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Abstract: Stochastic differential equations can be specified with anticipatory initial value constraints (IVC) which is useful in many

applications where future filtration is known. However, such specification leads to different results than those used in the usual Itô’s

calculus, and choice of transformations, at IVC, affects the orientation of equivalent isometry moments and related quantities. To

solve this problem, the paper analyzes linear stochastic differential equations with anticipatory initial value constraints specified by

an exponential transformation. The conditions for general solutions when such function is defined are derived from Itô’s lemma,

Taylor, and Fourier Series. Exact solutions are found using the derived conditions as well as those found by other research works.

The article also derives numerical scheme for stochastic differential equations with anticipating initial conditions from first principles,

Euler-Muruyama and Monte-Carlo methods. The results show that, the Euler-Muruyama method without a Monte-Carlo extension

gives reliable numerical solutions for stochastic differential equations with anticipatory initial conditions. The Monte-Carlo extension

introduces a slight smoothing effect on the estimated numerical solution.

Keywords: Stochastic Differential Equations, Exponential Anticipating Initial Condition, Euler-Muruyama Method, Monte-Carlo

Extension

1 Introduction

Anticipating stochastic models are useful in modeling random phenomena in which the future filtration of noise driving a
solution of diffusion time evolution equations is assumed also to affect initial value constraints. In financial mathematics,
this could be useful in modeling inside trading. Consider a problem of the form

{

dYt = γ(t)YtdWt +α(t)Ytdt, t ∈ [a,b].

Ya = f (y;a,b).
(1)

The problem is called diffusion equation with anticipatory initial conditions (SDew) [1] if f (y;a,b) = f (W (b)−W (a)).
The function f (y;a,b) is the transformation and argument W (b)−W (a) are total change in Gauss type Brownian noise
driving Yt . If Ya = y, then, using Ito’s lemma it can be proved [2] that the unique solution of the problem (1) is given by

Yt = yexp

{

∫ t

a

(

α(s)− γ(s)2

2

)

ds+
∫ t

a
γ(s)ds

}

. (2)

Many authors, for example [3], have examined analytical characteristics of stochastic differential with anticipatory initial
value constraints through the use of Itô’s and Mallavin calculus with varying levels of success. The most important of the
successes is the realization that solution process of SDew is different from the ordinary one. That is the most important
question which authors have tried to answer is this: given that an anticipatory is defined, what are the conditions for
existence of unique solution, finiteness of second moment of its solutions under equivalent Ito’s isometry, well-posedness
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of drift-free measure, conformation of the SDew with the Fokker-Planck equation (FPE); and right form of option
pricing formula with the defining initial conditions?

At the moment significant proportion of the question is not yet fully answered, and few authors have focused in this area
of research as most results are theoretical and described in topological language which is generally hard to decipher [4].
[5] consolidated the study of SDew in which focus was put on metric specified initial conditions based on all available
results, related to SDew’s, in literature at that time. The author tried to deduce physical probability spaces for underlying
solutions of diffusion equality satisfying the Fokker-Planck equation (FPE). This approach as seen in many recent
studies, for instance [6] and [7], works well only under very simplifying assumptions which are capable of
misrepresenting reality. Of course another approach would be to maintain the SDew and use numerical Euler method
followed by optimal methods that can capture probability density as numerical one as seen in [8].

First attempt to apply this technique but in SDew can be seen in [9] and [10]. Pure forms of the numerical method were
used and conditions that account for non-linear convergence to average through application of FPE or complex Fourier
series stability transformations were avoided. This study gap was filled by [11], [12] and [13] only in analytical paradigm
but not numerical one.

A deeper look into SDew in which coefficients satisfy both Lipchitz continuity and linear growth property, there by
implying uniqueness in existential time evolution satisfying the SDew, under a wide range of transformations at initial
value constraints was made by [14]. The attributes of linear and logarithmic transformations derived by these authors
have made their ways to applications in dynamic programming techniques with random spikes as in [15] and [16].

The danger using such functions in initial conditions, given that the random specified time evolution is an SDew, can be
seen in [17]. These authors show that the probability of getting negative variance and second moment under these
transformation does not vanish, especially when the author decides to shift the problem to drift-free framework for a
pricing application. One way of dealing with this problem is to use exponential transformations [18]. [19] and [20] use
these concept to solve multivariate security valuation problems, in which the volatility is it self a diffusion time
evolution, but in non-anticipating conditions.

The motivation for this paper is as follows: what can general solution of a linear SDew look like given that the
transformation in initial value conditions is maintained as exponential under different assumptions of nature of the
solution? Another follow up question is as follows: how does this solution compare with other solutions for other types
of transformations? Related to this question is as follows: How can one solve these problems numerically using the
different forms of Euler method?

To solve the problem, this paper derives the general and unique solution of the stochastic differential equation with
f (y;a,b) = f (exp(W (b)−W(a))). Through the use of Ito’s Calculus adapted for anticipatory initial constraints, we are
able derive conditions which such limitations satisfied under different forms of general solutions. We also supply
numerical implementation for the same when anticipatory initial conditions are transformed by
f (y;a,b) = f (exp(W (b)−W(a))) from first principles.

The rest of the paper is as follows: in section 2, we introduce the basic notations, definitions and theorems. Section 3 gives
the motivational example. In section 4, the generalization of the model is given. Numerical simulations are carried out in
section 5. Section 6 concludes the paper.

2 Basic Notations Definitions and Theorems

The notation C(k) stands for the set of all functions whose k−th derivatives are continuous. For example, C(∞) stands for

the set of functions that are infinitely differentiable. The symbol A (o) stands for the set of analytic functions. For example,

f ∈ A (o) ⇐⇒ f (x) ∈C(∞) and

f (x) =
∞

∑
n=0

f (n)(a)xn

n!
, a ∈ R. (3)

We define a Fourier Transformation of f (x) and its inverse as

f ∗(c) =
∫

∀x∈R
f (x)e2π ixcdc, (4)
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and

f (x) =

∫

∀x∈R
f ∗(c)e2π icxdx. (5)

We assume that the standard Brownian motion {Wt} is a local Martingale with respect to sequence (F )t∈R+∪{0} in that

for each s, t ∈ R
+ ∪ {0}, s < t ⇒ Wt −Ws if independent of Fs, where Ft is a filtration of the probability space

(Ω , F , P) that has probability measure P. If Xt is adapted with respect to filtration (F )t∈R+∪{0}, the statement Xt ∈ L

implies that Xt is integrable.

[21] give the solution of the linear stochastic differential equation with anticipating condition given that prior solution
can be factored across the anticipating initial conditions, time, and space. Their results can be summarized in the following
theorem. We supply the transformation in the theorem.

Theorem 1.[1,3]. Suppose that

⋆Z(t,x,y) = Z1(t)Z2(x)Z3(y),

⋆Z1 ∈C(1) (R), Z2 ∈C(2) (R), and Z3 ∈C(∞) (R) and

⋆dXt = γtdWt +αtdt.

Then,

dZ
(

t,Xt ,e
Wb−Wa

)

=
∂Zt

(

t,Xt ,e
Wb−Wa

)

∂x
dXt +

1

2

∂ 2Zt

(

t,Xt ,e
Wb−Wa

)

∂x2
(dXt)

2

+
∂ 2Z

(

t,Xt ,e
Wb−Wa

)

∂x∂y
dXtdWt +

∂Zt

(

t,Xt ,e
Wb−Wa

)

∂ t
dt, y =Wb. (6)

3 Motivation Example

Using the definition in Equation (1) and the conditions in the Theorem 1, we put

Zt = f (exp(W (b)−W(a)))exp

{

∫ t

a

(

α(s)− γ(s)2

2

)

ds+
∫ t

a
γ(s)ds

}

. (7)

We consider a case where f (y;a,b) = y, a = 0, b = 1, γ(t) = 1, and α = 0. Then the prior solution information is given by

Zt = eW (1) exp
(

Wt − t
2

)

. Applying Theorem 1 on Zt = eW (1) exp
(

Wt − t
2

)

, we obtain the following stochastic differential
equation

dZt = ZtdWt +Ztdt. (8)

This means that Zt = eW(1) exp
(

Wt − t
2

)

cannot be the solution of the differential equation in the case so chosen, which is

{

dYt = YtdWt , t ∈ [0,1].

Y0 = eW (1).
(9)

We consider the Yt = eW (1)−c(t) exp
(

Wt − t
2

)

to be the solution of the problem in the Equation (9), where c(t) is diffusion
free. The term Ztdt is the main term that makes the stochastic differential equation in Problem (7) different from Equation
(7). Using the Ito’s Lemma in Theorem 1, we find

∂Yt

∂ t
=−(c′(t)+

1

2
)Λ(t,x,y), where Λ(t,x,y) = K exp

(

Wt −
t

2

)

, K = eW (1)
. (10)

∂ 2Yt

∂x2
= Λ(t,x,y) =

∂Yt

∂x
=

∂ 2Yt

∂x∂y
, xt =Wt . (11)

dYt = Λ(t,x,y)dWt − (c′(t)− 1)Λ (t,x,y)dt. (12)

For Yt = eW(1)−c(t) exp
(

Wt − t
2

)

to be the solution of the Problem (9), we need c′(t)−1= 0 ⇒ c(t) = t in the Equation
(17). Hence, the solution of the problem is

Yt = exp

(

W (1)+Wt −
3t

2

)

. (13)
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Thus, the solution form Yt = q(t,eW(1))exp
(

Wt −
t

2

)

. Let q(t,eW(1)) = q(t,y), y =W (1), then

∂q

∂ t
=

∂

∂ t

(

ey−t
)

=−ey−t =− ∂

∂y

(

ey−t
)

=−∂q

∂y
. (14)

q(0,y) = ey−0 = ey
. (15)

This is different from the work of [22] that requires q(0,y) = y. It can agree with this work if and only if y = eW (1). Hence,
the solution is

Yt = eW(1)−t exp
(

Wt −
t

2

)

= exp

(

W (1)+Wt −
3t

2

)

. (16)

4 Generalization

4.1 Under the Factorization Theorem

Using the definition in Equation (1) and the conditions in the Theorem 1, we put

Zt = exp

{

∫ t

a

(

α(s)− γ(s)2

2

)

ds+
∫ t

a
γ(s)ds

}

. (17)

For the case where Theorem 1 is assumed to hold, we assume that the solution of Equation (1) under the initiatial
conditions f (y;a,b) = f (exp(W (b)−W(a))) is given by

Yt = [ f (exp(W (b)−W(a)))Zt ]− [c(t,exp(W (b)−W(a))Zt ] . (18)

Considering dYt = d [ f (exp(W (b)−W(a)))Zt ]−d [c(t,exp(W (b)−W(a))Zt ], we assume that c(·) can be written as sum
of product of factors, just like [23], so that

d [c(t,exp(W (b)−W(a))Zt ] = d

[

∞

∑
n=0

cn(t)exp((W (b)−W(a))n)Zt

]

Using Theorem (1), we have

d [c(t,exp(W (b)−W(a))Zt ] =

[

∞

∑
n=0

cn(t)exp((W (b)−W(a))n)

]

dZt + 0 · (dZt)
2

+

[

∞

∑
n=0

cn(t)n(W (b)−W(a))n−1 exp((W (b)−W(a))n)

]

dZdWt

+

[

∞

∑
n=0

c′n(t)exp((W (b)−W(a))n)Zt

]

dt.

Therefore,

d [c(t,exp(W (b)−W(a))Zt ] =

[

∞

∑
n=0

cn(t)exp((W (b)−W(a))n)

]

dZt .

+

[

∞

∑
n=0

cn(t)n(W (b)−W(a))n−1 exp((W (b)−W(a))n)

]

γ(t)Zdt

+

[

∞

∑
n=0

c′n(t)exp((W (b)−W(a))n)Zt

]

dt.

(19)
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Considering d [ f (exp(W (b)−W(a)))Zt ], we have

d [ f (exp(W (b)−W(a)))Zt ] = [ f (exp(W (b)−W(a)))]dZt

+ 0.(dZt)
2

+ exp(W (b)−W(a)) f ′ (exp(W (b)−W(a)))γ(t)Zdt

+ 0 ·dt

To achieve the solution of Equation (1) under the condition f (y;a,b) = f (exp(W (b)−W(a))), we should have

0 = exp(W (b)−W(a)) f ′ (exp(W (b)−W(a)))γ(t)Z

+

[

∞

∑
n=0

c′n(t)exp((W (b)−W(a))n)Zt

]

+

[

∞

∑
n=0

cn(t)n(W (b)−W(a))n−1 exp((W (b)−W(a))n)

]

γ(t)Z. (20)

Hence, we have the following conditions that must be satisfied by c = c(t,exp(W (b)−W(a))) and
f = f (exp(W (b)−W(a)))

γ(t)
d f

dy
+

∂c

∂ t
+ γ(t)

∂c

∂y
= 0. (21)

4.2 Factorization Theorem not Satisfied

If factorization theorem is not satisfied, we assume that

Yt = f (exp(W (b)−W(a)− c(t,exp(W (b)−W(a))))Zt . (22)

we also assume that c(t,exp(W (b)−W(a))) = c(t). Using Taylor Series, we have

dYt =−c′(t)exp(W (b)−W(a)− c(t)) f ′(exp(W (b)−W(a)− c(t)))Ztdt

+ exp(W (b)−W(a)− c(t)) f ′(exp(W (b)−W(a)− c(t)))Zt dWt

+ f (exp(W (b)−W(a)− c(t)))dZt (23)

+ exp(W (b)−W(a)− c(t)) f ′(exp(W (b)−W(a)− c(t)))dWtdZt

+
1

2

(

exp(W (b)−W(a)− c(t)) f ′(exp(W (b)−W(a)− c(t)))

+ exp(2W (b)− 2W(a)− 2c(t)) f ′′(exp(W (b)−W(a)− c(t)))
)

Ztdt.

For Yt to be a solution, we must have

c′(t) = γ(t)+
1

2

(

1+ eW(b)−W(a)−c(t) f ′′(eW (b)−W(a)−c(t))

f ′(eW(b)−W(a)−c(t))

)

. (24)

5 Numerical Simulations

Numerical simulations are performed for Wiener process, Euler-Muruyama and Monte-Carlo methods.

5.1 Numerical Simulation of Wiener Process

We define the Brownian motion as the stochastic process (Wt)t∈R∪{0} such that W (0) = 0 ; Wt ∼ N(0, t); and 0 < t1 < t2 <

· · · ⇒W (t1),W (t2)−W(t1), · · · are independent [24]. Under these axioms it can be proved that Var (Wt −Ws) = |t − s| ⇒
W (t)−W (s)∼

√

|t − s|N(0,1) [25]. Using this definition authors such as [26] and [20] adopt the following algorithm for
simulating Brownian Motion:

W0 = 0, Wj+1 =Wj +∆Wj, j ≥ 0, ∆Wj ∼
√

∆ t jN(0,1). (25)

Figure 1 shows the simulated Wiener process.
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Fig. 1: Simulated Wiener Process

5.2 Euler-Muruyama Numerical Methods

Euler-Muruyama Method (EMM) is usually used to simulate give approximate solution of stochastic differential equation.
EMM assumes that Xt is an Ito’s Process and hence, follows the following SDE [27]

dXt = f (Xt)dWt +G(Xt)dt, X(0) = x, 0 ≤ t ≤ T. (26)

Clearly, Equation (26) shows that anticipating initial conditions are not satisfied. This paper would like to modify EMM
so that they can be used for transformed anticipating conditions. Using this differential equation the algorithm for EMM
is usually given by the following difference equation

X0 = x, X j+1 = X j +G(X j)∆ t +F(X j)∆Wj, j ≥ 0. (27)

The Algorithm (27) is not very accurate in approximating solution to SDE’s. [28] improves this algorithm through

inspiration from Monte-Carlo simulation and definition of Brownian Integration by choosing ∆Wj =
jτ

∑
k= jτ−τ+1

dWk. The

graph in Figure 2 shows the difference between direct use of EMM and EMM-Monte Carlo (EMMC) for solving the
Geometric Brownian Motion used in Black-Scholes Model for option pricing. It can be seen that there is no significant
difference between the two methods. The Geometric Brownian motion is given by the SDE
dXt = rXtdt +σXtdWt , X(0) = x, 0 ≤ t ≤ T . Using classical Ito’s lemma or the Equation (1), the exact solution is given
by

Xt = xexp

{(

r− σ2

2

)

t +σ
√

tN(0,1)

}

. (28)

We pick an example, where x = 0.8, r = 20%, σ = 35%, and T = 1. We compare EMM and EMMC approximation
with the exact solution derived from Equation (28). In the process of deriving the major result in this paper can inform
the numerical methods for estimating solutions of the SDEw’s. To apply the Euler-Muruyama numerical method to the
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Fig. 2: Numerical Approximation for Solution of Geometric BM

stochastic differential equations with anticipating initial conditions we construct the following scheme.

Z0 = 1. (29)

Z j+1 = Z j +G(Z j)∆ j +F(Z j)∆ j +F(Z j)∆Wj . (30)

F(Z j) = α(t j)X j. (31)

G(Z j) = γ(t j)X j. (32)

K(y j, t j) =
N

∑
i=1

α(t j) f ′(y, t j)∆ t j. (33)

H j = f (WN −W0)−K(WN −W0). (34)

Xi+1 = Z j+1H j, X0 = f (WN −W0), j = 0,1, · · · ,N − 1. (35)

We use this method to solve three equations both with exponential initial conditions and those with linear conditions. We
also compare the EMM and EMMC.

5.2.1 SDEw without a Drift Coefficient

The analysis in previous sections has showed that the solution of the system

{

dYt = YtdWt , t ∈ [0,1].

Y0 = eW (1)
.

(36)

is given by Yt = eW(1)−t exp
(

Wt −
t

2

)

. We solve this numerically a MATLAB2021a code. A comparison of results in

Figures 2 and 3 show that EMM and EMMC do not produce different results when estimating a stochastic differential
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Fig. 3: SDEw without Drift Coefficient

equation without anticipating conditions. Similarly, Figure 3 shows that EMMC and EMM give results that have
comparable accuracy. In fact, EMM performs better in this particular SDEw.

Theorem 2.Consider the differential equation with anticipating initial conditions of the form below

dXt = A(t)XtdWt +B(t)Xtdt, Xa = f (Wb −Wa), a ≤ t ≤ b. (37)

The solution of this differential equation is given by

Xt = [ f (Wb −Wa)−K(t,Wb −Wa)]Zt , (38)

where K(t,y) =

∫ t

a
A(s) f ′(y,s)ds, f ′(y,s) = f ′

(

y−
∫ t

s
A(u)du

)

.

5.2.2 SDEw with Linear Initial Condition

Consider a situation where A(t) = 1 = B(t), 0 ≤ t ≤ 1, and f (x) = x = elnx. Then the problem in Theorem 2 can be
expressed as dXt = XtdWt + Xtdt, X0 = W (1), 0 ≤ t ≤ 1. Similarly f ′(y,s) = 1, f (W (1)−W (0)) = W (1), K(t,y) =
∫ t

0
1 ·1ds = t. Using the definition of Zt , we have

Zt = exp

{

∫ t

0
A(s)dWs +

∫ t

0

(

B(s)− 1

2
A2(s)

)

ds

}

= exp

{

∫ t

0
1dWs +

∫ t

0

(

1− 1

2
·12

)

ds

}

= exp

(

Wt +
1

2
t

)

. (39)

Hence, the solution can be expressed as follows:

Xt = (W (1)− t)Zt = (W (1)− t)exp

(

Wt +
1

2
t

)

. (40)
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Fig. 4: SDEw with Linear Initial Condition

Clearly, the results shown in Figure 4 also shows that both methods accurately estimate an SDEw with Linear Initial
Condition. All the estimated solutions are very close to the exact solution of the SDEw. The results from EMM oscillates
in much similar manner like the exact solution. This may suggest an overestimation phenomenon. The results from EMMC
oscillate but not as much as those of EMM. They also seem to map between some peaks. This can suggest that the ordinary
numerical methods of solving differential equations are sufficient for SDEw’s. It can also suggest that more versatile
numerical methods like the Stochastic Runge-Kutta, and Milstein Methods can as well give more promising results. The
Runge-Kutta method can lead to loss of information of the estimated solutions if Monte-Carlo extension is imputed.
However, the first order Stochastic Runge-Kutta Method for linear SDEw’s simply reduce to Milstein Methods. Hence,
the techniques in this article are sufficient for most SDEw’s.

5.2.3 Exponential Anticipating Non-Martingale Example

Consider a situation where A(t) = 1 = B(t), 0 ≤ t ≤ 1, and f (x) = ex = f ′(x). Then the problem in the theorem can be

expressed as dXt = XtdWt +Xtdt, X0 = eW (1), 0 ≤ t ≤ 1. It is clear that y−
∫ t

s
1du = y− t+ s. From this, we can find that

f ′(y− t + s) = ey−t+s. Hence, we realize that K(y, t) =
∫ t

0 1ey−t+sds = ey − ey−t and H(W1 −W0) = eW1−W0 − (eW1−W0 −
eW1−W0−t) = eW1−t . Hence, the exact solution is given by:

Xt = eW1−teW1+
t
2 . (41)

If we use EMM and EMMC, then the difference equations derived above can be used. This can be implemented by a
MATLAB2021a code. Figure 5 clearly shows that both EMM and EMMC give a good estimation of solution of SDEw’s.
The EMMC is still more versatile despite the fact that it exhibits a more smoothing effect.

6 Conclusion

The solution of a stochastic differential equation with anticipating conditions can either be a product of functions with
time and initial conditions arguments and it may also fail to be factored. In both cases there exists an ordinary or a partial
non-stochastic differential equation that the initial conditions satisfy. In addition, the methods used to derive the
conditions are a viable way of constructing a numerical scheme that uses Euler-Muruyama methods. Inclusion of
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Fig. 5: SDEw with Exponential IC

Monte-Carlo extension in the Euler-Muruyama method does not lower versatility of the Monte-Carlo techniques but has
a slight smoothing effect on numerical solution. This makes Euler-Muruyama method produce reliable approximate
numerical solutions of stochastic differential equation with anticipating conditions.
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