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Abstract: In this paper the reliability of a k-out-of-n: G system under the effect of shocks having the Marshall-Olkin type shock

models, is studied. The magnitudes of the shocks are considered. The system contains n components and only functions when at least k

of these components function. The system is subjected to (n+1) shocks coming from (n+1) different sources. The shock coming from

the ith source may destroy the ith component, i = 1, . . . ,n, while the shock coming from the (n+1)th
source may destroy all components

simultaneously. A shock is fatal, destroys a component (components), whenever its magnitude exceeds an upper threshold. The system

reliability is obtained by considering the arrival time and the magnitude of a shock as a bivariate random variable. It is assumed that the

bivariate random variables representing the arrival times and the magnitudes of the shocks are independent with non-identical bivariate

distributions. Since the computation of the reliability formula obtained is not easy to handle, an algorithm is introduced for calculating

the reliability formula. The reliability of a k-out-of-n: G system subjected to independent and identical shocks is obtained as a special

case, as well as the reliabilities of the series and the parallel systems. As an application, the bivariate exponential Gumbel distribution

is considered. Also, numerical illustrations are performed to highlight the results obtained.

Keywords: Bivariate exponential Gumbel distribution, k-out-of-n: G system, Order statistics, System reliability, Marshall-Olkin type

shocks.

Notations

n: The number of system components.
k: The minimum number of working components necessary for the system operation.

Ti: The arrival time of the shock that affects the ithcomponent, i = 1, 2, . . . , n.

Di: The magnitude of the shock that affects the ithcomponent, i = 1, 2, . . . , n.
Tn+1: The arrival time of the shock affecting all components, simultaneously.
Dn+1: The magnitude of the shock affecting all components, simultaneously.

d: Upper threshold of magnitude. This means that the ith component fails only if Di > d, i = 1,2, . . . ,n,
and all components fail simultaneously only if Dn+1 > d.

Xi: The arrival time of the ith shock which has magnitude greater than d (fatal shock), i = 1, 2, . . . ,n+ 1.
R[ k : n ], d(t): The reliability of a k-out-of-n: G system under the effect of Marshall-Olkin type shock models with the

effect of shock magnitude.

1 Introduction

The Marshal-Olkin type shock models were first introduced by Marshall and Olkin [1], where they obtained the joint
survival function of a system consisting of two components that are subjected to fatal and non-fatal shocks, and three
independent Poisson processes governing the occurrence of those shocks. The first process coincides with the shock
affecting the first component, the second process coincides with the shock affecting the second component, and the third
process coincides with the shock affecting both components. Due to the practicality of these shocks in everyday life, many
researchers have studied the lifetime of systems subjected to these shocks. Ozkut and Bayramoglu [2] obtained the joint
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survival function of the lifetimes of two components under the effect of Marshall-Olkin type shock models, considering
the magnitude of the shocks. Bayramoglu and Ozkut [3] investigated the reliability of a k-out-of-n: F system consisting
of components under the effect of Marshall-Olkin type shock models, without taking in consideration the magnitudes of
the shocks. They obtained the reliability of the system assuming that the times of the shocks are independent, identically
distributed, and exchangeable random variables. Bayramoglu and Ozkut [4] obtained the functions of the mean residual
life and the mean inactivity time of the system described in Bayramoglu and Ozkut [3]. Ozkut and Eryilmaz [5] obtained
the joint survival function of the components of a 2-component system subjected to Marshall-Olkin run shocks type.

However, the reliability of systems subjected to other types of shocks has attracted several authors. Sheu and Liou
[6] studied the optimal replacement policy of a k-out-of-n : F system under the effect of shocks arriving according to the
nonhomogeneous Poisson process. Skoulakis [7] obtained the reliability of a parallel system subjected to shocks generated
by a renewal point process. Huang, Jin, He and He [8] discussed the reliability of a coherent system subjected to internal
failures and external random shocks. Eryilmaz and Devrim [9] derived the reliability of a k-out-of-n : G system subjected
to shocks destroying a random number of components.

Although, in practical situations, the magnitude of a shock must be taken into consideration, we see that most of the
previous studies on Marshall-Olkin type shock models do not consider the magnitude of the shock. In the present article,
we obtain the reliability of a k-out-of-n: G system under the effect of shocks having the Marshall-Olkin type shock models,
and the magnitude of the shocks has a key role in our work. The k-out-of-n: G system is a system contains n components,
and the system functions whenever k or more components function. Series and parallel systems are special cases of such
a system. An n-out-of-n: G system is a series system, and 1-out-of-n: G system is a parallel system. A k-out-of-n : G

system can be seen in many practical applications such as transportation, redundant networks, manufacturing, production
management, transmission, telecommunication systems, and services. The shocks coming at random times will be fatal if
their magnitudes are greater than upper threshold d. So, we are interested in the arrival time of the fatal shock, which has a
magnitude greater than the upper threshold d. We show that the reliability of the system depends on the joint distribution
of the arrival times of the fatal shocks and their magnitudes.

The paper is organized as follows. In Section 2, the reliability formula of the system is obtained assuming the arrival
times and the magnitudes of the different shocks to be independent and non-identical bivariate random variables. The
reliabilities of the series and the parallel systems are derived as special cases. In Section 3, the reliabilities of the k-out-of-
n: G, series, and parallel systems are obtained for the case of identical shocks. In Section 4, an algorithm is introduced for
computing the reliability of the systems. As an application, in Section 5 we assume that the times and the magnitudes of the
shocks have independent (non-identical and identical) bivariate exponential Gumbel distributions. Under this assumption
the exact formulas of R[ k : n ], d(t), R[ n : n ], d(t), and R[ 1 : n ], d(t) are obtained. Numerical illustrations of the theoretical
results are presented in Section 6, showing the effect of the time, and the magnitude of the shocks, as well as the effect of
the parameters of the bivariate distributions on the reliability formulas. Finally, in Section 7, a conclusion is presented.

2 Reliability of the System Formula Subjected to Non-Identical Shocks

The following figure displays the shocks affecting the system under consideration

Fig. 1: A system with n components subjected to Marshall-Olkin type shocks concerning magnitude.
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Clearly, we have (n+ 1) independent bivariate random vectors (Ti,Di), i = 1, . . . ,n+ 1. Thus, R[ k : n ], d(t) is given
by the following theorem.

Theorem 1.Assume that the bivariate random vectors (Ti,Di) defining the arrival time and the magnitude of shock i, i =
1, . . . ,n+1, are independent but non-identically distributed. Shock i affects component i, i = 1, . . . ,n while shock (n+1)
affects all components simultaneously. A shock is fatal if its magnitude exceeds an upper threshold of magnitude d. The

reliability of a k-out-of-n: G system under such situation is given by

R[k:n],d(t) =FTn+1
(t|Dn+1 > d)

(

1−

(

n−1

∑
i=n−k+1

1

i!(n− i)!

n

∑
j1=1

n

∑
j2= j1+1

. . .
n

∑
ji= ji−1+1

∏
L= j1,..., ji

[1−FTL
(t|DL > d)]

× ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

FTu(t|Du > d)+
n

∏
L=1

[1−FTL
(t|DL > d)]

























(1)

where, FTi
(t|Di > d) is the conditional survival function of Ti given Di > d, i = 1, . . . ,n+ 1.

Proof.Under the conditions of the shocks described above and the structure of the system, the system fails on receiving a

fatal shock from source (n+ 1) or on the failure of the (n− k+ 1)th component. Thus,

R[k:n],d(t) = p{Xn+1 > t} p{Xn−k+1:n > t} (2)

where,

Xi = (Ti|Di > d), i = 1, 2, . . . ,n+ 1, (3)

and Xn−k+1:n denotes the (n− k+ 1)th order statistic structured from the random variables X1, . . . ,Xn. We have

p{Xn−k+1:n > t}= 1−
n

∑
i=n−k+1

1

i!(n− i)! ∑
ϕ1,2,...,n

i

∏
L=1

[1− p{X jL > t}]
n

∏
u=i+1

p{X ju > t}, (4)

where the summation ϕ1,2,...,n extends over all n! permutations ( j1, . . . , jn) of 1, . . . ,n for which j1 < · · · < ji and ji+1 <
· · ·< jn, see David and Nagaraja [10]. Substituting (4) in (2) we get

R[k:n],d(t) = p{Xn+1 > t}

[

1−
n

∑
i=n−k+1

1

i!(n− i)! ∑
ϕ1,2,...,n

i

∏
L=1

[1− p{X jL > t}]
n

∏
u=i+1

p{X ju > t}

]

(5)

Equation (5) can be rewritten as follows

R[k:n],d(t) = p{Xn+1 > t}













1−
n

∑
i=n−k+1

1

i!(n− i)! ∑
1≤ j1< j2<···< ji≤n

∏
L= j1,..., ji

[1− p{XL > t}] ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

p{Xu > t}













and then we have

R[k:n],d(t) =p{Xn+1 > t}

[

1−

(

n−1

∑
i=n−k+1

1

i!(n− i)!

n

∑
j1=1

n

∑
j2= j1+1

. . .
n

∑
ji= ji−1+1

∏
L= j1,..., ji

[1− p{XL > t}]

× ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

p{Xu > t}+
n

∏
L=1

[1− p{XL > t}]

























(6)
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Using (3) in (6), we get

R[k:n],d(t) =p{Tn+1 > t|Dn+1 > d}

[

1−

(

n−1

∑
i=n−k+1

1

i!(n− i)!

n

∑
j1=1

n

∑
j2= j1+1

. . .
n

∑
ji= ji−1+1

∏
L= j1,..., ji

[1− p{TL > t|DL > d}]

× ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

p{Tu > t|Du > d}+
n

∏
L=1

[1− p{TL > t|DL > d}]

























Clearly p{Ti > t|Di > d}= FTi
(t|Di > d), i = 1, 2, ...,n+ 1.

Thus, the proof is completed.

Special Cases

On substitution with k = n and k = 1 in Equation (1), we get the reliabilities of the series and the parallel systems,
respectively.

R[n:n],d(t) =FTn+1
(t|Dn+1 > d)

[

1−

(

n−1

∑
i=1

1

i!(n− i)!

n

∑
j1=1

n

∑
j2= j1+1

. . .
n

∑
ji= ji−1+1

∏
L= j1,..., ji

[1−FTL
(t|DL > d)]

× ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

FTu(t|Du > d)+
n

∏
L=1

[1−FTL
(t|DL > d)]

























,

(7)

and

R[1:n],d(t) = FTn+1
(t|Dn+1 > d)

(

1−
n

∏
L=1

[1−FTL
(t|DL > d)]

)

(8)

3 Reliability of the System Formula Subjected to Identical Shocks

Theorem 2.Assume that the bivariate random vectors (Ti,Di) defining the arrival time and the magnitude of shock i, i =
1, . . . ,n, are independent and identically distributed. Assume that the bivariate random vector (Tn+1,Dn+1) defining the

arrival time and the magnitude of shock (n+ 1) is independent of (Ti,Di), i = 1, . . . ,n. Shock i affects component i, i =
1, . . . ,n while shock (n+ 1) affects all components simultaneously. A shock is fatal if its magnitude exceeds an upper

threshold magnitude d. The reliability of a k-out-of-n: G system under such situation is given by

R[k:n],d(t) = FTn+1
(t|Dn+1 > d)

(

1−
n

∑
i=n−k+1

(
n

i
)[1−FT (t| D > d)]

i
[FT (t|D > d)]

n−i

)

, (9)

where FT (t|D > d) = p(T > t|D > d) = p(Ti > t|Di > d), i = 1, . . . ,n.

Proof.Since (Ti,Di), i = 1, . . . ,n are assumed to be independent and identical random vectors, then clearly X ′i s, i =
1,2, . . . ,n are independent and identical random variables. Using (2), with

p{Xn−k+1:n > t}= 1−
n

∑
i=n−k+1

(
n

i
)[1− p{X > t}]i[p{X > t}]n−i,
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where Xn−k+1:n is the (n− k+ 1)th order statistic structured from the random variables X1, . . . ,Xn. We get

R[k:n],d(t) = p{Xn+1 > t}

[

1−
n

∑
i=n−k+1

(
n

i
)[1− p{X > t}]i[p{X > t}]n−i

]

(10)

Using (3) in (10), we have

R[k:n],d(t) = p{Tn+1 > t|Dn+1 > d}

[

1−
n

∑
i=n−k+1

(
n

i
)[1− p{T > t|D > d}]i[p{T > t|D > d}]n−i

]

.

Thus, the proof is completed.

Remark.We can get the same result obtained in Equation (9) directly from Equation (1). Clearly the summation in Equation
(1) that extends over all n! permutations ( j1, . . . , jn) of 1, . . . ,n for which j1 < · · · < ji and ji+1 < · · · < jn becomes
n!∏i

L=1 [1−FT (t|D > d)]∏n
u=i+1 FT (t|D > d).

Special Cases

Substitution with k = n and k = 1 in Equation (9), we get the reliabilities of the series and the parallel systems, respectively,
for identical shocks, as

R[n:n],d(t) = FTn+1
(t|Dn+1 > d)[FT (t|D > d)]

n
, (11)

and

R[1:n],d(t) = FTn+1
(t|Dn+1 > d)(1− [1−FT (t|D > d)]

n
) (12)

4 An Algorithm for Computation of the Reliability of the System in the Case of Non-Identical

Shocks

The computation of the formula of R[k:n],d(t) in (1) necessitates computing all the possibilities satisfying 1 ≤ j1 < · · · <
ji ≤ n for i = n− k+ 1, . . . ,n− 1, which is not easy to handle directly even for moderate values of n and k. To solve this
problem, we introduce the algorithm presented below. This is applicable to many software’s, such as R-Programming,
Python, and MATLAB. We have applied the R-Programming. The following notations are used in the construction of the
algorithm.

i : Number of failed components, i = n− k+ 1, . . .,n− 1.
M : Total number of possible combinations of 1≤ j1 < · · ·< ji ≤ n, i = n− k+ 1, . . .,n− 1.
P : A matrix of M rows and i columns. Each row in P represent a possible combination of

1≤ j1 < · · ·< ji ≤ n, i = n− k+ 1, . . .,n− 1.
The steps of the algorithm are as follows:
1: Input: ”Enter the following values”

. nnn,kkk:integers;

. ttt,,, ddd:numeric;
2: Output:The values of reliability formulas.
3: Compute the conditional survival function of TTT nnn+++111 given DDDnnn+++111 >>> d

Conditional survival function of n+ 1← conditional survival function of Tn+1 given

Dn+1 > d

4: Set productL← 1: ”Initialize the product of L terms to 1”
. Set productu← 1: ”Initialize the product of u terms to 1”
. Set productLu← 1: ”Initialize the product of L and u terms to 1”
. Set sump← 0: ”Set the sum counter of all possibilities occurs at each i to 0”
. Set totalsum ← 0: ”Set the sum counter of all terms to 0”

5:Given a vector of size nnn, generate and print all possible combinations of iii elements in matrix.

. vector: vector (n): ”Create a vector take values from 1 to n”
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. For i← n− k+ 1 to n− 1 do

. Function combinations (n , r, vec, repeats. Allowed = F)

. ”We create a matrix ‘P’ which stores all outputs one by one”

. P← combinations (n = length(vector), r = i, vec = vector, repeats. Allowed = F);

. Return P;

. M← num rows(P);

. End function

Moving at each element inside the matrix PPP to compute the product terms in Equation (1)
. For w← 1 to M do
. For j← 1 to i do
. The failed component ”L” is← P[w, j];
. Compute the conditional survival function of TL given DL > d:
. the value at current L← 1− conditional survival function of TL given DL > d:
. productL← productL∗ the value at current L:
. End For

Check each row in the matrix P if there are values from 1 to n that do not exist in the current row, then these
components are survival

. For u← 1 to n do

. If (u NOT IN P[w, ]) then

. Compute the conditional survival function of Tu given Du > d:

. the value at current u←conditional survival function of Tu given Du > d;

. productu← productu* the value at current u;

. End IF

. End For

. productLu← productL∗ productu :

. sump← sump+ productLu :

Set productL← 1:

Set productu← 1:

End For

Function calculate Factorial (integer)
. factorial1← Factorial (i);
. factorial2← Factorial (n− i);
. factorial term← 1 /factorial1 ∗ factorial2;
. Return factorial term;

End function
. totalsum← total sum + (factorialterm*sump):
. Set sump← 0;
. End For

6: Compute the possibility of failure of all components (last product in (1))

Set lastproduct←1: ”Initialize the last product term to 1”

For LLL← 1 to n do

the value at current L← 1− conditional survival function of TL given DL > d:

lastproduct← lastproduct* the value at current L:

End For

7: Calculate the result of the reliability of the system

System reliability← Conditional survival function of n+ 1 * (1- (totalsum + lastproduct)):

Print (System Reliability)

The execution time of the above algorithm depends on n, and k.

5 Exact Reliability Formulas with Bivariate Exponential Gumbel Distribution

The most popular and the most applied lifetime distributions in many areas such as telecommunications, reliability
analysis, survival analysis, and life testing are the exponential distributions. In this section, the exact reliability formulas
are obtained when the arrival times of the shocks and their magnitudes follow bivariate exponential Gumbel
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distributions. The bivariate exponential Gumbel distribution was introduced by Gumbel [11]. The survival function of
the bivariate exponential Gumbel distribution is given by

F(x,y) = e−αx−β y−θαβ xy,x,y≥ 0, (13)

where α, β ≥ 0, and 0 < θ < 1.
In the case of bivariate exponential Gumbel distribution, the marginal distributions of X and Y are exponential

distributions with parameters α and β respectively. Thus,

FX (x) = e−αx (14)

and

FY (y) = e−β y (15)

The correlation coefficient between X and Y is given by Gumbel [11] as follows:

ρ =−1− (
1

θ
)(e

1
θ )Ei(−

1

θ
), (16)

where Ei(z) =−
∫ ∞
−z

e−t

t
dt gives the exponential integral function.

Also,

lim
θ→0

(
1

θ
)(e

1
θ )Ei(−

1

θ
) =−1,

and then

lim
θ→0

ρ = 0.

It is clear from Equation (16) that as θ increases to 1, the correlation ρ between X and Y decreases until it reaches to
−0.40365.

5.1 Exact reliability formula of the system subjected to independent and non-identical shocks

Suppose that (Ti,Di) are independent random vectors with bivariate exponential Gumbel distributions as in (13) with
parameters αi, βi, and θi, i = 1, . . . , n+1. Using (13), (14), and (15), the conditional survival function of Ti given Di > d,
i = 1, . . . ,n+ 1 is given by

FTi
(t|Di > d) = e−αit(1+θiβid), t,d ≥ 0, (17)

where αi,βi ≥ 0,0 < θi < 1, i = 1, . . . ,n+ 1.
On substitution with (17) in (1), (7), and (8), we get

R[k:n],d(t) =e−αn+1t(1+θn+1βn+1d)

(

1−

(

n−1

∑
i=n−k+1

1

i!(n− i)!

n

∑
j1=1

n

∑
j2= j1+1

. . .
n

∑
ji= ji−1+1

∏
L= j1,..., ji

[1− e−αLt(1+θLβLd)]

× ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

e−αut(1+θuβud)+
n

∏
L=1

[1− e−αLt(1+θLβLd)]

























,

(18)

R[n:n],d(t) =e−αn+1t(1+θn+1βn+1d)

(

1−

(

n−1

∑
i=1

1

i!(n− i)!

n

∑
j1=1

n

∑
j2= j1+1

. . .
n

∑
ji= ji−1+1

∏
L= j1,..., ji

[1− e−αLt(1+θLβLd)]

× ∏
1≤ u≤ n

u 6= j1 6= · · · 6= ji

e−αut(1+θuβud)+
n

∏
L=1

[1− e−αLt(1+θLβLd)]

























,

(19)
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and

R[1:n],d(t) = e−αn+1t(1+θn+1βn+1d)

(

1−
n

∏
L=1

[1− e−αLt(1+θLβLd)]

)

(20)

For any n, and k we can compute R[ k : n ], d(t), R[ n :n ], d(t), and R[ 1: n ], d(t) given by Equations (18), (19), and (20)
respectively using the algorithm in Section 4.

5.2 Exact reliability formula of the system subjected to independent and identical shocks

Using (17), the common conditional survival function of Ti given Di > d, i = 1, . . . ,n is given by

FT (t|D > d) = e−αt(1+θβ d), t, d ≥ 0, where α,β ≥ 0,0 < θ < 1, i = 1, . . . ,n, (21)

while

FTn+1
(t|Dn+1 > d) = e−αn+1t(1+θn+1βn+1d), t, d ≥ 0, where αn+1,βn+1 ≥ 0, 0 < θn+1 < 1. (22)

Substituting FT (t|D > d), and FTn+1
(t|Dn+1 > d), given by (21), and (22) respectively in (9), (11), and (12), we get

R[k:n],d(t) = e−αn+1t(1+θn+1βn+1d)

(

1−
n

∑
i=n−k+1

i

∑
j=0

(
n

i
)(

i

j
)(−1) j

e−αt(n−i+ j)(1+θβ d)

)

, (23)

R[n:n],d(t) = e−t[αn+1(1+θn+1βn+1d)+nα(1+θβ d)], (24)

and

R[1:n],d(t) =
n

∑
j=1

(
n

j
)(−1) j+1

e−t[αn+1(1+θn+1βn+1d)+ jα(1+θβ d)], (25)

Clearly, we can see that R[ k : n ], d(t) is decreasing in t, d, and the parameters αi, βi, θi, i = 1, . . . ,n+ 1.

6 Numerical Illustration

As a case study, we compute the reliability of 8 – out – of – 10: G system. We compute R[ 8 :10 ], d(t), R[ 10 :10 ], d(t), and

R[ 1 :10 ], d(t) using Equations (23), (24), and (25) for different values of t, d, and the distributions parameters.

Table 1 shows the influence of the rate parameters (α,β ,αn+1, andβn+1) on the reliability functions, while fixing the
association parameters (θ , andθn+1). The reliabilities are calculated for fixed values t = 2, d = 3, θ = 0.01, and θn+1 =
0.01. It is clear that the reliability values of all systems increase whenever αor αn+1 decreases (the rate of occurrence of
the fatal shock that comes from sources i, i = 1, . . . ,n, or source n+1 at time T or Tn+1, respectively). We also notice that
if α > αn+1(β > β n+1), then R[ k : n ], d(t) and R[ 1 : n ], d(t) increase, while the reverse happens for R[ n : n ], d(t), which
is a logic result for the different construction of the systems.

Table 2 shows the effect of the strength of the association between the arrival times of the shocks and their magnitudes
on the reliabilities. The reliabilities are calculated for fixed values t = 2, d = 3, (α = β = αn+1 = βn+1 = 0.001), and
different values of the association parameters θ , and θn+1. We can see that as the ρ ′s decrease from ρ = 0 (independence
case) to ρ = −0.40365, the reliability values of all systems decrease. The reduction in the values of the reliabilities is
very slight. This is due to the weak dependence between the shock time and its magnitude for this distribution (bivariate
exponential Gumbel distribution).

Table 3 calculates the reliabilities for different values of d (d = 100, 500, 1000), and t (t = 1, 3, 5), while fixing
the values of the distribution parameters. Column 1, shows the values of the reliabilities when the system is exposed to
independent n shocks, each shock affects one component without considering magnitudes, i. e. , the lifetime of component
i is αe−αt , i = 1, . . . ,n. The reliabilities in the first column are calculated by putting d = αn+1 = βn+1 = θn+1 = 0 in
Equations (23), (24), and (25). Column 2, shows the values of the reliabilities, when d = 0, i. e. , when the magnitude
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of the shocks is not considered. It is clear that the reliability of systems not exposed to Marshall-Olkin type shocks are
greater than those systems exposed to Marshall-Olkin type shocks not considering magnitude. Furthermore, we see that
the reliability becomes smaller when the magnitudes of the shocks are considered. We also observe that R[ k : n ], d(t), and

R[ n : n ], d(t) decrease dramatically with the increase in d and t, while the decrease in R[ 1 : n ], d(t) is not that severe.

The algorithm execution time of calculating R[ k : n], d(t), (t = 3,d = 100,αn+1 = 0.01, βn+1 = 0.005, and θn+1 =

0.2), for different values of n and k in the case of non-identical shocks is shown in Table 4. The results in Table 4, are
obtained using R-programming. We can see that the execution time of the algorithm for different values of n and k, is very
small, it does not exceed few minutes.

Table 1: The effect of the parameters of the distributions on the reliability formulas.

ttt === 222,,, ddd === 333,,, θθθ === 000.000111,,, θθθnnn+++111 === 000.000111,,, ρρρ ===−−−000.000000999888111

ααα βββ αααnnn+++111 βββ nnn+++111 RRR[ kkk ::: nnn],,, ddd(ttt) RRR[ nnn ::: nnn ],,, ddd(ttt) RRR[ 111 ::: nnn ],,, ddd(ttt)

000.000111 000.000111 000.000111 000.000111 0.9793694101 0.8024658335 0.9801927921

000.000000111 0.01 000.000000111 0.01 0.9980004538 0.9782337787 0.9980013999

000.000000111 0.01 0.01 0.01 0.9801918629 0.9607779097 0.9801927921

0.01 0.01 000.000000111 0.01 0.9971630582 0.8170454135 0.9980013999

0.01 000.000000111 0.01 000.000000111 0.9793753355 0.8025135014 0.9801980852

0.01 000.000000111 0.01 0.01 0.9793700469 0.8025091678 0.9801927921

0.01 0.01 0.01 000.000000111 0.9793746987 0.8024701668 0.9801980852

0. 001 0. 001 0. 01 0. 01 0.9801918637 0.960783098 0.9801927921

0. 01 0. 01 0. 001 0. 001 0.9971635967 0.8170458547 0.9980019388

Table 2: The correlation between the time and the magnitude and its effect on reliability.

ttt === 222,,, ddd === 333,,, ααα === 000.000000111,,, βββ === 000.000000111,,, αααnnn+++111 === 000.000000111,,, βββ nnn+++111 === 000.000000111

θθθ θθθ nnn+++111 ρρρθθθ ρρρθθθ nnn+++111
RRR[ kkk ::: nnn ],,, ddd(ttt) RRR[ nnn ::: nnn ],,, ddd(ttt) RRR[ 111 ::: nnn ],,, ddd(ttt)

0 0 0 0.9980010534 0.9782402351 0.9980019987

0.1 0.1 −0.08436 0.9980004538 0.9782337787 0.9980013999

0.5 0.5 −0.27734 0.9979980552 0.9782079537 0.9979990047

0.7 0.7 −0.33648 0.9979968559 0.9781950414 0.9979978071

1 1 −0.40365 0.9979950569 0.9781756733 0.9979960107

Table 3: Comparison of the reliabilities without and with Marshall-Olkin shocks.

ααα === 000.000111,,, βββ === 000.000111,,, αααnnn+++111 === 000.000000111,,, βββ nnn+++111 === 000.000000111,,, θθθ === 111,,, θθθnnn+++111 === 111, ρρρ ===−−−000.444000333666555

RRR[ kkk ::: nnn ],,, ddd(ttt)

ttt Without Marshall-Olkin With Marshall-Olkin shocks

shocks ddd

d,αn+1,βn+1,θn+1 = 0 0 100 500 1000

1 0.999887815 0.998888427 0.9980622289 0.9811385286 0.9206116912

3 0.9973501456 0.9943625787 0.9793740678 0.7771083225 0.4321854225

5 0.9892536915 0.9843197681 0.9327462501 0.494478807 0.131608664

RRR[ nnn ::: nnn ],,, ddd(ttt)

1 0.904837418 0.9039330329 0.8178306444 0.5479890357 0.3322060068

3 0.7408182207 0.7385990964 0.5470035427 0.1645567144 0.03666253097

5 0.6065306597 0.6035055754 0.3658616582 0.04941506212 0.004046107383

RRR[ 111 ::: nnn ],,, ddd(ttt)

1 1 0.9990004998 0.9989006048 0.9985011244 0.9980019985

3 1 0.9970044955 0.996705439 0.9955100952 0.9940149047

5 1 0.9950124792 0.9945150972 0.9925266972 0.9898680412
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Table 4: The execution time of the algorithm for different values of n and k.

nnn kkk RRR[ kkk ::: nnn ],,, ddd(ttt) Execution time

αi = (0.01, 1, 0.02, 0.07, 0.2),
βi = (0.007, 0.0002, 0.5, 0.03, 0.75),

θi = (0.1, 0.3, 0.8, 0.6, 0.9), i = 1, . . . ,5
5 1 0. 95571914200 0. 01590896 secs

3 0. 89765519752 0. 2018201 secs

5 0. 89195009796 0. 157635 secs

αi = (0.01, 1, 0.02, 0.07, 0.2, 0.25, 0.3, 0.0005, 0.006, 0.04),
βi = (0.007, 0.0002, 0.5, 0.03, 0.75, 0.6, 0.008, 0.001, 0.05, 0.7)
θi = (0.1, 0.3,0.8, 0.6, 0.9, 0.2, 0.7, 0.5, 0.4, 0.8), i = 1, . . . ,10

10 1 0. 96753782277 0. 02723908 secs

4 0. 96752765400 0. 732451 secs

7 0. 96748844780 3. 136231 secs

10 0. 96748843047 3. 793851 secs

αi = (0.01,1, 0.02, 0.07, 0.2, 0.25, 0.3,0.0005, 0.006, 0.04, 0.7, 0.05, 0.8, 0.0001, 0.9),
βi = (0.007, 0.0002, 0.5, 0.03, 0.75, 0.6,0.008, 0.001, 0.05, 0.7, 0.0002, 0.25, 0.3, 1, 0.0005),

θi = (0.1, 0.3, 0.8, 0.6, 0.9, 0.2, 0.7, 0.5, 0.4, 0.8, 0.4, 0.2, 1, 0.7, 1), i = 1, . . . ,15.

15 1 0. 96753855939 0. 01612115 secs

7 0. 96753855732 54. 15218 secs

10 0. 96753855712 2. 391665 mins

15 0. 96753855712 2. 831313 mins

7 Conclusion

In this paper, the reliability formula R[ k : n ], d(t) of a system subjected to independent (non-identical and identical)
Marshall-Olkin type shocks concerning magnitude is obtained. The reliability formulas of the series and the parallel
systems are obtained as special cases. An algorithm is presented to calculate the formula of R[ k : n ], d(t) in the case of
non-identical shocks, and applied using the R-programming software. The execution time of the algorithm is very small
(for n = 15, k = 15 is 2. 83 mins).

Numerical illustrations are applied to detect the effect of t, d, and the distribution parameters on the reliabilities of
the systems. We see that, the reliabilities increase whenever αor αn+1 (rate parameters of time) decreases. We also notice
that if α > αn+1(β > β n+1), then R[ k : n ], d(t) and R[ 1 : n ], d(t) increase, while the reverse happens for R[ n : n ], d(t),
which is a logic result for the different construction of the systems. The values of the reliabilities decrease very slightly,
when ρ ′s decrease from ρ = 0 (independence case) to ρ = −0.40365. This is due to the weak dependence between the
shock time and its magnitude for this distribution (bivariate exponential Gumbel distribution). The reliability of systems
not exposed to Marshall-Olkin type shocks are greater than those systems exposed to Marshall-Olkin type shocks not
considering magnitude. Furthermore, we see that the reliability becomes smaller when the magnitudes of the shocks are
considered. We also observe that R[ k : n ], d(t), and R[ n : n ], d(t) decrease dramatically with the increase in d and t, while

the decrease in R[ 1 : n ], d(t) is not that severe. For future work, we study the reliability of systems affected by the extension
Marshall-Olkin type shock models.
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