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Abstract: In this article, the problem of comparing concomitants of generalized order statistics (GOSs) in terms of different types

of stochastic orders is considered. Some stochastic ordering results for compound random variables in the one-sample problems are

recalled and extended. Analogous results are obtained in the two-sample setup. The derived results are used to compare concomitants

of GOSs in both one-sample problems and two-sample problems. We also introduce some new joint stochastic orders (namely, the joint

reversed hazard order and the joint convex order) and compare concomitants in terms of these orders.
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1 Introduction

Kamps[1] developed the idea of generalized order statistics (GOSs) as a unified strategy for studying ordered random
variables like order statistics, records, and type II progressive censoring with two stages, which appear as submodels
of the GOSs. Let n ∈ N,k > 0 and mi ∈ R,1 ≤ i ≤ n− 1 be parameters such that γr = k +(n− r) +∑n−1

i=r mi ≥ 1 for
1 ≤ r ≤ n−1 and let m̃ = (m1, . . . ,mn−1) if n ≥ 2 (m̃ arbitrary if n = 1). The random variables (RVs), W(r,n,m̃,k),1 ≤ r ≤ n

are called GOSs based on an absolutely continuous distribution function (DF), F , with density (PDF), f , and survival
function, F̄ , if the joint PDF is given by

f1,2,...,n:n,m̃,k(w1, . . . ,wn) = k

(

n−1

∏
i=1

γi

)(

n−1

∏
i=1

f (wi)(F̄(wi))
mi

)

f (wn)[F̄(wn)]
k−1, (1)

where F−1(0)< w1 ≤ w2 ≤ ·· · ≤ wn < F−1(1). More specially if m1 = · · ·= mn−1 = m the GOSs are called the m-GOSs.
For more details on GOSs and its submodels see [1] and [2].

Let (W1,V1),(W2,V2), . . . ,(Wn,Vn) be n independent copies from continuous DF, F(w,v), with marginals FW and FV .
Suppose that the sample is arranged in accordance with the variable W such that W(r,n,m̃,k) represents the rth GOS based
on FW . The corresponding variable V is denoted by V[r,n,m̃,k] and is called the concomitant of the rth GOS (see [2], p.224).
It is known in the literature (cf. [3],[4]) that

[V[r,n,m̃,k]|W(r,n,m̃,k) = w] =st [V |W = w], (2)

where =st means that both random variables have the same PDF. See also [5] for the rigorous proof of (2) in the case of
order statistics, records, and m-GOSs, while [1] for the proof in the case of Pfeifer records. Using (2) the PDF of V[r,n,m̃,k]
is expressed as

f[r,n,m̃,k](v) =

∞
∫

−∞

fV |W (v|w) f(r,n,m̃,k)(w)dw, (3)

where fV |W (v|w) is the PDF of V given W = w and f(r,n,m̃,k)(w) is the density function of the rth GOS.

∗ Corresponding author e-mail: sohair smz@women.asu.edu.eg

c© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/120333


1288 M. Abdurrahim et al.: On Stochastic Comparisons of Concomitants of GOSs

Similarly, the joint PDF of the concomitants of the rth and the sth GOSs, 1 ≤ r ≤ s ≤ n, indicated as f[r,s:n,m̃,k](v1,v2), is
expressed by

f[r,s:n,m̃,k](v1,v2) =

∞
∫

−∞

∞
∫

w1

f (v1|w1) f (v2|w2) f(r,s:n,m̃,k)(w1,w2)dw2dw1, (4)

where f(r,s:n,m̃,k)(w1,w2) is the joint PDF of the rth and the sth GOSs.
Concomitants are essential in selection problems, parameter estimation, ranked set sampling, characterization and

determination of the parent bivariate distributions. For a brief discussion of the applications of the concomitants of ordered
random variables, see[6] and the references therein.

Motivated by the role of concomitants in many applications, we consider in this paper the problem of comparing
concomitants of GOSs stochastically in terms of stochastic orders. Stochastic ordering is a method of comparing random
quantities in magnitude, variability, dependence, and skewness based on information gathered from the random quantities’
distributions. For a comprehensive treatise of the theory of stochastic orders and its application, see [7].

Many authors have drawn attention to the stochastic comparisons of ordered random variables and their concomitants
in both univariate and multivariate cases. For a detailed description of some stochastic ordering findings on order statistics
and spacing, see [7] and [8]. Stochastic ordering of GOSs was considered by many authors, see, for example, [9], [10],
and [11] and the references therein. The stochastic comparisons of order statistics’ concomitants were considered by
khaledie and Kochar[12], Blessinger[13],[14], Bairamov et al.[15], Amini-Seresht et al. [16] and Erylimaz [17]. Stochastic
comparisons of concomitants of type II progressive censored ordered statistics was considered by Izadi and Khaledi[4].

To the best of our knowledge, there are no previous results regarding the stochastic comparisons of concomitants of
GOSs except for a remark mentioned by Izadi and khaledie[4], who pointed out that most of their one-sample comparisons
in [4] can be valid for the concomitants of GOSs. Their remark is considered as a starting point in our one-sample
comparisons results. In fact, in this article, we are concerned with studying three different types of stochastic orderings.
Precisely, let (Wi,Vi) ,1 ≤ i ≤ n be n independent copies of (W,V ) based on continuous bivariate DF. Let W(r,n,m̃,k) and
V[r,n,m̃,k] be the rth GOS and the corresponding concomitant, respectively. The types of stochastic comparisons considered
are as follows:

1.The one-sample comparisons: We discuss the following scenarios.
(a)Comparison of the GOSs’ concomitants based on the same distribution with different parameters in terms of some

univariate stochastic orders.
(b)Comparison of the rth and sth GOSs’ concomitants with the same parameters n, m̃ and k based on the same

distribution in terms of some joint stochastic orders introduced by Shanthikumar and Yao[18]. Also, we introduce
some new definitions of joint stochastic orders, and perform comparison of GOSs’ concomitants in terms of these
definitions.

2.The two-sample comparisons: We compare, in terms of different stochastic orders, the concomitants of GOSs based
on the same parameters and different parent distributions.

The remaining sections of this article are structured as follows: The preliminaries used in deriving our results are
introduced in Section 2. Our main results are derived in sections 3, 4, and 5. In Section 6, some illustrative examples of
stochastic ordering of concomitants of GOSs, based on some specific bivariate distributions, are introduced.

We will assume in the following, for a continuous RV, Z, having DF, FZ , and PDF, fZ , that the hazard, the reversed
hazard, and the mean residual life functions are respectively defined by hZ(s) = fZ(s)/F̄Z(s), rZ(s) = fZ(s)/FZ(s) and
mZ(s) = (

∫ ∞
s F̄Z(u)du)/F̄Z(s). We denote [V |W = w] to the conditional random variable V given W = w. We say that the

RV, Z, is increasing [decreasing] failure rate IFR[DFR] if hZ(s) increases [decreases] in s. The increasing [decreasing]
reversed failure rate (IRFR [DRFR]) and the increasing [decreasing] mean residual life (IMRL [DMRL]) distributions are
defined analogously.

2 Preliminaries

The following definitions and theorems are used to derive our major findings. Most of the preliminaries presented in this
section can be found in [7].

Definition 1.Assume that W and V are two RVs with DFs FW and FV , respectively. W is called less than V in the

1.usual stochastic order, symbolized as W ≤st V, if F̄W (s)≤ F̄V (s) ∀s ∈R (or alternatively, if for all increasing functions

ψ : R→R, we have E(ψ(W ))≤ E(ψ(V ))),
2.hazard rate order, symbolized as W ≤hr V , if F̄V (s)/F̄W (s) increases in s ∈R (or alternatively, if hW (s)≥ hV (s) for all

s ∈ R),
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3.reversed hazard order, symbolized as W ≤rh V, if FV (s)/FW (s) is increasing in s ∈ R (or if rW (s) ≤ rV (s) ∀s ∈ R) (or

alternatively, if fW (v)FV (w)≤ fV (v)FW (w) for all w ≤ v),

4.mean residual life order, symbolized as W ≤mrl V, if
∫ ∞

s F̄V (v)dv/
∫ ∞

s F̄w(w)dw is increasing in s (or alternatively, if

mW (s)≤ mV (s), ∀s),

5.harmonic mean residual life order, symbolized as W ≤hmrl V, if
∫∞

s F̄w(w)dw

E(w) ≤
∫ ∞

s F̄V (w)dw

E(V ) for all s ≥ 0,

6.likelihood ratio order, symbolized as W ≤lr V, if fV (s)/ fW (s) increases for all s ∈ R,

7.dispersive order, symbolized as W ≤disp V, if F−1
V (w)−F−1

W (w) is increasing in w ∈ (0,1),
8.excess wealth order, symbolized as W ≤ew V, if

∫ ∞
F−1

W (q)
F̄W (w)dw ≤

∫ ∞
F−1

V (q)
F̄V (w)dw for all q ∈ (0,1),

9.convex [concave] [increasing convex] [increasing concave] order, (symbolized as W ≤cx V [W ≤cv V ][W ≤icx V ]
[W ≤icv V ]), if E[ψ(W )] ≤ E[ψ(V )], for all convex [concave][increasing convex] [increasing concave] functions

ψ : R→R.

The following set of implications are well known (see[7]).

W ≤lr V ⇒W ≤hr V [W ≤rh V ]⇒W ≤mrl V ⇒W ≤st V [W ≤hmrl V ]⇒W ≤icx V (5)

W ≤disp V ⇒W ≤ew V. (6)

Theorem 1(see [7] (p. 156)). Assume that W and V are two nonnegative RVs. If W ≤hr V and either W or V are DFR,

then W ≤disp V.

Theorem 2(see[7] (p. 168)). Assume that W and V are two RVs with E(W ) ≤ ∞,E(V ) ≤ ∞ and −∞ < lW ≤ lV < ∞. If

W ≤mrl V, and if either W or V is IMRL, then W ≤ew V .

Some stochastic orderings of compound random variables are stated in the next theorem.

Theorem 3(cf. [7]). Consider a family of distributions {Fϕ ,ϕ ∈X }. Let W (ϕ) indicates a RV with DF FW(ϕ). Let Φ1 and

Φ2 be two RVs with support in X and DFs G1 and G2, respectively. Let the PDF of the compound RV W (Φi), i = 1,2 is

given as

hi(w) =

∫

X

fW (ϕ)(w)dGi(ϕ), w ∈ R, (7)

where fW (ϕ) is the corresponding PDF of FW(ϕ). Then, for ϕ1 ≤ ϕ2

1.W (ϕ1)≤lr W (ϕ2) and Φ1 ≤lr Φ2 ⇒W (Φ1)≤lr W (Φ2),
2.W (ϕ1)≤hr W (ϕ2) and Φ1 ≤hr Φ2 ⇒W (Φ1)≤hr W (Φ2),
3.W (ϕ1)≤mrl W (ϕ2) and Φ1 ≤hr Φ2 ⇒W (Φ1)≤mrl W (Φ2),
4.W (ϕ1)≤hmrl W (ϕ2) and Φ1 ≤hr Φ2 ⇒W (Φ1)≤hmrl W (Φ2),
5.W (ϕ1)≤rh W (ϕ2) and Φ1 ≤rh Φ2 ⇒W (Φ1)≤rh W (Φ2),
6.W (ϕ1)≤st W (ϕ2) and Φ1 ≤st Φ2 ⇒W (Φ1)≤st W (Φ2).

The stochastic orderings mentioned in Definition 1 are concerned with comparing the marginals of FW and FV

without considering the dependence between W and V . To take the dependence into consideration, a bivariate criterion
was proposed by [18], known as the joint stochastic ordering, which is outlined below.

Definition 2.Consider the following classes of functions

Glr := {g(w,v) : R2 −→R;∆g(w,v) = g(w,v)− g(v,w)≥ 0 ,∀w ≥ v},

Ghr := {g(w,v) : R2 −→R;∆g(w,v) increases in w ,∀w ≥ v},

and Gst := {g(w,v) : R2 −→R;∆g(w,v) is increasing in w ,∀v}.

We say that

1.W is greater than V with respect to the joint likelihood ratio order, denoted as W ≥lr: j V , if Eg(W,V )≥ Eg(V,W ), ∀
g ∈ Glr,

2.W is greater than V with respect to the joint hazard rate order, symbolized as W ≥hr: j V , if Eg(W,V) ≥ Eg(V,W), ∀
g ∈ Ghr,

3.W is greater than V in the joint stochastic order, denoted as W ≥st: j V, if Eg(W,V)≥ Eg(V,W), ∀ g ∈ Gst .

Necessary and sufficient conditions for orderings ≤lr: j and ≤hr: j are given below (see [18]).

Theorem 4.Suppose that W and V are two RVs with joint PDF fWV (w,v) and joint survival function F̄WV (w,v). Then,
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1.V ≤lr: j W ⇔ fWV (w,v) ∈ Glr

2.V ≤hr: j W ⇔ ∂
∂v

F̄WV (w,v)≤
∂
∂v

F̄WV (v,w) ∀w ≥ v

Closely related to the definitions of stochastic orders is the concept of sign regular of order 2, SR2, functions defined as
follows (see [19]).

Definition 3.A function f (w,v) is said to be SR2 if ε1 f (w,v) ≥ 0 and

ε2[ f (w1,v1) f (w2,v2)− f (w1,v2) f (w2,v1)]≥ 0 (8)

for w1 ≤ w2,v1 ≤ v2, and εi ∈ {−1,1} for i = 1,2.

If the relation in (8) holds with ε1 =+1 and ε2 =+1 then f is claimed to be totally positive of order 2 (TP2), while if

the relation holds with ε1 =+1 and ε2 =−1then f is said to be reverse regular of order 2 (RR2).

Theorem 5(see [19], p.99). Assume that A ,B, and C are subsets of R, Q(u,w) is SR2 for u ∈ A ,w ∈ B and R(w,v) is

SR2 for w ∈B,v ∈ C . Then P(u,v) =
∫

Q(u,w)R(w,v)dµ(w) is SR2 for u ∈A ,v ∈C and εi(P) = εi(Q)×εi(R),∀i = 1,2,
where µ is a σ -finite measure.

Clearly, from Definition 3 and Theorem 5, we see that the composition of two TP2 functions or two RR2 functions is TP2

and the composition of a TP2 function and a RR2 function is RR2.
Two RVs, W and V , with a joint PDF f are said to be TP2 [RR2] dependent (see[20]) if the function f (w,v) is TP2

[RR2] in u and v; that is if

f (w1,v1) f (w2,v2)≥ [≤] f (w1,v2) f (w2,v1) for all w1 ≤ w2, v1 ≤ v2. (9)

To end this part, we present some key results that establish the stochastic ordering of GOSs.

Theorem 6(Esna-Ashari et al. [9]). Assume that W(r,n,m̃,k),1 ≤ r ≤ n and W(r′,n′,m̃′ ,k′),1 ≤ r′ ≤ n′ are GOSs based on

absolutely continuous DF. Then, W(r,n,m̃,k) ≤lr W(r′,n′,m̃′,k′) whenever r′ ≥ r,mr−i ≥ m′
r′−i

, i ∈ {1,2, . . . ,r− 1} and γr ≥ γ ′
r′
.

The following theorem uses the concept of ”p-larger than”(see [21]). We say that the vector u ∈ R
n+ is p larger than

the vector v ∈ R
n+(written u <p v) if ∏

j
i=1 u(i) ≤ ∏

j
i=1 v(i),1 ≤ j ≤ n, where {z(1) ≤ ·· · ≤ z(n)} denotes the increasing

components arrangement of any vector z = {z1, . . . ,zn}.

Theorem 7(Khaledi [22]). For r ≤ r′, W(r:n,m̃,k) ≤hr W(r′,n′,m̃′ ,k′) whenever

(γ ′l1 , . . . ,γ
′
lr
)<p (γ1, . . . ,γr) for some set {l1, . . . , lr} ⊆ {1, . . . ,r′} (10)

3 One-Sample Comparisons

In this section, we are concerned with the comparison of the GOSs’ concomitants, V[r,n,m̃,k] and V[r′,n′,m̃′,k′], assuming the
same parent bivariate DF and different GOSs’ parameters. Comparing Equations (3) and (7), one can see that V[r,n,m̃,k] is a

compound random variable of [V |W = w] and W(r,n,m̃,k). So, initially, we extend several stochastic comparison findings for
compound random variables, given in Theorem 3, considering alternative assumptions on the stochastic increase of the
RV W (ϕ) in ϕ , and on the stochastic ordering of Φ1 and Φ2, and then we use these results in comparing the concomitants.

3.1 One-Sample comparison of compound random variables

Now we seek the conditions under which the stochastic orderings of W (Φ1) and W (Φ2), stated in Theorem 3, are inverted.
We can easily see, in all parts of Theorem 3, that whenever the ordering of Φ1 and Φ2 is inverted, keeping the ordering of
W (ϕ1) and W (ϕ2) unchanged, the ordering of W (Φ1) and W (Φ2) will be inverted. However, another case to be considered
in each order is stated below. Through Lemmas 1, 2, and 3, we assume that W (ϕ), Φi and W (Φi), i = 1,2, are defined as
in Theorem 3.

Lemma 1.For ϕ1 ≤ ϕ2, we have

1.W (ϕ1)≥lr W (ϕ2) and Φ1 ≤lr Φ2 ⇒W (Φ1)≥lr W (Φ2).
2.W (ϕ1)≥st W (ϕ2) and Φ1 ≤st Φ2 ⇒W (Φ1)≥st W (Φ2).
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Proof. 1.If W (ϕ1)≥lr W (ϕ2) for ϕ1 ≤ ϕ2, then the function fW (ϕi)(w) is RR2 in w and i ∈ {1,2}. If Φ1 ≤lr Φ2, then the

function gi(ϕ) is TP2 in ϕ and i. Therefore, from Theorem 5, the function hi(w) =
∫ ∞
−∞ fW (ϕ)(w)gi(ϕ)dϕ is RR2 in w

and i. Thus W (Φ1)≥lr W (Φ2).
2.If Φ1 ≤st Φ2, then, by Definition 1,

∫ ∞
−∞ k(ϕ)g1(ϕ)dϕ ≤

∫ ∞
−∞ k(ϕ)g2(ϕ)dϕ for any increasing function k. Setting

k(ϕ) =−ψ(ϕ) for any decreasing function ψ(ϕ) we have

∫ ∞

−∞
ψ(ϕ)g1(ϕ)dϕ ≥

∫ ∞

−∞
ψ(ϕ)g2(ϕ)dϕ . (11)

Additionally, if W (ϕ1)≥st W (ϕ2) for ϕ1 ≤ϕ2, then F̄W(ϕ1)(w)≥ F̄W(ϕ2)(w); that is the function F̄W(ϕ)(w) is decreasing

function in ϕ . If we choose ψ(ϕ) = F̄W(ϕ)(w), it follows from (11) that

H̄1(w) =
∫ ∞

−∞
F̄W(ϕ)(w)g1(ϕ)dϕ ≥

∫ ∞

−∞
F̄W(ϕ)(w)g2(ϕ)dϕ = H̄2(w).

Thus, W (Φ1)≥st W (Φ2)

For similar results for the orders ≤hr, ≤rh, and ≤mrl , we introduce the following lemma, which is an extension of Theorem
2.1 in [23].

Lemma 2.Let Gi(φ), i = 1,2 be two DFs. Let fW (φ)(w) be any function of w and φ . Suppose that the integral
∫ ∞
−∞ fW (φ)(w)dGi(φ) exists and is finite. Then the function hi(w) =

∫ ∞
−∞ fW (φ)(w)dGi(φ) is TP2 [RR2] in i and w if one of

the following cases occurs.

1.The function Ḡi(φ) is TP2 in φ and i, and the function fW (φ)(w) is TP2 [RR2] in φ and w and increasing in φ .

2.The function Ḡi(φ) is RR2 in φ and i, and the function fW (φ)(w) is RR2 [TP2] in φ and w and increasing in φ .

3.The function Gi(φ) is TP2 in i and φ , and the function fW (φ)(w) is TP2 [RR2] in φ and w and decreasing in φ .

4.The function Gi(φ) is RR2 in i and φ , and the function fW (φ)(w) is RR2 [TP2] in φ and w and decreasing in φ .

Proof.The function hi(w) is TP2[RR2] whenever, for w1 ≤ w2,

D =

∫ ∞

−∞
fW (φ2)(w2)g2(φ2)dφ2

∫ ∞

−∞
fW (φ1)(w1)g1(φ1)dφ1 −

∫ ∞

−∞
fW (φ2)(w1)g2(φ2)dφ2

∫ ∞

−∞
fW (φ1)(w2)g1(φ1)dφ1 ≥ [≤]0.

Using the basic composition theorem in [19] (p.16) and by means of integration by parts with respect to φ2, one can have
(see theorem 2.1 in [23])

D =

∫∫

φ2≥φ1

(

fW (φ1)(w1)
∂

∂φ2

fW (φ2)(w2)− fW(φ1)(w2)
∂

∂φ2

fW (φ2)(w1)

)

(

g1(φ1)Ḡ2(φ2)− g2(φ1)Ḡ1(φ2)
)

dφ1dφ2. (12)

By a similar argument, if we integrate by parts with respect to φ1, one can have

D =
∫∫

φ2≥φ1

(

fW (φ2)(w1)
∂

∂φ1

fW (φ1)(w2)− fW(φ2)(w2)
∂

∂φ1

fW (φ1)(w1)

)

(g2(φ2)G1(φ1)− g1(φ2)G2(φ1))dφ1dφ2. (13)

Now, it can be seen that each of the conditions in part 1 and part 2 ensures the positivity [negativity] of D in (12), whereas
each of the conditions in part 3 and part 4 ensures the positivity [negativity] of D in (13).

Lemma 3.For ϕ1 ≤ ϕ2 we have

1.W (ϕ1)≥hr W (ϕ2) and Φ1 ≤rh Φ2 ⇒W (Φ1)≥hr W (Φ2).
2.W (ϕ1)≥rh W (ϕ2) and Φ1 ≤hr Φ2 ⇒W (Φ1)≥rh W (Φ2).
3.W (ϕ1)≥mrl W (ϕ2) and Φ1 ≤rh Φ2 ⇒W (Φ1)≥mrl W (Φ2).
4.W (ϕ1)≥hmrl W (ϕ2) and Φ1 ≤rh Φ2 ⇒W (Φ1)≥hmrl W (Φ2).

Proof.1. First, we observe that W (Φ1)≥hr W (Φ2) ⇐⇒ H̄1(w)/H̄2(w) is an increasing function in w, which is the case if
the function H̄i(w) =

∫ ∞
−∞ F̄W(ϕ)(w)gi(ϕ)dϕ is RR2 in i and w. If, for ϕ1 ≤ ϕ2, W (ϕ1) ≥hr W (ϕ2), then F̄W(ϕi)(w) is RR2

in i ∈ {1,2} and ϕ . Moreover, it follows that W (ϕ1) ≥st W (ϕ2). Thus F̄W(ϕ)(w) decreases in ϕ . On the other hand, if

Φ1 ≤rh Φ2, then the function Gi(ϕ) is TP2 in i and ϕ . It follows now from Lemma 2 (part 3) that H̄i(w) is RR2 function
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in w and i ∈ {1,2}.

2. For this part, it is sufficient to have the function H1(w)/H2(w) an increasing function in w; this means, to have
Hi(w) =

∫ ∞
−∞ FW(ϕ)(w)gi(w)dw an RR2 function in w and i, i = 1,2. In fact, for ϕ1 ≤ ϕ2, if W (ϕ1) ≥rh W (ϕ2), then the

function FW(ϕ)(w) is RR2 in w and ϕ . Moreover, for ϕ1 ≤ ϕ2, we have W (ϕ1) ≥st W (ϕ2). Therefore the function

FW(ϕ)(w) is increasing in ϕ . Since Φ1 ≤hr Φ2 implies that the function Gi(ϕ) is TP2 in ϕ and i, it follows, from Lemma

2, Part 1, that Hi(w) is RR2 function in i and w.

3. For this part, W (Φ1)≥mrl W (Φ2) whenever the function

∫ ∞

w
H̄i(t)dt =

∫ ∞

−∞

(

∫ ∞

w
F̄W(ϕ)(t)dt

)

gi(ϕ)dϕ

is RR2 in w and i. In fact, if W (ϕ1) ≥mrl W (ϕ2) then the function
∫ ∞

w F̄W(ϕ)(t)dt is RR2 in w and ϕ . Moreover, we have,

for ϕ1 ≤ ϕ2, W (ϕ1) ≥icx W (ϕ2), implying that the function
∫ ∞

w F̄W(ϕ)(w)dw is a decreasing function in ϕ (see Equation

(4.A.5) in[7]). Since Φ1 ≤hr Φ2 ensures that the function Gi(ϕ) is TP2 in i and ϕ . The required now is immediate using
Lemma 2 (part 1).

4. The proof of this part follows in the same manner as in Part 3, realizing that W (Φ1) ≥hmrl W (Φ2) is similar to
having

∫ ∞
−∞

(
∫ ∞

w F̄W(ϕ)(s)ds
)

g1(ϕ)dϕ
∫ ∞
−∞

(
∫ ∞

0 F̄W(ϕ)(s)ds
)

g1(ϕ)dϕ
≥

∫ ∞
−∞

(
∫ ∞

w F̄W(ϕ)(s)ds
)

g2(ϕ)dϕ
∫ ∞
−∞

(
∫ ∞

0 F̄W(ϕ)(s)ds
)

g2(ϕ)dϕ
, ∀w ≥ 0.

Or equivalently that the function the hi j =
∫ ∞
−∞

(

∫ ∞
j F̄W(ϕ)(s)ds

)

gi(ϕ)dϕ is RR2 in i ∈ {1,2} and j ∈ {0,w} for 0 < w.

3.2 One-Sample Comparisons of Concomitants

Now we turn our attention to stochastic orderings of concomitants of GOSs. It is worth noting that most of the results
obtained in this subsection are direct consequences of the one-sample comparisons of compound random variables,
replacing W (ϕ) by [V |W = w], Φ1 by W(r,n,m̃,k), and Φ2 by W(r′,n′,m̃′,k′).

Theorem 8.Assume that W(r,n,m̃,k),1 ≤ r ≤ n and W(r′,n′,m̃′,k′),1 ≤ r′ ≤ n′ are GOSs based on an absolutely continuous DF,

F. If W and V are TP2 [RR2] dependent, then V[r,n,m̃,k] ≤lr [≥lr]V[r′,n′,m̃′,k′ ] whenever r′ ≥ r,m′
r′−i

≤mr−i for i= 1,2, . . .r−1,

and γr ≥ γ ′
r′

.

Proof.Since W and V are TP2 [RR2] dependent, it follows from (9) that f (v|w2)/ f (v|w1) is an increasing [decreasing]
function in v ∀w1 ≤ w2. Consequently, from Definition 1 (part 6), [V |W = w1]≤lr [≥lr][V |W = w2]. Now, using Theorem
6, Theorem 3 (part 1) and Lemma 1 (part 1), we have V[r,n,m̃,k] ≤lr [≥lr]V[r′,n′,m̃′,k′].

Theorem 9.Let (γ ′l1 , . . . ,γ
′
lr
)<p (γ1, . . . ,γr) for some set {l1, . . . , lr} ⊆ {1, . . . ,r′} for r′ ≥ r.

1.If hV |W (v|w) is decreasing [increasing] in w, then V[r,n,m̃,k] ≤hr [≥hr]V[r′,n′,m̃′,k′].

2.If rV |W (v|w) is decreasing in w, then V[r,n,m̃,k] ≥rh V[r′,n′,m̃′,k′ ].

3.If mV |W (v|w) is increasing [decreasing] in w, then V[r,n,m̃,k] ≤mrl [≥mrl ]V[r′,n′,m̃′,k′].

4.If, for non negative RVs, W and V ,
∫ ∞

j F̄V |W (v|w)dy is TP2 [RR2] in w and j ∈ {0, t};0 ≤ t, then V[r,n,m̃,k] ≤hmrl [≥hmrl

]V[r′,n′,m̃′,k′].

Proof.Under the given condition, Theorem 7 implies that W(r,n,m̃,k) ≤hr W(r′,n′,m̃′,k′). So,

1.If hV |W (v|w) decreases [increases] in w, then [V |W = w1]≤hr [≥hr][V |W = w2] for all w1 ≤ w2, and the result in part
1 follows from Theorem 3 (part 2) [Lemma 3 (part 1)].

2.If rV |W (v|w) decreases in w, then [V |W = w1] ≥rh [V |W = w2] for all w1 ≤ w2. Lemma 3 (part 2) leads now to the
conclusion in part 2.

3.If mV |W (v|w) increases [decreases] in w then [V |W = w1]≤mrl [≥mrl ][V |W = w2] for all w1 ≤ w2. The result in part 3
is immediate now from Theorem 3 (part 3) [Lemma 3 (part 3)].
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4.If
∫ ∞

j F̄V |W (v|w)dv is TP2 [RR2] in j ∈ {0, t} and w, then

∫ ∞

t
F̄V |W (v|w1)dv

∫ ∞

0
F̄V |W (v|w2)dv ≤ [≥]

∫ ∞

t
F̄V |W (v|w2)dv

∫ ∞

0
F̄V |W (v|w1)dv

for all w2 ≥ w1. Or equivalently we have

∫ ∞
t F̄V |W (v|w1)dv

E(V |W = w1)
≤ [≥]

∫ ∞
t F̄V |W (v|w2)dv

E(V |W = w2)
, ∀w1 ≤ w2.

Or, [V |W = w1]≤hmrl [≥hmrl ][V |W = w2] for all w1 ≤ w2. Theorem 3 (part 4) [Lemma 3 (part 4)] ensures the result in
part 4.

The following lemma is used in deriving the excess wealth ordering among concomitants. The lemma demonstrates
that the mixture of IMRL distributions is an IMRL distribution.

Lemma 4.If Fα is IMRL distribution for all 0 < α < ∞, and G is a distribution function on (0,∞), then F is IMRL, where

F(t) =
∫ ∞

0 Fα(t)dG(α).

Proof.First we note that if Fα is IMRL ∀α then d/dw[(
∫ ∞

w F̄α(u)du)/F̄α(w)]≥ 0 ∀α . Therefore

(F̄α(w))
2 ≤ fα(w)

∫ ∞

w
F̄α(u)du, ∀α,∀w. (14)

It follows that

[F̄(w)]2 =

[

∫ ∞

0
F̄α(w)dG(α)

]2

≤

[

∫ ∞

0
( fα (w))

1
2

(

∫ ∞

w
F̄α(u)du

)
1
2

dG(α)

]2

≤

(

∫ ∞

0
fα (w)dG(α)

)(

∫ ∞

0

(

∫ ∞

w
F̄α(u)du

)

dG(α)

)

= f (w)
∫ ∞

w
F̄(u)du, (15)

where the first inequality is due to (14), and the second inequality results from Cauchy-Schwartz inequality (see e.g.[24]).
Equation (15) ensures that the function

∫ ∞
w F̄(u)du/F̄(u) increases in w. Consequently, F is IMRL.

Corollary 1.Let (γ ′l1 , . . . ,γ
′
lr
)<p (γ1, . . . ,γr) for some set {l1, . . . , lr} ⊆ {1, . . . ,r′} for r ≤ r′.

1.If hV |W (v|w) decreases in both w and v, then V[r,n,m̃,k] ≤disp V[r′,n′,m̃′,k′].

2.If mV |W (v|w) increases in both w and v, then V[r,n,m̃,k] ≤ew V[r′,n′,m̃′,k′].

Proof. 1.The assumption that hV |W (v|w) decreases in w along with the given condition imply that V[r,n,m̃,k] ≤hr V[r′,n′,m̃′,k′ ]

by Theorem 9 (part 1). Moreover, if hV |W (v|w) is decreasing in v, then the distribution of V[r,n,m̃,k] is a mixture of
DFR distribution and hence it is a DFR distribution (see Ross[24], Proposition 9.1.5). Now the result is immediate by
Theorem 1.

2.The given conditions in part 2 imply V[r,n,m̃,k] ≤mrl V[r′,n′,m̃′,k′] by Theorem 9 (part 2). Moreover, if mV |W (v|w) increases
in v, then V[r,n,m̃,k] has a DF that is a mixture of IMRL distribution functions, and hence, by using Lemma 4, it is an
IMRL distribution. Now, Theorem 2 ensures our conclusion.

4 The Joint Stochastic Ordering

In this section, we identify the conditions for constructing joint stochastic orders of concomitants of GOSs in terms of the
joint stochastic orders introduced in [18]. Namely, we investigate the orders ≤lr: j ,≤hr: j and ≤st: j. Furthermore, based on
some bivariate characterization for the orders ≤rh and ≤cx, we introduce a ”joint reversed hazard ordering,” denoted by
≤rh: j, and a ”joint convex [concave] ordering,” denoted by ≤cx: j [≤cv: j], and compare the concomitants of GOSs using
these new orders.

Theorem 10.Assume that W and V are two RVs with joint PDF fWV (w,v). If W and V are RR2 [T P2] dependent, then

V[r:n,m̃,k] ≥lr: j [≤lr: j]V[s:n,m̃,k] for r ≤ s.
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Proof.If W and V are RR2 [TP2] dependent, then, from (9), we have f (v1|w1) f (v2|w2)− f (v2|w1) × f (v1|w2) ≥ 0 for
w1 ≤ w2 and v2 ≤ [≥]v1. Consequently, for r ≤ s,

f[r,s:n,m̃,k](v1,v2) − f[r,s:n,m̃,k](v2,v1) =

∫∫

w2≥w1

[ f (v1|w1) f (v2|w2) − f (v2|w1) f (v1|w2)] fs,r,n,m̃,k(w2,w1)dw2dw1 ≥ 0,

for all v2 ≤ [≥]v1. Thus, for r ≤ s, f[r,s:n,m̃,k](v1,v2) ∈ Glr [ f[s,r:n,m̃,k](v2,v1) ∈ Glr], where the class Glr is given as in

Definition 2. Using Theorem 4, Part 1, results directly that V[r:n,m̃,k] ≥lr: j [≤lr: j]V[s:n,m̃,k] for r ≤ s.

Theorem 11.Let W and V be two RVs with conditional hazard function hV |W (v|w). If hV |W (v|w) increases [decreases] in

w, then V[r:n,m̃,k] ≥hr: j [≤hr: j]V[s:n,m̃,k] for s ≥ r.

Proof.If hV |W (v|w) increases in w, then hV |W (v|w2)≥ hV |W (v|w1) for all w2 ≥ w1. Consequently, using Definition 1, Part

3, we get f (v2|w2)F̄(v1|w1)≥ F̄(v1|w2) f (v2|w1) for all v1 ≥ v2 and w2 ≥ w1. It follows that, for r ≤ s,

∂

∂v2

F̄[r,s:n,m̃,k](v1,v2)−
∂

∂v2

F̄[r,s:n,m̃,k](v2,v1) =

∫∫

w2≥w1

[−F̄(v1|w1) f (v2|w2)+ f (v2|w1)F̄(v1|w2)] fr,s:n,m̃,k(w2,w1)dw1dw2

is ≤ 0 for v1 ≥ v2. Thus, using Theorem 4, Part 2, it follows that V[r:n,m̃,k] ≥hr: j V[s:n,m̃,k] for s ≥ r. We can prove in the

same manner that the ordering is reversed if hV |W (v|w) is decreasing in w.

Theorem 12.Consider two RVs, W and V , with joint DF, F(w,v). If [V |W = w1] ≥st [≤st ][V |W = w2] for w1 ≤ w2, then

V[r,n,m̃,k] ≥st: j [≤st: j]V[s,n,m̃,k] for r ≤ s.

Proof.Let g ∈ Gst , where Gst is defined in Definition 2. Since, for r ≤ s,

E(g(V[r,n,m̃,k],V[s,n,m̃,k]))−E(g(V[s,n,m̃,k],V[r,n,m̃,k]))

=

∫∫

w2≥w1

(

∫∫ ∞

−∞
∆g(v1,v2)dF(v1|w1)dF(v2|w2)

)

fr,s:n,m̃,k(w1,w2)dw1dw2

=

∫∫

w2≥w1

(

∫ 1

0

∫ 1

0
∆g(F−1

V |W=w1
(u1),F

−1
V |W=w2

(u2))du1du2

)

fr,s:n,m̃,k(w1,w2)dw1dw2

=

∫∫

w2≥w1

(

∫∫

u1≥u2

∆g(F−1
V |W=w1

(u1),F
−1

V |W=w2
(u2))−

∆g(F−1
V |W=w2

(u1),F
−1

V |W=w1
(u2))du1du2

)

fr,s:nm̃,k(w1,w2)dw1dw2 ≥ [≤]0,

where, by setting v1 = F−1
V |W=w1

(u1) and v2 = F−1
V |W=w2

(u2) the second equality results. The inequality follows from the

fact that if V decreases stochastically [increases] in W , then, using Definition 1 part (1), we have
F−1

V |w1
(u1)≥ [≤]F−1

V |w2
(u1) and F−1

V |w2
(u2)≤ [≥]F−1

V |w1
(u2). Further, if g ∈ Gst , then ∆g(u,v) decreases in v ∀u and increases

in u ∀v. Thus, ∆g(F−1
V |w1

(u1),F
−1

V |w2
(u2))≥ [≤]∆g(F−1

V |w2
(u1),F

−1
V |w1

(u2)). Now the result follows using Definition 2, Part 3.

A bivariate characterization for the order ≤rh is given in the next theorem (cf. Theorem 3.2 in [25]).

Theorem 13.For two independent RVs, W and V , W ≥rh V ⇔ E(g(W,V))≥ E(g(V,W )), ∀g ∈ Grh, where

Grh := {g : R2 → R;∆g(w,v) = g(w,v)− g(v,w) is decrasing in v ∀w ≥ v}. (16)

Based on this characterization, we introduce the definition of the order ≤rh: j as follows.

Definition 4.Let W and V be two RVs, we say that W is greater than V in the joint reversed hazard order, symbolized as

W ≥rh: j V, if E(g(W,V )≥ E(g(V,W )), ∀g ∈ Grh; where Grh is defined in (16).

Next, we introduce a sufficient and necessary condition for the joint reversed hazard ordering.

Lemma 5.Let W and V be two RVs having joint DF FWV (w,v). W ≥rh: j V if and only if ∂
∂w

FWV (w,v)≥
∂

∂w
FWV (v,w),∀w ≥

v.
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Proof.Define the class G ∗
rh of bivariate functions as

G
∗
rh = {g : R2 →R : g(w,v) decreases in v, ∀w ≥ v, and increases in w, ∀v ≥ w}.

Clearly, G ∗
rh ⊆ Grh. If W ≥rh; j V , then, from Definition 4, for all g ∈ G ∗

rh,

∫∫ ∞

−∞
g(t,s) fWV (t,s)dtds ≥

∫∫ ∞

−∞
g(s, t) fWV (t,s)dtds. (17)

Let, for w ≥ v and ∆ ≥ 0, g(t,s) = I{w+∆≥t≥w,s≤v}, where IA symbolizes the indicator function on a set A . It is clear that

g(t,s) is decreasing in s and g(t,s) = 0 for s ≥ t. Therefore g(t,s) ∈ G ∗
rh. It follows from (17) that

F(w+∆ ,v)−F(w,v)≥ F(v,w+∆)−F(v,w), (18)

for w ≥ v. Dividing the two sides of (18) by ∆ and applying limit as ∆ → 0, we have ∂
∂u

FWV (w,v) ≥
∂

∂w
FWV (v,w),

∀w ≥ v.

Conversely, let ∂
∂w

FWV (w,v)≥
∂

∂w
FWV (v,w),∀w ≥ v, and let g ∈ Grh. Then

E(g(W,V))−E(g(V,W)) =

∫∫ ∞

−∞
∆g(w,v) fWV (w,v)dwdv

=
∫∫

w≥v
∆g(w,v)[ fWV (w,v)− fWV (v,w)]dwdv

=
∫∫

w≥v

(

−
∂

∂v
∆g(w,v)

)(

∂

∂w
FWV (w,v)−

∂

∂w
FWV (v,w)

)

dwdv ≥ 0,

where integrating by parts with respect to v results in the final equality. The inequality is due to the fact that g ∈ Grh

implies that − ∂
∂v

∆g(w,v)≥ 0. Using Definition 4, and the above inequality we see that W ≥hr: j V .

Theorem 14.Assume that W and V are two RVs with joint DF, FWV (w,v). If rV |W (v|w) decreases [increases] in w, then,

for s ≥ r, V[r,n,m̃,k] ≥rh: j [≤rh: j]V[s,n,m̃,k].

Proof.If rV |W (v|w) decreases in w, then rV |W (v|w1) ≥ rV |W (v|w2) for all w2 ≥ w1. Consequently, using Definition 1, Part

3, we get F(v2|w2) f (v1|w1)≥ F(v2|w1) f (v1|w2) for all v1 ≥ v2 and w2 ≥ w1. It follows that, for r ≤ s,

∂

∂v1

F[r,s:n,m̃,k](v1,v2)−
∂

∂v1

F[r,s:n,m̃,k](v2,v1) =

∫∫

w2≥w1

[ f (v1|w1)F(v2|w2)−F(v2|w1) f (v1|w2)] fr,s:n,m̃,k(w1,w2)dw1dw2 ≥ 0,

for v1 ≥ v2. Thus, using Lemma 5, it follows that V[r:n,m̃,k] ≥rh: j V[s:n,m̃,k] for s ≥ r. We can prove in the same manner that

if r(v|w) increases in w, then V[r:n,m̃,k] ≤rh: j V[s:n,m̃,k] for s ≥ r.

In order to define the joint convex [increasing convex][concave][increasing concave] orders, we recall the next bivariate
characterizations for the orders ≤cx [≤icx][≤cv][≤icv]. Consider first the next classes of functions.

Gcx[Gcv][Gicx][Gicv] :=
{

g : R2 → R : ∆g(w,v) = g(w,v)− g(v,w)

is convex [increasing and convex] [concave][increasing and concave] in w ∀v}

Theorem 15(see [7]. P. 115, 185). Let W and V be two independent RVs. Then W ≥cx [≥cv][≥icx][≥icv]V ⇔ Eg(W,V )≥
Eg(V,W), ∀g ∈ Gcx[Gcv][Gicx][Gicv].

Based on the characterization in Theorem 15 we introduce the ”joint convex order” below. The joint orders, ≤cv: j,≤icx: j

and ≤icv: j can be defined analogously.

Definition 5.Let W and V be two RVs, we claim that W is greater than V in the joint convex order, symbolized as W ≥cx: j V,

if Eg(W,V)≥ Eg(V,W), ∀g ∈ Gcx.
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Theorem 16.Assume that W and V are two RVs. If [V |W = w1]≥cx [≤cx][V |W = w2], w1 ≤ w2, then V[r,n,m̃,k] ≥cx: j [≤cx: j

]V[s,n,m̃,k] for s ≥ r.

Proof.If [V |W = w1]≥cx [≤cx][V |W = w2] for w1 ≤ w2, then

∫ ∞

−∞
φ(v1) fV |W (v1|w1)dv1 ≥ [≤]

∫ ∞

−∞
φ(v2) fV |W (v2|w2)dv2, (19)

for all w1 ≤ w2 and for any convex functions φ . Define φ(v1) = ∆g(v1,v2) to be a convex function in v1, we have

Eg(V[r,n,m̃,k],V[s,n,m̃,k])−Eg(V[s,n,m̃,k],V[r,n,m̃,k])

=

∫∫

w2≥w1

(

∫∫ ∞

−∞
∆g(v1,v2) f (v2|w2) f (v1|w1)dv1dv2

)

f(r,s,n,m̃,k)(w1,w2)dw1dw2

=
∫∫

w2≥w1

(

∫ ∞

∞

[

∫ ∞

−∞
φ(v1) f (v1|w1)dv1

]

f (v2|w2)dv2

)

f(r,s,n,m̃,k)(w1,w2)dw1dw2

≥ [≤]

∫∫

w2≥w1

(

∫ ∞

∞

[

∫ ∞

−∞
φ(v2) f (v2|w2)dv2

]

f (v2|w2)dv2

)

f(r,s,n,m̃,k)(w1,w2)dw1dw2 = 0

where the inequality follows from (19), and the final equality is obtained by recognizing that φ(v2) = ∆g(v2,v2) = 0. The
result now follows from Definition 5.

5 Two-Sample Comparisons

Let (Wi,Vi),1 ≤ i ≤ n be n independent copies of (W,V ). Let these tuples be arranged according to the W variate so that
W(r,n,m̃,k) and V[r,n,m̃,k] are the rth GOS and the corresponding concomitant, respectively. Let (Si,Ti),1 ≤ i ≤ n be another

bivariate sample of size n from another bivariate variables (S,T ). Assume further that these tuples are arranged
according to their S variable, so that S(r,n,m̃,k) and T[r,n,m̃,n] are the rth GOS and the corresponding concomitant,
respectively. Here we are interested to compare V[r,n,m̃,k] and T[r,n,m̃,n] in different types of stochastic orders. Such
comparisons are called two-sample comparisons.

The next lemma is used to drive the fundamental results of the concomitants’ two-sample comparisons.

Lemma 6.Let W (φ) be a RV with DF, FW(φ)(.) ,φ ∈ X ⊆ R. Let Φ be a RV having support X and DF, GΦ (.). Let the

compound random variable W (Φ) have a PDF, hW(Φ) given as

hW(Φ)(u) =

∫

X

fW (φ)(u)gΦ(φ)dφ . (20)

Let V (ω) have a distribution function, FV (ω)(.) , ω ∈X ⊆R. Let Ω be a RV having support X and having a DF, GΩ (.).

Let the compound RV, V (Ω) have a PDF hV (Ω)(.) given as

hV (Ω)(u) =

∫

χ
fV (ω)(u)gΩ (ω)dω . (21)

1.If W (φ) ≤lr V (ω), then W (Φ) ≤lr V (Ω).
2.If W (φ) ≤hr V (ω), then W (Φ)≤hr V (Ω).
3.If W (φ) ≤rh V (ω), then W (Φ)≤rh V (Ω).
4.If W (φ) ≤mrl V (ω), then W (Φ)≤mrl V (Ω).
5.If W (φ) ≤hmrl V (ω), then W (Φ) ≤hmrl V (Ω).
6.For non-negative RVs, W (φ) and V (ω), if W (φ) ≤hr V (ω), and if either W (φ) is DFR ∀φ ∈ X or, V (ω) is DFR

∀ω ∈ X , then W (Φ)≤disp V (Ω).
7.If W (φ) ≤mrl V (ω) and either W (φ) is IMRL ∀φ ∈ X or V (ω) is IMRL ∀ω ∈ X , then W (Φ) ≤ew V (Ω).
8.If W (φ) ≤st V (ω) and Φ ≤st Ω , then W (Φ) ≤st V (Ω).
9.If W (φ) ≤icx V (ω),Φ ≤st Ω and either

∫ ∞
t F̄W(φ)(u)du is increasing in φ , or

∫ ∞
t F̄V(ω)(u)du is increasing in ω , then

W (Φ)≤icx V (Ω).
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Proof. 1.If W (φ)≤lr V (ω), then, by Definition 1, Part 6, fV (ω)(w2) fW (φ)(w1)− fV (ω)(w1) fW (φ)(w2)≥ 0 for w1 ≤ w2. It
follows, for w1 ≤ w2 that

hV (Ω)(w2)hW(Φ)(w1)− hV(Ω)(w2)hW(Φ)(w1)

=

∫

X

∫

X

[ fV (ω)(w2) fW (φ)(w1)− fV(ω)(w1) fW (φ)(w2)]gΦ(φ)gΩ (ω)dφdω ≥ 0.

Therefore hV(Ω)(w)/hW (Φ)(w) is an increasing function in w ∈ R. Thus W (Φ) ≤lr V (Ω).

2.If W (φ) ≤hr V (ω), then, by Definition 1, Part 2, F̄V(ω)(w2)F̄W(φ)(w1)− F̄V (ω)(w1)F̄W (φ)(w2) ≥ 0 for w2 ≥ w1. It
follows, for w2 ≥ w1, that

H̄V (Ω)(w2)H̄W (Φ)(w1)− H̄V(Ω)(w2)H̄W(Φ)(w1)

=

∫

X

∫

X

[

F̄V (ω)(w2)F̄W(φ)(w1)− F̄V(ω)(w1)F̄W (φ)(w2)
]

gΩ (ω)gΦ(φ)dωdφ ≥ 0.

Therefore, the function H̄V (Ω)(w)/H̄W (Φ)(w) is increasing in w ∈ R. Thus, W (Φ)≤hr V (Ω).
3.The proof of this part is parallel to the proof of part 2, replacing every survival function by the corresponding

distribution function. The result follows using Definition 1, Part 3.
4.If W (φ)≤mrl V (ω), we have

∫ ∞
w2

F̄V (ω)(t)dt
∫ ∞

w1
F̄W(φ)(t)dt−

∫ ∞
w2

F̄V (ω)(t)dt
∫ ∞

w1
F̄W(φ)(t)dt ≥ 0 for w2 ≥ w1. Then,

∫ ∞

w2

H̄V (Ω)(t)dt

∫ ∞

w1

H̄W(Φ)(t)dt −

∫ ∞

w1

H̄V (Ω)(t)dt

∫ ∞

w2

H̄W (Φ)(t)dt

=

∫

X

∫

X

(

∫ ∞

w2

F̄V (ω)(t)dt

∫ ∞

w1

F̄W(φ)(t)dt −

∫ ∞

w2

F̄V (ω)(t)dt

∫ ∞

w1

F̄W(φ)(t)dt

)

gΩ (ω)gΦ(φ)dφdω ≥ 0,

for w2 ≥ w1. Therefore, the function
∫ ∞

w H̄V (Ω)(t)dt/(
∫ ∞

w H̄W (Φ)(t)dt) is increasing in w. Thus, W (Φ) ≤mrl V (Ω).
5.For proving part 5, it suffices to demonstrate that

δ =

(

∫ ∞

w
H̄V (Ω)(t)dt

)

E(W (Φ))−

(

∫ ∞

w
H̄W(Φ)(t)dt

)

E(V (Ω))≥ 0

Since E(W (Φ)) =
∫

X

(
∫ ∞
−∞ t fW (φ)(t)dt

)

gφ (φ)dφ , therefore

δ =

∫

X

∫

X

[(

∫ ∞

w
F̄V(ω)(t)dt

)(

∫ ∞

−∞
t fW (φ)(t)dt

)

−

(

∫ ∞

w
F̄W(Φ)(t)dt

)(

∫ ∞

−∞
t fV (ω)(t)dt

)]

gΦ(φ)gΩ (ω)dφdω .

Now, for W (φ) ≤hmrl V (ω), it is clear to observe that the quantity between the square brackets is ≥ 0, ensuring that
δ ≥ 0.

6.If W (φ) ≤hr V (ω), then, by Part 2, W (Φ) ≤hr V (Ω). If W (φ) is DFR, ∀φ ∈ X , it follows that the mixture W (Φ) is
DFR (see [24] P. 408). Now, the result is immediate using Theorem 1 .

7.If W (φ) ≤mrl V (ω), then, by Part 4, W (Φ) ≤mrl V (Ω). If W (φ) is IMRL, ∀φ ∈ X , it follows by Lemma 4 that the
mixture W (Φ) is IMRL. Now, the result is immediate using Theorem 2.

8.The proof of this part depends on the multi-variable stochastic order concept (see [7]). since

[W (Φ)|Φ = φ ] =st W (φ) ≤st V (ω) =st [V (Ω)|Ω = ω ], (22)

and if further Φ ≤st Ω , then it results from Theorem 6.B.3 in [7] that (Φ,W (Φ)) less than (Ω ,V (Ω)) in multivariate
stochastic order. Since the joint stochastic order is closed under marginalization (Theorem 6.B.16 (Part c) in [7]). It
results that W (Φ)≤st V (Ω).

9.For proving part 9, we have to prove that
∫ ∞

x H̄W(Φ)(t)dt ≤
∫ ∞

x H̄V (Ω)(t)dt,x ∈ R. or equivalently to prove, ∀ x ∈ R,
that

∫

X

(

∫ ∞

x
F̄W(φ)(t)dt

)

gΦ(φ)dφ ≤
∫

X

(

∫ ∞

x
F̄V (ω)(t)dt

)

gΩ (ω)dω . (23)

If W (φ)≤icx V (ω), therefore
∫ ∞

x F̄W(φ)(t)dt ≤
∫ ∞

x F̄V (ω)(t)dt, for all x ∈ R, φ and ω ∈ X . In particular, for all x ∈R,
we have

∫

X

(

∫ ∞

x
F̄W(ω)(t)dt

)

gΩ (ω)dω ≤
∫

X

(

∫ ∞

x
F̄V(ω)(t)dt

)

gΩ (ω)dω . (24)
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Now, if Φ ≤st Ω , therefore
∫

X
ψ(φ)gΦ(φ)dφ ≤

∫

X
ψ(ω)gΩ (ω)dω for all increasing functions ψ(.). If further

ψ(φ) =
∫ ∞

x F̄W(φ)(t)dt is increasing function in φ , therefore

∫

X

(

∫ ∞

x
F̄W(φ)(t)dt

)

gΦ(φ)dφ ≤

∫

X

(

∫ ∞

x
F̄W (ω)(t)dt

)

gΩ (ω)dω ∀x ∈ R (25)

from (24) and(25) we get the required in (23).

Comparing (20) and (21) with (3), the results in 1 through 9 in the following theorem follow directly from their
counterparts in Lemma 6, replacing W (φ) by [V |W = w], V (ω) by [T |S = w], Φ by W(r,n,m̃,k), and Ω by S(r,n,m̃,k), taking
into consideration that W ≤st S implies, from Corollary 3.2 in [26], that W(r,n,m̃,k) ≤st S(r,n,m̃,k).

Theorem 17.Let V[r,n,m̃,k] and T[r,n,m̃,k] be the concomitants of GOSs based on bivariate samples (Wi,Vi),1 ≤ i ≤ n and

(Si,Ti),1 ≤ i ≤ n, respectively.

1.If [V |W = w]≤lr [T |S = w], then V[r,n,m̃,k] ≤lr T[r,n,m̃,k].

2.If [V |W = w]≤hr [T |S = w], then V[r,n,m̃,k] ≤hr T[r,n,m̃,k].

3.If [V |W = w]≤rh [T |S = w], then V[r,n,m̃,k] ≤rh T[r,n,m̃,k].

4.If [V |W = w]≤mrl [T |S = w], then V[r,n,m̃,k] ≤mrl T[r,n,m̃,k].

5.If [V |W = w]≤hmrl [T |S = w], then V[r,n,m̃,k] ≤hmrl T[r,n,m̃,k].

6.For non-negative RVs [V |W = w] and [T |S = w], if [V |W = w] ≤hr [T |S = w] and if either [V |W = w] is DFR ∀w or

[T |S = s] is DFR, ∀s, then V[r,n,m̃,k] ≤disp T[r,n,m̃,k].

7.If [V |W = w]≤mrl [T |S = w] and if either [V |W = w] is IMRL, ∀w, or [T |S = s] is IMRL, ∀s, then V[r,n,m̃,k] ≤ew T[r,n,m̃,k].

8.If [V |W = w]≤st [T |S = w] and W ≤st S, then V[r,n,m̃,k] ≤st T[r,n,m̃,k].

9.If [V |W = w] ≤icx [T |S = w], W ≤st S and if either F̄V |W=w(v|w) increases in w or F̄T |S=s(t|s) increases in s, then

V[r,n,m̃,k] ≤icx T[r,n,m̃,k].

6 Illustrative Examples

Some illustrative examples of stochastic ordering of GOSs’ concomitants are provided. These examples are based on
certain particular bivariate distributions, which can be found in [20].

Example 1.Let V[r,n,m̃,k] and V[r′,n′,m̃′,k′ ] be the concomitants corresponding to the GOSs W(r,n,m̃,k) and W(r′,n′,m̃′,k′), based on
the bivariate Lomax PDF

f (w,v) =
c[ab+ c(a+φv)(b+φw)−φ ]

(1+ aw+ bv+φwv)c+2
, (26)

where 0 ≤ φ ≤ ab(c+ 1),0 ≤ a,b,c. If 0 ≤ φ ≤ ab, then:

1.V[r,n,m̃,k] ≤lr V[r′,n′,m̃′,k′ ] if r ≤ r′,mr−i ≥ m′
r′−i

for i = 1, . . . ,r− 1 and γr ≥ γ ′
r′

2.V[r,n,m̃,k] ≤disp V[r′,n′,m̃′,k′] if (γ ′l1 , . . . ,γ
′
lr
)<p (γ1, . . . ,γr) for some set {l1, . . . , lr} ⊆ {1, . . . ,r′} for r ≤ r′.

In fact, It follows, from (26), that ∂
∂v

(

f (w2,v)
f (w1,v)

)

≥ 0 for w1 ≤ w2 if

(1+ aw1 + bv+φw1v)(1+ aw2 + bv+φw2v) cφ(ab−φ)φ(w2 −w1)

+ (c+ 2)(c(b+φw2)(a+φv)+ ab−φ)(c(b+φw1)(a+φv)+ ab−φ)(w2−w1)(ba−φ)≥ 0,

which is satisfied whenever 0 ≤ φ ≤ ab, for all w1 ≤ w2, and for a,b,c ≥ 0. Thus W and V are TP2 dependent. The order
≤lr in Part 1 follows now using Theorem 8.

Moreover, since f (w,v) is TP2, it results that [V |W = w1]≤lr [V |W = w2] for w1 ≤ w2. Thus, [V |W = w1]≤hr [V |W =
w2]. Hence, the function h(v|w) decreases in w. On the other hand, the conditional hazard of V given W = w, given by

h(v|w) =
c(b+φw)(a+φv)+ ab−φ

(1+ aw+ bv+φwv)(a+φv)
,

decreases in v whenever ∂
∂v
[h(v|w)] ≤ 0. Or equivalently if −[c(b+ aw)2(a+ φv)2 +(ab− φ)[φ(1+ aw+ bv+ φwv)+

(b+ φw)(a+ φv)]] ≤ 0, which is the case whenever ab ≥ φ . Corollary 1, Part 1, now forms the basis for the dispersive
ordering in Part 2.
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An example of bivariate DF with negative dependence is given below.

Example 2.Let V[r,n,m̃,k] and V[r′,n′,m̃′ ,k′] be the concomitants corresponding to the GOSs W(r,n,m̃,k) and W(r′,n′,m̃′,k′) based on
the bivariate finite range survival function given by

F̄(w,v) = (1−θ1w−θ2v−θ3wv)p, (27)

where θ1,θ2 > 0, −1 ≤ θ3
θ1θ2

≤ p − 1, 0 ≤ w ≤ θ−1
1 , 0 ≤ v ≤ 1−θ1w

θ2+θ3w
. If p ≥ 2, then V[r,n,m̃,k] ≥lr V[r′,n′,m̃′,k′ ] if

r′ ≥ r,m′
r′−l

≤ mr−l for 1 ≤ l ≤ r− 1, and γr ≥ γ ′
r′

.

In fact, the PDF corresponding to (27) is

f (w,v) = p(1−θ1w−θ2v−θ3wv)p−2[p(θ1 +θ3)v(θ2 +θ3w)−θ1θ2 −θ3].

It follows that, for w1 ≤ w2,

∂

∂v

[

f (w2,v)

f (w1,v)

]

= (θ1θ2 +θ3)(w1 −w2) [(p− 2)(p(θ1 +θ3v)(θ2 +θ3w2)−θ1θ2 −θ3)

×(p(θ1 +θ3v)(θ2 +θ3w1)−θ1θ2 −θ3)+ pθ 2
3 (1−θ1w2 −θ2v−θ3w2v)(1−θ1w1 −θ2v−θ3w2v)

]

.

It can be seen that, if p ≥ 2, then ∂/∂v[ f (w2,v)/ f (w1,v)] ≤ 0, ∀ w1 ≤ w2. Consequently W and V are RR2 dependent.
Theorem 8 then dictates the result.

An example of the ordering ≤lr of concomitants in the two-sample setup is given by Example 3.

Example 3.Suppose that V[r,n,m̃,k] is the concomitant of the rth GOS based on the Marshal-Olkin bivariate exponential

distribution (MOBVE) with parameters (λ1,λ2,λ12) (see [20] p.413) with conditional pdf given by

fV |W (v|w) =

{

λ1(λ2+λ12)
λ1+λ12

e−λ2v−λ12(v−w); for v > w

λ2e−λ2v; for v < w
.

Suppose that T[r,n,m̃,k] is the concomitant of the rth GOS of the MOBVE with parameters (λ ′
1,λ

′
2,λ

′
12). If λ2 ≥ λ ′

2 and

λ12 ≥ λ ′
12, then V[r,n,m̃,k] ≤lr T[r,n,m̃,k].

This follows from the fact that, for w ≥ t, we have

fT |S(t|w)

fV |W (t|w)
=

λ ′
2

λ2

e−(λ ′
2−λ2)t ,

which increases in t if λ ′
2 ≤ λ2.

For w ≤ t, we have
fT |S(t|w)

fV |W (t|w)
=

(

(λ1 +λ12)(λ
′
2 +λ ′

12)λ
′
1

(λ ′
1 +λ ′

12)λ1(λ2 +λ12)

)

e(λ2−λ ′
2)t+(λ12−λ ′

12)(t−w). (28)

It is clear that the ratio in (28) increases in t, for w ≤ t, if λ2 ≥ λ ′
2 and λ12 ≥ λ ′

12. Therefore [V |W = w] ≤lr [T |S = w]
whenever λ2 ≥ λ ′

2 and λ12 ≥ λ ′
12. Theorem 17(part 1) leads to the conclusion.

7 Concluding Remarks

–In the one sample problem, we have noticed that the stochastic comparisons of the GOSs’ concomitants, based on
a continuous bivariate DF FWV (w,v), depend on the stochastic ordering of GOSs and on how V is stochastically
monotone in W (dependence between W and V ).

–It has been proven that if V increases stochastically in W with regard to the orders ≤cx,≤rh,≤hr, and ≤lr, then, for
r = 1, . . . ,n the concomitants V[r,n,m̃,k] are stochastically increasing in r in sense of the orders ≤cx: j,≤rh: j,≤hr: j, and
≤lr: j , respectively.

–In the two-sample setup, based on any two continuous bivariate distribution FWV (w,v) and FST (s, t), the stochastic
ordering of concomitants have been seen to be dependent on the stochastic ordering of[V |W = w] and [T |S = w] in
various senses.

–For some specific bivariate distributions, some illustrative examples have been provided for the concomitants’
comparisons with regard to the orders ≤lr and ≤disp. The other weaker orders will follow immediately, using the
implications in (5) and (6).
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