1.5 
𝜶z 2.5774 1.2237 1.4039 0.3911 0.8873 1.2493 

𝜷¡ 1.7811 0.5461 1.1358 0.1406 1.1577 0.1447 

3.5 
𝜶z 3.2278 2.7939 1.0152 0.9743 1.4694 0.3043 

𝜷¡ 4.1365 2.8456 1.6108 3.5831 2.1193 1.9735 

         

50 

0.5 
𝜶z 1.9880 0.4623 0.9941 1.0150 0.4003 2.5609 

𝜷¡ 0.5550 0.0299 0.3933 0.0136 0.4616 0.0049 

1.5 
𝜶z 2.4348 0.6735 1.3854 0.3972 0.8910 1.2371 

𝜷¡ 1.6656 0.2735 1.1254 0.1451 1.1725 0.1257 

3.5 
𝜶z 3.0561 1.8231 1.0135 0.9758 1.5084 0.2575 

𝜷¡ 3.8916 1.514 1.6027 3.6079 2.2289 1.6672 

         

80 

0.5 
𝜶z 1.8914 0.2769 0.9954 1.0094 0.3957 2.5735 

𝜷¡ 0.5344 0.0174 0.3911 0.0131 0.4564 0.0040 

1.5 
𝜶z 2.3623 0.4217 1.3772 0.3992 0.8916 1.2331 

𝜷¡ 1.6128 0.1586 1.1188 0.1482 1.1787 0.1150 

3.5 
𝜶z 2.9756 1.3712 1.0123 0.9772 1.5347 0.2275 

𝜷¡ 3.7580 0.8544 1.6007 3.6123 2.3033 1.4704 
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Table 2: MSEs of the estimators of Kw distribution for population parameter	𝛂 = 𝟎. 𝟓, and the prior hyper-
parameter (𝐚𝟏, 𝐚𝟐, 𝐛𝟏, 𝐛𝟐) = (𝟐, 𝟐, 𝟑, 𝟑) 

n 𝜷  POME MSE MLE MSE Bayes MSE 

20 

0.5 
𝜶z 0.6040 0.1140 0.9909 0.2524 0.6777 0.0648 

𝜷¡ 0.6388 0.1101 0.6812 0.0579 0.8089 0.1561 

1.5 
𝜶z 0.6893 0.1299 0.4462 0.0401 2.3178 3.5776 

𝜷¡ 1.9206 0.9749 1.3697 0.2472 3.0323 2.7366 

3.5 
𝜶z 0.8539 0.2609 0.3134 0.0427 4.0016 12.336 

𝜷¡ 4.4815 5.3080 2.045 2.3576 4.3385 0.7196 

         

30 

0.5 
𝜶z 0.5421 0.0578 1.0083 0.2649 0.6951 0.0621 

𝜷¡ 0.5944 0.0592 0.6768 0.0483 0.8304 0.1534 

1.5 
𝜶z 0.6433 0.0730 0.4438 0.0380 2.4872 4.2056 

𝜷¡ 1.7778 0.5403 1.3622 0.2246 3.3626 3.8514 

3.5 
𝜶z 0.8069 0.1746 0.3143 0.0411 4.4126 15.342 

𝜷¡ 4.1365 2.8456 2.0411 2.3352 4.6430 1.3105 

         

50 

0.5 
𝜶z 0.5003 0.0283 1.0179 0.2710 0.6843 0.0482 

𝜷¡ 0.5562 0.3001 0.6787 0.0441 0.8179 0.1274 

1.5 
𝜶z 0.6093 0.0405 0.4600 0.0308 2.6324 4.7679 

𝜷¡ 1.6663 0.2766 1.3981 0.1774 3.6843 5.1150 

3.5 
𝜶z 0.7629 0.1117 0.3170 0.0386 4.7096 17.727 

𝜷¡ 3.8875 1.4860 2.0472 2.2712 4.8260 1.7589 

         

80 

0.5 
𝜶z 0.4740 0.0176 1.0173 0.2692 0.6751 0.0394 

𝜷¡ 0.5366 0.0174 0.6761 0.0397 0.8069 0.1104 

1.5 
𝜶z 0.5882 0.0256 0.4782 0.0221 2.7180 5.0874 

𝜷¡ 1.6099 0.1570 1.4432 0.1270 3.9125 6.0988 

3.5 
𝜶z 0.7413 0.0840 0.3235 0.0342 7.7359 53.092 

𝜷¡ 3.7412 0.8521 2.0743 2.1262 9.5440 36.563 
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Table 3: Efficiency of the POME estimators of the Kw distribution compared with ML and Bayes estimators for 
population parameter	𝛂 = 𝟐, and the prior hyper-parameter	(𝐚𝟏, 𝐚𝟐, 𝐛𝟏, 𝐛𝟐) = (𝟐, 𝟐, 𝟑, 𝟑). 

n 𝜷 
𝒆𝒇𝒇 

(𝜶z𝑷𝑶𝑴𝑬,𝑴𝑳) 

𝒆𝒇𝒇 

(𝜶z𝑷𝑶𝑴𝑬,𝑩𝒂𝒚𝒆𝒔) 

𝒆𝒇𝒇 

(𝜷¡𝑷𝑶𝑴𝑬,𝑴𝑳) 

𝒆𝒇𝒇 

(𝜷¡𝑷𝑶𝑴𝑬,𝑩𝒂𝒚𝒆𝒔) 

20 

 

 

0.5 
 

0.5545 
 

1.3761 
 

0.2429 
 

0.0890 

1.5 0.1875 1.274 0.1366 0.1313 

3.5 0.2273 0.6634 0.0848 0.4352 

30 

 

0.5 
 

1.0888 
 

2.7157 
 

0.2918 
 

0.1122 

1.5 0.3195 1.0209 0.2576 0.2650 

3.5 0.3487 0.10893 1.2591 0.6935 

50 

 

0.5 
 

2.1953 
 

5.5388 
 

0.4561 
 

0.1660 

1.5 0.5898 1.8367 0.5307 0.4597 

3.5 0.5352 0.1412 2.3818 1.1006 

80 

 

0.5 
 

3.6444 
 

9.2963 
 

0.7516 
 

0.2333 

1.5 0.9466 2.9241 0.9342 0.7251 

3.5 0.7126 0.1659 4.2278 1.7209 

 

Table 4: Efficiency of the POME estimators of the Kw distribution compared with ML and Bayes estimators for 
population parameter	𝛂 = 𝟎. 𝟓, and the prior hyper-parameter (𝐚𝟏, 𝐚𝟐, 𝐛𝟏, 𝐛𝟐) = (𝟐, 𝟐, 𝟑, 𝟑) 

n 𝜷 
𝒆𝒇𝒇 

(𝜶z𝑷𝑶𝑴𝑬,𝑴𝑳) 

𝒆𝒇𝒇 

(𝜶z𝑷𝑶𝑴𝑬,𝑩𝒂𝒚𝒆𝒔) 

𝒆𝒇𝒇 

(𝜷¡𝑷𝑶𝑴𝑬,𝑴𝑳) 

𝒆𝒇𝒇 

(𝜷¡𝑷𝑶𝑴𝑬,𝑩𝒂𝒚𝒆𝒔) 

20 

 

0.5 
 

2.2135 
 

0.5686 
 

0.5260 
 

1.4178 

1.5 0.3089 27.531 0.2535 2.8069 

3.5 0.1636 47.2734 0.4441 0.1355 

30 

 

0.5 
 

4.5832 
 

1.0750 
 

0.8157 
 

2.5904 

1.5 0.5207 57.5703 0.4158 7.1279 

3.5 0.2359 87.865 0.8206 0.4605 

50 

 

0.5 
 

9.5466 
 

1.7002 
 

1.4713 
 

4.2449 

1.5 0.7597 117.60 0.6414 18.492 

3.5 0.3459 158.574 1.5283 1.1836 

80 

 

0.5 
 

15.271 
 

2.2385 
 

2.2793 
 

6.3276 

1.5 0.8629 198.00 0.8089 38.828 

3.5 0.4075 631.79 2.4951 42.908 
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