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Abstract: International advisory bodies have developed guidelines for testing mercury and aquatic items to protect human 
health and international trade. The mercury absorption in fish has a great effect on human health. For modeling this problem, 
a new bivariate distribution using the proportional hazard rate (PHR) model with Kumaraswamy marginal called BKPH is 
derived and studied via statistical properties and reliability measures. Moreover, several methods of parameter estimation are 
discussed, including maximum likelihood estimation (MLE), method of moments estimation (MME), and inference function 
for margins estimation (IFM). In the simulation study, the performance of estimators depending on their estimation 
methodologies is compared. Finally, a comparative study of the proposed BKPH with several bivariate Kumaraswamy 
distributions via goodness of fit criteria was introduced. The results of the study proved the potentiality of the BKPH model 
and has a best fitting on mercury fish absorption data. 

 Keywords: Proportional hazard rate model; Kumaraswamy distribution; Copula; Estimation methods; Simulation. 

 

1.  Introduction 

When working with bivariate lifetime data, it is critical to consider several distributions that might be used to describe the 
data. In recent years, statisticians have been increasingly interested in the construction of continuous bivariate distributions. 
Essentially, the method is based on the statistical interpretation of marginal distributions and the copula of dependence. 
According to [14], there are several methods for generating bivariate distributions. The following characteristics have been 
identified by [10] for constructing bivariate distributions: 

a. A stochastic representation, such as a mixture, should exist. 

b. Margin should, at the very least, be within the same parametric family. 

c. A parameter should be utilized to describe the bivariate dependence between the margins, and it should cover a wide 
range of dependence. 

d. While a closed-form representation is ideal, a numerical assessment of the joint distribution and density should be 
possible.  

All these desirable features cannot be achieved together. While bivariate normal distributions may be the closest, there is no 
known bivariate family that encompasses all the characteristics; see [10], Section 5.  

  The proportional reversed hazard rates (PRHR) and proportional hazard rates (PHR) models are two flexible families of 
distributions that have been used to model failure time data in reliability and survival analysis see, by [19].   Later, many 
researchers continued the study and found many results for the PHR model. In 1953, Lehmann first introduced the PHR 
model in the two-sample hypothesis testing context, which was named Lemann alternatives. The PHR model covers some 
commonly used statistical lifetime distributions which apply to model component lifetimes. According to the PHR model, 

					𝐻(𝑥) = 1 − )1 − 𝐹(𝑥)+,					, 𝑥 ≥ 0, 𝜆 > 0	 
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where 𝐹(𝑥) represents the baseline cumulative distribution and 𝐻(𝑥) represents the generated cumulative distribution using 
the PHR model. 

Motivated by Joe's assertion, the purpose of this study is to propose a bivariate exponential distribution that satisfies all the 
properties (a), (b), and (d) and has a usable range of dependence.  

In bivariate cases, several models have been constructed for PHR and PRHR ; for example; [6, 18, 22, 23] and the references 
cited therein. Based on the baseline univariate cumulative distributions 𝐹2(𝑥) and 𝐹3(𝑦),	a bivariate PHR model was proposed 
as follows: 

                                     𝐻,(𝑥, 𝑦) = 1 − )1 − 𝐹2(𝑥)𝐹3(𝑦)+
,,			𝑥, 𝑦 ∈ ℝ	𝑎𝑛𝑑	0 < 𝜆 ≤ 1.                                  (1) 

with the univariate marginal distributions 

𝐻=(𝑥) = 1 − )1 − 𝐹=(𝑥)+
,, 𝑖 = 1,2.					where 𝜆 is the dependence parameter. 

Some bivariate distribution using this concept are introduced in the literature for example, [22, 23]  where the baseline CDF 
are Exponential and Rayleigh distributions. There has been considerable interest in copula structure for studying dependence 
structures in bivariate distributions. The dependence properties of bivariate distributions in PHR and PRHR models have 
been studied by [3, 6]. The double-bounded probability distribution proposed in [17] has been extensively studied in 
hydrology and related fields. The CDF of Kumaraswamy (KW) with two shape parameters 𝛼 > 0 and 𝛽 > 0 is defined by 

                                      𝐹(𝑥) = 1 − (1 − 𝑥B)C													, 𝑥 ∈ (0,1),					𝛼, 𝛽 > 0 

      Due to [12], although Beta and KW distributions have many similarities, they also have some significant differences. 
Continuous distributions come in a broad range of forms in the statistical literature, including univariate and bivariate 
continuous distributions, see [1,5,12,16]. According to [23], a new structure of bivariate Rayleigh distribution is presented 
using the PHR model and applied to the COVID-19 data set.  

    Two pelagic fish species were studied by [13] to determine whether there were any differences in mercury concentration 
that could affect the measurement of mercury exposure for users. They observed that there are correlations between fish size 
and mercury concentrations in fish, as well as intake concentrations, suggesting that this pollutant is important in users' 
decisions to eat fish. Only if people are aware of the dangers of eating large fish can they change their eating habits. 

The organization of this paper is:  the materials and methods are shown in Section 2 which illustrates the derivation of a new 
bivariate Kumaraswamy (BK) distribution using the PHR model (BKPH) and its parameter estimation via 3 techniques. In 
Section 3, results and discussion of the paper is introduced through; several statistical properties of BKPH distribution, 
measures of reliability and the copula structure of the proposed distribution are presented and discussed. Moreover, a 
simulation study to see how the MLE, MME, and IFM estimators perform. Finally, the potentiality of the proposed 
distribution in comparison to other bivariate Kumaraswamy distributions is demonstrated with biological application to fish 
mercury concentrations. 

2. Materials and Methods 
      This section discusses the bivariate Kumaraswamy distribution using the PHR model, several statistical properties of 
BKPH, including the Joint PDF and the CDF, as well as several estimation methods. 

2.1 Bivariate Kumaraswamy Proportional Hazard (BKPH) Distribution 

Using (1) with the baseline Kumaraswamy distribution  

𝐹=(𝑥) = 1 − (1 − 𝑥BD)CD	, 𝑖 = 1,2. 

The CDF of BKPH distribution for parameter vector Θ = (𝛼2, 𝛽2, 𝛼3, 𝛽3) is defined as 

                      𝐻,(𝑥, 𝑦; 𝜆, Θ) = 1 − G1 − HI1 − (1 − 𝑥BJ)CJKI1 − (1 − 𝑦BL)CLKMN
,
								                        (2) 

where 	0 ≤ 𝑥, 𝑦 ≤ 1, 𝛼2, 𝛼3, 𝛽2, 𝛽3 > 0, 0 < 𝜆 ≤ 1 

whose univariate CDF are ordinary Kumaraswamy distributions 

𝐻=(𝑥) = 1 − (1 − 𝑥BD)CD,, 𝑖 = 1,2. 
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Equation (1) can be rewritten using the binomial expansion, see [23],  

                      (1 − 𝑧)P = ∑ R
𝑡
𝑗U

V
WXY (−1)W𝑧W, |𝑧| < 1, 𝑡 ∈ ℛ                                                          (3)                                   

as 

                      𝐻,(𝑥, 𝑦) = 1 − ∑ \𝜆𝑗]
V
WXY (−1)W)𝐹2(𝑥)𝐹3(𝑦)+

W
                                                            (4) 

where 0 < 𝐹2(𝑥)𝐹3(𝑦) < 1. 

According to [3], the BKPH joint pdf is defined using 

ℎ,(𝑥, 𝑦) = ∑ \𝜆𝑗]
V
WX2 (−1)W_2𝑗3	𝑓2(𝑥)	)𝐹2(𝑥)+

Wa2𝑓3(𝑦))𝐹3(𝑦)+
Wa2

 

as, 

ℎ,(𝑥, 𝑦; 𝜆, Θ) = 	𝛼2𝛼3𝛽2𝛽3 ∑ \𝜆𝑗]
V
WX2 (−1)W_2𝑗3 H𝑥BJa2(1 − 𝑥BJ)CJa2	)1 − (1 − 𝑥BJ)CJ+Wa2M H𝑦BLa2(1 − 𝑦BL)CLa2	)1 −

(1 − 𝑦BL)CL+Wa2M                                                                (5)     

                                                               

    As shown in Figures 1 and 2, the joint pdf (5) can deal with bivariate skewed data with different parameter values. 

  
Fig. 1. Bivariate Density Plots and Contours of BKPH for parameters α2 = 1, α3 = 3.4, 	β2 = 2.8, 	β3 = 6, λ = 0.75 
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Fig 2. Bivariate Density Plots and Contours of BKPH for parameters α2 = 2, α3 = 3, 	β2 = 3, 	β3 = 3, λ = 0.95 
 

2.2 Parameter Estimation 

  In this section, several estimation methods will be discussed based on random samples (𝑥=, 𝑦=), 𝑖 = 1,2, … , 𝑛 ,to estimate 
the unknown parameters of the BKPH distribution. 

2.2.1 Maximum Likelihood Estimation (MLE) 

     Here, we discussed the estimation of the unknown parameters of the BKPH model using the maximum likelihood method. 
Suppose we have 𝑛 observations from the bivariate density in (5). Therefore, the log-likelihood is expressed as follows: 

ℓ(𝜆, Θ) = 𝐿𝑛	𝐿(𝜆, Θ) = 𝐿𝑛oℎ,(𝑥=, 𝑦=; 𝜆, Θ)
p

=X2

 

							ℓ(𝜆, Θ) = 𝑛	𝐿𝑛[𝜆𝛼2𝛽2𝛼3𝛽3] + (𝛼2 − 1)∑ 𝐿𝑛[𝑥=]p
=X2 + (𝛽2 − 1)∑ 𝐿𝑛[1 − 𝑥=BJ] +p

=X2 (𝛼3 − 1)	∑ 𝐿𝑛[𝑦=]p
=X2 + (𝛽3 −

1)∑ 𝐿𝑛[1 − 𝑦=BL]p
=X2 + (𝜆 − 2)t 𝐿𝑛	u1 − I)1 − 	(1 − 𝑥=BJ)CJ+)1 − (1 − 𝑦=BL)CL+Kv

p
=X2 t 𝐿𝑛u1 − 𝜆I)1 − (1 −p

=X2
𝑥=BJ)CJ+)1 − 		(1 − 𝑦=BL)CL+Kv																																										                                                                                    (6)              

 The maximum likelihood estimates can be obtained by maximizing (6) for the unknown parameters. By solving the following 
normal Equations numerically, the MLE estimates are obtained 

wℓ
wxJ

= p
BJ
+ ∑ 𝐿𝑛(𝑥=)p

=X2 + (1 − 𝛽2)∑ 	p
=X2

yp(zD)	zD
{J

2azD
{J + (2 − 𝜆)∑ 	p

=X2 	
yp[zD]zD

{JR)2azD
{J+U

|J}J
\2a)2a~D

{L+
|L]CJ

2a\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]
−

𝜆∑ 		p
=X2

yp[zD]zD
{J)2azD

{J+
|J}J\2a)2a~D

{L+
|L]CJ

2a,\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]
= 0                                                                                         (7) 

�ℓ
�CJ

= p
CJ
+ ∑ 𝐿𝑛u1 − 𝑥=

BJvp
=X2 + (𝜆 − 2)∑

ypu2azD
{Jv)2azD

{J+
|J\2a)2a~D

{L+
|L]

2a\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 + 𝜆∑

ypu2azD
{Jv)2azD

{J+
|J\2a)2a~D

{L+
|L]

2a,\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 = 0 

(8) 

�ℓ
�BL

= p
BL
+ ∑ Ln[𝑦=]p

=X2 + (1 − 𝛽3)∑
��[~D]~D

{L

2a~D
{L

p
=X2 + (2 − 𝜆)∑

��[~D]\2a)2azD
{J+

|J]~D
{L)2a~D

{L+
|L}JCL

2a\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 −

𝜆∑
��[~D]\2a)2azD

{J+
|J]~D

{L)2a~D
{L+

|L}JCL

2a,\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]
	p

=X2 =0                                                                                                                         (9) 
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�ℓ
�CJ

= p
CL
+ ∑ Ln[1 − 𝑦=

BL]p
=X2 + (𝜆 − 2)∑

��u2a~D
{Lv\2a)2azD

{J+
|J])2a~D

{L+
|L

2a\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 + 𝜆∑

��u2a~D
{Lv\2a)2azD

{J+
|J])2a~D

{L+
|L

2a,\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 = 0 

(10) 

                                                                                                      

�ℓ
�,
= ∑ Ln[1 − (1 − (1 − 𝑥=

BJ)CJ)(1 − (1 − 𝑦=
BL)CL)]p

=X2 ∑
\2a)2azD

{J+
|J]\2a)2a~D

{L+
|L]

2	a	,\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 = 0	                                  (11)  

It is not possible to obtain them explicitly, since the previous equations are non-linear for the parameters, so the initial 
assumptions can be used to solve them numerically. 

2.2.2 Method of Moments (MME)   

Consider the population moment for j th variate is 𝜇W = 𝐸)𝑋W+, 𝜇W3 = 𝐸)𝑋W3+, 𝑗 = 1,2, the sample and the joint moment are 

𝑚W =
∑ ��D
�
D�J
p

 , 𝑚W
3 =

∑ ��D
L�

D�J

p
 , 𝑋𝑌���� = ∑ �D	�D

p
p
=X2 . 

According to this method of estimating parameters 𝛼�2, 𝛽�2, 𝛼�3, 𝛽�3 and 𝜆� for 𝐵𝐾𝑃𝐻 distribution can be computed by solving 
the following equations: 

𝑚W = 𝐸)𝑋W+ = 𝛽W	B �𝛽W,
𝛼W + 1
𝛼W

� , 𝑚W
3 = 𝐸)𝑋W3+ = 𝛽W	B �𝛽W,

𝛼W + 2
𝛼W

� , 𝑗 = 1,2 

               𝑋𝑌���� = 𝐸(𝑋𝑌) = ∑ R,�U
V
�X2 (−1)�_2𝐽3 	∏ R(𝛽� 	H∑ )�a2= +

�a2
=XY (−1)=	B R𝛽�(1 + 𝑖),

B�_2
B�

UMU3
�X2                       (12) 

 

2.2.3 Inference Function for Margins (IFM) 

The IFM method has been introduced by [9] for the estimation of parameters for multivariate models using marginal 
distributions. This method is computed by estimating model parameters from separately maximizing marginal likelihood 
function, and then estimating dependence parameters from separate joint likelihood function. Using log-likelihood equations, 
we can obtain estimates 𝛼�2, 𝛽�2, 𝛼�3, 𝛽�3 and 𝜆�. Assume that ℓW, 𝑗 = 1,2 is the log-likelihood function of 𝑋 and 𝑌.    

                         ℓ2 = 𝑛𝐿𝑛[𝛼2] + 𝑛𝐿𝑛[𝛽2] + (𝛼2 − 1)t 𝐿𝑛[𝑥=]
p
=X2 + (𝛽2 − 1)t 𝐿𝑛[1 − 𝑥=BJ]

p
=X2  

                                         �ℓJ
�BJ

= p
BJ
+t Ln[𝑥=]

p
=X2 + (−1 + 𝛽2)	∑ − ��[zD]zD

{J

2azD
{J

p
=X2 = 0                                                   (13) 

                                               �ℓJ
�CJ

= p
CJ
+t Ln[1 − 𝑥=

BJ]p
=X2 = 0	                                                             (14) 

                         ℓ3 = 𝑛Ln[𝛼3] + 𝑛Ln[𝛽3] + (𝛼3 − 1)t Ln[𝑦=]
p
=X2 + (𝛽3 − 1)t Ln[1 − 𝑦=BL]

p
=X2  

                                 �ℓL
�BL

= p
BL
+t Ln[𝑦=]

p
=X2 + (−1 + 𝛽3)	∑ − ��[~D]~D

{L

2a~D
{L

p
=X2 = 0                                               (15) 

                                           �ℓL
�CL

= p
CL
+t Ln[1 − 𝑦=

BL]p
=X2 = 0                                                           (16) 

By differentiating the above log-likelihood function (6) for 𝜆 and equating it to zero we get the likelihood equation as given 
below 

 �ℓ
�,
= ∑ Ln[1 − (1 − (1 − 𝑥=

BJ)CJ)(1 − (1 − 𝑦=
BL)CL)]p

=X2 ∑
\2a)2azD

{J+
|J]\2a)2a~D

{L+
|L]

2	a	,\2a)2azD
{J+

|J]\2a)2a~D
{L+

|L]

p
=X2 = 0 

MLE of 𝜆 has no closed-form expression and cannot be solved analytically. Hence, we can numerically obtain the MLE of 𝜆 
by employing the iterative procedure of the Newton-Raphson technique or any suitable iterative methods. 
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3. Results and Discussion 
    Statistical and reliability characteristics of BKPH distribution, copula structure, simulation, and application of real data are 
discussed in this section. 

3.1 Statistical characteristics  

 

3.1.1 Product Moments and Pearson’s Correlation Coefficient  

For the random vector (𝑋, 𝑌), the product moments  𝐸(𝑋�J𝑌�L), is obtained by 

𝐸(𝑋�J𝑌�L) = ��𝑥�J𝑦�Lℎ,(𝑥, 𝑦; 𝜆, Θ)𝑑𝑥	𝑑𝑦
2

Y

2

Y

 

Theorem 1. If (𝑋, 𝑌)~𝐵𝐾𝑃𝐻(𝜆, Θ),	for 𝑟2, 𝑟3 ≥ 1, then the 𝑟P  product moment of 𝑋𝑎𝑛𝑑	𝑌, denoted by 𝐸(𝑋�J𝑌�L), is given 
by  

                𝐸(𝑋�J𝑌�L) = ∑ R,�U
V
�X2 (−1)�_2𝐽3 	∏ R(𝛽� 	H∑ )�a2= +

�a2
=XY (−1)=	B R𝛽�(1 + 𝑖),

B�_��
B�

UMU3
�X2 		            (17) 

where B(. , . )	denotes the beta function. 

 proof. From (5) we have 

 𝐸(𝑋�J𝑌�L) = ∑ \𝜆𝑗]
V
WX2 (−1)W_2𝑗3 ∫ ∫ 𝑥�J𝑦�L𝛼2𝛼3𝛽2𝛽3 H𝑥BJa2(1 − 𝑥BJ)CJa2	)1 − (1 − 𝑥BJ)CJ+

Wa2M H𝑦BLa2(1 −2
Y

2
Y

𝑦BL)CLa2	)1 − (1 − 𝑦BL)CL+Wa2M 𝑑𝑥	𝑑𝑦 

=∑ \𝜆𝑗]
V
WX2 (−1)W_2𝑗3 ∫ 𝛼2

2
Y 𝛽2𝑥�J H𝑥BJa2(1 − 𝑥BJ)CJa2	)1 − (1 − 𝑥BJ)CJ+

Wa2M 𝑑𝑥 ∫ 𝑦�L𝛼3𝛽3 H𝑦BLa2(1 − 𝑦BL)CLa2	)1 −
2
Y

(1 − 𝑦BL)CL+Wa2M 𝑑𝑦 

briefly,  

𝐸(𝑋�J𝑌�L) = 	∑ R,�U
V
�X2 (−1)�_2𝐽3 ∏ 𝐼�3

�X2                        𝑓𝑜𝑟	𝑘 = 1,2 

where for 	𝑘 = 1, 

𝐼2 = �𝛼2

2

Y

𝛽2𝑥�J𝑥BJa2(1 − 𝑥BJ)CJa2	)1 − (1 − 𝑥BJ)CJ+
Wa2𝑑𝑥 

= 𝛼2𝛽2 �𝑥�J_BJa2
2

Y

(1 − 𝑥BJ)CJa2	)1 − (1 − 𝑥BJ)CJ+Wa2	𝑑𝑥 

By using the expansion (3), then  

𝐼2 = 𝛽2¥\
𝐽 − 1
𝑖 ]

�a2

=XY

(−1)= �(1 − u)
§J
{J

2

Y

𝑢CJ(©_2)a2𝑑𝑢 

Then,  

𝐼2 = 𝛽2¥\
𝐽 − 1
𝑖 ]

�a2

=XY

(−1)=B \𝛽2(1 + 𝑖),
𝛼2 + 𝑟2
𝛼2

] 

Similarly,  

𝐼3 = �𝛼3

2

Y

𝛽3	𝑦�L H𝑦BLa2(1 − 𝑦BL)CLa2	)1 − (1 − 𝑦BL)CL+
Wa2M 𝑑𝑦 
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= 𝛽3¥\
𝐽 − 1
𝑖 ]

�a2

=XY

(−1)=B \𝛽3(1 + 𝑖),
𝛼3 + 𝑟3
𝛼3

] 

Hence, 

𝐼� = 𝛽�¥\
𝐽 − 1
𝑖 ]

�a2

=XY

(−1)=	B \𝛽�(1 + 𝑖),
𝛼� + 𝑟�
𝛼�

] , 𝑓𝑜𝑟	𝑘 = 1,2 

As a result, the expression for 𝑟P  product moment is demonstrated. 

Using (17) the product moment is obtained as  

 

𝐸(𝑋𝑌) = 		¥\
𝜆
𝐽]

V

�X2

(−1)�_2𝐽3 	o ª(𝛽� 	«¥\
𝐽 − 1
𝑖 ]

�a2

=XY

(−1)=	𝐵 \𝛽�(1 + 𝑖),
𝛼� + 1
𝛼�

]¬
3

�X2
 

 

Pearson Coefficient of correlation (𝜌) for the BKPH distribution is given by  

𝜌 =
∑ R,�U
V
�X2 (−1)�_2𝐽3 	∏ R(𝛽� 	H∑ )�a2= +

�a2
=XY (−1)=	B R𝛽�(1 + 𝑖),

B�_2
B�

UMU3
�X2 − ∏ �(𝛽�	B R𝛽�,

B�_2
B�

U�3
�X2 	

∏ ¯	°𝛽�B ±𝛽�,
3_B�
B�

² − R𝛽�B ±𝛽�,
B�_2
B�

²U
3
³3

�X2

 

                                                                                                                                                                    (18)        

3.1.2 Moment Generating Function 

The joint moment generating function of the bivariate distributions is defined as  

𝑀�,�(𝑡2, 𝑡3) = 𝐸(𝑒PJ�_PL�) 

   Theorem 2:   The joint moment-generating function of 𝐵𝐾𝑃𝐻(𝜆, Θ),  is given by 

𝑀�,�(𝑡2, 𝑡3) = 

             ∑ R,�U
V
�X2 (−1)�_2𝐽3 	∏ R𝛽� 	∑

P�
§

�!
H∑ )�a2= +

�a2
=XY (−1)=	B R𝛽�(1 + 𝑖),

B�_��
B�

UMV
�XY U3

�X2 										                 (19)        

  Proof. From (5) we have 

                  𝑀�,�(𝑡2, 𝑡3) = ∫ ∫ 𝑒PJz_PL~ℎ,(𝑥, 𝑦; 𝜆, Θ)𝑑𝑥	𝑑𝑦
2
Y

2
Y  

																																											= ∑ R,�U
V
�X2 (−1)�_2𝐽3 ∏ 𝑀�(𝑡�; 𝛼�3

�X2 , 𝛽�)     

where 𝑀�(𝑡�; 𝛼�, 𝛽�) is the moment generating function of Kumaraswamy distribution, for 𝑘 = 1,2 

               𝑀�(𝑡�; 𝛼�, 𝛽�) = 𝐸(𝑒P��) = 𝐸 R∑ z§P�§

�!
V
�XY U = ∑ P�§

�!
V
�XY 𝐸(𝑥�) = ∑ P�§

�!
V
�XY 𝐼�                            

and,                           

𝐼� = 𝛽�¥\
𝐽 − 1
𝑖 ]

�a2

=XY

(−1)=	B \𝛽�(1 + 𝑖),
𝛼� + 𝑟�
𝛼�

] 

Then, 

                   𝑀�(𝑡�; 𝛼�, 𝛽�) = 𝛽� 	∑
P�
§

�!
H∑ )�a2= +

�a2
=XY (−1)=	B R𝛽�(1 + 𝑖),

B�_��
B�

UMV
�XY  

which gives the required result. 
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    Table 1 provides a few numerical values for the (𝜌). Note that if the values of 𝛼 are less than 1, the values of  𝛽 and the 
dependence parameter 𝜆 values increase, then the values of 𝜌 are very small, approaching zero. If the values of 𝛼 are more 
than 1 and the values of 𝛽 increase, the 𝜌 is a strong negative, then it changes to be positive and tends to be a strong positive 
correlation if 𝜆 approaches 0.6, then it declines to zero when the value 𝜆 approaches 𝑜𝑛𝑒 where the independence is fulfilled. 

Table 1. Correlation Coefficient for some values of 𝛼2, 𝛽2, 𝛼3, 𝛽3	𝑎𝑛𝑑 𝜆. 

  Correlation Coefficient (𝝆) 

  𝝀 

  0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

𝜷𝟏 𝜷𝟐 𝜶𝟏 = 𝟎. 𝟎𝟓, 𝜶𝟐 = 𝟎. 𝟎𝟓 

0.03 0.02 -0.7878 -0.5135 -0.3039 -0.1509 -0.0469 0.0146 0.0393 0.0329 

0.07 0.08 0.2624 0.3001 0.3113 0.2997 0.2684 0.2204 0.1582 0.0840 

0.3 0.4 0.6215 0.5640 0.4971 0.4229 0.3433 0.2598 0.1740 0.0871 

0.7 0.8 0.4484 0.3983 0.3441 0.2871 0.2288 0.1700 0.1118 0.0549 

2 5 0.0125 0.0109 0.0094 0.0077 0.0061 0.0045 0.0029 0.0014 

10 15 1.7× 10$% 1.5× 10$% 1.3× 10$% 1.1× 10$% 8.7× 10$& 6.4× 10$& 4.1× 10$& 2× 10$& 

  𝜶𝟏 = 𝟎. 𝟓, 𝜶𝟐 = 𝟎. 𝟓 

0.2 0.02 -0.4379 -0.1408 0.0659 0.1946 0.2555 0.2584 0.2118 0.1234 

0.3 0.05 0.2186 0.3303 0.3897 0.4039 0.3793 0.3218 0.2365 0.1278 

0.4 0.1 0.4629 0.4999 0.5006 0.4704 0.4138 0.3349 0.2376 0.1249 

0.7 0.8 0.7454 0.6909 0.6201 0.5359 0.4412 0.3382 0.2292 0.1159 

2 5 0.6205 0.5584 0.4883 0.4123 0.3322 0.2497 0.1660 0.0825 

10 15 0.4591 0.4101 0.3560 0.2986 0.2391 0.1785 0.1179 0.0583 

  𝜶𝟏 = 𝟐, 𝜶𝟐 = 𝟑 

0.3 0.4 -0.6978 -0.3138 -0.0404 0.1369 0.2316 0.2552 0.2183 0.1305 

0.7 0.8 0.2871 0.4429 0.5258 0.5461 0.5132 0.4351 0.3194 0.1724 

2 5 0.7911 0.8116 0.7851 0.7189 0.6198 0.4934 0.3450 0.1792 

10 15 0.8875 0.8751 0.8232 0.7382 0.6260 0.4919 0.3402 0.1750 

20 25 0.8967 0.8800 0.8249 0.7378 0.6243 0.4896 0.3382 0.1738 

50 100 0.9021 0.8823 0.8249 0.7364 0.6222 0.4873 0.3362 0.1726 

 

3.1.3 Conditional Distribution 

The conditional density function of 𝑌 given 𝑋 = 𝑡 is given by 

ℎ� �⁄ (𝑦 𝑥 = 𝑡⁄ ) = BLCL
,
(1 − 𝑡BJ)CJ(2a,)𝑦BLa2(1 − 𝑦BL)CLa2 		∑ \𝜆𝑗]

V
WX2 (−1)W_2𝑗3I)1 − (1 − 𝑡BJ)CJ+)1 − (1 −

𝑦BL)CL+KWa2                                                                                                                                 (20)                                                                                         

Theorem 3: If (𝑋, 𝑌)~𝐵𝐾𝑃𝐻(𝜆, Θ), then the conditional moment of 𝑌�on  𝑋 = 𝑡 is given by 

𝐸(𝑌� 𝑋⁄ = 𝑡) = CL
,
(1 − 𝑡BJ)CJ(2a,) ∑ \𝜆𝑗]

V
WX2 (−1)W_2𝑗3)1 − (1 − 𝑡BJ)CJ+Wa2 ∑ )Wa2= +

Wa2
=XY (−1)=	B R𝛽3(1 + 𝑖),

BL_�
BL
U                                                                                                                                                                                   

(21) 
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Proof. From (9) we have  

𝐸(𝑌� 𝑋⁄ = 𝑡) = � 𝑦�
2

Y
ℎ� �⁄ (𝑦 𝑡⁄ )𝑑𝑦 

                        =2
,
(1 − 𝑡BJ)CJ(2a,) ∑ \𝜆𝑗]

V
WX2 (−1)W_2𝑗3)1 − (1 − 𝑡BJ)CJ+Wa2 R𝛼3𝛽3 ∫ 𝑦�2

Y 𝑦BLa2(1 −

																												𝑦BL)CLa2)1 − (1 − 𝑦BL)CL+Wa2𝑑𝑦	U 

By using the expansion (3), then 

 𝐸(𝑌� 𝑋⁄ = 𝑡) 	= CL
,
(1 − 𝑡BJ)CJ(2a,) ∑ \𝜆𝑗]

V
WX2 (−1)W_2𝑗3)1 − (1 − 𝑡BJ)CJ+Wa2 \∑ )�a2= +

�a2
=XY (−1)= ∫ 𝑢CL(=_2)a22

Y (1 −

𝑢)
§
{L𝑑𝑢	] 

and 

� 𝑢CL(=_2)a2
2

Y
(1 − 𝑢)

§
{L𝑑𝑢 = B \𝛽3(1 + 𝑖),

𝛼3 + 𝑟
𝛼3

] 

Hence, the proof is done. 

 

3.2 Reliability characteristics 

 

3.2.1 Survival Function 

Following, the survival function of the bivariate distribution which is in the form 

𝑆(𝑥, 𝑦) = 1 − 𝐻2(𝑥) − 𝐻3(𝑥) + 𝐻,(𝑥, 𝑦) 

The joint survival function is given by 

           𝑆(𝑥, 𝑦; 𝜆, Θ) = )(1 − 𝑥BJ)CJ+, + )(1 − 𝑦BL)CL+, − R1 − )1 − (1 − 𝑥BJ)CJ+)1 − (1 − 𝑦BL)CL+U
,
                   (22) 

3.2.2 Stress-Strength Parameter  

According to reliability theory, a component's life is described by the stress-strength model, which includes a random strength 
(𝑋) subjected to a random stress (𝑌). Components fail instantly when the level of stress applied exceeds the level of strength. 
Therefore, component reliability is measured by 𝑅 = 𝑃(𝑋 < 𝑌). 

 

Theorem 4:   The stress-strength parameter of 𝐵𝐾𝑃𝐻(𝜆, Θ) is given by  

𝑅 = 𝑃(𝑋 < 𝑌) = ∑ \𝜆𝑗]
V
WX2 (−1)W_2j	 ∑ )Wa2= +

Wa2
=XY (−1)= ∑ )W�+

W
�XY (−1)� ∑ )CJ�Ä +

CJ�
ÄXY (−1)Ä𝛽3	B R𝛽3(1 + 𝑖),

BL_BJÄ
BL

U           (23)                                                                                                         

Proof.     

 𝑅 = 𝑃(𝑋 < 𝑌) = ∫ ∫ ℎ,(𝑥, 𝑦; 𝜆, Θ)	𝑑𝑥	𝑑𝑦
~
Y

2
Y  

 			= ∑ \𝜆𝑗]
V
WX2 (−1)W_2𝑗3 	∫ 𝛼3

2
Y 𝛽3𝑦BLa2(1 − 𝑦BL)CLa2	)1 − (1 − 𝑦BL)CL+

Wa2𝑑𝑦	 ∫ 𝛼2
~
Y 𝛽2	𝑥BJa2(1 − 𝑥BJ)CJa2	)1 − (1 −

𝑥BJ)CJ+Wa2𝑑𝑥 

 			= ∑ \𝜆𝑗]
V
WX2 (−1)W_2	j ∫ 𝛼3

2
Y 𝛽3𝑦BLa2(1 − 𝑦BL)CLa2	)1 − (1 − 𝑦BL)CL+

Wa2	)1 − (1 − 𝑦BJ)CJ+W𝑑𝑦 

By using the expansion (3), then  

                                     )1 − (1 − 𝑦BL)CL+Wa2 = ∑ )Wa2= +
Wa2
=XY (−1)=(1 − 𝑦BL)CL	= 
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and  

	)1 − (1 − 𝑦BJ)CJ+W = ¥\
𝑗
𝑘]

W

�XY

(−1)�(1 − 𝑦BJ)CJ� 

Hence, 

𝑅 =¥\𝜆𝑗]
V

WX2

(−1)W_2	j¥\
𝑗 − 1
𝑖 ]

Wa2

=XY

(−1)=¥\
𝑗
𝑘]

W

�XY

(−1)�𝛼3𝛽3 �𝑦BLa2
2

Y

(1 − 𝑦BL)CL(©_2)a2(1 − 𝑦BJ)CJ�𝑑𝑦 

                  = 𝛽3 ∑ \𝜆𝑗]
V
WX2 (−1)W_2	j ∑ )Wa2= +

Wa2
=XY (−1)= ∑ )W�+

W
�XY (−1)� ∫ uCL(©_2)a22

Y \1 − (1 − 𝑢)
{J
{L]

CJ�
𝑑𝑢 

By using the expansion (3),  

\1 − (1 − 𝑢)
{J
{L]

CJ�
=¥\

𝛽2𝑘
𝑙 ]

CJ�

ÄXY

(−1)Ä(1 − 𝑢)
{J
{L
	Ä 

hence, 

𝑅 = 𝛽3¥\𝜆𝑗]
V

WX2

(−1)W_2	j¥\
𝑗 − 1
𝑖 ]

Wa2

=XY

(−1)= ¥\
𝑗
𝑘]

W

�XY

(−1)�¥\
𝛽2𝑘
𝑙 ]

CJ�

ÄXY

(−1)Ä �uCL(©_2)a2
2

Y

(1 − 𝑢)
{J
{L
	Ä𝑑𝑢 

where, 

�uCL(©_2)a2
2

Y

(1 − 𝑢)
{J
{L
	Ä𝑑𝑢 = B \𝛽3(1 + 𝑖),

𝛼3 + 𝛼2𝑙
𝛼3

] 

which gives the required result. 

3.2.3 The Joint Hazard Rate Function 

There are several ways in which the bivariate failure rate is defined in the literature. According to [2], it is defined as follows: 

𝑟(𝑥, 𝑦; 𝜆, Θ) =
ℎ,(𝑥, 𝑦; 𝜆, Θ)	
𝑆(𝑥, 𝑦; 𝜆, Θ)  

According to this definition, the joint hazard rate function for BKPH distribution is  

𝑟(𝑥, 𝑦; 𝜆, Θ) = 

,BJBLCJCL		z{J}J(2az{J)|J}J~{L}J(2a~{L)|L}JR2a)a2_(2az{J)|J+)a2_(2a~{L)|L+U
Æ}L

)2a)a2_(2az{J)|J+)a2_(2a~{L)|L+,+

)(2az{J)|J+
Æ
_)(2a~{L)|L+

Æ
aR2a)a2_(2az{J)|J+)a2_(2a~{L)|L+U

Æ               

(24)     

    

According to [15 ], it is defined hazard gradient of a bivariate random vector as follows: 

𝜂(𝑥, 𝑦; 𝜆, Θ) = �
−𝜕 ln 𝑆(𝑥, 𝑦; 𝜆, Θ)

𝜕𝑥 ,
−𝜕 ln 𝑆(𝑥, 𝑦; 𝜆, Θ)

𝜕𝑦 � 

Therefore, the hazard gradient for BKPH distribution is 

                     a� Ê� Ë(z,~;,,Ì)
�z

= −
BJCJz{J}J(2az{J)|J}J�)2a(2a~{L)|L+a,)(2az{J)|J+

Æ}J
�

)(2az{J)|J+
Æ
_)(2a~{L)|L+

Æ
aR2a)2a(2az{J)|J+)2a(2a~{L)|L+U

  

and,                a� Ê� Ë(z,~;,,Ì)
�~

= −
BLCL~{L}J(2a~{L)|L}J�)2a(2az{J)|J+a,)(2a~{L)|L+

Æ}J
�

)(2az{J)|J+
Æ
_)(2a~{L)|L+

Æ
aR2a)2a(2az{J)|J+)2a(2a~{L)|L+U
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3.3 Copula structure and dependence properties 

      The study of stochastic dependence relies heavily on bivariate distribution functions with uniform marginals. They have 
been rediscovered many times and used in various contexts under different names, such as “copulas”. 

The PHR bivariate distributions has an Archimedean copula see, [22] which defined as: 

     The Archimedean copula 𝐶: [0,1]3 → [0,1] has a form 

𝐶Ð(𝑢, 𝑣) = 𝜙[a2]{𝜙(𝑢) + 𝜙(𝑣)},			0 ≤ 𝑢, 𝑣 ≤ 1 

for some convex decreasing function 𝜙: [0,1] → [0,∞[ . 

We discuss the dependence properties of the BKPH distribution through Archimedean copula via According to Sklar’s 
theorem [4], solving the equation  

                                                      𝐶,)𝐻2(𝑥), 𝐻3(𝑦)+ = 𝐻(𝑥, 𝑦)                                                                        (25) 

for the function 𝐶,: [0,1]3 → [0,1] yields the underlying copula associated with (2), as 

                               𝐶,(𝑢, 𝑣) = 1 − H1 − R1 − (1 − 𝑢)
J
ÆU R1 − (1 − 𝑣)

J
ÆUM

,
,                                                      (26) 

for all 𝑢, 𝑣 ∈ (0,1)	𝑎𝑛𝑑	0 < 𝜆 ≤ 1. This copula belongs to the Archimedean family of copulas with the strict generator 
𝜙(𝑡) = − ln ±1 − (1 − 𝑡)

J
Æ² (see, [20] for detail). Note that the density function of the BKPH distribution defined by (5) could 

be rewritten as  

ℎ,(𝑥, 𝑦) = ℎ2(𝑥)ℎ3(𝑦)𝑐,)𝐻2(𝑥), 𝐻3(𝑦)+ 

where 𝐻=(𝑥) = 1 − (1 − 𝑥BD)CD,𝑎𝑛𝑑	ℎ=(𝑥) = 𝛼=𝛽=𝜆	𝑥BDa2(1 − 𝑥BD)CD,a2	, 𝑖 = 1,2, are the marginal  distribution functions 
and the marginal density functions, respectively and 𝑐,(𝑢, 𝑣) =

�L

�×�Ø
𝐶,(𝑢, 𝑣) , is the density function for copula (14) given 

by  

               𝑐,(𝑢, 𝑣) = 𝜆 H1 − 𝜆 R1 − (1 − 𝑢)
J
ÆU R1 − (1 − 𝑣)

J
ÆUM H1 − R1 − (1 − 𝑢)

J
ÆU R−(1 − 𝑣)

J
ÆUM

,a3
																														(27) 

 In [22,23], copula properties are discussed as measures of association, concordance ordering, tail monotonicity, and 
symmetry. 

•  Measures of Association                                                                                                                                                                       
Dependence properties such as Kendall's tau (𝜏) and Spearman's rho (𝜌Ú)	which depend only on the copula 𝐶 and are 
given by  

                                                                       𝜏 = 4∫ ∫ 𝐶(𝑢, 𝑣)	𝑑𝐶(𝑢, 𝑣) − 12
Y

2
Y                                                                    (28)         

                                                                     𝜌Ú = 12∫ ∫ 𝐶(𝑢, 𝑣)	𝑑𝑢	𝑑𝑣 − 32
Y

2
Y ,                                                                    (29) 

Due to [3], the following result provides expressions for these measures associated. 

 

Proposition 1.  Suppose that 𝐶,(𝑢, 𝑣) be a copula defined in (14) then for every 0 < 𝜆 ≤ 1 

𝜏 = 1 + 4𝜆𝐵(2,2𝜆 − 1)(Ψ(2) − Ψ(2𝜆 + 1)), 

            𝜌 = 9 − 12𝜆3 ∑ (−1)W \𝜆𝑗]
V
WXY [𝐵(𝑗 + 1, 𝜆)]3, 

where 𝐵 denotes the beta function and Ψ is the digamma function. 

3.4 Simulation  

We present Monte Carlo simulation studies in this section to investigate the performance of the proposed estimators in this 
paper. The bias and mean square error (MSE) criteria are used to compare maximum likelihood (MLE), Method of Moments 
(MME), and Inference Function for Margins (IFM) estimators by considering different sample sizes and different parameter 
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values. For each sample size (𝑛) and the specified values of the parameters, 1000 data sets are generated from the BKPH 
distribution with three sets of the parameters (𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆) = (2,1,2,1,0.5), (𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆) = (1.8,1,1.7,1,0.6) and 
(𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆) = (1.7,1.1,1.6,1,0.5). The sample sizes (𝑛) are 30, 50, 70, and 90 observations. The results of the bias and 
mean square error (MSE) over 1000 replications are reported in Table 2, Table 3, and Table 4.  

 

Table 2. Estimation results based on MLE, MME, and IFM approaches for parameters (𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆) = (2,1,2,1,0.5) of 
BKK distribution for 𝑛 = 30,50,70	𝑎𝑛𝑑	90.    

 
n MSE Bias 

 MLE MME IFM MLE MME IFM 

𝜶𝟏 

30 0.347 1.076 0.152 0.206 -0.992 0.067 

50 0.17 1.017 0.095 0.105 -0.985 0.044 

70 0.131 1.026 0.061 0.081 -0.998 0.019 

90 0.087 0.992 0.049 0.042 -0.982 0.043 

𝜷𝟏 

30 0.15 1.295 0.037 0.024 1.056 0.033 

50 0.084 1.149 0.023 0.001 1.018 0.019 

70 0.049 1.137 0.017 -0.001 1.029 0.024 

90 0.041 1.042 0.011 -0.007 0.992 0.003 

𝜶𝟐 

30 0.379 1.126 0.155 0.223 -1.008 0.046 

50 0.184 1.051 0.092 0.115 -0.995 0.045 

70 0.118 1.042 0.063 0.073 -1.002 0.025 

90 0.088 1.026 0.052 0.053 -0.997 0.023 

𝜷𝟐 

30 0.184 1.321 0.038 0.049 1.060 0.040 

50 0.081 1.163 0.022 -0.0002 1.024 0.013 

70 0.054 1.151 0.016 -0.0006 1.033 0.019 

90 0.04 1.099 0.013 -0.002 1.016 0.012 

𝝀 

30 1.789 0.039 0.342 0.849 -0.178 0.562 

50 0.678 0.037 0.300 0.669 -0.179 0.536 

70 0.457 0.038 0.299 0.601 -0.188 0.539 

90 0.416 0.036 0.277 0.582 -0.183 0.521 
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Table 3. Estimation results based on MLE, MME, and IFM approaches for parameters (𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆) = (1.8,1,1.7,1,0.6) 
of BKK distribution for 𝑛 = 30,50,70	𝑎𝑛𝑑	90. 

 
n MSE Bias 

 MLE MME IFM MLE MME IFM 

𝜶𝟏 

30 0.298 0.534 0.123 0.174 -0.684 0.061 

50 0.145 0.508 0.077 0.099 -0.685 0.039 

70 0.102 0.505 0.049 0.085 -0.692 0.018 

90 0.071 0.500 0.040 0.046 -0.691 0.039 

𝜷𝟏 

30 0.146 0.635 0.037 0.031 0.716 0.033 

50 0.075 0.539 0.023 -0.016 0.680 0.019 

70 0.053 0.518 0.017 -0.007 0.681 0.024 

90 0.037 0.495 0.011 -0.009 0.672 0.003 

𝜶𝟐 

30 0.264 0.496 0.112 0.159 -0.659 0.039 

50 0.132 0.468 0.066 0.106 -0.658 0.038 

70 0.081 0.484 0.046 0.065 -0.679 0.021 

90 0.062 0.454 0.038 0.048 -0.661 0.019 

𝜷𝟐 

30 0.151 0.642 0.038 0.033 0.716 0.040 

50 0.089 0.549 0.022 0.002 0.688 0.013 

70 0.055 0.553 0.016 -0.02 0.706 0.019 

90 0.036 0.486 0.013 -0.005 0.668 0.012 

𝝀 

30 1.745 0.195 0.239 0.741 0.403 0.462 

50 0.713 0.176 0.202 0.597 0.394 0.436 

70 0.498 0.175 0.197 0.539 0.403 0.435 

90 0.268 0.164 0.180 0.474 0.392 0.418 

 

Table 4. Estimation results based on MLE, MME, and IFM approaches for parameters (𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆) =
(1.7,1.1,1.6,1,0.5) of BKK distribution for 𝑛 = 30,50,70	𝑎𝑛𝑑	90. 

 
n MSE Bias 

 MLE MME IFM MLE MME IFM 

𝜶𝟏 

30 0.219 0.793 0.099 0.119 -0.856 0.052 

50 0.104 0.759 0.063 0.05 -0.852 0.034 

70 0.090 0.763 0.040 0.024 -0.857 0.015 

90 0.069 0.753 0.033 0.001 -0.858 0.035 

𝜷𝟏 

30 0.278 1.559 0.045 0.316 1.163 0.033 

50 0.113 1.384 0.028 0.187 1.123 0.019 

70 0.077 1.339 0.020 0.156 1.118 0.024 

90 0.047 1.328 0.013 0.116 1.119 0.003 
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𝜶𝟐 

30 0.211 0.817 0.099 0.129 -0.855 0.037 

50 0.117 0.742 0.059 0.061 -0.834 0.036 

70 0.077 0.759 0.041 0.033 -0.853 0.020 

90 0.057 0.702 0.034 0.004 -0.825 0.019 

𝜷𝟐 

30 0.246 1.305 0.038 0.297 1.059 0.040 

50 0.100 1.155 0.022 0.182 1.02 0.013 

70 0.059 1.172 0.016 0.132 1.046 0.019 

90 0.04 1.036 0.013 0.111 0.991 0.012 

𝝀 

30 0.137 0.058 0.342 0.358 -0.229 0.562 

50 0.162 0.056 0.300 0.395 -0.230 0.536 

70 0.171 0.057 0.299 0.408 -0.236 0.539 

90 0.178 0.055 0.277 0.416 -0.233 0.521 

• In all the cases the performances of all methods of estimation are quite satisfactory. The biases and MSE of the MLE, 
MME, and IFM approaches for each 𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜆	decay towards zero as the sample size increases, as expected. 

• The biases and MSE of the IFM approach for each 𝛼2, 𝛽2, 𝛼3, 𝛽3 are better than the MLE and MME. The biases and MSE 
of the MME for 𝜆 are better than the MLE and IFM.  

• The performance of the IFM estimates behaves in a very similar manner to the corresponding MLE exception for	𝜆 . 

 

3.5 Application 

A study was conducted to determine the total mercury concentrations in various size classes of two pelagic fish species of 
high commercial significance, horse mackerel (Trachurus trachurus) and Mediterranean horse mackerel (Trachurus 
mediterraneus), in order to determine whether total mercury concentrations and fish sizes are related and if any differences 
may affect the quantitative assessment of mercury exposure to consumers., see [13]. 

Table 5. Mean total of mercury concentrations and length of two pelagic fish species 

Fish Species Horse Mackerela Mediterranean Horse 

Group no. Fish length (𝑚) 
Mean total of mercury 

(𝑚𝑔	𝑘𝑔a2) 
Fish length (𝑚) 

Mean total of mercury 

(𝑚𝑔	𝑘𝑔a2) 

1 0.195 0.00017 0.185 0.00009 

2 0.214 0.0002 0.199 0.00009 

3 0.244 0.00016 0.229 0.00021 

4 0.25 0.00026 0.234 0.00016 

5 0.29 0.00043 0.243 0.00021 

6 0.231 0.00029 0.246 0.00026 

7 0.271 0.00042 0.265 0.00028 

8 0.285 0.00044 0.291 0.00041 
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9 0.321 0.00059 0.296 0.00054 

10 0.326 0.00139 0.341 0.0007 

11 0.344 0.00142 0.369 0.00155 

12 0.372 0.00241 0.397 0.00162 

According to Table 6, the following are the most important descriptive statistics 

Table 6. Summary statistics for the data set 

Fish Species Horse Mackerela Mediterranean Horse 

Statistics Fish length (m) Mean total of 
mercury Hg Fish length (m) Mean total of 

mercury Hg 

Minimum 0.195 0.00016 0.185 0.00009 

1st Quartile 0.23425 0.0002150 0.23025 0.0001725 

Median 0.27800 0.0004250 0.25550 0.0002700 

Mean 0.27858 0.0006817 0.27458 0.0005100 

3rd Quartile .32475 .0011900 .32975 .0006600 

Maximum 0.372 0.00241 0.397 0.00162 

Standard Error 0.015743 0.00020094 0.019150 0.00015402 

Pearson’s Correlation (𝝆) 0.861195 

 

0.929182 

 
𝝉 0.848485 0.953959 

𝝆𝒔 0.937063 0.985971 

𝝆𝒔 𝝉⁄  1.104395 1.03356 

By first performing the Kolmogorov-Smirnov test and Anderson-Darling test (AD), Critical Value (𝐶𝑣) for the marginal 
Kumaraswamy distribution, we determine the initial estimates. The results of Table 7and Table 8 indicate a good fit for the 
Kumaraswamy distributions of two pelagic fish species. 

Table 7. Goodness of fit measures for the marginal to Kumaraswamy distribution of Horse Mackerela   

 MLE Estimates KS p-value AD Critical value at 𝟎. 𝟎𝟓 

Fish length (m) 
𝛼�2 = 2.1 

𝛽�2 = 9.7 
0.2728 0.3339 1.6593 2.5018 

Mean total of 
mercury Hg 

𝛼�3 = 0.5 

𝛽�3 = 26.2 
0.2836 0.2893 1.9116 2.5018 

 

Table 8. Goodness of fit measures for the marginal to Kumaraswamy distribution of Mediterranean Horse   

 MLE Estimates KS p-value AD Critical value at 𝟎. 𝟎𝟓 

Fish length (m) 
𝛼�2 = 2.1 

𝛽�2 = 10 
0.2543 0.4198 1.3111 2.5018 

Mean total of 
mercury Hg 

𝛼�3 = 0.5 

𝛽�3 = 32 
0.2686 0.3522 1.6343 2.5018 
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The BKPH model is compared with different bivariate distribution models. The following bivariate distributions models are: 

• Bivariate Kumaraswamy type Exponential distribution (BKE), see [22]  
𝑔ßàá(𝑥, 𝑦;	𝛼2, 𝛼3, 𝜆) =                                                                                                   

                      𝛼2𝛼3𝜆𝑒a(BJz_BL~)[1 − 𝛼(1 − 𝑒aBJz)(1 − 𝑒aBL~)][1 − (1 − 𝑒aBJz)(1 − 𝑒aBL~)],a3                               (30) 

where, 𝑥, 𝑦 > 0, 𝛼2, 𝛼3 > 0, 0 ≤ 𝜆 ≤ 1. 

• Bivariate Cubic Kumaraswamy Distribution (BCK) 
According to [8], a cubic copula is defined as follows: 

𝐶(𝑢, 𝑣) = 𝑢𝑣	)1 + 𝜃(𝑢 − 1)(𝑣 − 1)(2𝑢 − 1)(2𝑣 − 1)+												− 1 ≤ 𝜃 ≤ 2 

Using it, we defined Bivariate Cubic Kumaraswamy distribution as follows: 

𝑔ãà(𝑥, 𝑦;	𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜃) = 𝛼2𝛼3𝛽2𝛽3)	𝑥BJa2(1 − 𝑥BJ)CJa2𝑦BLa2(1 − 𝑦BL)CLa2(1 + (1 − 6(1 − 𝑥BJ)CJ + 6(1 −
𝑥BJ)3CJ)		(1 − 6(1 − 𝑦BL)CL + 6(1 − 𝑦BL)3CL)𝜃)+                                                                                                  (31)                                                                                                            

• Bivariate Farlie-Gumbel Morgenstern Kumaraswamy Distribution (BFGMK) 
In [11], Farlie-Gumbel Morgenstern Kumaraswamy type copulas are defined as follows:   

𝐶)𝐹(𝑥), 𝐹(𝑦)+ = R)1 − (1 − 𝑥BJ)CJ+)1 − (1 − 𝑦BL)CL+U I1 + 	𝜃((1 − 𝑥BJ)CJ(1 − 𝑦BL)CL)K 

where, −1 ≤ 	𝜃 ≤ 1. 

We used it to define Bivariate Farlie-Gumbel Morgenstern Kumaraswamy distribution as 

𝑔äåæà(𝑥, 𝑦;	𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜃) = 𝛼2𝛼3𝛽2𝛽3 \)𝑥BJa2(1 − 𝑥BJ)CJa2𝑦BLa2(1 − 𝑦BL)CLa2+ H1 + 𝜃 R)2(1 − 𝑥BJ)CJ −

1+(2(1 − 𝑦BL)CL − 1)UM]                                                                                                                                                (32) 

• Bivariate Nelsen–Ten Kumaraswamy Distribution (BNTK) 
In [11], bivariate Nelsen–Ten Kumaraswamy type copulas are defined as follows:     

𝐶)𝐹(𝑥), 𝐹(𝑦)+ =
(1 − (1 − 𝑥B2)C2)(1 − (1 − 𝑦B3)C3)

[1 + (1 − (1 − (1 − 𝑥B2)C2)ç)(1 − (1 − (1 − 𝑦B3)C3)ç)]2 ç⁄ 		,				0 < 𝜃 ≤ 1 

We used it to define Bivariate Nelsen–Ten Kumaraswamy distribution as  

𝑔èéà(𝑥, 𝑦;	𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝜃) = 

𝛼2𝛼3𝛽2𝛽3 �)𝑥BJa2(1 − 𝑥BJ)CJa2𝑦BLa2(1 − 𝑦BL)CLa2+ R(2 − )1 − (1 − 𝑥BJ)CJ+
ç + (−1		 + (1 − (1 − 𝑥BJ)CJ)ç))1 −

(1 − 𝑦xL)êL+ç)a(3_
J
ë)U R4 − 2)1 − (1 − 𝑥BJ)CJ+

ç +	(1 − (1 − 𝑦xL)êL)ç(−2 − (1 − (1 − 𝑥B2)C2)ç(−1 + 𝜃)))U�                                                                                             

(33)                       

The MLEs are derived from the parameters using the initial estimates. Based on the results of these tests, we will decide 
whether the proposed model fits better than the comparable bivariate Kumaraswamy models based on Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), and Consistent AIC 
(CAIC). According to the results, the BKPH model appears to provide a better fit to describe the relationship between the 
fish length and mercury concentration which is based on a highly positive correlation between them for both kinds of the 
studied types of fish. According to the goodness of fit criteria, the BKPH model modeled the dependency relationship with 
the best fit compared with other bivariate models being studied where the above criteria are minimal for BKPH model. In 
Tables 9 and 10, the results are summarized. 
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Table 9. The analytical measures of the fitted models for mercury concentration of Horse Mackere 

Distribution MLEs Ln AIC BIC CAIC HQIC 

𝑩𝑲𝑷𝑯 

𝛼�2 = 2.35179 

𝛼�3 = 0.425821 

𝛽�2 = 23.96369 

𝛽�3 = 31.58676 

𝜆� = 0.524483 

83.62 -157.23 -154.81 −147.23 −158.13 

BKE 

𝛼�2 = 4.68993 

𝛼�3 = 1578.289 

𝜆� = 0.75854 

79.196 -152.39 -150.94 -149.39 -152.93 

BFGMK 

𝛼�2 = 1.858018 

𝛼�3 = 0.360625 

𝛽�2 = 6.635428 

𝛽�3 = 9.9983894 

𝜃ð = 0.880875 

77.43 -144.866 -142.441 -134.866 -145.763 

BCK 

𝛼�2 = 1.985136 

𝛼�3 = 0.264347 

𝛽�2 = 1.40101 

𝛽�3 = 2.274994 

𝜃ð = 0.92661 

55.45 -100.896 -98.47 -90.895 -101.793 

BNTK 

𝛼�2 = 1.463249 

𝛼�3 = 0.320039 

𝛽�2 = 1.689775 

𝛽�3 = 2.916852 

𝜃ð = 0.8570699 

83.396 -156.793 -154.386 -146.793 -157.69 

 

Table 10. The analytical measures of the fitted models for mercury concentration of Mediterranean Horse Mackere 

Distribution MLEs Ln AIC BIC CAIC HQIC 

𝑩𝑲𝑷𝑯 

𝛼�2 = 3.37113 

𝛼�3 = 0.379294 

𝛽�2 = 108.672 

𝛽�3 = 33.9846 

𝜆� = 0.48612 

90.22 −170.45 -168.02 −160.45 −171.35 
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BKE 

𝛼�2 = 7.52558 

𝛼�3 = 3407.524 

𝜆� = 0.50203 

83.73 −161.46 -160 -158.46 -166.99 

BFGMK 

𝛼�2 = 5.02965 

𝛼�3 = 0.32009 

𝛽�2 = 15.57205 

𝛽�3 = 11.39262 

𝜃ð = 0.765614 

54.94 −99.87 −97.45 −89.87 −100.77 

BCK 

𝛼�2 = 1.656216 

𝛼�3 = 0.31686 

𝛽�2 = 5.15974 

𝛽�3 = 7.75088 

𝜃ð = 0.62665 

78.79 −147.59 −145.17 −137.59 −148.49 

BNTK 

𝛼�2 = 1.326095 

𝛼�3 = 0.307437 

𝛽�2 = 1.55858 

𝛽�3 = 2.909156 

𝜃ð = 0.9115225 

87.008 −164.02 −161.592 −154.016 −164.914 

 

3.6 Conclusion and Discussion  

 In this paper, the Bivariate Kumaraswamy Proportional Hazard distribution (BKPH) is proposed and studied via several 
characteristics: Properties, Estimation, Simulation, and Applications. A related copula belonging to the Archimedean family 
was obtained and its dependence properties were examined. Point estimation of parameters is done and examined via 3 types 
of estimation, MLE, MME and IFM methods. IFM method describes the best method for the marginal’s parameter estimation 
followed by MLE method. For the dependence parameter, the MME method is the best. For a real-life practical application 
concerned with toxic absorption in fish bodies, we conclude that BKPH gives a flexible and good model for dependency 
between mercury absorption in Trachurus trachurus &Trachurus mediterraneus fish bodies and their length compared with 
some competitor-bivariate models.  

Acknowledgments 
The authors are grateful to the Editor in chief and the reviewers for their constructive suggestions and careful checking of the 
details and for helpful comments that improved this paper. 

 

References 

[1] A. Azzalini and A. Capitanio, Distributions generated by perturbation of symmetry with emphasis on a multivariate 
skew t distribution. IEICE Transactions on Fundamentals, Journal of the Royal Statistical Society, 65, 367–389, 
(2003). 

[2] A. Basu, Bivariate Failure Rate, Journal of the American Statistical Association, 66, 103-104, (1971). 

[3] A. Dolati, M. Amini, and S. Mirhosseini, Dependence Properties of Bivariate Distributions with Proportional 
(reversed) Hazards Marginals, Metrika, 77, 333-347, (2014). 



J. Stat. Appl. Pro. 12, No. 3, 961-979 (2023) / http://www.naturalspublishing.com/Journals.asp                                                        979 
  

 
 
         © 2023 NSP 
           Natural Sciences Publishing Cor. 

 

[4] A. Sklar, Fonctions de répartition à n dimensions et leur marges, Publ. Inst. Stat. Paris, 8, 229-231, (1959). 

[5] B. Hansen, Autoregressive conditional density estimation, International Economic Review, 35, 705–730, (1994).   

[6] D. Kundu and RD. Gupta, A Class of Bivariate Models with Proportional Reversed Hazard Marginal, Sankhyã B, 72, 
236-253, (2010). 

[7] D. Zwillinger and A. Jeffrey, Table of Integrals, Series, and Products, Seventh Edition, Elsevier Inc., USA, (2007). 

[8] E. Frees and E. Valdez, Understanding Relationships Using Copulas, North American actuarial journal,2,1-25, 
(1998). 

[9] H. Joe and J. Xu. The Estimation Method of Inference Functions for Margins for Multivariate Models, Technical 
Report, University of British Columbia, Canada, (1996). 

[10] H. Joe. Multivariate Models, and Dependence Concepts. CRC press, London, (1997). 

[11] I. Ghosh and S. Ray, Some alternative bivariate Kumaraswamy-type distributions via copula with application in risk 
management, Journal of statistical theory and practice, 10, 693-706, (2016). 

[12] M. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Statistical 
Methodology, 6,70–81, (2009). 

[13] M. Storelli, R. Giacominelli-Stuffler, and G. Marcotrigiano, Relationship between total mercury concentration and 
fish size in two pelagic fish species: implications for consumer health, Journal of food protection, 69,1402-1405, 
(2006). 

[14] N. Balakrishnan and C. Lai. Continuous Bivariate Distributions. 2nd ed., Springer, New York, (2009). 

[15] N. Johnson and S. Kotz, A Vector Multivariate Hazard Rate, Journal of Multivariate Analysis, 5, 53-66, (1975). 

[16] N. Eugene, C. Lee, and F. Famoye, Beta-normal distribution, and its applications, Communications in Statistics: 
Theory and Methods, 31, 497–512, (2002). 

[17] P. Kumaraswamy, Generalized probability density-function for double-bounded random processes, Journal of 
Hydrology, 46, 79–88, (1980). 

[18] P. Sankaran and V. Gleeia, On Bivariate Reversed Hazard Rates, Journal of the Japan Statistical Society, 36, 213-224, 
(2006). 

[19] R. Gupta, PL. Gupta, and RD. Gupta, Modelling Failure Time Data by Lehmann Alternatives, Communications in 
Statistics-Theory, and methods, 27, 887-904, (1998). 

[20] R. Nelsen. An Introduction to Copula. 2nd ed., Springer Science & Business Media, New York, (2006). 

[21] S. Kotz, N. Balakrishnan, and N. Johnson. Continuous multivariate distributions. 2nd ed., John Wiley & Sons, New 
York, (2004).  

[22] S. Mirhosseini, A. Donati, and M. Amini, on a bivariate Kumaraswamy Type Exponential Distribution, 
Communications in Statistics-Theory and Methods, 45, 5461-5477, (2016). 

[23] W. Hassanein and M. Seyam, Structure of bivariate Rayleigh proportional hazard rate model with its associated 
copula applied on COVID‐19 data, Quality and Reliability Engineering International, 38, 3451-3469, (2022). 

 


