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Abstract: The Rayleigh distribution incorporate the lifetime of an object or a service time. In this paper, a new model, called, Power

Rayleigh distribution (PR) is submitted for specifying the confirmed total deaths of Corona virus (Covid-19) in Egypt. Statistical and

reliability properties of the PR distribution such as survival function, failure rate function, mean residual life, order statistic and extreme

value distribution are deduced and studied. Maximum likelihood method is used to evaluate the unknown parameters. Simulation

Schemes are introduced. Finally, two sets of real-life data are construed and observed that the new model can provide a best fit to water

runoff data and the total deaths of Covid-19 data than other well-known distributions.
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1 Introduction

Many research has provided variety models in order to investigate the lifetime of objects such as Rayleigh, Lomax,
Weibull, Pareto distributions. Recently, these models have new extensions to have more reliability measures. Ahmad et
al [1] discuss characterization of Weibull-Rayleigh Distribution. Weighted Lomax distribution is deduced by Kilany [2].
Kayid [3] estimate the parameters of one generalized mixture Pareto distribution by EM algorithm for complete and
right-censored data.

The Rayleigh distribution is believed to be helpful lifetime distribution. It was first introduced by Rayleigh [4]. It
has various applications, involving communication theory,reliability analysis,clinical studies, technology and applied
statistics. If a random variable Y followed the Rayleigh distribution with one parameter then its PDF is obtained by:

f (y) =
y

α2
e
−y2

2α2 , y > 0 (1)

Many generalization and extensions of the Rayleigh distribution are introduced. Ogunsanya et al [5] introduced the
Rayleigh-Cauchy Distribution to extend the two-parameter Cauchy distribution using T-RY families. Shrahili et al [6]
proposed and studied the sine half-logistic inverse Rayleigh distribution as a new inverse Rayleigh distribution extension.
To form the Reddit advertising and breast cancer data sets, Zhongjie et al [7] introduced a new extended shape of the
generalized Rayleigh distribution . This distribution is named as a new generalized Rayleigh distribution and possesses
heavy tailed properties. Falgore et al [8] apply the Inverse Lomax generator in order to have an extension of Rayleigh
distribution named Inverse Lomax Rayleigh distribution . Properties of ILR were derived. Rivet et al. [9] discussed
the Log Rayleigh distribution, Cordeiro et al. [10] derived Beta Generalized Rayleigh distribution, Weibull Rayleigh
distribution is introduced by Merovci and Elbatal [11], Mahmoud and Ghazal [12] introduced exponentiated Rayleigh
distribution. Several authors have considered extensions of Rayleigh distribution such as Inverse Rayleigh by Voda [13],
Weighted Inverse Rayleigh distribution by Fatima and Ahmed [14] and also, Merovci [15] has constructed Transmuted
Rayleigh distribution. Exponential Transformed Inverse Rayleigh distribution is discussed by Banerjee and Bhunia [16].
The quality of the procedures applied in statistical analysis relys heavily on the assumed probability distribution.The
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Rayleigh distribution has been extended in this paper by using the power transformation x = y
1
β , see also Hassanein et al

[17].The cumulative distribution function (CDF) of the X is presented by

F(x) = P(X ≤ x) = P(Y ≤ xβ ) = Fy(x
β )

Thus, the PDF of Power Rayleigh (PR) distribution is obtained as

f (x) =
β

α2
x2β−1e

−x2β

2α2 , x > 0, α, β > 0 (2)

where α is a scale parameter and β is a shape parameter. The proper cumulative CDF is presented by

F(x) = 1− e
−x2β

2α2 (3)

This paper is arranged accordingly: in Section 2, statistical properties and reliability measures are discussed such as shapes
of probability density function, shapes of failure rate function, the moments and some associated assess, the quantile
function, skewness and kurtosis, mean residual life , Shannon entropy and stress-strength parameter. In Section 3, the
maximum likelihood method and confidence interval are used to assess the two-parameter. In Section 4, the distribution
of order statistic is introduced and limiting distribution of extreme value are derived. A simulation study is presented in
Section 5. Finally, applications of the Power Rayleigh model to real-life data are illustrated in Section 6.

2 Statistical Concepts and Reliability Measures

In this section some statistical concepts and reliability assessment for the PR model are deduced and studied.

2.1 Behavior of Probability Density Function

At x = 0 and x = ∞, the attitude of PR distribution is provided

f (0) =







∞, β < 1
2

1
α2 , β = 1

2

0, β > 1
2

, f (∞) = 0.

The behavior of PDF of PR model is provided in the following theorem.

Theorem 1. For all α > 0 the PDF of Power Rayleigh model is

(i) Decreasing if β ≤ 1
2
.

(ii) Unimodal if β > 1
2
.

Proof. Since

f´(x) = Ψ (x)
x

f (x),

where,

Ψ(x) = −β
α2 x2β + 2β − 1.

(i) For β = 1
2
, then Ψ (x) = −1

2α2 x < 0 and f´(x)< 0. Hence, f (x) is decreasing. Also, if β < 1
2

, then Ψ(x)< 0 and

f´(x)< 0 for all α > 0. Hence f (x) is decreasing.
(ii) ∀α > 0, f´(x) = 0 i f f Ψ(x) = 0 which arises at the point

x0 = ( 2α2β−α2

β )
1

2β

Since, f´´(x0) =
−2β

1
β
+1

(2β−1)
1− 1

β

α
2
3

< 0, so f (x) has a mode at x0 .

Figure 1 shows the attitude of PDF of PR model for some selected choices of α and β .
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Fig. 1: Density function of the PR distribution.

2.2 Survival and Failure Rate Functions

The concerned event has not yet happened by time x. Thus, the survival function S(x) denotes probability of surviving
beyond time x which is defined by

S(x) = 1−F(x) = e
−x2β

2α2 (4)

The failure rate function is the conditional rate of failure at time x, assume that an individual remain alive until at least
time x. The failure rate function of PR distribution is defined by

h(x) =
f (x)

S(x)
=

x2β−1

α2
β (5)

The shapes of hazard rate function of the PR distribution is discussed in the following theorem

Theorem 2. For all α > 0 the failure rate function of power Rayleigh distribution is

(i) Decreasing if β ≤ 1
2
.

(ii) Increasing if β > 1
2
.

Proof. The first derivative of h(x) is obtained by

h´(x) = β
α2 x2β−2(2β − 1)

So,

(i) i f β ≤ 1
2
, then h´(x)≤ 0 and this means that h(x) is decreasing.

(ii) i f β > 1
2
, then h́(x)> 0 and h(x) is increasing.

The different behavior of failure rate function for PR model are shown in Figure2.

2.3 Mean Residual Life Function (MRL)

Suppose that S(x) is the survival function of a continuous random variable X , the MRL function is specified as the expected
value of the remaining lifetimes after a fixed time point x. The MRL of the PR distribution is given as follows

µ(x) = 1
S(x)

∞
∫

x

y f (y)dy− x

= e
x2β

2α2
∞
∫

x

y× β
α2 y2β−1e

−y2β

2α2 dy− x

Hence, µ(x) = 2α2x1−2β , x > 0.
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Fig. 2: Shapes of h(x) of the PR model.

Theorem 3. The MRL function µ(x) of the PR model is increasing if β ≤ 1
2
and decreasing if β > 1

2
for all α > 0.

Proof. Bryson and siddique [18] proved that when the h(x) is increasing(deacreasing) then the corresponding mean
residual life function will be increasing (decreasing). Thus, this provided the proof of the theorem.

Figure 3 displays that the shapes of MRL function of the PR distribution.

Fig. 3: Shapes of mean residual life of the Power Rayleigh model

2.4 Moments

A raw moment of order k is the average of all numbers in the set, with each number raised to the kth power before you
average it. The first and second raw moment provide some information about the location, variability and appearance of
the distribution.The third and the forth raw moments provide some information on the shape of distribution. In this section
we introduce the kth moments. The kth moment of Power Rayleigh distribution is defined by

µ´
1 = 2

1
2β ( 1

α2 )
−1
2β Γ (1+ 1

2β )

µ´
2 = 2

1
β ( 1

α2 )
−1
β Γ (1+ 1

β )
.

µ´
n = 2

n
2β ( 1

α2 )
−n
2β Γ (1+ n

2β )
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The central moments of PR distribution are as follows

µ2 =
2

1
β ( 1

α2 )
−1
β [−β Γ (1+ 1

2β
)2 + Γ ( 1

β
)]

β .

µ3 =
2
−2+ 3

2β ( 1

α2 )
−3
2β [ Γ ( 1

2β
)3−6 β Γ ( 1

2β
) Γ ( 1

β
) + 6β 2Γ ( 3

2β
)]

β 3 .

µ4 =
4
−2+ 3

2β ( 1

α2 )
−2
β [−3Γ ( 1

2β
)4+24β Γ ( 1

β
) − 48β 2Γ ( 3

2β
) + 32β 3Γ ( 2

β
)]

β 4

Hence, the standard deviation (SD) of the PR distribution is

SD =
√

µ2 =

√

√

√

√

2
1
β ( 1

α2 )
−1
β [−β Γ (1+ 1

2β )
2 + Γ ( 1

β )]

β
, β > 0

The coefficient of variation performs the proportion of the standard deviation to the mean, and it is a helpful relation

for matching the degree of variation from one data series to another, even if the means are seriously diverse from one

another. Thus, the coefficient of variation of the PR distribution is given by

ρ =
SD

µ
=

2
−1
2β ( 1

α2 )
1

2β

√

√

√

√ 2

1
β ( 1

α2
)

−1
β [−β Γ (1+ 1

2β
)2 + Γ ( 1

β
)]

β

Γ (1+ 1
2β )

, β > 0

The skewness and kurtosis statistics are based on the sample size. Smaller sample sizes can accord results that are very
deceptive. Skewness measures the relative size of the two tails. Skewness of the PR distribution can be obtained as
follows :

S =

√

µ2
3

µ3
2

=
1

4

√

√

√

√

[ Γ ( 1
β )

3 − 6βΓ ( 1
2β )Γ ( 1

β ) − 6β 2Γ ( 3
2β )]

2

β 3(−β Γ (1+ 1
2β )

2 +Γ ( 1
β ))

3
, β > 0

Kurtosis is the measurement of the joint weight of a distribution’s tails relative to the center of the model. The kurtosis of
the PR model is presented by

K =
µ4

µ2
2

=
−3 Γ ( 1

2β )
4 + 24β Γ ( 1

2β )
2 Γ ( 1

β ) − 48 β 2Γ ( 1
2β ) Γ ( 3

2β ) + 32Γ ( 2
β )

16β 2 [−β Γ (1+ 1
2β )

2 −Γ ( 1
β )]

2
, β > 0

Let X be a random variable from our model, therefore the moment generating function of PR distribution is defined by

MX (t) =
∫ ∞

0
etx f (x)dx

= 1+
∞

∑
r=1

tr

r!
2

r
2β (

1

α2
)
−r
2β Γ (1+

r

2β
)

The characteristic function of PR distribution is derived as follows:

φX (t) =

∫ ∞

0
eitx f (x)dx

=
∞

1+∑
r=1

(it)r

r!
2

r
2β (

1

α2
)
−r
2β Γ (1+

r

2β
)
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2.5 Quantile Function

For the Power Rayleigh model, the quantile function is obtained by

F−1(u) = (−2α2 ln(1− u))
1

2β .

Quantile is useful measure because it is less susceptible to long tailed distribution and it is clear that the quantile function
is more helpful descriptive statistics than means and other moments. Some quantiles have special names (see [19]).

–if u = 1
2

then the quantile function is called median, so the median of the PR distribution is given by

Q1 = F−1( 1
2
) = (−2α2 ln( 1

2
))

1
2β

–if u = 1
4

then the quantiles are called the first quartile, so the first quartile of the PR distribution is given by

Q2 = F−1( 1
4
) = (−2α2 ln( 3

4
))

1
2β

–if u = 3
4

then the quantiles are called the third quartile, so the third quartile of the PR distribution is given by

Q3 = F−1( 3
4
) = (−2α2 ln( 1

4
))

1
2β

Figure 4 shows the quantiles at α = 1 for the PR distribution.

Fig. 4: Plots of quantile function of Power Rayleigh distribution for α=1.

2.6 Shannon Entropy

An entropy is interpreted as the degree of randomness in the system and many fields employ Shannon entropy such as
biology, physics and chemistry as a Motivating force for protein unfolding . The Shannon entropy of random variable X

is specified by

For the PR model, Shannon entropy follows as

SH =−∫ ∞
0 f (x) log f (x)dx

=−
∫ ∞

0
β

α2 x2β−1e
−x2β

2α2 log( β
α2 x2β−1e

−x2β

2α2 )dx

=− 1
2
β log( 1

α2 )
1

2β Γ (2− 1
2β ), β > 1

4
.
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3 Methods of Estimations

In this section, we study the evaluation of the parameters for the PR distribution by applying the maximum likelihood
method. Moreover, interval estimation is discussed based on Fisher information matrix.

3.1 Maximum likelihood estimation

Suppose a random sample of size n from PR distribution as x1,x2, ........,xn , then the sample likelihood function of this
model is given by

L(α,β ,x) =
∞

∏
i=1

f (xi,α ,β )

= ( β
α2 )

n
∞

∏
i=1

x
2β−1
i e

−
n

∑
i=1

x
2β
i

2α2

Thus, the log-likelihood function is as follows,

l(α,β ,x) = n ln(β )− n ln(α2)+ 2β
n

∑
i=1

lnxi −
n

∑
i=1

lnxi −

n

∑
i=1

x
2β
i

2α2
(6)

The estimated parameters
∧
β and

∧
α are specified by having a solution for the following equations

n

β
+ 2

n

∑
i=1

lnxi −

n

∑
i=1

x
2β
i lnxi

α2
= 0 (7)

−2n

α
+

n

∑
i=1

x
2β
i

α3
= 0 (8)

From Eqs (7) and (8) we have

∧
α =

√

√

√

√

n

∑
i=1

x
2β
i

2n
(9)

By substituting α2 in Eq (7), then we have

2β

n

∑
i=1

x
2β
i lnxi

n

∑
i=1

x
2β
i

− 2β

n

n

∑
i=1

lnxi = 1 (10)

Taking log-function for Eq (10), we obtain

f (β ) = lnn[
n

∑
i=1

(x
2β
i lnxi − x

2β
i − lnxi)] = 0 (11)

The estimation of β can obtained by solving Eq (11) in one-variable Newton-Raphson optimization algorithm as

follows

βk+1 = βk −
f (βk)

f (́βk)
, where k = 0,1,2, .... (12)
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3.2 Interval Estimation

For finding the interval estimation of (α,β ), the elements of Fisher information matrix I = [Ii j], i, j = 1,2 are given by

I11 =−E( ∂ 2 ln f (x)
∂α2 ) = 2

α2 −
2

1
2 ( 1

α2 )
−1
β Γ (1+ 1

β
)

α4

I22 =−E( ∂ 2 ln f (x)
∂β 2 ) =−4− 1

β 2

I12 =−E( ∂ 2 ln f (x)
∂α∂β ) = 4 lnx

α

Applying the large-sample theory of maximum likelihood estimators gives

√
n
(

∧
α−α
∧
β−β

)

d−→ N2(0, I
−1),

where d−→ indicates convergence in model and I−1 is the inverse of the matrix I. The asymototic variances and

covariances of α and β are provided by

var(
∧
α) = I22

n△
var(

∧
β) = I11

n△
cov(

∧
β ) = −I12

n△

where △= I11I22 − I2
12 is the determinant of matrix I. The corresponding asymptotic 100(1−α)% confidence interval

of
∧
α and

∧
β , respectively, are provided by

∧
α ±Z α

2

√

var(
∧
α),

∧
β ±Z α

2

√

var(
∧
β ),

whereZ α
2

is the upper α
2

quantile of the standard normal distribution.

4 Order Statistic and Extreme Values

4.1 Distribution of Order Statistic

The order statistic of this model is used to known sometimes about how the order of the data behaved. For a sample
observation x1,x2, .....,xn from the Power Rayleigh distribution which are independent, the sample values x(1:n) ≤ x(2:n)
≤ ........ ≤ x(n:n) which are ordered, named as the order statistic. Let Y = X j:n then the probability density function is
defined by

fy(y) =
n!

( j−1)!(n− j)! ×F j−1(y)×{1−F(y)}n− j × f (y)

= (e
− y2β

2α2 )n− j+1×(1−e
− y2β

2α2 ) j−1y2β β n

α2( j−1)!(n− j)!
, y > 0

The CDF of the order statistic is obvioused by

Fy(y) =
n

∑
m= j

(

n
m

)

×Fm(y)×{1−F(y)}n−m

= (e
− y2β

2α2 )n− j×(1−e
− y2β

2α2 ) j×n×2F1[1, j−n,1+ j,1−e
− y2β

2α2 ]
j!(n− j)! , y > 0

where 2F1 is the hypergeometric function (see [20]).
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4.2 Limiting Distribution of Extreme Values

Suppose that Mn and mn is the maximum and minimum of the sample created from the Power Rayleigh model. The
following theorem presented the limiting distributions of the extreme values.

Theorem 4. Let Mn and mn be the maximum and the minimum of a random sample[X1,X2, .....,Xn] from the Power

Rayleigh distribution. Then we have

(i) lim
n→∞

P(Mn−an

bn
≤ x) = exp(−e−x), −∞ < x < ∞

(ii) lim
n→∞

P(mn−cn

dn
≤ x) = 1− exp(−x2β ), x > 0

where,

an = F−1(1− 1
n
),bn =

1
n f (an)

,cn = 0,dn =
1

F−1(n)

Proof. For the PR distribution we obtain

(i) lim
x→∞

d
dx
{ 1

h(x)
}= α2

β lim
x→∞

d
dx
{x1−2β}= α2

β lim
x→∞

(1− 2β )x−2β

= α2

β ( 1−2β
∞ ) = 0

From Arnold et al. [21], Theorem 8.3.3,, the maximal domain of attraction of the PR distribution is the standard
Gumbel distribution and thus part (i) is proved.

(ii) By applying L’Hospital rule ,

lim
ε→o

F(F−1(0)+εx)
F(F−1(0)+ε)

=lim
ε→0

F(εx)
F(ε) =lim

ε→0

x2β e
− (εx)2β

2α2

e
− x2β

2α2

= x2β

From Arnold et al. [21], Theorem 8.3.6 , the minimal domain of attraction of the PR distribution is the standard
Weibull distribution and this proved part (ii).

5 Simulation Study

The equation F(x)− u = 0 is used for implementing the simulation study by creating random samples from PR model.
The simulation expriment was Reiterated is N= 1000 with sample sizes: 30, 50, 70, 90 for (α,β ) = (0.5,5) and (0.7,10).
The next measurs are calculated:

(i) Average bias of the estimated parameters can be calculated from:

1
N

N

∑
i=1

(
∧
α −α) and 1

N

N

∑
i=1

(
∧
β −β )

(ii) The Mean square error (MSE) of the estimated parameter can be calculated from:

1
N

N

∑
i=1

(
∧
α −α)2 and 1

N

N

∑
i=1

(
∧
β −β )2

Table1 shows the average bias and the MSE of the estimates. It is clear that the positive and smallest values of the bias
for PR model and where the sample size increases, the values of the MSE decreases.

Table1 : Bias and MSE for PR parameters α,β .

α β n Bias(α) MSE(α) Bias(β ) MSE(β )
1 0.5 30 0.03288 0.02128 0.03052 0.00787

50 0.01486 0.01006 0.01459 0.00354

70 0.00901 0.00720 0.01025 0.00242

90 0.00432 0.00532 0.00452 0.00169

0.7 10 30 0.00490 0.00551 0.61042 3.14893

50 0.00186 0.00297 0.29198 1.41796

70 0.00028 0.00214 0.20501 0.96660

90 0.00011 0.00165 0.09048 0.67990
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6 Application

The aim of this section is the two real data set which are fitted to the proposed distribution.

6.1 Hydrologic Data

A 34 storm events was realized from a watersheds. The data as described in Kang et al. [22] describes the water runoff
(mm) of a study storms, which represents to one of the hydrological characteristics realized from a mall watershed in
Korea (west of city of Suwon), the results being available since 1996. The data are as follows: 0.9, 0.6, 16.8, 59.3, 2, 78.2,
30.7, 146.8, 1.8, 3.4, 1.1, 0.8, 2.5, 6.1, 17, 5.1, 216.2, 8.1, 1.6, 2, 2, 0.8, 0.8, 2.9, 7.3, 13.3, 181.7, 20.5, 24.1, 33.5, 89.1,
7.2, 6, 75.9.

Many probability models such as Gumbel, Pareto, Generalized Extreme Value (GEV) and Generalized Logistic (GL)
distribution are in use in the hydrological data analysis. Hydrological studies are lucrative in controlling water resources,
planning and projection . The chosen of the more convenient probability distribution and related estimation procedure for
parameter are the essential stage in hydrology analysis.

The PR distribution was fitted to runoff data using MLE, Kolmogorov-Smirnov test statistics and contrasted through
goodness of fit measures for the next distributions which appropriate to these data,

–Gumbel distribution

f (x) = e−e
− x−µ

σ − x−µ
σ

σ , −∞ < x < ∞, −∞ < µ < ∞, σ > 0

–Pareto distribution

f (x) = αβ α

(x+β )α+1 , x > 0, α, β > 0

–Generalized Pareto (GP) distribution

f (x) =







(1+k( x−µ
σ ))

− 1
k
−1

σ , k 6= 0

e
−( x−µ

σ )
σ , k = 0

for x ≥ µ when k ≥ 0, and µ ≤ x ≤ µ − σ
k

when k < 0, where −∞ < µ , k < ∞, σ > 0

–Generalized Extreme Value distribution (GEV)

f (x) =















(1+k(
x−µ

σ ))
− 1

k
−1

e
−(1+k( x−µ

σ ))
−1
k

σ , k 6= 0, 1+ k
(

x−µ
σ

)

> 0, σ > 0

e

−
(

x−µ
σ −e

−( x−µ
σ )

)

σ , k = 0, -∞ < x < ∞, σ > 0

–Generalized Logistic distribution (GL)

f (x) =



























(1+k( x−µ
σ ))

− 1
k
−1

σ

(

(1+(1+k( x−µ
σ ))

−1
k

)2 , k 6= 0, 1+ k
(

x−µ
σ

)

> 0, σ > 0

e
−( x−µ

σ )

σ

(

1+e
−( x−µ

σ )
)2 , k = 0, -∞ < x < ∞, σ > 0

Table 2: The Model Selection Criteria for the runoff data.

Distributions -log L AIC BIC AICC HQIC CAIC

Gumbel (µ ,σ) 169.564 343.127 346.18 343.514 344.168 343.514

Pareto (α,β ) 145.389 294.778 297.831 295.165 295.819 295.165

GP (µ ,σ ,k) 148.974 303.948 308.527 304.748 305.51 304.748

GEV (µ ,σ ,k) 150.814 307.628 312.207 308.428 309.189 308.428

GL (µ ,σ ,k) 151.498 308.996 313.575 309.796 310.557 309.796

PR (α,β ) 140.349 284.698 287.75 285.085 285.739 285.085
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Table 3: Estimates of the parameters for runoff data

Distributions Estimates

Gumbel (µ ,σ) 12.194 25.186 −
Pareto (α,β ) 0.3862 0.6 −
GP (µ ,σ ,k) −3.1511 16.411 0.52449

GEV (µ ,σ ,k) 6.4599 12.399 0.59636

GL (µ ,σ ,k) 11.726 11.298 0.61583

PR (α,β ) 1.6997 0.2957 −

Table 4: K-S goodness of fit test and P-Value for runoff data

Distributions K-S P-Value

Gumbel (µ ,σ) 0.47722 0.0000003

Pareto (α,β ) 0.15072 0.38418

GP (µ ,σ ,k) 0.19416 0.13453

GEV (µ ,σ ,k) 0.17514 0.22048

GL (µ ,σ ,k) 0.18030 0.19381

PR (α,β ) 0.13869 0.52756

We use the criteria AIC (Akaike information criterion), BIC (Bayesian information criterion), AICC ( Corrected
Akaike information criterion), CAIC (consistent Akaike information criteria) and HQIC(Hannan-Quinn information
criterion) (see Chen 1995 [23])to compare PR distribution with other models . The model with minimum AIC, BIC,
AICC, CAIC and HQIC value is selected as the bestead model to fit the data. From Table 2, we determine that the power
Rayleigh distribution is the bestead compared to the other models.

The maximum likelihood method is applied for evaluating the parameters of all the matched distributions and the
evaluation of parameter are obtained in Tables 3. Further, Kolmogrov -Simrnov (K-S) goodness of fit test statistics utilized
to check the fitting model of data set. The K-S statistics are detected for each distribution and written in Table 4. It obvious
that the greatest P-value and the smallest Kolmogrov- Simrnov statistics for the Power Rayleight distribution than other
distributions, thus, for the runoff data, the PR model is the bestead model.

6.2 COVID-19 Data

The rapid spread of Corona Virus (COVID-19) from China to other countries, makes its extremely important to study the
number of all cases or deaths. The following data from the National Vital Statistics in Egypt [24] represents the overall
deaths of Covid-19 since its begin in Egypt until May, 27th 2020. The data are as follows:1, 2, 2, 2, 2, 2, 4, 6, 6, 7, 8, 10,
14, 19, 21, 21, 24, 30, 36, 40, 41, 46, 52, 52, 66, 71, 78, 85, 103, 118, 135, 146, 159, 164, 178, 183, 196, 205, 224, 239,
250, 264, 264, 276, 294, 307, 337, 359, 380, 392, 406, 415, 429, 436, 452, 469, 482, 503, 514, 525, 533, 544, 556, 571,
592, 612, 630, 645, 659, 680, 696, 707, 735, 764, 783, 797.

The PR distribution yields a better fit for Covid-19 deaths data compared while the following well-known distributions

–Rayleigh distribution with density function

f (x) = x
α2 e

−x2

2α2 , x > 0, α > 0

–Pareto distribution

f (x) = αβ α

(x+β )α+1 , x > 0, α, β > 0

–Log-logistic distribution

f (x) = (β/α) (x/α)β−1

(1+(x/α)β )2 , x > 0, α, β > 0

–Lognormal distribution

f (lnx) = 1

σ
√

2π
exp[−(lnx−µ)2

2σ 2 ], x > 0, µ , σ > 0
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–Gamma distribution

f (x) = β α xα−1e−βx

Γ (α)
, x > 0, α, β > 0

–Exponential distribution

f (x) = λ e−λ x, x ≥ 0, λ > 0

–Lomax distribution
f (x) = α

β [1+
x
β ]

−(α+1), x ≥ 0, α, β > 0

Table 5: Model Selection Criteria for the COVID-19 deaths data.

Distributions -log L AIC BIC AICC HQIC

Rayleigh (σ) 578.04 1158.08 1160.42 1158.13 1159.02

Pareto (α,β ) 558.658 1121.32 1126.0 1121.48 1123.19

Log-logistic (α,β ) 520.223 1044.45 1049.13 1044.61 1046.32

Lognormal (µ ,σ) 518.376 1040.75 1045.44 1040.91 1042.63

Gamma (α,β ) 517.502 1039.0 1043.69 1039.17 1040.88

Exponential (λ ) 510.172 1022.34 1024.69 1022.4 1023.28

Lomax (α,β ) 510.272 1024.54 1029.23 1024.71 1026.42

PR (α,β ) 506.967 1017.93 1022.62 1018.1 1019.81

Table 6: Estimates of the parameters for COVID-19 deaths data.

Distributions Estimates

Rayleigh (σ) 221.37 −
Pareto (α,β ) 0.21249 0.999

Log-logistic (α,β ) 0.85112 107.79

Lognormal (µ ,σ) 4.7062 1.8349

Gamma (α,β ) 1.234 224.83

Exponential (λ ) 0.0036 −
Lomax (α,β ) 89.194 24072.0
PR (α,β ) 6.25624 0.395029

Table 7: K-S goodness of fit test and P-Value for COVID-19 deaths data.

Distributions K-S P-Value

Rayleigh (σ) 0.29257 3.76838× 10−6

Pareto (α,β ) 0.29935 2.03129× 10−6

Log-logistic (α,β ) 0.166381 0.0281564

Lognormal (µ ,σ) 0.162764 0.0338222

Gamma (α,β ) 0.18272 0.011675

Exponential (λ ) 0.140966 0.0937465

Lomax (α,β ) 0.136609 0.11293

PR (α,β ) 0.116209 0.249452

From Table 5, the information criteria AIC, BIC, CAIC and HQIC show that the proposed model exhibits the least loss
of information behaviour for Covid-19 data. In Table 7 clarifies the greatest P-value and the smallest Kolmogrov- Simrnov
statistics for the Power Rayleight distribution than other distributions. Thus, the Kolmogrov- Simrnov (K-S) goodness of
fit statistics indicates the proposed distribution its the bestead one for fitting the total number of Covid-19 deaths in Egypt
comparable to other models.

7 Conclusion

The two parameters distribution called the Power Rayleigh distribution is proposed by power transformation.This model
is more flexible than the Rayleigh distribution in the area of reliability studies. In terms of the probability density, failure
rate and mean residual life functions are studied. Two numerical examples of realistic data are utilized to display the
importance of this new model by matching it to other distributions.
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