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Abstract: The modern era is the age of science, technology and at the same time it is the age of competition. The advancement 
of new technology and increased global competition have emphasized the importance of product strength and reliability 
estimation. As a result, producers and manufacturers must now verify the strength and reliability of their products prior to 
releasing them to the market. In the past, reliability data analysis was a critical tool for this purpose. Traditionally, reliability 
data analysis entails quantifying these life characteristics through the examination of failure data. However, in many 
situations, obtaining such failure data has been extremely difficult, if not impossible, due to the length of time between 
designing and releasing a product, and the difficulty of designing a product that will last a long period due to its continuous 
use and operation. Faced with this challenge, reliability statisticians developed a technique called Accelerated Reliability 
Testing to rapidly determine the reliability and life characteristics of products. This technique increases product reliability 
and identifies when and how a product will fail in its intended environment. In the present work, we plan to investigate these 
mathematical reliability models to determine the costs associated with the various product guarantees. If component lifetimes 
follow the power-function distribution, the problem is examined under increasing stress using percent failure censoring. The 
method is referred as a process that applies accelerated testing to estimate the cost of age-replacement for goods sold under 
warranty. Additionally, a mathematical illustration is presented to illustrate the results. 
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1 Introduction 

Each manufacturing product is distinct, with its own workspace and marketing requirements. The entire manufacturing 
process is dependent on several constraints that restrict the start or progression of field operations, which can have a negative 
impact on the production's reliability and overall performance. Constraints are defined as any condition, such as time/space, 
safety/quality concerns, or warranty/guaranty, which can prevent a product from achieving its marketing objectives if not 
managed well, particularly when the product is sold electronically. Also, due to competitive business, the requirements for 
the improvement of reliability and quality of products and systems have also increased. Simultaneously, products are 
becoming more complex, and an increasing number of components have become vital for the function of a product and 
system. Therefore, there is a need to put severe reliability and quality requirements on components and parts of such products 
and systems. The product can only survive in the market if it has been tested in the manufacturing process. Therefore, the 
long-term survival of the product is dependent on its better-expected life, quality/reliability, and a decent warranty/guaranty 
plan. 

Offering a strong warranty policy is always a wise choice for businesses, even more so for items sold online. It was recognized 
early on that a warranty could provide potential buyers with insurance against product failure. For electronic goods, 
newcomers offer extended warranties to reassure consumers that they are dealing with a reputable brand and to help customers 
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identify their brand. As a result, the product's reliability must be sufficient for the manufacturer to extend the warranty and 
thus increase the product's value. 

To achieve all these measures, reliability statisticians have developed a method called accelerated life testing (ALT) to 
improve the reliability of products and systems. ALT models have mostly been used to estimate or measure reliability with 
reduced time and cost. It helps to identify weak points in a design and determines when and how a product will fail in its 
intended environment.  

In manufacturing companies, quality engineers have been using accelerated life testing (ALT) processes for several years 
now in order to fast collect data that is reliable. Within the confines of an adequate testing period, ALTs function as a 
technique for estimating the lifetime of highly reliable objects. The components are worked beyond their normal functioning 
limitations to hasten the onset of early failures. To calculate the life distribution, the results of the accelerated test are entered 
into a model and compared to the stress levels that were specified in the design.  

The current study is very hybrid in nature. It connects advanced statistics with reliability engineering, E-marketing, and 
computer science. There are so many studies on accelerated life testing approaches. To begin with the introduction and 
terminology of accelerated life testing, one can refer to Nelson [1]. Accelerated Life Testing with a Rebate Warranty 
Application: A Comprehensive Study and Design by Lone and Ahmed [2]. Using data from accelerated life tests, YAng and 
Wang [3] analysed the features of insulation deterioration. To create a step-stress partially accelerated life testing strategy for 
competing risk, Lone and Rahman [4] described the adaptive type-I progressive hybrid censoring. To deal with UH censored 
data, Lone and Panahi [5] trained a constant-stress model with the Gompertz distribution. The recent ones include Pascual et 
al. [6], Asadi et al. [7], Lone et al. [8], Ismail [9], Sindhu et al. [10] and Alam et al. [11]. Lone et al. [12] discussed the 
statistical analysis under geometric processes in accelerated life testing plans for a generalized exponential distribution. Lone 
[13] recently presented a simulation analysis of the Fréchet distribution under a partially accelerated, multiply censored life 
testing plan. To help predict results from a two-dimensional warranty, as those provided by US automobile manufacturers, 
Manna et al. [14] demonstrate and explain the application of a use-rate ALT model. 

The objective of the study is to arrive at an estimate of both the total cost and the cost rate for the age-related warranty plan's 
provision of unit replacements. Assume that the failure times of items follow the power function distribution when increasing 
stress is applied to the items. In addition, we will presume that the stress imposed on the components is distributed evenly 
and independently. To determine the model parameters, the maximum likelihood estimation (MLE) method is utilized. With 
the pro-rata rebate warranty, we can also get an estimate of the expected total cost and an expected cost rate for age-
replacement. 
 

2 Modologies and Models 
 

The structured approach will be used to review various types of marketing products, their manufacturing, construction 
environment, specifications, and their characteristics. A suitable stress mechanism will be applied to the products to generate 
their failure-time data. Based on the generated failure-time data along with different life-stress mathematical models, an 
advanced mathematical reliability model can be designed. To test the performance of the developed mathematical model, the 
simulation techniques will be performed on statistical software using Newton-Raphson techniques. 

The Model 

Here, the assumed lifetime model for the product life is introduced. The lifetime distribution of the test items is assumed to 
be a two-parameter Power function. This distribution was first presented by Mukherjee and Islam [15] as a new model to 
access failure time distribution. Numerous studies have shown interest in modeling lifetime or survival data with power 
function distribution as of late. The density function (pdf) is. 

𝑓(𝑡, 𝛼, 𝜁) = )
*+
(𝑡)(),-), 𝛼 > 0, 𝜁 > 0,0 < 𝑡 < 𝜁.                                                                                       (1) 

The survival function is calculated as 

S(𝑡) = 1 − 56
*
7
)
,                                                                                                                                         (2) 

where, 𝛼,	𝜁	are shape and scale parameters, respectively. 
In recent years, researchers have discovered that the two-parameter Power-Function distribution is an excellent option for 
analyzing numerous lifetime data sets. Lone [16] has elegantly substituted it for the other lifetime distributions. 
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3 Estimation Procedures 

This study is conducted under conditions of increasing stress S_j,j=1,2,…,k such that, S_u 〖<S〗_1<S_2<⋯<S_k. Where 
S_uis testing at use conditions. The procedure starts by subjecting  units to the test at stress level, and the process is stopped 
once some fixed percentage of n_j (Ιn_j) units come with failure. The expression t_ij,i=1,2,...In_j;j=1,2,...,k denotes the 
lifetime of each unit at each at each stress level. 

The scale parameter	𝜁<is the function of stress	𝑆< modelled by the following equation called the power rule model: 

𝜁< = 𝜔𝑆<
,?; 	𝑝, 𝜔 > 0, 𝑗 = 1,2, . . . , 𝑘,                                                                                                               (3) 

where, 𝜔 is the proportionality constant. 
 

Since 𝑛< items are tested for each level of stress 𝑆<, the total unit count in the experiment is N=∑ 𝑛<G
HI- . When failure censoring 

is used, the experiment is terminated as soon as the 𝑟< failure takes place among the 𝑛< units tested at each stress level. Using 
the failure censoring scheme, the likelihood function can be defined as given below.  

𝐿(𝛼,𝜔, 𝑝) = ∏ MN
OMN,PMNQ!

S∏ 𝑓O𝑡H<; 𝛼, 𝜔, 𝑝Q
PMN
HI- TG

<I- S1 − 𝐹 5𝑡OPMN<Q7T
MN,PMN

                                                          (4) 

In accordance with this framework, the log-likelihood function is stated as 

𝐼𝑛𝐿 = 𝐶 + ∑ 𝐼𝑛<(𝐼𝑛𝛼 + 𝐼𝑛𝜔) − 𝑝∑ 𝐼𝑛<𝐼𝑛𝑆<G
<I-

G
<I- + ∑ ∑ (𝛼 − 1)𝐼𝑛𝑡H<

PMN
HI-

G
<I- + ∑ O𝑛< − 𝐼𝑛<Q𝐼𝑛 Y1 − Z

6[\NN
]^N

_`a
)
b ,PMN

<I-        (5) 

Where C is a constant and 𝑙𝑛 𝐿 = 𝑙𝑛 𝐿 (𝛼,𝜔, 𝑝) 

By differentiating the log-likelihood equation with the given parameters, the maximum likelihood estimators (MLEs) are 
derived. 

d eM f
d)

= ∑ PMN
)

G
HI- + ∑ ∑ 𝑙𝑛 𝑡H< − ∑ (𝑛< − 𝐼𝑛<)𝛼 g

6[\NN

]^N
_`h

),-

i1 − g
6[\NN

]^N
_`h

)

jG
<I-

PMN
HI-

G
<I-

,-

= 0    

𝜕 𝑙𝑛 𝐿
𝜕𝜔 =l

𝐼𝑛<
𝜔

G

HI-

+l(𝑛< − 𝐼𝑛<)𝛼𝑆<
?)𝜔,),-𝑡PMN,<

) m1 − n
𝑡PMN<
𝜔𝑆<

,?o
)

p
G

<I-

,-

= 0 

𝜕 𝑙𝑛 𝐿
𝜕𝑝 = −l𝐼𝑛< 𝑙𝑛 𝑆<

G

HI-

−l(𝑛< − 𝐼𝑛<) 𝑙𝑛 𝑆< 𝛼𝑆<
?)𝜔,)𝑡PMN,<

) m1 − n
𝑡PMN<
𝜔𝑆<

,?o
)

p
G

<I-

,-

= 0 

The MLEs don't seem to possess a solution that can be expressed in closed form. Therefore, the Newton-Raphson method is 
applied in order to acquire the MLEs. 

The following is Fisher-Information matrix. 

 𝐼 =

⎣
⎢
⎢
⎢
⎢
⎡
,dtPMf
d)t

,dtPMf
d]d)

,dtPMf
d?d)

,dtPMf
d)d]

,dtPMf
d]t

,dtPMf
d?d]

,dtPMf
d)d?

,dtPMf
d]d?

,dtPMf
d?t ⎦

⎥
⎥
⎥
⎥
⎤

,                                                                                                        (6) 

where,  

−
𝜕x 𝑙𝑛 𝐿
𝜕𝛼x =l

𝐼𝑛<
𝛼x

G

HI-

−l(𝑛< − 𝐼𝑛<)𝛼 n
𝑡PMN<
𝜔𝑆<

,?o
),-

m1 − n
𝑡PMN<
𝜔𝑆<

,?o
)

p
G

<I-

,-

⎣
⎢
⎢
⎢
⎡

𝛼,- + 𝑙𝑛 n
𝑡PMN<
𝜔𝑆<

,?o +
𝛼 g

6[\NN

]^N
_`h

),-

1 − g
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]^N
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⎦
⎥
⎥
⎥
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It is possible to invert the Fisher-Information matrix to obtain the variance-covariance matrix of (𝛼{, 𝜔|&�̂�), denoted by Λ is:  

Λ = 𝐼,-                                                                                                                                                                (7) 

Hence, the approximate confidence intervals (CIs) for 𝛼,𝜔	&	𝑝 are 

𝛼{ ± 𝑍�/x�𝑣𝑎𝑟(𝛼{), 𝜔| ± 𝑍�/x�𝑣𝑎𝑟(𝜔|) and �̂� ± 𝑍�/x�𝑣𝑎𝑟(�̂�)                                         (8) 

𝑍�/x is the 100(1 − 𝜆/2)% percentile of standard normal variate. 
 

4 Simulation studies 

Computational studies are performed to investigate the performance of the MLEs by finding their mean square error (MSE) 
and relative absolute bias (RAB). With the help of the invariance property, we can use the following equation to estimate the 
MLEs of 𝜁<.   

𝜁< = 𝜔𝑆<
,?;𝜔 > 0, 𝑝 > 0, 𝑗 = 1,2, . . . ,3 

The steps involved in the simulation using R- Software are outlined in detail below. 

1. Following a Power-Function distribution, we generated 1,000 samples with sizes of 60, 110, 160, and 210. Each parameter 
set starts out with a different value. 
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2. We assume the three levels of stress (𝑘 = 3), as (𝑆- = 1.1, 𝑆x = 1.6, 𝑆� = 2), 𝑛< =
M
�
&	𝐼 = 35%	(𝑖. 𝑒. 𝐼𝑛< = 35%𝑛<)	. 

3. All the samples are tested under percent Type-II censoring schemes to figure out the model parameters. 

4. An iterative method (Newton Raphson technique) is used to solve the nonlinear equations. And the results (RABs) and 
(MSE) are obtained for all sets of parameters(𝛼�, 𝜔�, 𝑝�). 

5. We obtained the parameter 𝜁�at 𝑆� = 0.5 (normal stress level) using different values of	𝜔� and 𝑝�.  

6. The following equation can be used to estimate the reliability at various values of mission time  𝑡�. 

 𝑅��(𝑡�) = 1 − 5 6
*�
7
)�

 

Table-1: Simulation results of the parameters (𝛼, 𝜔, 𝑝, 𝜉-, 𝜉x, 𝜉�) under percent failure censoring. 

 

 

   

 

Parameter 

(𝜶 = 0.3, 𝜔 = 1.5, 𝒑 = 1.2) (𝜶 = 0.5,𝝎 = 1.5, 𝒑 = 1.2) 

Estimator RAB MSE Estimator RAB MSE 

 

 

60 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.319 

1.391 

1.190 

1.606 

1.093 

0.901 

0.061 

0.060 

0.103 

0.086 

0.075 

0.080 

0.087 

0.056 

0.059 

0.072 

0.071 

0.069 

1.120 

1.621 

0.895 

1.561 

0.781 

1.001 

0.087 

0.048 

0.101 

0.100 

0.070 

0.068 

0.080 

0.059 

0.081 

0.106 

0.058 

0.073 

 

 

 

110 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.268 

1.589 

1.093 

1.602 

1.209 

0.903 

0.071 

0.052 

0.070 

0.078 

0.050 

0.063 

0.057 

0.039 

0.067 

0.068 

0.019 

0.050 

1.096 

1.601 

0.986 

1.439 

1.145 

1.091 

0.060 

0.038 

1.054 

0.049 

0.039 

0.087 

0.048 

0.050 

0.100 

0.048 

0.039 

0.071 

 

 

160 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.235 

1.459 

0.950 

1.557 

0.909 

0.896 

0.046 

0.029 

0.054 

0.051 

0.038 

0.050 

0.038 

0.034 

0.046 

0.055 

0.039 

0.031 

0.953 

1.561 

1.048 

1.532 

0.934 

0.887 

0.050 

0.040 

0.052 

0.045 

0.041 

0.061 

0.048 

0.041 

0.045 

0.044 

0.037 

0.055 

 

 

210 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.249 

1.500 

1.113 

1.553 

0.910 

0.889 

0.009 

0.020 

0.113 

0.017 

0.021 

0.032 

0.013 

0.003 

0.010 

0.014 

0.013 

0.030 

0.980 

1.467 

0.955 

1.501 

0.811 

0.857 

0.025 

0.022 

0.044 

0.022 

0.018 

0.033 

0.030 

0.023 

0.031 

0.020 

0.016 

0.025 

n
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Table-2: Simulation results of the parameters (𝜶,𝝎, 𝒑, 𝝃𝟏, 𝝃𝟐, 𝝃𝟑) under percent failure censoring. 

 

    n 

 

parameter 

(𝜶 = 0.3, 𝜔 = 1, 𝒑 = 1.2) (𝜶 = 0.6, 𝜔 = 1, 𝒑 = 1.6) 

Estimator RAB MSE Estimator RAB MSE 

 

 

 

  60 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.228 

0.898 

0.933 

0.902 

0.768 

0.590 

0.080 

0.109 

0.068 

0.069 

0.119 

0.070 

0.069 

0.050 

0.060 

0.068 

0.103 

0.071 

0.931 

1.067 

1.508 

1.219 

1.099 

0.709 

0.069 

0.067 

0.047 

0.065 

0.072 

0.109 

0.073 

0.066 

0.101 

0.058 

0.060 

0.080 

 

 

 

 110 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.240 

1.100 

0.937 

1.069 

0.780 

0.587 

0.048 

0.092 

0.063 

0.071 

0.091 

0.058 

0.061 

0.039 

0.075 

0.073 

0.077 

0.050 

0.940 

1.056 

1.442 

1.289 

1.168 

0.786 

0.055 

0.044 

0.042 

0.060 

0.049 

0.073 

0.060 

0.048 

0.065 

0.046 

0.050 

0.068 

 

 

 

 160 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.245 

1.046 

0.963 

1.051 

0.708 

0.594 

0.044 

0.049 

0.042 

0.060 

0.050 

0.049 

0.045 

0.036 

0.040 

0.048 

0.040 

0.036 

0.948 

1.038 

1.561 

1.230 

1.128 

0.787 

0.052 

0.041 

0.040 

0.046 

0.044 

0.057 

0.038 

0.036 

0.063 

0.045 

0.036 

0.045 

 

 

 

 210 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.250 

1.058 

1.013 

1.062 

0.718 

0.595 

0.008 

0.061 

0.013 

0.010 

0.029 

0.032 

0.017 

0.023 

0.021 

0.010 

0.013 

0.016 

0.981 

1.035 

1.467 

1.211 

1.111 

0.755 

0.019 

0.030 

0.022 

0.019 

0.019 

0.020 

0.040 

0.031 

0.025 

0.016 

0.012 

0.018 
 

 

 

 

Table 3: Simulation results of the parameters (𝜶,𝝎, 𝒑, 𝝃𝟏, 𝝃𝟐, 𝝃𝟑) under percent failure censoring. 

 

   

 

Parameter 

(𝜶 = 0.6, 𝜔 = 1.2, 𝒑 = 1.6) (𝜶 = 0.6, 𝜔 = 1.6, 𝒑 = 1.8) 

Estimator RAB MSE Estimat
or 

RAB MSE 

 

 

 

α 

ω 

p 

0.540 

1.388 

0.894 

0.083 

0.059 

0.070 

0.070 

0.044 

0.065 

0.582 

1.610 

1.616 

0.059 

0.055 

0.101 

0.078 

0.058 

0.065 

n
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  60 ξ- 

ξx 

ξ� 

1.608 

1.091 

1.032 

0.078 

0.069 

0.067 

0.058 

0.044 

0.067 

1.404 

0.920 

1.009 

0.100 

0.078 

0.060 

0.064 

0.058 

0.060 

 

 

 

 
110 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.519 

1.551 

0.877 

1.441 

1.127 

1.082 

0.100 

0.048 

0.061 

0.084 

0.048 

0.068 

0.051 

0.038 

0.081 

0.075 

0.023 

0.044 

0.600 

1.570 

1.581 

1.489 

0.899 

1.095 

0.064 

0.047 

0.098 

0.076 

0.044 

0.101 

0.055 

0.052 

0.101 

0.046 

0.039 

0.060 

 

 

 

 
160 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.582 

1.432 

1.306 

1.570 

1.095 

0.902 

0.052 

0.029 

0.047 

0.053 

0.033 

0.050 

0.037 

0.028 

0.040 

0.048 

0.036 

0.030 

0.611 

1.561 

1.682 

1.502 

1.034 

0.904 

0.060 

0.046 

0.059 

0.044 

0.040 

0.064 

0.051 

0.038 

0.046 

0.060 

0.037 

0.043 

 

 

 

  
210 

α 

ω 

p 

ξ- 

ξx 

ξ� 

0.529 

1.471 

1.228 

1.530 

0.910 

0.857 

0.010 

0.020 

0.131 

0.020 

0.033 

0.035 

0.022 

0.012 

0.020 

0.022 

0.022 

0.034 

0.540 

1.467 

1.705 

1.576 

0.784 

0.885 

0.053 

0.033 

0.051 

0.026 

0.020 

0.104 

0.028 

0.019 

0.031 

0.028 

0.020 

0.034 

 

Table 4: Simulation results of shape parameter and reliability under use conditions, taking 𝒏 = 𝟐𝟎𝟎. 

𝛼� 𝜔� 𝑝� 𝜉�  𝑡� 𝑅�(𝑡�) 

 

0.25 

 

1.5 

 

1 

 

3.201165 

1 

1.3 

1.5 

0.2523 

0.2017 

0.1726 

 

1 

 

1.5 

 

1 

 

2.843896 

1 

1.3 

1.5 

0.6483 

0.5428 

0.4725 

 

0.25 

 

1 

 

1 

 

2.139189 

1 

1.3 

1.5 

0.1731 

0.1170 

0.0849 

 

1 

 

1 

 

1.5 

 

2.861221 

1 

1.3 

1.5 

0.6504 

0.5456 

0.4757 
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5 The age replacement (AR) policy under pro-rata rebate (PRR) warranty 
Under this service agreement, a non-repairable item is replaced at a specified age (τ) or upon failure, whichever comes first. 
Product is replaced at a cost of downtime 𝐷¤ > 0 and a cost of purchase 𝑃¤ > 0 when an item fails at 𝑡 ≤ 𝜏. If the product 
does not perform as expected throughout the applicable warranty period (w), the consumer receives a reimbursement of a 
portion of the purchase cost (𝑃¤). The rebate function of the pro-rata warranty is given by: 

 𝑅(𝑡) = ¨𝑃¤ 51 −
6
©
7 ,				0 ≤ 𝑡 ≤ 𝑤

0,																						𝑡 > 𝑤
                                                                               (9) 

The topic of age-replacement policies has been analyzed by numerous authors. In Chien and Chen [17], the authors investigate 
the effect of a renewed free-replacement warranty (RFRW) on the age-based replacement plan for repairable equipment with 
a general failure model. Also, Hong-Zhong et al [18] examined the problem of estimating expected warranty costs for items 
that are rarely and in a variety of ways utilized. More details can be seen in Yang [19] and Dessouky [20].  
The procedure involves the following assumptions: 

1. The item is changed out either when it sustains damage, which is known as corrective replacement, or when it reaches a 
certain age, which is known as preventive replacement. Whichever occurs first, it is taken care of. 

2. The products are slod under pro-rata rebate (PRR) warranty. 

3. Product components that are intended for preventive replacement are assumed to have no value of salvage. 

4. The length of the warranty (w) is shorter than the age replacement period (τ). 

As a preventive maintenance measure, a product is replaced at a cost of 𝑃¤when it reaches the age of τ. 

The following is a breakdown of the overall cost associated with the renewal of this policy: 

𝐶(𝑑) = ¬
𝐷¤ + 𝑃¤ − 𝑅(𝑡)0 ≤ 𝑡 ≤ 𝑤
𝐷¤ + 𝑃¤𝑤 < 𝑡 < 𝜏
𝑃¤𝑡 ≥ 𝜏

                                                                                          (10) 

Chien and Chen [17] provide useful reviews of the literature on estimated total cost. 

𝐸O𝐶(𝑡)Q = 𝐷¤𝐹(𝜏) + 𝑃¤
∫ °±(�)²�³
�

©
                                                                                              (11) 

The expected cost rate is: 

𝐸O𝐶𝑅(𝑡)Q = ´Oµ(6)Q
∫ °± (�)²�¶
�

                                                                                                                  (12) 

The denominator∫ 𝐹± (𝑢)𝑑𝑢¸
�  denotes the expected cycle time. 𝐸O𝑇(𝜏)Q = ∫ 𝐹± (𝑢)𝑑𝑢¸

�  

Now, applying the above measures using the Power-Function distribution: 

 We have 𝐹(𝑢) = 5�
*
7
)
, 0 < 𝑢 < 𝜁                                                                              (13) 

 Therefore ∫ 𝐹± (𝑢)©
� 𝑑𝑢 = 𝑤 − ©+º»

*+()¼-)
                                                                          (14) 

 Also,  ∫ 𝐹± (𝑢)¸
� 𝑑𝑢 = 𝜏 − ¸+º»

*+()¼-)
                                                                                  (15) 

From equations (11), (12), (14), and (15), one can determine the expected total cost 𝐸(𝐶(𝜏)) and the expected cost rate 𝐶𝑅(𝜏) 
for the non-repairable component. 

For example, if the failure replacement of a product costs 𝐶𝑑 = 40  because of downtime and the purchase cost = 990 , we 
can find the expected total cost 𝐸(𝐶(𝜏)), the expected cycle time 𝐸(𝑇(𝜏)). Also, the expected cost rate for age-replacement 
𝐶𝑅(𝜏) is calculated for different warranty periods (w) under usual conditions. 
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Table 5: The simulation results of age-replacement warranty using Power-Function distribution. 

𝜁 α W τ    
2.5 0.30 1 1 428.12 0.422 1102.88 

2.5 0.30 1 1.5 429.17 0.530 891.370 

2.5 0.30 1 1.75 427.78 0.530 825.791 

3 0.50 1 1 648.28 0.867 758.570 

3 0.50 1 1.5 782.69 1.082 723.028 

3.5 0.75 1.5 175 730.18 1.248 584.675 

3.5 0.75 1.5 2 743.79 1.286 578.038 

3.5 1 1.5 2 837.52 1.501 558.341 

4 1 2 3 775.11 1.875 413.327 

4 1 2.5 3 712.50 1.875 380.112 

4 1 3 3 650.65 1.905 351.453 

6 Results and Conclusions 

According to the information presented in Tables (1), (2), and 3, an indication of the overall consistency is that the absolute 
value of the difference between the actual value of a parameter and its estimator approaches zero. We provide some estimates 
for the reliability function shown in Table (4) for a range of different values of the parameter 	𝜁� and the mission period𝑡�. 
When the duration of the mission is increased, the performance feature of the product becomes less reliable. It is obvious that 
if a product is tested for a long time, the wear and tear caused will make it less reliable.  

From table 5, we can figure out the following. 
1) There is a positive relationship between the expected total cost and the expected time cycle. This means that products 

need to be changed frequently as the rate at which they break is going up very quickly. 
2) The parameter α and the predicted cost rate have a positive association. Which means that, if a product that has a 

higher failure rate would undoubtedly have a higher estimated cost. 
3) By extending the duration of the warranty, the expected total cost and rate of cost goes up, but the expected life 

cycle stays the same. This result shows that the developed warranty model works well when it is used along pro-
rata rebate scheme.  

4) The correlation between the age of replacement time (𝜏) and the expected cost rate is negative, but the correlation 
between the expected total cost and the expected time cycle is positive. This implies that if the product works well, 
the expected cost will be lower. 
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